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ABSTRACT: Rapid advancements in artificial intelligence (AI) have enabled breakthroughs across many scientific disciplines. In
organic chemistry, the challenge of planning complex multistep chemical syntheses should conceptually be well-suited for AI. Yet,
the development of AI synthesis planners trained solely on reaction-example-data has stagnated and is not on par with the
performance of “hybrid” algorithms combining AI with expert knowledge. This Perspective examines possible causes of these
shortcomings, extending beyond the established reasoning of insufficient quantities of reaction data. Drawing attention to the
intricacies and data biases that are specific to the domain of synthetic chemistry, we advocate augmenting the unique capabilities of
AI with the knowledge base and the reasoning strategies of domain experts. By actively involving synthetic chemists, who are the end
users of any synthesis planning software, into the development process, we envision to bridge the gap between computer algorithms
and the intricate nature of chemical synthesis.

A rtificial intelligence (AI) is having a transformative impact
on fields as diverse as interaction and reasoning in natural

language,1,2 solving games of strategy,3,4 computer vision,5,6

recommender systems,7 theory of computing,8 and many
more. In the molecular sciences, the success of AlphaFold29,10

in predicting the structures of proteins has generated
widespread enthusiasm and has raised expectations for similar
feats in chemistry. Many of these expectations have been met
by recent successes in the AI-driven optimization of
catalysts,11−13 materials,14−17 or reactions18−20 but not yet in
the classic problem of synthesis planning.21,22 Recent efforts in
this area23−25 have given rise to a vision of “exploit[ing]
artificial intelligence to automatically learn organic synthesis
from reaction examples”.26 Unfortunately, as of today, purely
data-driven algorithms have remained confined to the
syntheses of simple targets and face severe challenges when
confronted with, e.g., complex scaffolds with multiple stereo-
centers. These limitations have often been attributed to
insufficient amounts of reaction examples,27 especially those
reporting failed reactions. However, this Perspective argues
that the problem has deeper roots than just the quantities of
reaction examples−from noise and biases in the reaction data
sets to complex reaction-condition relationships hidden
“beneath” the published data−and collecting a sufficient
number of examples will not be feasible in the near term.
Instead, we argue the field can make significant advances by (i)
embracing the key elements of domain knowledge and
“classical” theoretical tools developed by chemists over the
past centuries (but not contained in reaction databases) and
(ii) improving the AI’s algorithmic basis to better match the
thinking of human experts. Early examples of such AI-
knowledge “hybrids” have already been demonstrated to attack
demanding natural product targets28−30 and will define further
development of “algorithmic chemistry” in synthesis. We

believe that key to these improvements will be closer cross-talk
between algorithm specialists and synthetic chemists−whose
expertise cannot be easily replaced by more reaction examples.

■ THE CHALLENGE OF SYNTHESIS PLANNING

Synthetic routes are typically designed following the logic of
retrosynthesis, originally introduced by E. J. Corey in the
1960s,21,22 in which a desired target molecule is iteratively
disconnected into progressively simpler intermediates, ulti-
mately reaching commercially available and ideally inexpensive
starting materials (Figure 1a). From a chemical viewpoint,
these disconnections are defined by known reaction types (e.g.,
nucleophilic substitution, Diels−Alder cycloaddition, etc.) and
can be considered as basic “moves” from which complete
synthesis “games” are made (Figure 1b). From an algorithmic
standpoint, the design of retrosynthetic routes is certainly not a
simple problem, as there are as many as ∼105 different types of
reaction moves (Figure 1c and previous analyses31) and
because the networks of synthetic possibilities for any given
target are very large (Figure 1d), scaling as ∼100n, where n is
the number of reactions needed to complete the synthesis.32

For complex natural products, n is usually measured in tens,
and within such enormous networks, only a few sequences of
moves may exist that define a viable synthesis.
The Promise and Limitations of Data-Driven Syn-

thesis. However, these very large numbers by themselves are
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not necessarily an unsurmountable obstacle to developing
algorithms for synthesis planning, given that modern AI tools
have mastered problems such as chess or GO, in which the
networks of possibilities to consider are even larger.32

Moreover, millions of published reaction examples have
nowadays been digitized and are stored in reaction databases
such as publicly available USPTO37 or proprietary Reaxys38 or
SciFinder;39 it can be argued that they represent all existing
synthesis knowledge, from which the reaction rules could easily
be extracted explicitly (in the form of subgraph edits
characterizing different reaction types) or learned implicitly
from the data. With these components in place, various neural
network architectures40−48 could be used to associate specific
rules/“moves” with specific types of molecules to which they
have been applied. In this way, when AI is confronted with a
new target, it could recognize the pertinent structural features
of the molecule and suggest the most appropriate reaction
rule/“move” to guide the exploration of retrosynthetic
networks. What really fuels the imagination in this vision is

that this processing of and learning from the entire synthesis
knowledge could be realized in one afternoon!
Unfortunately, it appears that this vision is affected by

certain overoptimistic assumptions and inaccurate analogies.
To begin with, in games like chess, the rules are very well-
defined in terms of both what is allowed (e.g., a bishop moves
along diagonals) and what is not (e.g., a bishop cannot jump
over other pieces). In contrast, reaction data alone is not only
littered by erroneous and incomplete entries but, as we will
discuss, allows neither for the chemically unambiguous
definition of reaction rules nor for their extrapolation to the
“impossible cases”, without which the synthesis planning
programs tend to invent impossible reactions. We detail key
challenges below, arguing that at least some of them can be
remedied by broadening the scope of purely reaction-example-
driven AI: In fact, the mastery of synthesis experts extends well
beyond the knowledge of reaction examples and encompasses
symbolic and implicit knowledge such as reaction mechanisms
and reactive intermediates, 3D structures, steric, electronic, and
stereoelectronic considerations, and often “fuzzy” insights

Figure 1. Synthesis planning, reaction rules, and retrosynthetic networks. (a) Retrosynthesis by strategically disconnecting a target molecule (here,
natural product (+)-brasilenol33) into progressively simpler intermediates. (b) Example of a “reaction rule” describing a substrate-controlled 1,4-
addition of an organometallic reagent, used in the synthesis from (a). Such rules are often represented in the alphanumeric SMARTS notation,34

specifying the identities of atoms in the chemical synthesis and mapping atoms across the reaction, and can be accompanied by further information
(conditions, incompatible groups, etc.). Importantly, the rules are broader than any specific literature example and can be applicable to other
targets−the three structures shown at the bottom illustrate the application of the 1,4-addition rule to some intermediates used in the syntheses of
other natural products (Strychnofoline, Yohimbane, and Crenulatan diterpene). (c) The number of reaction rules, #R, governing organic syntheses
is very large but finite. The graph depicts #R as a function of time, t. Each curve represents rules above a specific “popularity”, k, defined by the
number of literature examples in which a given rule was used, as discussed in detail in our previous study.31 Rules with k = 1 (i.e., reaction types
reported only once) are mostly database entry errors. For the synthetically more useful rules, i.e., k > 2, the numbers are large but finite (∼50,000−

100,000). Contrary to what has often been claimed,35 the rate at which new reaction types are discovered is not increasing exponentially but has
decreased in recent decades (i.e., #R(t) curves flatten out). (d) With so many rules, each intermediate (“retron”) considered during retrosynthetic
planning can be expanded into multiple “synthons” (on average, ca. 100; see our previous work for a systematic analysis32), and the networks of
possibilities can rapidly become extremely large. The image is an excerpt from a network originating from Valsartan (node marked by the blue
arrow) and expanding just ten progeny/“synthon” nodes. Realistic retrosynthetic design of complex targets requires tens of thousands of such
expansions.28 Image in (c) is adapted with permission from ref 31. Copyright 2021 Wiley-VCH GmbH. Network in (d) is a screenshot of the
Synthia program.28,32,36
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derived from practical laboratory experience. While we do not
dismiss the potential of inferring this knowledge from data
against the limit of infinite reaction examples, we posit that,
given the current data landscape (and the foreseeable data
quantities in the coming decades), computer-aided synthesis
planning can be markedly enhanced by incorporating these
additional modalities of synthesis expert knowledge.
In the first part of this Perspective, we will discuss the above-

mentioned challenges of learning from reaction examples and
will outline how to enhance the prediction quality for single
reaction steps. Subsequently, we will discuss algorithms that
combine these single-step predictions into searches for
multistep synthetic routes.

■ PREDICTING THE OUTCOMES OF CHEMICAL
REACTIONS

The Challenges of Data-Driven Reaction Prediction.
i. Errors and Biases in Chemical Reaction Data. To begin
with, reaction repositories contain surprisingly large numbers,
up to tens of percent,31,49 of erroneous entries missing key
atoms, lacking entire substrates or products, or listing common
solvents or reagents in their lieu (particularly in the USPTO
data set, see ref 31). This causes significant problems, as such
erroneous entries prompt any data-driven algorithm to learn
incorrect reaction rules. The simplest remedy has been to

eliminate entries whose reaction templates (i.e., patterns of
atoms defining the reaction type) appear only once or twice in
the database−such extremely rare reactions are, indeed, often
erroneous31 (Figure 2a), although it should be remembered
that they can also be simply unique (yet useful in the synthesis
of rare scaffolds; see Figure 2b). Unsupervised, purely data-
reliant AI methods have been developed to address this
problem, but they sometimes rely on rather dangerous−
especially for more advanced chemistries−assumptions, e.g.,
that “the most difficult examples to learn while training
reaction prediction models are probably examples of wrong
chemistry”.50 Such assumptions lead to the rejection of
perfectly viable reactions, mostly on account of an algorithm’s
inability to detect trivial missing reactants/reagents or because
it cannot recognize reactions that are reported in shorthand,
with multiple steps concatenated into one (see specific
examples in Supporting Information, SI Section 1). Our
experience has shown that many of such problems could be
avoided by straightforward knowledge-based analyses−e.g.,
matching the reaction entries with lists of common solvents
and reagents (to detect their mis-assignments as reactants or
products), detecting reactions in which masses of substrates
and products differ significantly (suggesting missing sub-
strates), etc.
On the flipside of the coin, a less widely appreciated

complication is that not all correct literature examples, even

Figure 2. Examples of erroneous, rare, and biased reaction examples. (a) Examples of erroneous reaction types that have only one occurrence in the
literature (“popularity” k = 131). Reactions (i) and (ii) are both database entry errors with incorrect stereochemistry of a substrate (on highlighted
atoms) and/or incorrect products. (b) Examples of correct reaction types that have only one occurrence in the literature (k = 131) and have been
applied to specialized scaffolds only ((i) stephadiamine synthesis by Stoltz, Trauner, and co-workers;51 (ii) (+)-α-onocerin synthesis by Corey and
co-workers52). (c) Imidazopyridines can be prepared via different methods reported in the literature, including: (i) condensation of 2-
aminopyridines with a-haloketones; (ii) copper-mediated condensation of 2-aminopyridines with vinyl azides;53 (iii) dehydrogenative coupling of
pyridines with hydrazones;54 or (iv) gold-catalyzed cycloaddition of 2-aminopyridine N-oxides and alkynes.55 The most economical and versatile
methodology is (i). Methods (ii)−)iv) have >50 citations and ∼20 scope examples (i.e., popularity k ∼ 20), but even a decade after their
publication, they have not been used other than by the original authors (presumably owing to the low accessibility of reactants (ii)−(iv), safety
concerns regarding azides (ii), or economic considerations (iv) with respect to gold catalysts).

Journal of the American Chemical Society pubs.acs.org/JACS Perspective

https://doi.org/10.1021/jacs.4c00338
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00338/suppl_file/ja4c00338_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00338?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00338?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00338?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00338?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c00338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


those representing relatively popular methodologies, may be
actually desirable to include in the AI’s training data, at least
not until some bounds are imposed on their applicability. As an
example, defunctionalization reactions (e.g., dehalogenations,
deoxygenations, decarboxylations, alkene reductions) without
any constraints may prompt AI to later use them
promiscuously, generating synthons featuring halogens,
hydroxy groups, carboxyl groups, or C�C bonds in all
possible positions (see example in SI Section 2). This, in turn,
can dramatically increase the number of synthetic options to
evaluate, which may be negligible for shorter syntheses, but
very problematic for complex targets for which the sizes of
reaction networks test the limits of computing power even
without such “decoys”. In earlier works, we have shown the use
of such constraints, implemented with caution and only upon
expert scrutiny of pros (productively limiting the search space)
and cons (occasionally missing unconventional pathways): For
instance, “converting” an aromatic C−H bond into an amine
(in the retrosynthetic direction) is allowed only if it leads to
para and/or ortho substituted arenes. In that way, deamination
(in the forward direction) becomes part of a synthetic strategy
in which the amino group activates the aromatic ring and
facilitates electrophilic aromatic substitution(s) at earlier
retrosynthetic steps. When the desired substitution pattern is
reached, the amino group can be removed. Similarly,
retrosynthetic carboxylations can be constrained to cases in
which they lead to 1,3-dicarbonyl synthons, which may, during

further retroanalysis, enable facile alkylations or other base-
catalyzed reactions with various electrophiles.
A further bias to consider is when the literature provides

similar numbers of examples of different methodologies
producing the same scaffold type−some of these methods
may be truly useful (e.g., offering a different scope of
incompatibilities) but for some, high database counts merely
document the scope published in one, original publication.
There are no formal errors in such reactions but, when taught
as generalizable rules, they may produce syntheses that
chemists might find impractical (see examples in Figure 2c).
In our experience, such corner cases require careful, expert
analysis.

ii. Atom Mapping. Assuming a reaction data repository is
properly precleaned to some satisfactory degree, all algorithms
that rely on explicit reaction rules or “templates” require the
identification of the corresponding atoms in products/
“retrons” and substrates/“synthons”. If this so-called atom
mapping is off, AI will learn incorrect changes in the bonding
patterns, resulting in nonsensical reaction predictions (Figure
3a). While atom mapping can be considered a “vintage”
problem and may be trivial for simple reaction types, there are
currently no tools to ensure its correctness in complex
reactions. Automated atom mapping tools have been
developed both by knowledge-aided56 and fully data-driven
algorithms.57 In the context of our discussion, it is worth
noting that the best-in-class AI reaction mapper57 (based on
attention weights in a transformer neural network trained on

Figure 3. Challenges of automated atom mapping and reaction-template extraction. (a) Example of atom mapping in an Eschenmoser-Claisen
rearrangement. With incorrect mapping, the template applied to the substrate shown in the bottom row will predict formation of an incorrect
product (one with relevant parts colored in blue). (b) Definition of bond “radii” around the reactive center. (c) Examples of longer-range
interactions “through space” that determine reactivity. The r = 1 environments are in dashed-line boxes. However, reaction outcomes are dictated
by the more distant parts colored in green. (d) An example of conformational constraints (here, imposed by the ring structure) dictating the
reactivity of simple dienes in Diels−Alder reactions.
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millions of reactions) is significantly faster but less accurate
than a simple isomorphic mapping algorithm supplemented
with 20 knowledge-based heuristics formulated by synthesis
experts to guide the algorithm’s intermediate atom assign-
ment56 (78% vs 84% accuracy). Clearly, the number of 20
expert-assigned rules is small but illustrates the importance of
including additional knowledge modalities, and further
improvements can be expected with additional expert input
or through hybrid AI−expert systems.
iii. Reaction Templates. In the rule-based approaches to

retrosynthesis, chemical reactions are treated as “templates”, by
extracting parts of the molecules at and near the reaction

center and subsequently using them as “operators” to
synthesize new molecules (Figure 1b). These template-based
algorithms are of particular interest because, assuming correct
mapping, they capture known reactivity patterns and outper-
form template-free methods43−48 (see Molga et al.58 and
additional examples in SI Section 3), especially for more
complex chemistries. Automated extraction procedures first
identify atoms that change their local bonding patterns and
constitute the reaction “core,” as well as some flanking atoms
defining the “environment” to some radius r measured in bond
distance (Figure 3b).58−60 The r = 0 “core-only” templates
often miss the important structural motifs proximal to the

Figure 4. The hurdles of learning group (in)compatibilities from data alone. (a) Published reactions 1 and 2 are alkene and alkyne hydrogenations,
respectively, under the same reaction conditions (H2, Pd/C in MeOH). It is deduced that these groups, if present in the same molecule, would be
incompatible in the hydrogenation reaction under these conditions. This is, in fact, the case in the example in the bottom row, where hydrogenation
is not chemoselective for an intermediate toward a Phytophthora α1 mating hormone containing both an alkene and an alkyne.70 (b) Selective
outcomes can be achieved even if conditions of examples 1 and 2 are (formally) identical but reaction rates differ, as for the aldehyde and ketone
reduction with NaBH4. Selective outcome in the bottom reaction was, indeed, observed in the synthesis of trans-β-elemene.71 (c) Prediction
complexity is further increased when the reported conditions differ, e.g., when predicting whether an azide would remain intact in (i.e., be
compatible with) reduction of a ketone under Noyori’s conditions. Existing literature covers ketone reduction under these conditions (example 1,
blue) but no examples of azide reduction. Literature examples under “similar” conditions do not provide a definitive answer: There are examples in
which apparently similar conditions resulted in reduction (example 2, dark green72) but also those under which the azide stayed intact (example 3,
bright green73).
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reaction center; consequently, they generate many false
positive predictions when applied to new molecules. As r
increases, the templates become more accurate but also
applicable only to molecules increasingly similar to those
already in the data set (for very large r, the rules would only be
able to reproduce the original reaction data set).59 To balance
these two tendencies, r = 1 or r = 2 values are typically applied
to extract templates from reaction repositories. A major
challenge, however, is that the value of r may need to be
adjusted for different reaction types or molecular environ-
ments. Coley and co-workers made valuable contributions to
mitigate some of the resulting issues by adding knowledge-
based heuristics preventing, e.g., disconnection of common
functional groups at the template’s extremities.60 Yet, existing
template extraction solutions are far from being universal, and
stereochemistry in particular remains a challenge: As of today,
it is unclear how to ensure that the templates retain proper
stereochemistry (see examples in SI Section 4) or how to
recognize larger, stereochemically complex motifs that may
impact reactivity (e.g., shielding or conformation-determining
groups). Moreover, such motifs may be distant in a two-
dimensional graph but proximal in space, owing to the
molecule’s three-dimensional structure (Figure 3c). Augment-
ing template extraction with traditional conformational analysis
and metrics of conformational flexibility or steric hindrance
could represent an attractive direction in this regard.
Additionally, some domain knowledge−desirably, including
information on the underlying reaction mechanisms−seems
inevitable to define which groups and spatial arrangements are
relevant for specific reactions (Figure 3d and study by Moskal
et al.61).
iv. Nonselectivities and Incompatibilities. Finally, detect-

ing structural motifs that may engage in undesired side
reactions is a major problem plaguing all AI synthesis design
programs, even at the level of very simple targets and routes
(cf. examples in Molga et al.58). This problem actually consists
of two parts. On one hand, it is relatively easy to ensure that
the same reaction type cannot be applied in places of the
reactant other than the desired one; this is checked by applying
the reaction rule in the forward direction and verifying that it
does not give more than one product (see previous works for
more nuanced discussion of chemo- and regioselectivity
modeling13,61−69). On the other hand, it is much harder to
ascertain that synthons cannot engage in side reactions of other
types. Given very limited availability of data sets reporting side
reactions or “failed” reaction outcomes, auxiliary models to
detect such reactivity conflicts have been built. In most cases,
these have been trained on negative data generated in silico,
e.g., by assuming that, if molecules A and B react to product C,
they do not react to products D, E, F, etc. or by shuffling the
associated pairs of products and corresponding “correct”
reactions.35 However, these schemes are chemically speaking
rather crude, and it has been recognized that, to properly
predict conflicting reactivity, one needs to consider reaction
conditions−this task was anticipated to be a relatively
straightforward feature to add, requiring “additional search in
condition space”, limited only by “time constraints”.35

Unfortunately, this is not the case.
To see why, assume that along with the reactions, we

managed to extract the corresponding conditions−which, in
itself, is a bold assumption, as the inconsistencies, gaps, and
errors in terms of reporting reaction conditions are far more
pronounced than in the case of reactants and products (vide

infra). Notwithstanding, let us consider a situation in which
some reactions R1 and R2 were reported under the same
solvent and reagent conditions, C1. For instance, in the
example in Figure 4a, R1 hydrogenates a double bond, while R2
hydrogenates a triple bond, both under formally identical
conditions C1 = {10% Pd/C, H2, MeOH}. In this case, R1 and
R2 can be recognized as “competing” and, consequently, if both
a double and a triple bond are present in the same molecule,
neither can be selectively hydrogenated under these conditions
(see Figure 4a). However, even such identical-condition cases
may be more nuanced if the rates differ significantly and
selective outcomes can still be achieved; for instance, reactions
R1 and R2 in Figure 4b may seem competing but, in reality, the
rate differences can be harnessed to perform a reaction in the
bottom row selectively. Interestingly, this aldehyde/ketone
differentiation is well-known to chemists but can be hard to
learn automatically from published reaction examples alone, as
R1 and R2 have been reported to proceed on similar time
scales74−76 (in general, reaction times are often not indicative
of actual reaction kinetics but rather reflect operational
convenience77). Learning becomes even more problematic
when different conditions are at play. Say, if R1 was performed
under conditions C1 and R2 could also work under these
conditions, but in reality, was executed and reported under
some other conditions C2, then we would not find R2 as
potentially competing with R1. A first-line approach to avoid
such problems would be to curate “dictionaries” of
“synonymous” conditions, e.g., in our particular example,
informing the algorithm that conditions C1 could be used in
lieu of C2. However, such condition matching would require an
extensive study by expert chemists and would likely only be
applicable for extremely “simple” reaction types (see example
in Figure 4c in which such reasoning by condition similarity is
inconclusive).
The Need for Additional and More Representative

Data. Whereas the problems of atom mapping or template
extraction are largely independent of the available data
quantities, there is little doubt that additional data will
improve the performance of AI models for reaction outcomes,
especially if this data also describes “failed” reactions78 which
are rare in existing data sets.77−80 Given that reaction data is
much more costly than image or speech data and is associated
with significant generation of waste, open-science initiatives
like the Open Reaction Database (ORD)81,82 and the goal to
systematically capture metadata (including metadata that is
often absent or wrong in existing databases) are of high value.
This said, we feel that the ways in which reactions are reported
and harnessed require certain improvements.
For instance, chemists in method development, natural

product synthesis, or materials discovery perform large
numbers (often thousands) of experiments to optimize
synthetic routes or conditions; yet, these experiments either
are not published at all or are relegated to the supporting
materials, meaning that they are “lost” to chemical databases
and AI algorithms. Collecting these experiments in initiatives
like ORD will require not only simplified and standardized
upload protocols (e.g., via electronic lab notebooks83−85) but
also external incentives to the authors, from both the
publishers and funding agencies. In addition to such ongoing
standardization efforts for newly added reactions, recent
advances in NLP could provide an attractive strategy for
digitizing older, heterogeneously reported data. It should be
remembered, however, that these efforts will require time and,
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based on the experiences of the past several years, we expect
that open reaction data sets with satisfactory quantity and
quantity of reaction examples are at least a few years away.
A directly related issue is the question of which reaction data

is needed most to improve AI synthesis planning. In fact, if we
continue to amass reactions in the same manner as up until
now, we will make the popular reaction types even more
popular (by the mechanism of preferential attachment which
has guided the evolution of organic chemistry for over 200
years; see systematic analyses31,86,87) and will thus generate
more data points in the already well-explored regions of
synthetic space. Arguably, an additional thousands of
nucleophilic substitutions, amide couplings, or Suzuki or
Buchwald−Hartwig reactions may not be of prime importance
to AI models−especially if applied to simple substrates−since
the existing data sets already give us a decent understanding of
which groups are compatible/incompatible in these popular
reactions.
Also, given the aforementioned cost of performing reactions,

exhaustive campaigns with the sole purpose of populating
reaction databases are not feasible from both economic and
ecological standpoints. As a rough estimate, meaningful group
compatibility/incompatibility and conditions screens would
involve hundreds20,28,36,88 if not thousands89 of variants of
each reaction type, scaling to billions of experiments if
implemented for a representative subset of reactions.86 Even
in the age of high-throughput experimentation, such exhaustive
efforts are not implementable. Again, we think it is time to go
beyond the calls for just more data90,91 and, instead, carefully
consider which data is actually needed to improve the AI
algorithms the most. In this regard, we believe that, even a few-
days expert panel could be helpful in prioritizing the areas in
which more data would matter: Examples could include
established reactions on complex scaffolds or new desirable
reactivity classes (“green” methods, multicomponent reactions,
etc.).
One other point we wish to comment on is that, with the

admixture of physical-organic knowledge, a significant portion
of the otherwise required experimental data gathering could be
avoided. As a textbook example, if an SN2 reaction on a given
scaffold is shown to proceed in poor yield with Br as a leaving
group, then there is a low probability of improved reactivity for
the Cl-containing substrate instead. Similarly, if a Friedel−

Crafts-type acylation (Figure 5a) does not proceed on a
trifluoromethylated arene, it is unlikely to proceed with even
more electron-withdrawing groups. With such physical-organic
considerations, even few experimental data points−delineating
reactivity “thresholds” in terms of (stereo)electronic or steric
factors−can help determine unlikely reactions and augment the
data without spurious experimentation. We have used this kind
of reasoning (supplemented by calculations detailed in the
supporting information of ref 36) in our own expert-coding of
reaction rules58 and highly recommend its inclusion in AI
driven efforts.
The Knowledge of Impossible Molecules. Let us now

assume a scenario in which we have overcome the
aforementioned problems and have finally curated a set of
high-quality reaction rules. In Figure 5b, such rules, R, are
applied in the retrosynthetic direction to 2-norbornanol,
producing three synthons. Whereas ketone reduction from 2-
norbornanone (Y1) and oxidative hydroboration from 2-
norbornene (Y2) are perfectly viable transformations, the
application of oxidative hydroboration to yield the bottom
intermediate Y3 is problematic, as this synthon features a
double bond at a bridgehead atom, creating excessive ring
strain in the molecule and violating “Bredt’s rule”.92 Naturally,
such nonexisting molecules are not featured in reaction data
sets and are not recognized as problematic by AI (see SI
Section 5 for actual AI-generated examples). On the other
hand, they could be readily recognized and eliminated by well-
established molecular mechanics simulations plugged into the
retrosynthetic algorithms. If such simulations are too time-
consuming to accompany complex retrosynthetic analyses (in
which millions of synthons need to be evaluated), the most
prominent unstable motifs can be precalculated, tabulated
based on existing knowledge (e.g., in evident cases of small
rings with triple bonds, allenes, or trans ring-fused epoxides),
or used to train AI-based stability classifiers. In previous
works,28,32,36 we used a knowledge-based tabulation to
assemble a list of 500−1000 scaffolds spanning not only
strained motifs but also those that readily decompose (e.g.,
geminal diols or α-haloalcohols). In the end, a relatively small
curation effort translated into marked improvements in the
quality of the computer-planned syntheses.

Figure 5. Knowledge-guided heuristics for augmenting synthesis-planning algorithms. (a) Example of a “reactivity series” for a Friedel−Crafts
acylation. As no reaction is observed with a CF3 substituent, experiments with more electron-withdrawing substituents are unlikely to be successful
(indicated on the right part of the axis). Since electron-withdrawing/donating propensities are well-known (and can be approximated by, e.g.,
Hammett constants or more advanced calculations; see the supporting information of ref 36), similar series could be considered for other, less
explored ring systems or reaction types (e.g., Prins cyclizations suffering from competitive Oxonia-Cope rearrangements). In this way, a single or
few experimental data points would allow data augmentation with “negative” examples that are likely to give no reactivity. (b) Structurally viable
(green) and impossible (blue) synthons to the 2-norbornanol retron, as governed by thermodynamic constraints.
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■ ALGORITHMS FOR SEARCHING SYNTHETIC
NETWORKS

The eventual goal of synthesis planning is not only to correctly
predict individual reaction steps but also to search the
networks of synthetic possibilities−which can, again, signifi-
cantly benefit from “anthropomorphic” improvements. At
present, the most popular search algorithm in the field35,93,94 is
the Monte Carlo Tree Search (MCTS), which was introduced
in 2006 as “bandit-based Monte Carlo planning”, out-
performed alternatives strategies like asynchronous dynamic
programming,95 and has since been used successfully in
programs such as AlphaGO.3 In the context of retrosynthesis,
however, there has been little justification as why MCTS
should be the algorithm of choice. In fact, a recent analysis
showed96 that MCTS using neural networks trained on
reaction data showed comparable performance to a “vintage”
A*-type algorithm32 using a simplistic scoring that promotes
disconnections of retrons into similar-sized synthons. As a
matter of fact, there has not been a single example of MCTS
successfully planning a longer route to a complex target
(possible reasons have been discussed elsewhere97). What
should make us revisit the network search problem is that there
have been demonstrations of algorithms which are capable of
planning such syntheses, but these are based on anthro-
pomorphic rather than AI scoring functions, reflecting human
heuristics such as key disconnections, disconnections of rings,
or creation of sterocenters.28,97 We do not claim that these
algorithms are yet optimal, but their satisfactory performance
in complex, natural-product-level tasks28 certainly points to the
benefits of mimicking human reasoning.
As a remarkable parallel, in the context of NLP, the success

of ChatGPT has demonstrated the immense value of human
feedback (reinforcement learning with human feedback,
RLHF)98 for enabling human-like reasoning. We envision
that a related approach with expert feedback−to compare and
rank the “quality” of different syntheses proposed by the
machine−could significantly enhance the capabilities of
retrosynthetic search algorithms. It should be noted, however,
that many of these approaches have focused on RLHF tasks
involving only dozens of options to choose from. Synthetic
pathways, on the other hand, would involve multiple thousands
of options (in the form of different reaction types and retrons),
making this approach fascinating yet practically challenging in
terms of the amount of sustained expert feedback to be
harnessed. In fact, some primitive tools for providing feedback
were incorporated in the early versions of our Chematica
platform (“thumbs-up” voting and “envelope” comment
buttons in Figures S18−S25 in ref 32), but they were not
popular with the users and were ultimately removed, perhaps
prematurely.
Complementary to this, we see enormous potential in large-

scale, systematic surveys of how domain experts approach the
synthesis problem and then develop advanced network search
algorithms based on such guidance. Inspiring questions could
include: How often do chemists choose disconnections based
on Corey’s rules?21 How often are they inspired by similarity
to other scaffolds? When considering a particular disconnec-
tion, what are the features that allow one to better anticipate
downstream problems? How many steps ahead do experts
think? Do they always work “just” in the retrosynthetic
direction or have some key substrates or intermediates in
mind?99,100

Searching for Synthetic Routes Like an Expert. One of
these “design logic” aspects we wish to single out regards the
depth to which synthesis planning should be performed. The
readers may find it curious that existing retrosynthesis tree
search algorithms lack the capacity to systematically plan
multiple steps ahead, scoring all synthons after each
disconnection “move”. This may be sufficient in syntheses of
simple targets, but it does not capture the farsighted, strategic
thinking of human experts constructing routes to complex
molecules. These experts plan many steps ahead and are
trained to consider−sometimes almost intuitively−certain
multistep sequences within which individual steps offer little
immediate gain but set the scene for efficient downstream
disconnection(s). As a case in point, the popular functional
group interconversions (FGIs)101 entail seemingly unproduc-
tive “moves” but, taken together, they serve to convert stability
into more reactive groups or to adjust oxidation states. In a
similar genre, two-step tactical combinations, TCs,29 may
prefer to initially complexify the synthon’s structure (compared
to its retron) but, by doing so, enable a subsequent
disconnection offering a high degree of structural simplifica-
tion. In previous work,28 we showed that it is neither the sheer
number and quality of reaction rules nor the nature of the
scoring function choosing the “next move” (including scoring
schemes incorporating Corey’s rules21) but the inclusion of
such sequences that gave the retrosynthetic searches the
greatest performance boost, effectively allowing them to think
up to five steps ahead and plan syntheses of complex targets.
Important for our discussion here is that these sequences

may not be readily derived from the available reaction data
sets, as reaction repositories are dominated by single-step
reactions or short, simple sequences. As such, most of the
possible TCs are not reported therein29 and, for FGIs, the
individual reaction types are not strongly correlated. One data-
oriented solution would be to assemble and learn from a
smaller data set focusing on longer “classics” of total syntheses;
there are a few expert-curated repositories out there
(Chemistry by Design,102 Hans Reich’s Collection,103

SynArchive,104 Organic Chemistry Portal105) but, unfortu-
nately, these only provide images rather than computer-
readable data. Alternatively, the problem could be addressed by
a consultation with synthesis experts (and a human analysis of
the synthesis literature); in fact, the above-mentioned
performance boost28 was due to only ∼100 FGIs and ∼1000
TCs carefully selected by human experts (the total number of
important TCs is likely to be significantly larger, but 100−1000
already enabled major improvements).
Scoring Synthetic Options for Real-World Applic-

ability. Finally, we want to touch on an issue that may not be
essential for all synthetic plans but is of growing importance in
planning syntheses that meet the demands of economy and
green chemistry. In this context, reaction repositories may be
informative of certain relevant parameters (e.g., unfavorable
conditions such as cryogenic or very high temperatures), which
should be deprioritized if other options are available; but for
additional information, one needs to tap into the expertise of
process chemistry or consider publicly available domain
knowledge. As examples, the EPA List of Extremely Hazardous
Substances106 or the REACH regulation List of Substances of
Very High Concern107 can be connected to the network-search
algorithms to flag and eliminate hazardous and toxic
reagents;88 published guidelines (e.g., the GSK criteria) can
be helpful in suggesting “greener” replacements for reagents or
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solvents,108−110 and process variables such as cumulative
process mass intensity, cPMI, can help estimate reactions’
economics under different purification methods. Some of this
data may need to be preprocessed, and others may require
careful categorization (e.g., cPMI values are different for
different reaction classes, which require manual assignments to
reaction rules88). Such efforts and the obtained process criteria,
however, can provide significant added value into computa-
tional synthesis design. The algorithms guiding the retro-
synthetic searches and scoring the solutions found should be
customizable to prioritize the above “variables” to user-
specified degrees, while also being aware of other aspects
described in previous works (e.g., prices of substrates28,32,36

and of entire routes,111 diversity of solutions presented to the
user,111 the use of common intermediates when planning the
syntheses of entire libraries of targets,112 and possibly more).

■ HOW MUCH ADDITIONAL KNOWLEDGE IS
NEEDED?

Taken together, the above considerations bring us to the
following recommendations regarding the development of AI−
knowledge hybrids for computer-aided synthesis planning in
the coming decade(s).
Complex Syntheses. If the algorithm is concerned with

the problem of designing tens-of-steps-long syntheses of
complex, stereochemically defined natural product targets,
our recommendation is to integrate as many knowledge-
derived improvements as possible. In our own works, after
some initial but unsatisfactory exploration of data-driven
template extraction in the early 2010s, we embarked on a
campaign to expert-curate a comprehensive collection of high-
quality reaction rules, considering, for each individual reaction
class, the template span, stereochemical consequences, the
scope of admissible substituents, effects of distant substituents
for specific scaffolds, and hundreds of potentially incompatible
groups (400−600 per rule; for a detailed discussion, including
the consideration of reaction mechanisms, see our previous
study58). Often, it has been criticized that such an effort is not
scalable since chemistry is expanding exponentially, and expert
coding cannot match the pace at which new reactions are
reported.35 We ourselves had identified this exponential
growth of organic chemistry,86 which, however, only pertains
to molecules and reaction examples rather than to reaction
types, whose number has plateaued in recent years at ∼50,000
to 100,000 rules (cf. Figure 1c).31 We acknowledge that the
effort to encode such a collection is certainly significant (in our
case, it took a decade or work for a dedicated team of
computer-adept organic chemists) and goes along with further
challenges: As an example, the encoded rule set inherently
represents the knowledge at the time of encoding, inevitably
introducing human biases. In addition, especially for “modern”
reaction classes, their increasing complexity (in terms of
altering the atom connectivity patterns from substrates to
products31) and the inherently lower level of mechanistic
understanding pose additional barriers to the unambiguous
encoding of reaction rules. Yet, as of today, such an effort
appears to be inevitable for obtaining usable and applicable
synthetic routes to complex targets.28−30,36 While we believe
that, at their core, data-driven algorithms have the potential to
contend with these expert encodings, the necessary data
advancements, in terms of selection, quality, and quantity, are
presumably decades down the road (see discussion above).

Beyond the expert encoding of reaction templates, we found
that extensive collections of unfeasible motifs, anthropomor-
phic scoring functions, and search algorithms (as discussed
earlier) are highly beneficial for obtaining realistic synthesis
routes. This said, we expect data-driven and knowledge-
enhanced approaches to be highly synergistic−e.g., for reaction
classes with large numbers of examples or for reactions with
substituent combinations too numerous to be enumerated
within rule templates (e.g., combinations of multiple
substituents dictating regio- or stereoselectivity).61−64,68,69

Synthesis of Drug-Like Molecules. If the algorithm is
intended to provide more concise syntheses of smaller, drug-
like molecules, we advocate a two-tier approach: The few
hundred most prominent reaction types for medicinal
chemistry113 should be expert-curated (including substrate
scope, incompatibilities, and importantly, stereochemistry),
while the remaining reaction types can be automatically
extracted but fine-tuned, especially for incompatibilities, using
the approach of equivalent conditions. Nonsensical molecules
and intermediates should be filtered rigorously by simulations
or lists attached to the search routines. For shorter routes, the
nature of the search algorithm is perhaps of lesser
importance,96 but for industrial relevance, the scoring
functions should include process criteria.
Simple Target Molecules. For simple targets, the

pharmaceutical criteria could be further relaxed, though the
programs should still be improved compared to current AI
engines. At minimum, if the objective is to generate ideas
rather than realistic pathways, the emphasis should be on
avoiding some critical blunders, and routines for eliminating
impossible intermediates and for detecting at least the most
striking incompatibilities should be in place.

■ CONCLUSION AND OUTLOOK

In summary, we have argued that the view of computerized
retrosynthesis as aiming to “automatically learn organic
synthesis from reaction databases” may be too narrow and
not realistic in the near future, as existing reaction examples do
not capture all nuances of organic syntheses. In fact, computer-
aided retrosynthetic planning is not about the speed and
novelty of algorithms but the ability to deliver efficient
solutions to the target audience, that is, to synthetic organic
chemists. In this respect, incorporation of diverse modalities of
chemical knowledge is necessary to increase the quality of
predictions and provide more appeal to the chemist users. It
should be borne in mind that these chemists might simply not
need computerized synthesis if it only provides plausible
disconnection plans for simple molecules. In contrast, if the AI
methods could rapidly supply multiple, chemically correct, and
diverse pathways to more complex targets and, at the same
time, could also rank them for additional process criteria, then
such solutions could gain widespread popularity, as no single
chemist can memorize the rules of synthesis planning, the
tables of hazardous reagents and solvent, “greener” replace-
ments for such chemicals, and many other parts of chemical
knowledge. The knowledge base for such improvements is out
there,114 but not only in the reaction repositories, and often in
the heads of synthesis experts with whom algorithm designers
should form closer ties. Such joint efforts should benefit not
only the designers but also the synthetic chemists; even if they
do not commit to multiyear campaigns to deploy all-
encompassing retrosynthesis platforms, they can engage their
theory colleagues in developing AI models for some synthetic
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subproblems of particular interest (see examples in refs 13,
61−64, and 66−69), in the process also transplanting the AI
know-how into the synthetic community.
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