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The bucket brigade algorithm is designed to solve the apportionment 

of credit problem for massively parallel. message-passing, rule-based 

systems. The apportionment of credit problem was recognized and 

explored in one of the earl iest significant works in machine learning 

(Samuel [1959]). In the context of rule-based systems it is the problem of 

deciding which of a set of early acting rules should receive credit for 

"setting the stage" for later. overtly successful actions. In the systems of 

interest here. in which rules conform to the standard condition/action 

paradigm. a rule's overall usefulness to the system is indicated by a 

parameter called its strength. Each time a rule is active. the bucket 

brigade algorithm modifies the strength so that it provides a better 

estimate of the rule's usefulness in the contexts in which it is activated. 

The bucket brigade algorithm functions by introducing an element of 

competition into the process of deciding which rules are activated. 

Normally. for a parallel message-passing system. all rules having 

condition parts sat isfied by some of the messages posted at a given time 

are automatically activated at that time. However. under the bucket 

brigade algorithm only some of the satisfied rules are activated. Each 

satisfied rule makes a bia based in part on its strength. and only the 

highest bidders become active (thereby posting the messages speCified by 

their action parts). The size of the bid depends upon both the rule's 

strength and the specificity of the rule's conditions. (The rule's 

specificity is used on the broad assumption that. other things being equal. 

the more information required by a rule's conditions, the more likely it is 

to be "relevant" to the particular situation confronting it). In a specific 

version of the algorithm used for classifier systems, the bid of classifier 

C at time t is given by 

b(C. t) - cr(C)s(C. t). 

where r(C) is the specificity of rule C (equal, for classifier systems, to 

the difference between the total number of defining positions in the 

condition and the number of "don't cares" in the condition). s(C.t) is the 

strength of the rule at time t, and c is a constant considerably less than I 
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(e.g., 1 14 or 1/8). 

The essence of the bucket brigade algorithm is its treatment of each 

rule as a kind of mid-level entrepreneur (a "middleman") in a complex 

enconomy. When a rule C wins the competition at time t, it must decrease 

its strength by the amount of the bid. Thus its strength on time-step t+ I, 

after winning the competition, is given by 

S(C, t+ 1) = S(C, t) - b(C, t) .. (1 - cr(C»S(C, t). 

In effect C has paid for the privilege of posting its message. Moreover 

this amount is actually paid to the classifers that sent messages 

satisfying C's conditions -- in the simplest formulation the bid is split 

equally amongst them. These message senders are C's suppliers, and each 

receives its share of the payment from the consumer C. Thus, if C 1 has 

posted a message that satisfies one of C's conditions, C1 has its strength 

increased so that 

s(C 1, t+1) = S(C 1, t) + b(C, t)/n(C, t) = (1 - cr(C)/n(C,t»S(C,t), 

where n(C, t) is the number of classifiers sending messages that satisfy C 

at time t. 

In terms of the economic metaphor, the suppliers (C I} are paid for 

setting up a situation usable by consumer C. C, on the next time step, 

changes from consumer to supplier because it has posted its message. If 

other classifiers then bid because they are satisfied by C's message, and if 

they win the bidding competition, then C in turn will receive some. fraction 

of those bids. C's survival in the system depends upon its turning a profit 

as an intermediary in these local transactions. In other words, when C is 

activated, the bid it pays to its suppliers must be less (or, at least, no 

more) than the average of the sum of the payments it receives from its 

consumers. 

It is important that this process involves no complicated 

"bookkeeping" or memory over long sequences of action. When activated, C 

simply pays out its bid on one time-step, and is immediately paid by its 

consumers (if any) on the next time-step. The only variation on this 

transaction occurs on time-steps when there is payoff from the 

environment. Then, all classifiers active on that time-step receive equal 

fractions of the payoff in addition to any payments from classifiers active 

on the next time-step. In effect, the environment is the system's ultimate 

consumer. From a global point of view, a given classifier C is likely to be 
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profitable only if its usual consumers are profitable. The profitability of 

any chain of consumers thus depends upon their relevance to the ultimate 

consumer. Stated more directly, the profitability of a classifier depends 

upon its being coupled into sequences leading to payoff. 

As a way of illustrating the bucket brigade algorithm, consider a set 

of 2-condition classifiers where, for each classifier, condition 1 attends 

to messages from the environment and condition 2 attends to messages 

from other classifiers in the set. As above, let a given classifier C have a 

bid fraction b(C) and strength s(C,t) at time t. Note that condition 1 of C 

defines an equivalence class E in the environment consisting of those 

environmental states producing messages satisfying the condition. 

Consider now the special case where the activation of C produces a 

response r that transforms states in E to states in another equivalence 

class E' having an (expected) payoff u. Under the bucket brigade 

algorithm, when C wins the competition under these circumstances its 

strength will change from s(C,t) to 

s(C,t+ 1) • s(C,t) - b(C)s(C,t) + u 

+ (any bids C receives from classifiers active on 

the next time-step). 

Assuming the strength of C is small enough that its bid b(C)s(C,t) is 

considerably less than u, the usual case for a new rule or for a rule that 

has only been activated a few times, the effect of the payoff is a 

considerable strengthening of rule C. 

This strengthening of C has two effects. First, C becomes more likely 

to win future competitions when its conditions are satisfied. Second, 

rules that send messages satisfying one (or more) of C's conditions will 

receive higher bids under the bucket brigade, because b(C)s(C,t+ 1) > 
b(C)s(C,t). 

Both of these effects strongly influence the development of the 

system. The increased strength of C means that response r wi II be made 

more often to states in E when C competes with other classifiers that 

produce different responses. If states in E' are the only payoff states 

accessible from E, and r is the only response that will produce the 

required transformation from states in E to states in £', then the higher 

probability of a win for C translates into a higher payoff rate to the 

classifier system. 
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Of equal importance, C's higher bids mean that rules sending 

messages satisfying C's second condition wi 11 be additionally strengthened 

because of C's higher bids. Consider, for example, a classifier Co that 

transforms environmental states in some class 10 to states in class £ by 

evoking response r o. That Is, Co acts upon a causal relation in the 

environment to "set the stage- for C. If Co also sends a message that 

satisfies C's second condition, then Co will benefit from the "stage 

setting" because C's higher bid is passed to it via the bucket brigade. 

It is instructive to contrast the ·stage setting" case with the case 

where some classifier, say C l' sends a message that satisfies C but does 

not transform states in 9 (the environmental equivalence class defined 

by Its f1rst condition) to states In E. That Is, C 1 attempts to -parasitize­

C, extracting bids from C via the bucket brigade without modifying the 

environment in ways suitable for C's action. Because C1 is not 

instrumental in transforming states in 9 to states in £, it will often 

happen that activation of C 1 Is not followed by act1vation of C on the 

subsequent time-step because C's first (environmental) condition is not 

satisfied. Every time C 1 is activated without a subsequent activation of C 

it suffers a loss because it has paid out its bid b(C 1 )s(C 1 ,t), without 

receiving any income from C. Eventually C l's strength will decrease to the 

point that it is no longer a competitor. (There is a more interesting case 

where Co and C 1 manage to become active simultaneously, but that goes 

beyond the confines of the present Illustratlon). 

One of the most Important consequences of the bidding process is the 

automatiC emergence of default hierarchies in response to complex 

environments. For rule-based systems a -default" rule has two basIc 

pro pert f es: 

1) It Is a general rule with relatIvely few specified properties and 

many -don't cares- In Its condition part, and 

2) when It wIns a competition It Is often In error, but It stilI 

manages to profit often enough to survive. 

I t is clear that a default rule is preferable to no rule at all. but, because it 

is often in error, it can be improved. One of the simplest improvements is 

the addition of an Nexceptlon- rule that responds to Situations that cause 
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the default rule to be in error. Note that, in attempting to identify the 

error-causing Situations, the condition of the exception rule specifies a 

subset of the set of messages that satisfy the default rule. That is, the 

condition part of the exception rule refines the condition part of the 

default rule by using additional identifying bits (properties). Because 

rule discovery algorithms readily generate and test refinements of 

existing strong rules, useful exception rules are soon added to the system. 

As a direct result of the bidding competition, an exception rule, once 

in place, actually aids the survival of its parent default rule. Consider the 

case where the default rule and the exception rule attempt to set a given 

effector to a different values. In the typical classifier system this 

conflict is resolved by letting the highest bidding rule set the effector. 

Because the exception rule is more specific than the default rule, and 

hence makes a higher bid, it usually wins this competition. In winning, the 

exception rule actually prevents the default rule from paying its bid. This 

outcome saves the the default rule from a loss, because the usual effect 

of an error, under the bucket brigade, is activation of consumers that do 

not bid enough to return a profit to the default rule. In effect the 

exception protects the default from some errors. Simllar arguments 

apply, under the bucket brigade algorithm, when the default and the 

exception only influence the setting of effectors indirectly through 

intervening, coupled classifiers. 

Of course the exception rules may be imperfect themselves, selecting 

some error-causing cases, but making errors in other cases. Under such 

Circumstances, the exception rules become default rules relative to more 

detailed exceptions. Iteration of the above process yields an ever more 

refined, and efficient, default hierarchy. The process improves both 

overall performance and the profitability of each of the rules in the 

hierarchy. It also uses fewer rules than would be required if all the rules 

were developed at the most detalled level of the hierarchy (see Holland, 

Ho lyoak, Nisbett, and Thagard [1986]). The bucket brigade a Igori thm 

strongly encourages the top-down discovery and development of such 

hierarchies (cf. Goldberg [1983] for a concrete example). 

At first sight, consideration of long sequences of coupled rules would 

seem to uncover an important limitation of the bucket brigade algorithm. 

Because of its local nature, the bucket brigade algorithm can only 

propagate strength back along a chain of suppliers through repeated 

activations of the whole sequence. That is, on the first repetition of a 
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sequence leading to payoff, the increment in strength is propagated to the 

immediate precursors of the payoff rule(s). On the second repetition it is 

propagated to the precursors of the precursors, etc. Accordingly, it takes 

on the order of n repetitions of the sequence to propagate the increments 

back to rules that "set the stage" n steps before the final payoff. However, 

this observation is misleading because certain kinds of rule can serve to 

"bridge" long sequences. 

The simplest "bridging action" occurs when a given rule remains 

active over, say, T successive time-steps. Such a rule passes increments 

back over an interval of T time-steps on the next repetition of the 

sequence. This Qualification takes on importance when we think of a rule 

that shows perSistent activity over an epoclJ -- an interval of time 

characterized by a broad plan or activity that the system is attempting to 

execute. For the activity to be perSistent, the condition of the 

epoch-marking rule must be general enough to be satisfied by just those 

properties or cues that characterize the epoch. Such a rule, if strong, 

marks the epoch by remaining active for its duration. 

To extract the consequences of this persistent activation, consider a 

concrete plan involving a sequence of activities, such as a "going home" 

plan. The sequence of coupled rules used to execute this plan on a given 

day will depend upon variable requirements such as "where the car is 

parked", "what errands have to be run", etc. These detailed variations will 

call upon various combinations of rules in the system's repertoire, but the 

epoch-marking "going home" rule 0 will be active throughout the execution 

of each variant. In particular, it will be active both at the beginning of the 

epoch and at the time of payoff at the end of the plan ("arrival home"). As 

such it "bridges" the whole epoch. 

Consider now a rule I that initiates the plan and is coupled to (sends a 

message satisfying) the general epoch-marking rule D. The first 

repetition of the sequence initiated by I will result in the strength of I 

being incremented. This comes about because 0 is strengthened by being 

active at the time of payoff and, because it is a consumer of I's message, 

it passes this increment on to I the very next time I is activated. 0 

"supports" I as an element of the "going home" plan. The result is a kind of 

one-shot learning in which the earl iest elements in a plan are rewarded on 

the very next use. This occurs despite the local nature of the bucket 

brigade algorithm. It requires only the presence of a general rule -- a kind 

of default -- that is activated when some general kind of activity or goal 

6 



is to be attained. An appropriate rule discovery algorithm, such as a 

genetic algorithm, will soon couple more detailed rules to the 

epoch-marking rule. And, much as in the generation of a default hierarchy, 

these detailed rules can give rise to further refined offspring. The result 

is an emergent plan hierarchy going from a high-level sketch through 

progressive refinements yielding ways of combining progressively more 

detailed components (rule clusters) to meet the particular constraints 

posed by the current state of the environment. In this way a llmited 

repertoire of rules can be combined in a variety of ways, and in parallel, to 

meet the perpetual novelty of the environment. 
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