
PROPERTIES OF THE BUCKET BRIGADE ALGORITHM

John H. Ho II and

The University of Michigan

The bucket brigade algorithm is designed to solve the apportionment

of credit problem for massively parallel. message-passing, rule-based

systems. The apportionment of credit problem was recognized and

explored in one of the earl iest significant works in machine learning

(Samuel [1959]). In the context of rule-based systems it is the problem of

deciding which of a set of early acting rules should receive credit for

"setting the stage" for later. overtly successful actions. In the systems of

interest here. in which rules conform to the standard condition/action

paradigm. a rule's overall usefulness to the system is indicated by a

parameter called its strength. Each time a rule is active. the bucket

brigade algorithm modifies the strength so that it provides a better

estimate of the rule's usefulness in the contexts in which it is activated.

The bucket brigade algorithm functions by introducing an element of

competition into the process of deciding which rules are activated.

Normally. for a parallel message-passing system. all rules having

condition parts sat isfied by some of the messages posted at a given time

are automatically activated at that time. However. under the bucket

brigade algorithm only some of the satisfied rules are activated. Each

satisfied rule makes a bia based in part on its strength. and only the

highest bidders become active (thereby posting the messages speCified by

their action parts). The size of the bid depends upon both the rule's

strength and the specificity of the rule's conditions. (The rule's

specificity is used on the broad assumption that. other things being equal.

the more information required by a rule's conditions, the more likely it is

to be "relevant" to the particular situation confronting it). In a specific

version of the algorithm used for classifier systems, the bid of classifier

C at time t is given by

b(C. t) - cr(C)s(C. t).

where r(C) is the specificity of rule C (equal, for classifier systems, to

the difference between the total number of defining positions in the

condition and the number of "don't cares" in the condition). s(C.t) is the

strength of the rule at time t, and c is a constant considerably less than I

1

(e.g., 1 14 or 1/8).

The essence of the bucket brigade algorithm is its treatment of each

rule as a kind of mid-level entrepreneur (a "middleman") in a complex

enconomy. When a rule C wins the competition at time t, it must decrease

its strength by the amount of the bid. Thus its strength on time-step t+ I,

after winning the competition, is given by

S(C, t+ 1) = S(C, t) - b(C, t) .. (1 - cr(C»S(C, t).

In effect C has paid for the privilege of posting its message. Moreover

this amount is actually paid to the classifers that sent messages

satisfying C's conditions -- in the simplest formulation the bid is split

equally amongst them. These message senders are C's suppliers, and each

receives its share of the payment from the consumer C. Thus, if C 1 has

posted a message that satisfies one of C's conditions, C1 has its strength

increased so that

s(C 1, t+1) = S(C 1, t) + b(C, t)/n(C, t) = (1 - cr(C)/n(C,t»S(C,t),

where n(C, t) is the number of classifiers sending messages that satisfy C

at time t.

In terms of the economic metaphor, the suppliers (C I} are paid for

setting up a situation usable by consumer C. C, on the next time step,

changes from consumer to supplier because it has posted its message. If

other classifiers then bid because they are satisfied by C's message, and if

they win the bidding competition, then C in turn will receive some. fraction

of those bids. C's survival in the system depends upon its turning a profit

as an intermediary in these local transactions. In other words, when C is

activated, the bid it pays to its suppliers must be less (or, at least, no

more) than the average of the sum of the payments it receives from its

consumers.

It is important that this process involves no complicated

"bookkeeping" or memory over long sequences of action. When activated, C

simply pays out its bid on one time-step, and is immediately paid by its

consumers (if any) on the next time-step. The only variation on this

transaction occurs on time-steps when there is payoff from the

environment. Then, all classifiers active on that time-step receive equal

fractions of the payoff in addition to any payments from classifiers active

on the next time-step. In effect, the environment is the system's ultimate

consumer. From a global point of view, a given classifier C is likely to be

2

profitable only if its usual consumers are profitable. The profitability of

any chain of consumers thus depends upon their relevance to the ultimate

consumer. Stated more directly, the profitability of a classifier depends

upon its being coupled into sequences leading to payoff.

As a way of illustrating the bucket brigade algorithm, consider a set

of 2-condition classifiers where, for each classifier, condition 1 attends

to messages from the environment and condition 2 attends to messages

from other classifiers in the set. As above, let a given classifier C have a

bid fraction b(C) and strength s(C,t) at time t. Note that condition 1 of C

defines an equivalence class E in the environment consisting of those

environmental states producing messages satisfying the condition.

Consider now the special case where the activation of C produces a

response r that transforms states in E to states in another equivalence

class E' having an (expected) payoff u. Under the bucket brigade

algorithm, when C wins the competition under these circumstances its

strength will change from s(C,t) to

s(C,t+ 1) • s(C,t) - b(C)s(C,t) + u

+ (any bids C receives from classifiers active on

the next time-step).

Assuming the strength of C is small enough that its bid b(C)s(C,t) is

considerably less than u, the usual case for a new rule or for a rule that

has only been activated a few times, the effect of the payoff is a

considerable strengthening of rule C.

This strengthening of C has two effects. First, C becomes more likely

to win future competitions when its conditions are satisfied. Second,

rules that send messages satisfying one (or more) of C's conditions will

receive higher bids under the bucket brigade, because b(C)s(C,t+ 1) >
b(C)s(C,t).

Both of these effects strongly influence the development of the

system. The increased strength of C means that response r wi II be made

more often to states in E when C competes with other classifiers that

produce different responses. If states in E' are the only payoff states

accessible from E, and r is the only response that will produce the

required transformation from states in E to states in £', then the higher

probability of a win for C translates into a higher payoff rate to the

classifier system.

3

Of equal importance, C's higher bids mean that rules sending

messages satisfying C's second condition wi 11 be additionally strengthened

because of C's higher bids. Consider, for example, a classifier Co that

transforms environmental states in some class 10 to states in class £ by

evoking response r o. That Is, Co acts upon a causal relation in the

environment to "set the stage- for C. If Co also sends a message that

satisfies C's second condition, then Co will benefit from the "stage

setting" because C's higher bid is passed to it via the bucket brigade.

It is instructive to contrast the ·stage setting" case with the case

where some classifier, say C l' sends a message that satisfies C but does

not transform states in 9 (the environmental equivalence class defined

by Its f1rst condition) to states In E. That Is, C 1 attempts to -parasitize­

C, extracting bids from C via the bucket brigade without modifying the

environment in ways suitable for C's action. Because C1 is not

instrumental in transforming states in 9 to states in £, it will often

happen that activation of C 1 Is not followed by act1vation of C on the

subsequent time-step because C's first (environmental) condition is not

satisfied. Every time C 1 is activated without a subsequent activation of C

it suffers a loss because it has paid out its bid b(C 1)s(C 1 ,t), without

receiving any income from C. Eventually C l's strength will decrease to the

point that it is no longer a competitor. (There is a more interesting case

where Co and C 1 manage to become active simultaneously, but that goes

beyond the confines of the present Illustratlon).

One of the most Important consequences of the bidding process is the

automatiC emergence of default hierarchies in response to complex

environments. For rule-based systems a -default" rule has two basIc

pro pert f es:

1) It Is a general rule with relatIvely few specified properties and

many -don't cares- In Its condition part, and

2) when It wIns a competition It Is often In error, but It stilI

manages to profit often enough to survive.

I t is clear that a default rule is preferable to no rule at all. but, because it

is often in error, it can be improved. One of the simplest improvements is

the addition of an Nexceptlon- rule that responds to Situations that cause

4

the default rule to be in error. Note that, in attempting to identify the

error-causing Situations, the condition of the exception rule specifies a

subset of the set of messages that satisfy the default rule. That is, the

condition part of the exception rule refines the condition part of the

default rule by using additional identifying bits (properties). Because

rule discovery algorithms readily generate and test refinements of

existing strong rules, useful exception rules are soon added to the system.

As a direct result of the bidding competition, an exception rule, once

in place, actually aids the survival of its parent default rule. Consider the

case where the default rule and the exception rule attempt to set a given

effector to a different values. In the typical classifier system this

conflict is resolved by letting the highest bidding rule set the effector.

Because the exception rule is more specific than the default rule, and

hence makes a higher bid, it usually wins this competition. In winning, the

exception rule actually prevents the default rule from paying its bid. This

outcome saves the the default rule from a loss, because the usual effect

of an error, under the bucket brigade, is activation of consumers that do

not bid enough to return a profit to the default rule. In effect the

exception protects the default from some errors. Simllar arguments

apply, under the bucket brigade algorithm, when the default and the

exception only influence the setting of effectors indirectly through

intervening, coupled classifiers.

Of course the exception rules may be imperfect themselves, selecting

some error-causing cases, but making errors in other cases. Under such

Circumstances, the exception rules become default rules relative to more

detailed exceptions. Iteration of the above process yields an ever more

refined, and efficient, default hierarchy. The process improves both

overall performance and the profitability of each of the rules in the

hierarchy. It also uses fewer rules than would be required if all the rules

were developed at the most detalled level of the hierarchy (see Holland,

Ho lyoak, Nisbett, and Thagard [1986]). The bucket brigade a Igori thm

strongly encourages the top-down discovery and development of such

hierarchies (cf. Goldberg [1983] for a concrete example).

At first sight, consideration of long sequences of coupled rules would

seem to uncover an important limitation of the bucket brigade algorithm.

Because of its local nature, the bucket brigade algorithm can only

propagate strength back along a chain of suppliers through repeated

activations of the whole sequence. That is, on the first repetition of a

5

sequence leading to payoff, the increment in strength is propagated to the

immediate precursors of the payoff rule(s). On the second repetition it is

propagated to the precursors of the precursors, etc. Accordingly, it takes

on the order of n repetitions of the sequence to propagate the increments

back to rules that "set the stage" n steps before the final payoff. However,

this observation is misleading because certain kinds of rule can serve to

"bridge" long sequences.

The simplest "bridging action" occurs when a given rule remains

active over, say, T successive time-steps. Such a rule passes increments

back over an interval of T time-steps on the next repetition of the

sequence. This Qualification takes on importance when we think of a rule

that shows perSistent activity over an epoclJ -- an interval of time

characterized by a broad plan or activity that the system is attempting to

execute. For the activity to be perSistent, the condition of the

epoch-marking rule must be general enough to be satisfied by just those

properties or cues that characterize the epoch. Such a rule, if strong,

marks the epoch by remaining active for its duration.

To extract the consequences of this persistent activation, consider a

concrete plan involving a sequence of activities, such as a "going home"

plan. The sequence of coupled rules used to execute this plan on a given

day will depend upon variable requirements such as "where the car is

parked", "what errands have to be run", etc. These detailed variations will

call upon various combinations of rules in the system's repertoire, but the

epoch-marking "going home" rule 0 will be active throughout the execution

of each variant. In particular, it will be active both at the beginning of the

epoch and at the time of payoff at the end of the plan ("arrival home"). As

such it "bridges" the whole epoch.

Consider now a rule I that initiates the plan and is coupled to (sends a

message satisfying) the general epoch-marking rule D. The first

repetition of the sequence initiated by I will result in the strength of I

being incremented. This comes about because 0 is strengthened by being

active at the time of payoff and, because it is a consumer of I's message,

it passes this increment on to I the very next time I is activated. 0

"supports" I as an element of the "going home" plan. The result is a kind of

one-shot learning in which the earl iest elements in a plan are rewarded on

the very next use. This occurs despite the local nature of the bucket

brigade algorithm. It requires only the presence of a general rule -- a kind

of default -- that is activated when some general kind of activity or goal

6

is to be attained. An appropriate rule discovery algorithm, such as a

genetic algorithm, will soon couple more detailed rules to the

epoch-marking rule. And, much as in the generation of a default hierarchy,

these detailed rules can give rise to further refined offspring. The result

is an emergent plan hierarchy going from a high-level sketch through

progressive refinements yielding ways of combining progressively more

detailed components (rule clusters) to meet the particular constraints

posed by the current state of the environment. In this way a llmited

repertoire of rules can be combined in a variety of ways, and in parallel, to

meet the perpetual novelty of the environment.

References.

Goldberg, D. E. Comp(Jter-aJded Gas Pipeline Operation Using Genetic

Algorithms and /'1ac!Jine Leaming. Ph. D. Dissertation (Civi 1 Engineering).

The University of Michigan. 1983.

Holland, J. H., Holyoak, K. J, Nisbett, R. E., and Thagard, P. R. lnd(Jction:

L e a m i n ~ Oiscoverx and t!Je Growt!J of Knowledge. [forthcoming, MIT

Press].

Samuel, A L. ·some studies in machine learning using the game of

checkers." !Bt1Jo(Jmal of Researc!J and Development 3. 211-232, 1959.

7

