




The hyperparameters of AlphaGo Zero were
tuned by Bayesian optimization. In AlphaZero,
we reuse the same hyperparameters, algorithm
settings, and network architecture for all games
without game-specific tuning. The only excep-
tions are the exploration noise and the learning
rate schedule [see (10) for further details].

We trained separate instances of AlphaZero
for chess, shogi, and Go. Training proceeded for
700,000 steps (in mini-batches of 4096 training
positions) starting from randomly initialized
parameters. During training only, 5000 first-
generation tensor processing units (TPUs) (19)
were used to generate self-play games, and

16 second-generation TPUs were used to train
the neural networks. Training lasted for approx-
imately 9 hours in chess, 12 hours in shogi, and
13 days in Go (see table S3) (20). Further details
of the training procedure are provided in (10).
Figure 1 shows the performance of AlphaZero

during self-play reinforcement learning, as a
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Fig. 3. Matches starting from the most popular human openings.
AlphaZero plays against (A) Stockfish in chess and (B) Elmo in shogi.
In the left bar, AlphaZero plays white, starting from the given position;
in the right bar, AlphaZero plays black. Each bar shows the results from

AlphaZero’s perspective: win (green), draw (gray), or loss (red).
The percentage frequency of self-play training games in which this
opening was selected by AlphaZero is plotted against the duration
of training, in hours.
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function of training steps, on an Elo (21) scale
(22). In chess, AlphaZero first outperformed
Stockfish after just 4 hours (300,000 steps); in
shogi, AlphaZero first outperformed Elmo after
2 hours (110,000 steps); and inGo, AlphaZero first
outperformed AlphaGo Lee (9) after 30 hours
(74,000 steps). The training algorithm achieved
similar performance in all independent runs (see
fig. S3), suggesting that the high performance of
AlphaZero’s training algorithm is repeatable.
We evaluated the fully trained instances of

AlphaZero against Stockfish, Elmo, and the pre-
vious version of AlphaGo Zero in chess, shogi,
and Go, respectively. Each program was run on
the hardware for which it was designed (23):
Stockfish and Elmo used 44 central processing
unit (CPU) cores (as in the TCEC world cham-
pionship), whereas AlphaZero and AlphaGo Zero
used a single machine with four first-generation
TPUs and 44 CPU cores (24). The chess match
was played against the 2016 TCEC (season 9)
world champion Stockfish [see (10) for details].
The shogi match was played against the 2017
CSA world champion version of Elmo (10). The
Go match was played against the previously pub-
lished version of AlphaGo Zero [also trained for
700,000 steps (25)]. All matches were played by
using time controls of 3 hours per game, plus an
additional 15 s for each move.
In Go, AlphaZero defeated AlphaGo Zero

(9), winning 61% of games. This demonstrates
that a general approach can recover the per-
formance of an algorithm that exploited board
symmetries to generate eight times as much
data (see fig. S1).
In chess, AlphaZero defeated Stockfish, win-

ning 155 games and losing 6 games out of 1000
(Fig. 2). To verify the robustness of AlphaZero,
we played additional matches that started from
common human openings (Fig. 3). AlphaZero
defeated Stockfish in each opening, suggesting
that AlphaZero has mastered a wide spectrum
of chess play. The frequency plots in Fig. 3 and
the time line in fig. S2 show that common human
openings were independently discovered and
played frequently by AlphaZero during self-play
training. We also played a match that started
from the set of opening positions used in the
2016 TCECworld championship; AlphaZero won
convincingly in this match, too (26) (fig. S4). We
played additional matches against themost recent
development version of Stockfish (27) and a var-
iant of Stockfish that uses a strong opening book
(28). AlphaZero won all matches by a large mar-
gin (Fig. 2).
Table S6 shows 20 chess games played by

AlphaZero in its matches against Stockfish.
In several games, AlphaZero sacrificed pieces for
long-term strategic advantage, suggesting that it
has a more fluid, context-dependent positional
evaluation than the rule-based evaluations used
by previous chess programs.
In shogi, AlphaZero defeated Elmo, winning

98.2% of games when playing black and 91.2%
overall. We also played a match under the faster
time controls used in the 2017 CSA world cham-
pionship andagainst another state-of-the-art shogi

program (29); AlphaZero again won bothmatches
by a wide margin (Fig. 2).
Table S7 shows 10 shogi games played by

AlphaZero in its matches against Elmo. The fre-
quency plots in Fig. 3 and the time line in fig. S2
show that AlphaZero frequently plays one of the
two most common human openings but rarely
plays the second, deviating on the very first move.
AlphaZero searches just 60,000 positions

per second in chess and shogi, compared with
60 million for Stockfish and 25 million for Elmo
(table S4). AlphaZero may compensate for the

lower number of evaluations by using its deep
neural network to focus much more selectively
on themost promising variations (Fig. 4 provides
an example from the match against Stockfish)—
arguably a more humanlike approach to search-
ing, as originally proposed by Shannon (30).
AlphaZero also defeated Stockfish when giv-
en 1

10= as much thinking time as its opponent
(i.e., searching ∼1=10;000 as many positions) and
won 46% of games against Elmo when given
1

100= as much time (i.e., searching ∼1=40;000 as
many positions) (Fig. 2). The high performance
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Fig. 4. AlphaZero’s search procedure.The search is illustrated for a position (inset) from game 1
(table S6) between AlphaZero (white) and Stockfish (black) after 29. ... Qf8. The internal state of
AlphaZero’s MCTS is summarized after 102, ..., 106 simulations. Each summary shows the 10 most
visited states. The estimated value is shown in each state, from white’s perspective, scaled to the
range [0, 100]. The visit count of each state, relative to the root state of that tree, is proportional to
the thickness of the border circle. AlphaZero considers 30. c6 but eventually plays 30. d5.

RESEARCH | REPORT
on January 11, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


of AlphaZero with the use of MCTS calls into
question the widely held belief (31, 32) that
alpha-beta search is inherently superior in these
domains.
The game of chess represented the pinnacle

of artificial intelligence research over several
decades. State-of-the-art programs are based on
powerful engines that search many millions of
positions, leveraging handcrafted domain ex-
pertise and sophisticated domain adaptations.
AlphaZero is a generic reinforcement learning
and search algorithm—originally devised for the
game of Go—that achieved superior results with-
in a few hours, searching 1

1000= as many posi-
tions, given no domain knowledge except the
rules of chess. Furthermore, the same algorithm
was applied without modification to the more
challenging game of shogi, again outperforming
state-of-the-art programs within a few hours.
These results bring us a step closer to fulfilling a
longstanding ambition of artificial intelligence
(3): a general game-playing system that can learn
to master any game.
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notable step toward achieving a general game-playing system.
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