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A B S T R A C T   

Reinforcement learning (RL) shows the potential to address drawbacks of rule-based control and 
model predictive control and exhibits great effectiveness in heating, ventilation and air condi-
tioning (HVAC) systems. Most studies employed model-free RL to achieve building energy con-
servation and increase indoor comfort. However, model-free RL algorithms face the challenge of 
sample efficiency which causes long-time training and restricts their applications. Model-based 
RL is considered an alternative avenue for accelerating learning and promoting the application 
of RL, but it also has limitations due to modeling approaches and accuracy. In addition, few 
studies propose model-based RL algorithms and investigate performance gaps between model-free 
and model-based RL in HVAC systems. Therefore, this study conducts a comprehensive perfor-
mance comparison between model-free and model-based RL to identify the current issues with RL 
control in HVAC systems. The open-source building optimization testing (BOPTEST) framework is 
employed as the virtual environment to evaluate the control performance and computational 
burden. Then Dueling Deep Q-Networks and Soft Actor-Critic are developed, and a state-of-the-art 
model-based RL framework is employed to develop their model-based versions. The comparison 
results showed that all RL controllers outperform the baseline control in terms of indoor tem-
perature and operation costs. Model-based RL can achieve a control performance as good as 
model-free RL with a shorter training time based on its high sample efficiency. Moreover, due to 
massive and quickly generated data, model-based RL can accelerate the learning of RL agents, 
though the model is inaccurate at the early training stage. This study would provide some insights 
into the RL control selection and improvements in HVAC systems.  

Nomenclature 

Variables, parameters, and indices 
A The total floor area (m2) 
a, b, c Weight factors 
cost Total cost (EUR) 
reward The value of reward 
tdis Total discomfort (◦C h) 
P Probability 
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Price Electricity price (EUR/kWh) 
Qrad Solar irradiation (W/m2) 
sz Deviation from the bound temperature (◦C) 
Tin Zone temperature (◦C) 
Tlow Lower bound of zone temperature (◦C) 
Tout Outdoor dry bulb temperature (◦C) 
Tup Upper bound of zone temperature (◦C) 
tdis Total discomfort 
Greek letters 
γ Discount factor 
σ Predictive standard deviation 
Abbreviation 
BOPTEST Building optimization testing framework 
DDPG Deep deterministic policy gradient 
DDQN Dueling deep Q network 
DNN Deep neural network 
DQN Deep Q network 
HVAC Heating, ventilation and air conditioning 
KPI Key performance indicator 
MBDDQN Model-based DDQN 
MBSAC Model-based SAC 
MBPO Model-based policy optimization 
MDP Markov decision process 
MPC Model predictive control 
MSE Mean square error 
PI Proportional integral 
PPO Proximal policy optimization 
RBC Rule-based control 
RL Reinforcement learning 
SAC Soft actor-critic  

1. Introduction 
Buildings have been playing a major role in the rapid growth of energy use around the world [1,2], contributing 40% of global 

primary energy and 30% of CO2 emissions [3]. Heating Ventilation and Air-Conditioning (HVAC) systems are the main energy use 
among all building services, which accounts for more than 50% of the building energy consumption [4]. Therefore, it is of great 
significance to keep zone thermal comfort while lowering the HVAC systems’ energy demands. 

Meanwhile, HVAC systems are also challenging to control due to the varying weather conditions, complex building and system 
structures, stochastic occupant behavior, and other uncertainties [5]. The common control approaches to regulate HVAC systems are 
based on predefined rules (Rule-based control, RBC) or physical building models (Model predictive control, MPC). RBC can be 
developed and applied in various building systems easily based on expert experience, which contains some static thresholds on indoor 
temperature or simple control loops. However, RBC is not optimal in most conditions because it is fixed regardless of operating 
conditions and not customized for a specific building [6]. Therefore, MPC is developed to overcome these drawbacks by making use of 
building models to predict disturbance and its impact on the indoor environment and energy consumption [7]. MPC performs well and 
robustly in many cases, however, it is also limited. Due to the complexity of indoor thermal dynamics and various influencing factors, 
model development is usually labor-intensive and time-consuming [8]. As a result, despite the advantages of RBC and MPC, they still 
have limitations and shortages in control performance and wide applications. 

With the development of artificial intelligence and big data, reinforcement learning (RL) has been viewed as a promising solution in 
recent years [9,10]. Unlike RBC which depends on a set of rules predefined by experts, RL may keep learning and updating the control 
strategy during operation [11]. Additionally, RL can learn directly from operation data and does not need to develop complicated 
models for building and energy systems like MPC [12]. These merits facilitate RL’s application in complicated and dynamic HVAC 
systems by ensuring its performance and generality. 
1.1. Literature review 

In HVAC control fields, great efforts have been paid to model-free RL due to its simplicity of usage. The model-free RL can be 
roughly divided into three types: value-based (act by choosing the best action in the state), policy-based (directly learn the stochastic 
policy function that maps state to action), and their combination. Azuatalam et al. [13] employed proximal policy optimization (PPO) 
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to optimize a whole-building HVAC system for demand response goals. The results showed that a maximum weekly energy reduction of 
up to 22% can be achieved compared to a handcrafted baseline controller. Du et al. [14] applied deep deterministic policy gradient 
(DDPG) to generate an optimal control strategy for a multi-zone residential HVAC system. Compared to deep Q network (DQN) and 
RBC, the DDPG reduced the energy consumption cost by 15% and the comfort violation by 79% and 98%, respectively. Biemann [15] 
carried out experiments to evaluate four actor-critic algorithms in a simulated data center. Compared to the model-based controller 
implemented into EnergyPlus, all applied algorithms can reduce energy consumption by at least 10% without jeopardizing occupant 
thermal comfort. Li et al. [16] proposed a model-free RL control strategy to adjust the temperature setpoints for the thermal storage air 
conditioning systems. The results showed that when compared to a non-thermal storage air conditioning system with a constant 
set-point, the RL agent saved 9.17% of utility costs. Yu et al. [17] proposed an energy-efficient personalized thermal comfort control 
algorithm based on attention-based multi-agent deep RL for office buildings. The proposed technique may simultaneously reduce 
average thermal comfort deviation by 64%–72% and energy usage by 0.7%–4.18% when compared to baselines. Additionally, a novel 
HVAC control method combining active building environment change detection and DQN is proposed by Deng et al. [18]. Their control 
strategy obtains stability against disturbance and generalization to an unseen building environment and reaches 13% in energy-saving 
and 9% improvements in thermal comfort. However, these model-free RL approaches often require sufficient explorations to converge 
to a stable and good policy from 70 episodes to 1000 episodes [13–18] and thus it is limited for application due to the sample inefficient 
[19]. 

To address the problem of sample inefficiency, improved model-free RL techniques have focused on creating various approximate 
schemes to reduce the complexity and dimension of the state-action space. Xiong et al. [20] proposed an approach to refine action 
space applied on DQN to control the building cooling water system. The results show that refining the action space can accelerate the 
convergence speed for one episode and achieve the average COP improvement rate of about 6.4%. Homod et al. [21] employed deep 
clustering-based methods to enhance the learning efficiency and stability of RL agents with extremely large state–action spaces. Sun 
et al. [22] developed an event-based Q-learning method within the Lagrangian relaxation framework to achieve energy savings in 
HVAC systems. The computational requirements can thus decrease significantly due to the reduction of events policy space size. Li 
et al. [23] proposed a multi-grid method of Q-learning which adopted a coarse model to fast converge to a good policy in early stages 
and a fine model to further improve the optimization result. However, the performance of these approaches heavily depends on ex-
perts’ ability to classify a large state-action space and the categorization outcomes. 

Model-free RL and its improved techniques demonstrate great effectiveness in HVAC systems. However, as a trial-and-error 
learning method, the control performance of pure model-free RL heavily relies on the data it gathers, and the control performance 
of improved model-free RL requires expert intervention to classify or cluster data. As a result, these techniques have a rather limited 
application. Model-based RL approaches are considered a potential solution for overcoming the disadvantages of model-free RL al-
gorithms, which can gather experience from models and accelerate the learning process [24]. 

Model-based RL algorithms usually can be divided into two categories [25]: Model-based RL with a learned model (Dyna-style [26]), 
and Model-based RL with a known model (AlphaZero [27 ]). For HVAC systems, Zhang et al. [28] proposed a model-based RL approach 
for a two-room data center via neural network-based model approximation. Compared with the model-free RL approach (PPO), their 
approach improves the sample efficiency by 10x. Dawood et al. [29] presented model-based RL techniques to control the indoor air 
temperature and CO2 concentration level with minimization of the system energy consumption. The results showed that model-based 
RL reduced energy consumption while keeping the indoor comfort levels within the desired ranges simultaneously. Zhang et al. [30] 
developed a novel model-based optimal control method for HVAC supervisory-level control based on a deep RL framework. Their 
method employed an EnergyPlus model and A3C algorithm. The results indicate that the control method can save about 15% heating 
energy while maintaining acceptable indoor thermal comfort. Arroyo et al. [31] proposed a novel algorithm called reinforced pre-
dictive control (RL-MPC) that merged the merits of two methods, namely state estimation, dynamic optimization, and learning. The 
results demonstrated that the RL-MPC algorithm can meet constraints and provide similar performance to MPC while enabling 
continuous learning and the possibility to deal with uncertain environments. 

Compared to model-free RL, model-based RL algorithms show great potential for improving sample efficiency and satisfying the 
constraints of room temperature. However, the performance of model-based RL depends on the accurate and robust representation of 
system dynamics, and this topic is not covered in existing studies. Additionally, existing studies mostly employ pre-built models or 
supervised approaches to train system models. As a result, this would need extra data and labor-intensive modeling like MPC and thus 
decreases its generality. 

In summary, two main obstacles to the application of RL can be concluded from the overall literature review. First, there is a lack of 
a general and accurate modeling framework for model-based RL in HVAC systems. The majority of existing studies employed model- 
based RL algorithms with known models, which are developed with measured and simulated data before application. It shows great 
performances in terms of control stability and safety, but it limits the scalability and generalization of model-based RL. Furthermore, 
the setting parameters of pre-developed models are usually fixed after calibration and cannot adapt to uncertainties during operation, 
such as aging equipment, envelope renovation, human behavior, etc. Second, a thorough comparison between model-free and model- 
based RL is required to show performance gaps and reveal the potential improvement directions for RL control. Existing studies mostly 
compared their model-based RL methods with a single model-free algorithm and did not explore the performance gaps in different 
control scenarios. Additionally, the impact of model accuracy on the training process and control performance has also not been 
discussed in detail. 
1.2. Objectives and contributions 

In response to the above concerns and challenges, this paper conducts an in-depth comparison between model-free and model- 
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based RL control to quantify performance gaps under different control scenarios. The main contributions of this paper can be sum-
marized as follows:  
• Two kinds of model-free RL methods, Dueling Deep Q-Networks (DDQN) and Soft Actor-Critic (SAC), are developed to solve the 

discrete and continuous control problem. A state-of-the-art model-based RL framework with a learned model is introduced to 
develop their model-based versions.  

• The performance gaps between model-free and model-based RL were demonstrated in a typical HVAC system of an open-source 
virtual environment. The results are discussed in terms of sample efficiency, control performance, and computational time.  

• The effectiveness of model-based RL is investigated in relation to the impacts of model accuracy. 
The remainder of the paper is organized as follows. Section 2 presents an overview of the HVAC system and implementation details 

of model-free and model-based RL algorithms. Section 3 details the results for the model-free and model-based RL, and the control 
behavior will be discussed. The impact of model accuracy on control performance and the limitations of this research are then dis-
cussed in Section 4. Finally, the main conclusions of this paper are summarized in Section 5. 

2. Methodology 
2.1. Test environment 
2.1.1. Test case 

As an open-source testbed for building control performance benchmarking, building optimization testing framework (BOPTEST) 
[32] is selected as the virtual test environment in this paper. BOPTEST is a standardized simulation environment to ensure fair 
evaluations of different algorithms. The functionality is enabled through API to select a test scenario, advance a simulation, and get 
data like measurements, forecasts, or key performance indicators (KPIs) at each control step. The framework is freely accessible at 
https://github.com/ibpsa/project1-boptest. 

The test case “BESTEST Hydronic Heat Pump” is of interest in this paper. This model represents a simplified residential dwelling for a 
5-member family, modeled as a single thermal zone, located in Brussels, Belgium. The building has a rectangular floor plan of 12 m by 
16 m and contains 24 m2 of windows on the south facade. The thermo-physical properties of the test model are listed in Appendix A, 
including exterior walls, floor, and roof. An air-to-water modulating heat pump of 15 kW nominal heating capacity extracts energy 
from the ambient air to heat up the floor heating system. The occupancy schedule operates before 7:00 a.m. and after 8:00 p.m. on 
weekdays and full-time on weekends, which represents a typical residential building schedule. The room temperature setpoint varies 
between 15 ◦C and 30 ◦C in an unoccupied condition to keep the air conditioner from turning on, while it is set between 21 ◦C and 24 ◦C 
in an occupied condition to provide good indoor thermal comfort. The detailed information of the building is summarized in Table 1. 
2.1.2. Baseline control 

To ensure comfort inside the building zone, a baseline proportional-integral (PI) controller is employed to determine the heat 
pump’s compressor frequency based on the difference between the actual indoor temperature and its setpoint, as depicted in Fig. 1. The 
setpoint is calculated for baseline control as the heating comfort setpoint plus an offset that varies based on the occupancy schedule: 
the offset is set to only 0.2 ◦C during occupied periods and is intended to avoid discomfort from slight oscillations around the setpoint; 
the offset is set to 5.5 ◦C during unoccupied periods and is intended to compensate for the large temperature setback used during these 
periods. Due to the high thermal inertia of the floor heating system, the latter offset prevents the need of abrupt changes in the indoor 
temperature which would consequently cause discomfort. All other equipment, including a fan for the heat pump evaporator circuit 
and a pump for the floor heating system, is turned on when the heat pump is operating and turned off otherwise. 
2.1.3. Performance metrics 

A KPI calculator is embedded in the BOPTEST. It calculates the key performance metrics as a post-process after a test is complete. As 
our objectives are to reduce the operation cost while maintaining the indoor temperature within a reasonable range. Two main KPIs are 
employed in this paper, namely tdis and cost, which calculate the thermal discomfort and operation cost in a fair way respectively, as 

Table 1 
Information of the test building.  

Construction Floor area 192 m2 

Height 2.7 m 
Window area 24 m2 

Materials See Appendix A 
Occupancy Weekdays 20:00–7:00 

Weekends 0:00–24:00 
HVAC Heating source 15 kW air-to-water modulating heat pump 

End-equipment Floor heating system 
Heating setpoint Occupied: 21–24 ◦C 

Unoccupied: 15–30 ◦C  
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shown in Eqs. (1) and (2). 

tdis=

∑N

z

∫ tf

t0
‖ sz(t) ‖ dt

N
(1)  

where tdis is the total discomfort between the initial time t0 and the final time tf; z is the zone index out of N zones in the building; sz(t) is 
the deviation (slack) from the lower and upper bound temperatures established in zone z, with a unit of K; z and N are both set to 1 in 
this paper. 

cost =

∑

i∈ξ

∫ tf

t0
pτ

i (t)Pi(t)dt

A
(2) 

Table 2 
State variables of the reinforcement learning algorithms.  

No. Variable Symbols Units/Value 
1 Zone temperature Tin ◦C 
2 Outdoor dry bulb temperature Tout ◦C 
3 Solar irradiation Qrad W/m2 

4 Upper bound of zone temperature Tup ◦C 
5 Lower bound of zone temperature Tlow ◦C 
6 Electricity price Price EUR/kWh  

Fig. 1. A schematic view of the building system.  

Fig. 2. The basic principle of different RL algorithms.  
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where cost is the total cost between the initial time t0 and the final time tf with a tariff τ; z is the price profile of equipment i with a tariff 
τ and units of EUR/kWh; A is the total floor area of the building, with a unit of m2. 

2.2. Reinforcement learning implementation 
RL is a type of machine learning that interacts with the dynamic environment and learns to get the optimal action sequence. 

Generally, RL problems can be formalized as a Markov decision process (MDP) [33], represented by a quadruple: M = <S, A, R, P>, 
where S represents the state space; A refers to the action space; R represents the reward received after transitioning from state st to state 
st+1; P represents the probability that action at in state st will lead to state st+1. 

As shown in Fig. 2, RL can be mainly divided into two categories: model-free RL and model-based RL. For model-free RL, at each 
time step t, the agent takes an action at according to the state st and moves to the next state st+1, and then obtains a reward rt. The agent 
seeks to learn the consequences of their actions through direct experience by interacting with the real environment [34]. Model-based 
RL, on the other hand, tries to learn its environment and develop a model for it. The model developed for model-based RL may be 
known before the experiments or learned through the experiments. In this paper, we mainly consider the latter for its simplicity and 
flexibility [35]. As shown in Fig. 2, the agent of model-based RL not only learns from the direct experience through the real envi-
ronment but also learns from the generated experience from the model simulation. As a result, model-based RL may offer distinct 
advantages of being sample efficient and accelerating the agent’s learning speed. 
2.2.1. Algorithms 

In this paper, two different model-free RL algorithms and their model-based algorithms are developed to study the control per-
formance of HVAC systems, namely Dueling Deep Q-Networks (DDQN), Soft Actor-Critic (SAC), model-based DDQN (MBDDQN) and 
model-based SAC (MBSAC). DDQN is a value-based RL technique, which is usually used to solve the discrete control problem. SAC is a 
value-policy-based RL technique, which can be used to solve the continuous control problem. The choice of these two types of RL 
algorithms allows for a thorough examination of the system performance in discrete and continuous control scenarios.  

(1) Model-free reinforcement learning 
DDQN is an improved version of the traditional Q-learning algorithm, which uses two deep neural networks (DNN) to overcome the 

issue of dimensional explosion and Q-value overestimation [36]. The agent tries to find the action that leads to the highest Q-value in 
each state. The Q-value, also called the state-action value, is defined as the expected reward achieved for taking a specific action a at 
the given state s. As shown in Fig. 3, unlike the classical DQN which only produces a single output Q value, DDQN outputs the pre-
dictive state value function V and the prediction relative advantage function A respectively. As shown in Eq. (3), the Q-value is then 
calculated by adding V and A, and overestimation can thus be handled [37]. However, Eq. (3) cannot be directly used because it is 
unidentifiable. A common practice to address this is to force the advantage estimator to be zero at the best action for that state, as 
shown in Eq. (4). In this paper, we used the averaging operator in Eq. (4), which is suggested to replace the maximum operator for good 
stability in previous studies [38]. 

Q(s, a)=V(s) + A(s, a) (3)  

Q(s, a)=V(s)+A(s, a) −
1

|A |

∑

a
′
∈A

A(s, a
′

) (4) 

Fig. 3. The structure of DNN in DDQN.  
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SAC is an RL algorithm that optimizes a stochastic policy in an off-policy way. The actor-critic structure is employed in SAC, which 
contains an actor to select actions and a critic to evaluate the actions made by the actor. As shown in Fig. 4, it employs two different 
DNNs for approximating the action-value function and state-value function. The actor maps the current state based on the action that it 
estimates to be optimal, while the critic evaluates the action by calculating the value function. SAC maximizes the information entropy 
of state apart from the conventional cumulative rewards. As shown in Eq. (5), SAC prefers stochastic policies, and it does this by 
modifying the objective function with an additional term of the expected entropy (H ) of the policy. 

J(π) =
∑

t

E(st ,at)ρπ
[r(st, at) + αH (π( • |st) ) ] (5)  

Here α and H (π(•|st)) is the trade-off between entropy and reward. The advantage of entropy maximization is that it can lead to 
policies that can explore more and prevent the policy from prematurely converging to an improper local optimum. This objective can 
be extended to infinite horizon problems by introducing the discount factor r and as a derivation of this objective is more involved, the 
reader is referred to the plenary text of [39].  

(2) Model-based reinforcement learning 
The model-based policy optimization framework (MBPO) which is a state-of-the-art model-based RL algorithm proposed by Janner 

et al. [40] is employed in this paper. MBPO is a Dyna-style algorithm that unifies planning and learning into a single framework. A 
model-based approach involves using a model of the environment to forecast the outcomes of states and actions, while a policy 
optimization approach finds a policy that maximizes the expected reward. By combining these two approaches, MBPO can provide a 
more efficient way of solving control problems [41] and shows good control performances. 

The schematic diagram of MBPO is shown in Fig. 5. At each timestep, the agent interacts with the environment and stores the real 
experience. Then it samples real experience to train an environment model to generate hypothetical simulated experience. Finally, the 
agent updates the policy parameters by using a combination of inputs from real and simulated experiences. Therefore, it can be more 
efficient than learning solely from real experience, because the simulated experiences can be generated quickly and allow the agent to 
explore a wider range of possible states and actions [42]. 

The model error, known as model bias, tends to cripple the performance of model-based RL. Therefore, the model ensemble method 
is adopted in this paper. It shows to be effective in reducing prediction error from a single model [43]. In this paper, the ensemble 
model consists of five DNNs. As shown in Fig. 6, at each time step, the ensemble model samples N states s that the agent has been 
experienced. Then each sampled state is employed as the initial state in a model rollout and to use the agent to generate actions a. 
Given the s and a, DNN is randomly chosen to output a Gaussian distribution of the next states s’ and reward r, as depicted in Fig. 7. The 
agent can then be used to generate actions a’ based on s’ and repeat the above process for k times. Finally, N × k pieces of hypothetical 
experience are generated by the ensemble model. Each DNN in the ensemble model is trained with different initializations and 
bootstrapped samples of the real environment data via maximum likelihood. The loss of the model employed the mean square error 
(MSE), as shown in Eq. (6). The pseudo-code of MBPO is shown in Algorithm 1. 

MSE(θ) =
1

N

∑N

1

[

(

μi
θ − ei

)2

+ σi

]

(6)  

Fig. 4. The schematic diagram of SAC.  
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Fig. 5. The framework of MBPO.  

Fig. 6. The process of model rollout.  

Fig. 7. The DNN of the environment model.  
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where θ is the parameters of DNN; N is the size of samples; μθ is the predictive mean value by DNN; e is the ground truth of state and 
reward values; σ is the predictive standard deviation. 
Algorithm 1. Model-based Policy Optimization (MBPO) 

2.2.2. Design of state 
Proper variables should be used to create the state space to capture the full information of the system and provide the agent with 

enough knowledge to make informed decisions. To prevent overfitting and the dimensionality curse, it is also suggested to remove 
redundant and irrelevant data. For the test case, the state space should reflect the operation cost of the building system and zone 
thermal comfort. Therefore, as shown in Table 2, the zone temperature, upper and lower bounds of zone temperature, and electricity 
price are considered. As the ambient environment would also affect the indoor temperature, two major influence parameters, the 
outdoor dry bulb temperature, and solar irradiation, are introduced into the state space. 

To reduce operation costs and maintain the zone temperature for a long period, the control signal made in time t should consider 
the future state. Therefore, we extend the dimension of the state variable: Tout, Qrad, Tup, Tlow, Price, by incorporating future prediction 
within a time window (set to 2 h in this paper). Furthermore, the state variables are all normalized within a range of [0, 1] to accelerate 
training. 
2.2.3. Design of action 

The action is the control variable which can be determined by the agent to change the state of the environment. In this paper, the 
heat pump modulating signal u is regarded as the action. The range of action space, the heat pump modulating signal, is [0, 1]. In SAC, 
the action space is continuous from 0 to 1. In DDQN, the action space is partitioned into 10 uniform intervals, u = {0, 0.1, 0.2, …, 1}, 
because it works in the discrete action space. 
2.2.4. Design of reward function 

A well-designed reward function can accelerate the convergence of the agent and guide the agent to take proper actions under 
different situations. Since our objective is to minimize thermal discomfort and operation cost, the reward function is designed as a 
weighted sum of these two goals. The two KPIs described in Section 2.1.3 are employed to construct the reward function. The 
mathematical representation of the objective function is shown in Eqs. (7) and (8). 

r(t)= a • tdis + b • cost (7)  

reward(t) = c • [r(t− 1)− r(t)] (8)  

where r(t) represents the performance of operation cost and zone temperature at t time; reward(t) represents the value of reward given 
to the agent at t time; a, b, c are weight factors, which are set to 10, 1, 0.05, respectively. 
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2.2.5. Hyperparameters 
In this paper, we manually tuned the hyperparameters of RL algorithms since BOPTEST does not support parallel computing. The 

hyperparameters of four algorithms are listed in Table 3. It should be noted that the hyperparameters of model-based algorithms are 
consistent with their model-free algorithms, respectively. This allows to compare the performance gaps between model-based RL and 
model-free RL in a fair way. Additionally, the rollout size of model-based RL algorithms is set to 90% of batch size. Compared to model- 
free RL, model-based RL algorithms only employ 10% real experience and 90% generated experience to update the RL agent, which 
highly improves the sample efficiency. 

3. Results 
3.1. Convergence 

In this paper, all tests are run on an Intel processor with 16 GB RAM to evaluate the performance of different RL algorithms. RL 
algorithms are all implemented in Python 3.7 and OpenAI Gym [44] is used to interface with the BOPTEST simulation environment. 

Fig. 8 depicts the evolution of cumulative return for each episode of different RL algorithms. A clear rising trend in the episodic 
reward can be seen with more training episodes. It demonstrates that RL agents can successfully learn through interacting with the 
environment. Additionally, MBDDQN and MBSAC both exhibit significantly higher episodic rewards and lower reward deviation 
between different trials than model-free algorithms. This indicates that model-based RL algorithms can achieve more stable and better 
training outcomes, compared to their original model-free RL algorithms. 

As shown in Fig. 8 a), MBDDQN approaches convergence at around the 23rd episode, while DDQN reaches convergence at around 
the 37th episode, which saves nearly 14 episodes (4700 timesteps). The reward of MBDDQN in the 21st episode matches that of DDQN 
in the 37th episode. Fig. 8 b) suggests that while SAC approaches convergence around the 47th episode, MBSAC converges at the 35th 
episode, which saves nearly 12 episodes (4000 timesteps). The performance of MBSAC at the 31st episode is identical to that of SAC at 
the convergence. Therefore, model-based RL can achieve a faster convergence speed and a higher reward at the convergence when 
compared to model-free RL. 

Comparing Fig. 8 a) and b), the model-based RL approach provides different improvements for model-free RL algorithms under 
different control scenarios. During the convergence period (40–50 episodes), MBDDQN achieves approximately the same operation 
cost reductions as DDQN and a lower thermal deviation, while MBSAC reaches the same thermal deviation as SAC and saves more 
operation costs. As a result, at convergence, MBDDQN yields a reward that is 2.10% higher than DDQN, while MBSAC yields a reward 
that is 6.53% higher than SAC. This illustrates that the continuous control scenario may benefit more from the model-based RL than the 
discrete control scenario. Additionally, DDQN and MBDDQN converge more quickly than SAC and MBSAC which demonstrates that 
continuous control learning is more challenging and takes longer time to converge than discrete control. 

3.2. Control performance 
To describe the performance of the control during the test period, the highest reward trial out of five random seeds is selected. Fig. 9 

displays KPIs for different RL algorithms at the 50th episode. All RL control methods outperform the baseline control in terms of 
thermal comfort, operation cost and energy consumption, although they add various amounts of computational burden. 

In the discrete control scenario, MBDDQN achieves the same cost savings as DDQN while reducing the zone thermal deviation by 
42.86%. It should be noted that MBDDQN achieves the same cost savings as DDQN and higher energy consumption, leading to greater 
flexibility in the HVAC system. For the continuous control scenario, MBSAC achieves a lower operation cost and energy consumption 
than SAC with a reduction of 10.98% and 11.78% respectively. However, MBSAC has a higher zone thermal deviation than SAC with 
an increase of 61.60%. In terms of computational time, MBDDQN needs 81.74% more time than DDQN, and MBSAC takes 88.14% 
more time than SAC. This is due to the increased computational load of model training and hypothetical experience simulating in 
model-based RL. 

Figs. 10 and 11 depict the detailed indoor temperature variations and control signals of DDQN and MBDDQN during the test period. 
The test period lasts for two weeks. As seen, the baseline PI controller is well-tuned and has a good control performance, because it can 
keep the indoor temperature at the lower bound of the comfortable range. Even when compared to this high-standard baseline, DDQN 

Table 3 
Hyperparameters of different RL algorithms.  

Hyperparameter DDQN SAC MBDDQN MBSAC 
Learning rate 0.003 0.0005 0.003 0.0005 
Learning rate (Critic) – 0.002 – 0.002 
Target entropy – −1 – −1 
Discount factor 0.95 0.99 0.95 0.99 
Exploration rate 0.03 – 0.03 – 

Target update rate 10 – 10 – 

DNN 64 × 64 64 × 64 64 × 64 64 × 64 
Batch size 1024 1024 1024 1024 
Rollout size – – 1024 × 0.9 1024 × 0.9 
Rollout length – – 1 1 
G updates – – 5 5 
Model DNN – – 200 × 200 × 200 × 200 200 × 200 × 200 × 200  
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Fig. 8. Training curves of DDQN, MBDDQN, SAC, and MBSAC. (The solid lines indicate the mean value and shaded areas indicate the standard deviation of five trails 
over different random seeds). 

Fig. 9. KPI values of baseline and different RL algorithms at the convergence.  
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and MBDDQN both perform better in terms of indoor thermal comfort and energy consumption. Additionally, MBDDQN exhibits a 
higher indoor temperature compared with baseline control and DDQN. As shown in Fig. 11 a), the indoor temperature of MBDDQN 
mainly varies above 21 ◦C, while that of DDQN mainly varies between 20 ◦C and 22 ◦C. 

As seen in Figs. 10 and 11 b), three controls have different control behaviors during the test period. We can see DDQN and MBDDQN 
regulate the system at significantly higher frequencies than baseline control, while baseline control signals shift more gradually and 
have a more stable distribution from 0 to 1. The control signals of DDQN and MBDDQN are both concentrated in 0 or 1, however, 
MBDDQN distributes more control signals in the middle range of [0.6, 0.7] than DDQN does. Moreover, notably on January 23rd, 
MBDDQN can pre-heating the room by taking advantage of electricity price fluctuation, which decreases utility costs while main-
taining thermal comfort. As a result, compared with baseline control and DDQN, MBDDQN achieves a lower zone thermal deviation 
while reducing operation costs. 

Figs. 12 and 13 depict the detailed indoor temperature and control signals of SAC and MBSAC during the test period. Due to their 
higher indoor temperatures than the baseline control during the occupied time, SAC and MBSAC experience less thermal discomfort. 

Fig. 10. Control performances of DDQN and MBDDQN under the test period.  

Fig. 11. Distributions of indoor temperature and control signal of DDQN and MBDDQN.  
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Additionally, Fig. 13 a) demonstrates that the indoor temperature of MBSAC is mostly concentrated at 22 ◦C, whereas the indoor 
temperature of the SAC is more evenly distributed between [19 ◦C, 22 ◦C]. However, during some unoccupied time, the indoor 
temperature of MBSAC is lower than SAC, which makes MBSAC unable to respond in time between occupied and unoccupied periods as 
SAC can. On January 26th, MBSAC is unable to control the indoor temperature within the comfort range, resulting in MBSAC’s tdis 
exceeding that of SAC. These are reasons that MBSAC achieves a higher indoor thermal deviation than SAC. 

As depicted in Fig. 13 b), the control signals of MBSAC generally alternate between 0 and 1, while the control signals of SAC mainly 
alternate between 0 and [0.1, 1]. MBSAC tends to turn off the heat pump during the unoccupied time, whereas SAC would permit the 
heat pump to run at a low frequency. Therefore, SAC can achieve a higher indoor temperature during the unoccupied time and a 
smoother control signal fluctuation through the test period. At the same time, however, this has led to increased operating costs for 
SAC compared to MBSAC. 

Fig. 12. Control performances of SAC and MBSAC under the test period.  

Fig. 13. Distributions of indoor temperature and control signal of SAC and MBSAC.  
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4. Discussion and future research 
4.1. Discussions 

A crucial concern of this study is how the model accuracy of model-based RL algorithms fluctuates and influences the training 
process. To answer this question, the MSE of the model during the training process is shown in Fig. 14. As seen, the models are 
inaccurate before the 10th episode for MBDDQN and MBSAC. Even though, when comparing Fig. 8 with Fig. 14, model-based RL still 
achieves a faster learning speed than model-free RL based on sufficient model-generated data at the early training stage. However, the 
rewards of MBDDQN and MBSAC fluctuate around a high level as a result of erroneous model-generated data rather than showing a 
clearly rising trend. After 10 episodes, the MSE of the model converges within 0.05 rapidly, indicating strong model predictive ac-
curacy. Then, the rewards significantly increase and model-based RL agents converge quickly. Therefore, quickly and massively 
generated data can speed up the learning process at the early training stage, but it is also limited to inaccuracy. Additionally, it should 
be noticed that the MSE of MBSAC is larger than that of MBDDQN at the beginning of training. This indicates that the continuous 
control displays more similar actions than the discrete control, which makes training the model more challenging. 

Another intriguing challenge is how to strike a balance between sample efficiency and training outcomes, because the model 
accuracy has a significant impact on the training process. Since the results shown in Section 3 used 10% real experience and 90% 
model-generated experience, we carried out two further experiments to train RL agents using 50% real experience and 50% model- 
generated experience. As illustrated in Fig. 15, model-based RL algorithms trained with different ratios of real and simulated expe-
rience can accomplish quicker learning speeds and higher training outcomes in contrast to model-free RL algorithms. Model-based RL 
algorithms employing 90% simulated data, as opposed to those using 50% simulated data, converged more quickly because of a high 
sample efficiency. MBDDQN with 90% simulated experience converges at the 22nd episode while MBDDQN with 50% simulated 
experience converges at the 32nd episode; MBSAC with 90% simulated data converges at the 35th episode while MBSAC with 50% 
simulated experience converges at the 40th episode. Meanwhile, model-based RL algorithms with 50% simulated experience have 
slower convergence rates but better convergence outcomes, because more real and accurate experience has been sampled from the 
environment. As a result, MBDDQN with 50% simulated experience achieves a reward that is 1.59% higher than it does with 90% 
simulated data, while MBSAC with 50% simulated experience achieves a reward that is 4.82% higher than it does with 90% simulated 
experience. Therefore, a higher proportion of generated to real experience will increase sampling efficiency and accelerate the learning 
speed, but it will also decrease the control performance because of erroneous experience data. 

4.2. Limitations and future research 
One of the main limitations of this study is that all RL algorithms are all tested in the virtual environment. In the virtual envi-

ronment, uncertainties are not included in the experiment, including prediction error, measurement error, and mismatch between 
simulation and reality. These uncertainties can influence the performance of RL algorithms which is strongly related to the data quality 
[45,46]. Additionally, it may decrease the accuracy of the learned environment model, which may lead to a performance over-
estimation of model-based RL [47]. Hence, to investigate the real performance gaps of RL algorithms, it is important to apply the RL 
algorithms in the real world. 

Another limitation of this research is that we only compare the Dyna-style MBPO with the model-free algorithms. However, the 
model in the model-based RL also can be employed to predict the state in advance and allow the agent to make decisions that fit within 
the indoor temperature limits [24]. It should be noted that the thermal deviation at the early training stage may be too large to be 
accepted in reality. In the future, we plan to focus on combining the Dyna-style framework with safe RL frameworks to help the agent 
learn more safely and quickly and thus enable the direct application of RL control. 

5. Conclusion 
RL shows great potential to enhance energy efficiency and maintain indoor comfort in HVAC systems. In this paper, the perfor-

mance gaps between model-free and model-based RL algorithms are investigated in terms of indoor temperature, energy consumption, 
operational cost, data efficiency, and computational time. The open-source BOPTEST framework is employed as the virtual envi-
ronment and the test case “BESTEST Hydronic Heat Pump” is selected. Two different model-free RL algorithms, DDQN and SAC, and a 

Fig. 14. The MSE of the model during the training process.  
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model-based RL framework (MBPO) are employed as representatives for both discrete and continuous control problems. The major 
findings and conclusions of this paper are listed as follows.  
• With the same training dataset, MBDDQN and MBSAC can both achieve faster convergence than DDQN and SAC by 14 and 12 

episodes ahead respectively, which saves nearly 5000 timesteps. Furthermore, MBDDQN and MBSAC exhibit significantly higher 
episodic rewards and lower reward deviation between different trials, which illustrates that model-based RL can produce more 
stable and better results with less training time, compared to model-free RL.  

• During the test period, model-free and model-based RL controls can both outperform the baseline control in terms of indoor 
temperature, operation cost, and energy consumption. MBDDQN achieves the same cost savings as DDQN but manages to achieve a 
lower zone thermal deviation with a reduction of 42.86%, while MBSAC yields a lower operation cost than SAC with a reduction of 
10.98% but increases the thermal deviation of 61.60%.  

• Due to massive and quickly model-generated data, model-based RL can speed up the learning process even though the model is 
inaccurate at the early training stage. Additionally, the ratio of generated to real experience is positively connected with learning 
speed and negatively associated with control performance. 
In a nutshell, this paper demonstrates that model-based RL has the potential to outperform model-free RL in terms of sample ef-

ficiency and control performance even without pre-built models. Our findings can provide a thorough understanding of different RL 
control techniques which may shed some light on the selection and enhancement of RL controls for HVAC systems. 
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Appendix A. . Thermo-physical properties of the test model  

Name Thickness (m) Thermal conductivity (W/m⋅K) Specific Heat Capacity (J/kg⋅K) Density (kg/m3) 
Exterior Wall Layer1 (Wood siding) 0.009 0.14 900 530 

Layer2 (Insulation) 0.0615 0.04 1400 10 
Layer3 (Concrete block) 0.1 0.51 1000 1400 

Floor Layer1 (Concrete) 0.15 1.4 840 2100 
Layer2 (Insulation) 0.20 0.02 1470 30 
Layer3 (Screed) 0.05 0.6 840 1100 
Layer4 (Tile) 0.01 1.4 840 2100 

Roof Layer1 (Roof deck) 0.019 0.14 900 530 
Layer2 (Fiber glass) 0.1118 0.04 840 12 
Layer3 (Plaster board) 0.01 0.16 840 950  
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