
Classical Planning Algorithms on the Atari Video Games

Nir Lipovetzky
The University of Melbourne

Melbourne, Australia
nirlipo@gmail.com

Miquel Ramirez
Australian National University

Canberra, Australia
miquel.ramirez@gmail.com

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

The Atari 2600 games supported in the Arcade Learn-
ing Environment (Bellemare et al. 2013) all feature a
known initial (RAM) state and actions that have de-
terministic effects. Classical planners, however, cannot
be used for selecting actions for two reasons: first, no
compact PDDL-model of the games is given, and more
importantly, the action effects and goals are not known
a priori. Moreover, in these games there is usually no
set of goals to be achieved but rewards to be collected.
These features do not preclude the use of classical al-
gorithms like breadth-first search or Dijkstra’s algo-
rithm, but these methods are not effective over large
state spaces. We thus turn to a different class of classical
planning algorithms introduced recently that perform a
structured exploration of the state space; namely, like
breadth-first search and Dijkstra’s algorithm they are
“blind” and hence do not require prior knowledge of
state transitions, costs (rewards) or goals, and yet, like
heuristic search algorithms, they have been shown to be
effective for solving problems over huge state spaces.
The simplest such algorithm, called Iterated Width or
IW, consists of a sequence of calls IW(1), IW(2), . . . ,
IW(k) where IW(i) is a breadth-first search in which a
state is pruned when it is not the first state in the search
to make true some subset of i atoms. The empirical re-
sults over 54 games suggest that the performance of IW
with the k parameter fixed to 1, i.e., IW(1), is at the
level of the state of the art represented by UCT. A sim-
ple best-first variation of IW that combines exploration
and exploitation proves to be very competitive as well.

Introduction
The Arcade Learning Environment (ALE) provides a
challenging platform for evaluating general, domain-
independent AI planners and learners through a convenient
interface to hundreds of Atari 2600 games (Bellemare et al.
2013). Results have been reported so far for basic planning
algorithms like breadth-first search and UCT, reinforcement
learning algorithms, and evolutionary methods (Bellemare
et al. 2013; Mnih et al. 2013; Hausknecht et al. 2014). The
empirical results are impressive in some cases, yet a lot re-
mains to be done, as no method approaches the performance
of human players across a broad range of games.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While all these games feature a known initial (RAM) state
and actions that have deterministic effects, the problem of
selecting the next action to be done cannot be addressed with
state-of-the-art classical planners (Geffner and Bonet 2013).
This is because there is no compact PDDL-like encoding of
the domain, and more importantly, the goal to be achieved in
each game is not given. Indeed, there are often no goals but
rewards r(a, s) that depend on the action a and the state s
in which the action is performed, and these rewards are not
known.1 Thus no model of the goals or the rewards can be
used to bias the search.

The action selection problem in the Atari games can be
seen as a reinforcement learning problem (Sutton and Barto
1998) over a deterministic MDP where the state transitions
and rewards are not known, or alternatively, as a net-benefit
planning problem (Coles et al. 2012; Keyder and Geffner
2009) with unknown state transitions and rewards. Namely,
we seek an action sequence a0, a1, . . . , am from the cur-
rent state s0 that generates a state sequence s0, s1, . . . , sm+1

with maximum total reward
∑m

i=0 r(ai, si), where m is a
sufficiently large planning horizon, and the rewards r(ai, si)
and the state-transitions si+1 = f(ai, si) are known only af-
ter action ai is applied in the state si.

The presence of unknown transition and rewards in the
Atari games does not preclude the use of blind-search meth-
ods like breadth-first search, Dijkstra’s algorithm (Dijkstra
1959), or learning methods such as LRTA* (Korf 1990),
UCT (Kocsis and Szepesvári 2006), and Q-learning (Sut-
ton and Barto 1998; Bertsekas and Tsitsiklis 1996). Indeed,
the net-benefit planning problem with unknown state tran-
sitions and rewards over a given planning horizon, can be
mapped into a standard shortest-path problem which can be
solved optimally by Dijkstra’s algorithm. For this, we just
need to map the unknown rewards r(a, s) into positive (un-
known) action costs c(a, s) = C − r(a, s) where C is a
large constant that exceeds the maximum possible reward.
The fact that the state transition and cost functions f(a, s)
and c(a, s) are not known a priori doesn’t affect the appli-
cability of Dijkstra’s algorithm, which requires the value of
these functions precisely when the action a is applied in the
state s.

1Actually, in the Atari games, the rewards r(a, s) depend only
on the state f(a, s) that results from doing action a in the state s.

21

Learning for General Competency in Video Games: Papers from the 2015 AAAI Workshop

The limitation of the basic blind search methods is that
they are not effective over large spaces, neither for solving
problems off-line, nor for guiding a lookahead search for
solving problems on-line. In this work, we thus turn to a
recent class of planning algorithms that combine the scope
of blind search methods with the performance of state-of-
the-art classical planners: namely, like “blind” search algo-
rithms they do not require prior knowledge of state transi-
tions, costs, or goals, and yet like heuristic algorithms they
manage to search large state spaces effectively. The basic al-
gorithm in this class is called IW for Iterated Width search
(Lipovetzky and Geffner 2012). IW consists of a sequence
of calls IW(1), IW(2), .., IW(k), where IW(i) is a stan-
dard breadth-first search where states are pruned right away
when they fail to make true some new tuple (set) of at most
i atoms. Namely, IW(1) is a breadth-first search that keeps
a state only if the state is the first one in the search to make
some atom true; IW(2) keeps a state only if the state is the
first one to make a pair of atoms true, and so on. Like plain
breadth-first and iterative deepening searches, IW is com-
plete, while searching the state space in a way that makes
use of the structure of states given by the values of a finite
set of state variables. In the Atari games, the (RAM) state is
given by a vector of 128 bytes, which we associate with 128
variables Xi, i = 1, . . . , 128, each of which may take up to
256 values xj . A state s makes an atom Xi = xj true when
the value of the i-th byte in the state vector s is xj .

While a normal, complete breadth-first search runs in time
that is exponential in the total number of variables Xi, the
procedure IW(k) runs in time that is exponential in the k pa-
rameter, 1 ≤ k ≤ n. Elsewhere, it has been shown that IW
exhibits state-of-the-art performance on most existing plan-
ning benchmark domains when goals are restricted to sin-
gle atoms where IW provably runs in low polynomial time
in the number of variables (Lipovetzky and Geffner 2012).
For example, in a blocks world instance with any number
of blocks and any initial configuration, the goal of plac-
ing a given block on top of another will be achievable in
quadratic time in the number of blocks as any such instance
can be shown to have width 2. This means that IW(2) will
not only be complete then, but also optimal. This is also true
for most other benchmark domains in classical planning that
turn out to have small, bounded widths for any instance as
long as the goal is atomic. For dealing with the benchmarks
where goals are not single atoms, e.g., where a given tower
of blocks needs to be built, simple extensions of the basic
IW procedure have been developed such as Serialized IW,
where IW is used to achieve the goals one at at time follow-
ing a simple goal ordering (Lipovetzky and Geffner 2012;
2014). The extension of IW for problems where there is no
goal but an additive reward measure to be optimized, like in
the Atari games, is direct.

The paper is organized as follows. We review the iterated
width algorithm and where it comes from, look at simple
variations of the algorithm that appear to be convenient for
the Atari games, present and analyze the experimental re-
sults, and discuss related and future work.

Iterated Width
The Iterated Width (IW) algorithm has been introduced as
a classical planning algorithm that takes a planning problem
as an input, and computes an action sequence that solves the
problem as the output (Lipovetzky and Geffner 2012). The
algorithm however applies to a broader range of problems.
We will characterize such problems by means of a finite and
discrete set of states (the state space) that correspond to vec-
tors of size n. Namely, the states are structured or factored ,
and we take each of the locations in the vector to represent
a variable Xi, and the value at that vector location to repre-
sent the value xj of variable Xi in the state. In addition to the
state space, a problem is defined by an initial state s0, a set of
actions applicable in each state, a transition function f such
that s′ = f(a, s) is the state that results from applying action
a to the state s, and rewards r(a, s) represented by real num-
bers that result from applying action a in state s. The transi-
tion and reward functions do not need to be known a priori,
yet in that case, the state and reward that results from the ap-
plication of an action in a state need to be observable. The
task is to compute an action sequence a0, . . . , am for a large
horizon m that generates a state sequence s0, . . . , sm+1 that
maximizes the accumulated reward

∑m

i=0 r(ai, si), or that
provides a good approximation.

The Algorithm

IW consists of a sequence of calls IW(i) for i = 0, 1, 2, . . .
over a problem P until a termination condition is reached.
The procedure IW(i) is a plain forward-state breadth-first
search with just one change: right after a state s is generated,
the state is pruned if it doesn’t pass a simple novelty test.
More precisely,

• The novelty of a newly generate state s in a search algo-
rithm is 1 if s is the first state generated in the search that
makes true some atom X = x, else it is 2 if s is the first
state that makes a pair of atoms X = x and Y = y true,
and so on.

• IW(i) is a breadth-first search that prunes newly gener-
ated states when their novelty measure is greater than i.

• IW calls IW(i) sequentially for i = 1, 2, . . . until a termi-
nation condition is reached, returning then the best path
found.

For classical planning, the termination condition is the
achievement of the goal. In the on-line setting, as in the Atari
games, the termination condition is given by a time window
or a maximum number of generated nodes. The best path
found by IW is the path that has a maximum accumulated
reward. The accumulated reward R(s) of a state s reached in
an iteration of IW is determined by the unique parent state s′

and action a leading to s from s′ as R(s) = R(s′)+r(a, s′).
The best state is the state s with maximum reward R(s) gen-
erated but not pruned by IW, and the best path is the one that
leads to the state s from the current state. The action selected
to be done next is the first action along such a path.

Performance and Width

IW is a systematic and complete blind-search algorithm like
breadth-first search (BRFS) and iterative deepening (ID),

22

Domain I IW(1) IW(2) Neither

1. 8puzzle 400 55% 45% 0%
2. Barman 232 9% 0% 91%
3. Blocks World 598 26% 74% 0%
4. Cybersecure 86 65% 0% 35%
.
20. ParcPrinter 975 85% 15% 0%
21. Parking 540 77% 23% 0%
22. Pegsol 964 92% 8% 0%
23. Pipes-NonTan 259 44% 56% 0%
24. Pipes-Tan 369 59% 37% 3%
25. PSRsmall 316 92% 0% 8%
26. Rovers 488 47% 53% 0%
27. Satellite 308 11% 89% 0%
28. Scanalyzer 624 100% 0% 0%
29. Sokoban 153 37% 36% 27%
30. Storage 240 100% 0% 0%
31. Tidybot 84 12% 39% 49%
32. Tpp 315 0% 92% 8%
33. Transport 330 0% 100% 0%
34. Trucks 345 0% 100% 0%
35. Visitall 21859 100% 0% 0%
36. Woodworking 1659 100% 0% 0%
37. Zeno 219 21% 79% 0%

Total/Avgs 37921 37.0% 51.3% 11.7%

Instances IW ID BRFS GBFS + hadd

37921 34627 9010 8762 34849

Table 1: Top: Number of classical planning instances per domain
and percentages solved by IW(1), IW(2), or neither. Problems ob-
tained by splitting benchmarks with N atomic goals into N prob-
lems with atomic goals. Bottom: Number of instances solved by
IW in comparison with Iterative Deepening (ID), Breadth-First
Search (BRFS), and Greedy Best First Search (GBFS) guided by
additive heuristic. Time and memory outs after 30 minutes or 2 GB.
Table from (Lipovetzky and Geffner 2012).

but unlike these algorithms, it uses the factored representa-
tion of the states in terms of variables to structure the search
in a different way. This structured exploration has proved to
be very effective over classical planning benchmark domains
when goals are single atoms.2 Table 1 from (Lipovetzky and
Geffner 2012) shows the percentage of instances that are
solved by the first iteration of IW, i.e. IW(1), by the second
iteration IW(2), and by neither one. These are instances that
have been obtained from the existing benchmarks by split-
ting problems with N atomic goals, into N problems with
one atomic goal each. As the table shows, 37% of the 37921
instances are solved by IW(1) while 51.3% are solved by
IW(2). Since IW(k) runs in time that is exponential in k,
this mean that almost 90% of the 37,921 instances are solved
in time that is either linear or quadratic in the number of
problem variables, which in these encoding are all boolean.

2Any conjunctive goal can be mapped into a single dummy
atomic goal by adding an action that achieves the dummy goal and
that has the original conjunctive goal as a precondition. Yet, this
changes the definition of the domain.

Furthermore, when the performance of IW is compared with
breadth-first search and iterative deepening, on the one hand,
and with a Greedy Best First Search guided by the additive
heuristic hadd (Bonet and Geffner 2001) on the other (this
algorithm is similar to the one used by the FF planner when
hill climbing search fails (Hoffmann and Nebel 2001)), it
turns out that “blind” IW solves as many problems as the
informed search, 34,627 vs. 34,849, far ahead of the other
blind algorithms BRFS and ID that solve 9,010 and 8,762
problems each. This is shown in the bottom part of Table 1.
Moreover, IW is faster and results in shorter plans than a
heuristic search algorithm (Lipovetzky and Geffner 2012).

The min k value for which IW(k) solves a problem is
bounded and small in most of these instances. This is actu-
ally no accident and has a theoretical explanation. Lipovet-
zky and Geffner define a structural parameter called the
problem width and show that for many of these domains,
any solvable instance with atomic goals will have a bounded
and small width that is independent of the number of vari-
ables and states in the problem. The min value k for which
the iteration IW(k) solves the problem cannot exceed the
problem width, so the algorithm IW runs in time and space
that are exponential in the problem width.

Formally, the width w(P) of a problem P is i iff i is
the minimum positive integer for which there is a sequence
t0, t1, . . . , tn of atom sets tk with at most i atoms each, such
that 1) t0 is true in the initial state of P , 2) any shortest
plan π that achieves tk in P can be extended into a shortest
plan that achieves tk+1 by extending π with one action, and
3) any shortest plan that achieves tn is a shortest plan for
achieving the goal of P .

One way to understand this definition is that the problem
width w(P) is at most i if there is a “trail of stepping stones”
t0, t1, . . . , tn to reach the problem goal such that A) these
“stepping stones” contain at most i atoms each, B) each step-
ping stone tk+1 is at distance 1 from the previous one tk
when tk has been reached following the “trail”, C) the “trail”
preserves “optimality”; i.e., no tuple tk can be reached in
less than k steps.

While this notion of width and the iterated width algo-
rithms that are based on it have been designed for problems
where a goal state needs to be reached, the notions remain
relevant in optimisation problems as well. Indeed, if a good
path is made of states si each of which has a low width, IW
can be made to find such path in low polynomial time for a
small value of the k parameter. Later on we will discuss a
slight change required in IW to enforce this property.

The Algorithms for the Atari Games
The number of nodes generated by IW(1) is n × D × b
in the worst case, where n is the number of problem vari-
ables, D is the size of their domains, and b is the number
of actions per state. This same number in a breadth-first
search is not linear in n but exponential. For the Atari games,
n = 128, D = 256, and b = 18, so that the product is equal
to 589, 824, which is large but feasible. On the other hand,
the number of nodes generated by IW(2) in the worst case
is (n × D)2 × b, which is equal to 19, 327, 352, 832 which
is too large, forcing us to consider only a tiny fraction of

23

such states. For classical planning problems, the growth in
the number of nodes from IW(1) to IW(2) is not that large,
as the variables are boolean. Indeed, we could have taken the
state vector for the Atari games as a vector of 1024 boolean
variables, and apply these algorithms to that representation.
The results would be different. In such a case, IW(1) and
IW(2) would generate n′ × D′ × b and (n′ × D′)2 × b
states, which for n′ = 1024 and D = 2 represent 36, 864
and 75, 497, 472 states respectively. These are feasible num-
bers, but we haven’t used this representation under the as-
sumption that the correlations among the bits in each one of
the 128 words of the state vectors are meaningful. In sum-
mary, from the basic IW algorithm we are testing only the
first call IW(1).

IW is a purely exploration algorithm that does not take
into account the accumulated reward for selecting the states
to consider. As a simple variant that combines exploration
and exploitation, we evaluated a best-first search algorithm
with two queues: one queue ordered first by novelty mea-
sure (recall that novelty one means that the state is the first
one to make some atom true), and a second queue ordered
by accumulated reward. In one iteration, the best first search
picks up the best node from one queue, and in the second
iteration it picks up the best node from the other queue. This
way for combining multiple heuristics is used in the LAMA
planner (Richter and Westphal 2010), and was introduced in
the planner Fast Downward (Helmert 2006). In addition, we
break ties in the first queue favoring states with largest ac-
cumulated reward, and in the second queue, favoring states
with smallest novelty measure. Last, when a node is ex-
panded, it is removed from the queue, and its children are
placed on both queues. The exception are the nodes with no
accumulated reward that are placed in the first queue only.
We refer to this best-first algorithm as 2BFS.

For the experiments below, we added two simple varia-
tions to IW(1) and 2BFS. First, in the breadth-first search
underlying IW(1), we generate the children in random or-
der. This makes the executions that result from the IW(1)
lookahead less susceptible to be trapped into loops; a poten-
tial problem in local search algorithms with no memory or
learning. Second, a discount factor γ = 0.995 is used in both
algorithms for discounting future rewards like in UCT. For
this, each state s keeps its depth d(s) in the search tree, and
if state s’ is the child of state s and action a, R(s′) is set to

R(s)+γd(s)+1r(a, s). The discount factor results in a slight
preference for rewards that can be reached earlier, which is
a reasonable heuristic in on-line settings based on lookahead
searches.

Experimental Results

We tested IW(1) and 2BFS over 54 of the 55 games con-
sidered in (Bellemare et al. 2013), from now on abbreviated
as BNVB.3 Table 2 shows the performance of IW(1) and
2BFS in comparison with breadth-first search (BRFS) and
UCT. Videos of selected games played by IW(1), 2BFS,

3We left out SKIING as the reported figures apparently use a
different reward structure.

and UCT can be seen in Youtube.4 The discount factor used
by all the algorithms is γ = 0.995. The scores reported
for BRFS and UCT are taken from BNVB. Our experi-
mental setup follows theirs except that a maximum budget
of 150, 000 simulated frames is applied to IW(1), 2BFS,
and UCT. UCT uses this budget by running 500 rollouts of
depth 300. The bound on the number of simulated frames
is like a bound on lookahead time, as most of the time in
the lookahead is spent in calls to the emulator for computing
the next RAM state. This is why the average time per action
is similar to all the algorithms except IW(1), that due to its
pruning does not always use the full budget and takes less
time per action on average.

Also, as reported by BNVB, all of the algorithms reuse
the frames in the sub-tree of the previous lookahead that is
rooted in the selected child, deleting its siblings and their
descendants. More precisely, no calls to the emulator are
done for transitions that are cached in that sub-tree, and such
reused frames are not discounted from the budget that is thus
a bound on the number of new frames per lookahead. In ad-
dition, in IW(1), the states that are reused from the previous
searches are ignored in the computation of the novelty of
new states so that more states can escape pruning. Other-
wise, IW(1) often uses a fraction of the budget. This is not
needed in 2BFS which does no pruning. IW(1) and 2BFS
are limited to search up to a depth of m = 1, 500 frames and
up to m = 150, 000 frames per root branch. This is to avoid
the search from going too deep or being too committed to a
single root action.

Last, in the lookahead, IW(1) and 2BFS select an ac-
tion every 5 frames, while UCT selects an action in every
frame. This means that in order to explore a branch 300
frames deep, UCT gets to choose 300 actions, while IW(1)
and 2BFS get to choose 60 actions, both however using the
same 300 frames from the budget. For this, we followed the
setup of BRFS in BNVB that also selects actions every 5
frames, matching the behavior of the emulator that requests
an action also every 5 frames. Since the lookahead budget is
given by a maximum number of (new) frames, and the time
is mostly taken by calls to the emulator, this may not be the
best choice for IW(1) and 2BFS that may therefore not be
exploiting all the options afforded by the budget. We’ll look
at this further in the future.

Table 2 shows that both IW(1) and 2BFS outperform
BRFS, which rarely collects reward in many domains as the
depth of the BRFS search tree results in a lookahead of 0.3
seconds (20 frames or 4 nodes deep). The notable exception
to this is CENTIPEDE where abundant reward can be col-
lected with a shallow lookahead. On the other hand, both
IW(1) and 2BFS normally reach states that are up to 350–
1500 frames deep (70–260 nodes or 6–22 seconds), even
if IW(1) does not always use all the simulation frames al-
located due to its agressive pruning. This can be observed
in games such as BREAKOUT, CRAZY CLIMBER, KANGA-
ROO, and POOYAN, where the average CPU time for each
lookahead is up to 10 times faster than 2BFS. Computation

4http://www.youtube.com/playlist?list=PLXpQcXUQ
CwenUazUivhXyYvjuS6KQOI0.

24

Table 2: Performance that results form various lookahead algorithms in 54 Atari games. The algorithms, BRFS, IW(1), 2BFS, and UCT,
are evaluated over 10 runs (episodes) for each game. The maximum episode duration is 18, 000 frames and every algorithm is limited to
a lookahead budget of 150,000 simulated frames. Figures for BRFS and UCT taken from (Bellemare et al. 2013). Average CPU times per
action in seconds, rounded to nearest integer, shown for IW(1) and 2BFS. Numbers in bold show best performer in terms of average score,
while numbers shaded in light grey show scores that are better than UCT’s. Bottom part of the table shows pairwise comparisons among the
algorithms.

25

IW(1) 2BFS BRFS UCT

Game Score Time Score Time Score Score

ALIEN 25634 81 12252 81 784 7785

AMIDAR 1377 28 1090 37 5 180

ASSAULT 953 18 827 25 414 1512

ASTERIX 153400 24 77200 27 2136 290700

ASTEROIDS 51338 66 22168 65 3127 4661

ATLANTIS 159420 13 154180 71 30460 193858

BANK HEIST 717 39 362 64 22 498

BATTLE ZONE 11600 86 330800 87 6313 70333

BEAM RIDER 9108 23 9298 29 694 6625

BERZERK 2096 58 802 73 195 554

BOWLING 69 10 50 60 26 25

BOXING 100 15 100 22 100 100

BREAKOUT 384 4 772 39 1 364

CARNIVAL 6372 16 5516 53 950 5132

CENTIPEDE 99207 39 94236 67 125123 110422

CHOPPER COMMAND 10980 76 27220 73 1827 34019

CRAZY CLIMBER 36160 4 36940 58 37110 98172

DEMON ATTACK 20116 33 16025 41 443 28159

DOUBLE DUNK -14 41 21 41 -19 24

ELEVATOR ACTION 13480 26 10820 27 730 18100

ENDURO 500 66 359 38 1 286

FISHING DERBY 30 39 6 62 -92 38

FREEWAY 31 32 23 61 0 0

FROSTBITE 902 12 2672 38 137 271

GOPHER 18256 19 15808 53 1019 20560

GRAVITAR 3920 62 5980 62 395 2850

HERO 12985 37 11524 69 1324 12860

ICE HOCKEY 55 89 49 89 -9 39

JAMES BOND 23070 0 10080 30 25 330

JOURNEY ESCAPE 40080 38 40600 67 1327 7683

KANGAROO 8760 8 5320 31 90 1990

KRULL 6030 28 4884 42 3089 5037

KUNG FU MASTER 63780 21 42180 43 12127 48855

MONTEZUMA REVENGE 0 14 540 39 0 0

MS PACMAN 21695 21 18927 23 1709 22336

NAME THIS GAME 9354 14 8304 25 5699 15410

PONG 21 17 21 35 -21 21

POOYAN 11225 8 10760 16 910 17763

PRIVATE EYE -99 18 2544 44 58 100

Q*BERT 3705 11 11680 35 133 17343

RIVERRAID 5694 18 5062 37 2179 4449

ROAD RUNNER 94940 25 68500 41 245 38725

ROBOT TANK 68 34 52 34 2 50

SEAQUEST 14272 25 6138 33 288 5132

SPACE INVADERS 2877 21 3974 34 112 2718

STAR GUNNER 1540 19 4660 18 1345 1207

TENNIS 24 21 24 36 -24 3

TIME PILOT 35000 9 36180 29 4064 63855

TUTANKHAM 172 15 204 34 64 226

UP AND DOWN 110036 12 54820 14 746 74474

VENTURE 1200 22 980 35 0 0

VIDEO PINBALL 388712 43 62075 43 55567 254748

WIZARD OF WOR 121060 25 81500 27 3309 105500

ZAXXON 29240 34 15680 31 0 22610

Times Best (54 games) 26 13 1 19

Times Better than IW (54 games) – 16 1 19

Times Better than 2BFS (54 games) 34 – 1 25

Times Better than UCT (54 games) 31 26 1 –

time for UCT and BRFS are similar to 2BFS, as the most
expensive part of the computation is the generation of frames
through the simulator, and these three algorithms always use
the full budget.

More interestingly, IW(1) outscores UCT in 31 of the
54 games, while 2BFS outscores UCT in 26. On the other
hand, UCT does better than IW(1) and 2BFS in 19 and
25 games respectively. The relative performance between
IW(1) and 2BFS makes IW(1) the best of the two in 34
games, and 2BFS in 16. In terms of the number of games
where an algorithm is the best, IW(1) is the best in 26
games, 2BFS in 13 games, and UCT in 19 games. Also,
BRFS is best in 2 games (CENTIPEDE, tied up in BOXING),
while the other three algorithms are tied in another 2 games
(PONG, BOXING).

Likewise, in FREEWAY and BERZERK both IW(1) and
2BFS attain a better score than the baseline semi-random al-
gorithm Perturb in (Bellemare et al. 2013), that beats UCT
on those games. Perturb is a simple algorithm that selects a
fixed action with probability 0.95, and a random action with
probability 0.05. For Perturb, BNVB do not report the aver-
age score but the best score. Perturb manages to do well in
domains where rewards are deep but can be reached by re-
peating the same action. This is the case of FREEWAY, where
a chicken has to run to the top of the screen across a ten
lane highway filled with traffic. Every time the chicken gets
across (starting at the bottom), there is one unit of reward. If
the chicken is hit by a car, it goes back some lanes. In FREE-
WAY, only 12 out of the 18 possible actions have an effect:
6 actions move the chicken up (up-right, up-left, up-fire,
up-right-fire, up-left-fire), 6 actions move the chicken down
(down-right, down-left, down-fire, down-right-fire, down-
left-fire), and 6 actions do nothing. Perturb does well in this
domain when the selected fixed action moves the chicken
up. As noted in Table 2 and seen in the provided video, UCT
does not manage to take the chicken across the highway at
all. The reason that UCT does not collect any reward is that
it needs to move the chicken up at least 240 times5 some-
thing that is very unlikely in a random exploration. IW(1)
does not have this limitation and is best in FREEWAY.

IW(1) also outperforms the best learning algorithm in
(Mnih et al. 2013) in the 7 games considered there, and
2BFS does so in 6 of the 7 games. Comparing with the
scores reported for the reinforcement learning algorithms by
BNVB, we note that both IW(1) and 2BFS do much bet-
ter than the best learning algorithm in those games where
the learning algorithms outperform UCT like MONTEZUMA

REVENGE, VENTURE and BOWLING. In MONTEZUMA

REVENGE rewards are very sparse, deep, and most of the ac-
tions lead to losing a life with no immediate penalty or con-
sequence. All algorithms achieve 0 score, except for 2BFS
that achieves an average score of 540, and a score of 2500 in
one of the runs. This means however that even 2BFS is not
able to consistently find rewards in this game. This game and
several others like BREAKOUT and SPACE INVADERS could
be much simpler by adding negative rewards for losing a

5One needs to move the chicken up for at least 4 seconds (240
frames) in order to get it across the highway.

life. We have indeed observed that our planning algorithms
do not care much about losing lives until there is just one
life left, when their play noticeably improves. This can be
seen in the videos mentioned above, and suggest a simple
form of learning that would be useful to both planners and
reinforcement learning algorithms.

We are not reporting the performance of IW(k) with pa-
rameter k = 2 because in our preliminary tests and accord-
ing to the discussion in the previous section, it doesn’t ap-
pear to improve much on BRFS, even if it results in a looka-
head that is 5 times deeper, but still too shallow to compete
with the other planning algorithms.

Exploration and Exploitation

The notion of width underlying the iterated width algorithm
was developed in the context of classical planning in order
to understand why most of the hundreds of existing bench-
marks appear to be relatively simple for current planners,
even though classical planning is PSPACE-complete (By-
lander 1994). A partial answer is that most of these domains
have a low width, and hence, can be solved in low polyno-
mial time (by IW) when goals contain a single atom. Bench-
mark problems with multiple atomic goals tend to be easy
too, as the goals can often be achieved one at a time after a
simple goal ordering (Lipovetzky and Geffner 2012).

In the iterated width algorithm, the key notion is the nov-
elty measure of a state in the underlying breadth-first search.
These novelty measures make use of the factored represen-
tation of the states for providing a structure to the search:
states that have width 1 are explored first in linear time, then
states that have width 2 are explored in quadratic time, and
so on. In classical planning problems with atomic goals, this
way of organizing the search pays off both theoretically and
practically.

The use of “novelty measures” for guiding an optimiza-
tion search while ignoring the function that is being opti-
mized is common to the novelty-based search methods de-
veloped independently in the context of genetic algorithms
(Lehman and Stanley 2011). In these methods individuals
in the population are not ranked according to the optimiza-
tion function but in terms of how “novel” they are in rela-
tion to the rest of the population, thus encouraging diversity
and exploration rather than (greedy) exploitation. The actual
definition of novelty in such a case is domain-dependent; for
example, in the evolution of a controller for guiding a robot
in a maze, an individual controller will not be ranked by how
close it takes the robot to the goal (the greedy measure), but
by the distance between the locations that are reachable with
it, and the locations reachable with the other controllers in
the population (a diversity measure). The novelty measure
used by IW, on the other hand, is domain-independent and
it is determined by the structure of the states as captured by
the problem variables.

The balance between exploration and exploitation has re-
ceived considerable attention in reinforcement learning (Sut-
ton and Barto 1998), where both are required for converging
to an optimal behavior. In the Atari games, as in other de-
terministic problems, however, “exploration” is not needed

26

for optimality purposes, but just for improving the effective-
ness of the lookahead search. Indeed, a best-first search algo-
rithm guided only by (discounted) accumulated reward will
deliver eventually best moves, but it will not be as effective
over small time windows, where like breadth-first search it’s
likely not to find any rewards at all. The UCT algorithm pro-
vides a method for balancing exploration and exploitation,
which is effective over small time windows. The 2BFS al-
gorithm above with two queues that alternate, one guided by
the novelty measures and the other by the accumulated re-
ward, provides a different scheme. The first converges to the
optimal behavior asymptotically; the second in a bounded
number of steps, with the caveat below.

Duplicates and Optimality

The notions of width and the IW algorithm guarantee that
states with low width will be generated in low polynomial
time through shortest paths. In the presence of rewards like
the Atari games, however, the interest is not in the shortest
paths but in the best paths; i.e, the paths with maximum re-
ward. IW may actually fail to find such paths even when
calling IW(k) with a high k parameter. Optimality could
be achieved by replacing the breadth-first search underlying
IW(k) by Dijkstra’s algorithm yet such a move would make
the relation between IW and the notion of width less clear.
A better option is to change IW to comply with a different
property; namely, that if there is a “rewarding” path made up
of states of low width, then IW will find such paths or bet-
ter ones in time that is exponential in their width. For this, a
simple change in IW suffices: when generating a state s that
is a duplicate of a state s′ that has been previously generated
and not pruned, s′ is replaced by s if R(s) > R(s′), with the
change of reward propagated to the descendants of s′ that
are in memory. This is similar to the change required in the
A* search algorithm for preserving optimality when mov-
ing from consistent to inconsistent heuristics (Pearl 1983).
The alternative is to “reopen” such nodes. The same change
is actually needed in 2BFS to ensure that, if given enough
time, 2BFS will actually find optimal paths. The code used
for IW and 2BFS in the experiments above does not imple-
ment this change as the overhead involved in checking for
duplicates in some test cases did not appear to pay off. More
experiments however are needed to find out if this is actually
the most effective option.

Summary and Future Work

We have shown experimentally that width-based algorithms
like IW(1) and 2BFS that originate in work in classical
planning, can be used to play the Atari video games where
they achieve state-of-the-art performance. This level of play
is the result of a structured exploration of the state space that
manages to combine the scope of blind search algorithms
with the efficiency of heuristic search methods. There are
several issues worth studying, we mention two of them. Re-
garding planning, the results show the potential of width-
based algorithms for a broader class of planning problems.
As shown, indeed, these algorithms do not require PDDL en-
codings and can deal with state successor functions encoded

procedurally (as in simulators) as long as the structure of the
states is known.

Concerning the Atari games, there are two problems in all
the planning methods discussed. First, by using the RAM
state of the Atari console one can consider that they are
“cheating”, as they use information that is not available to
the human player. And second, they do not get better with
experience. In the future, we would like to explore whether
variations of these algorithms can be used to play from the
information conveyed by the state of the screen pixels as op-
posed to the RAM state, and the potential uses of the new
ideas for learning, such the use of the novelty measures for
shaping rewards.

Acknowledgments. We thank the people involved in the
creation and maintenance of the Arcade Learning Environ-
ment that have made this work possible. The research by Nir
Lipovetzky is partially funded by the Australian Research
Council Linkage grant LP11010015.

References

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47(47):253–279.

Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.

Bylander, T. 1994. The computational complexity of
STRIPS planning. Artificial Intelligence 69:165–204.

Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; López, C. L.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1):83–
88.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.

Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.

Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2014. A neuroevolution approach to general atari game
playing. IEEE Transaction on Computational Intelligence
and AI in Games (99).

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
36:547–556.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proc. ECML-2006, 282–293. Springer.

Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42:189–211.

27

Lehman, J., and Stanley, K. O. 2011. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary computation 19(2):189–223.

Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. ECAI, 540–
545.

Lipovetzky, N., and Geffner, H. 2014. Width-based algo-
rithms for classical planning: New results. In Proc. ECAI,
1059–1060.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In Proc. of the
NIPS-2013 Workshop on Deep Learning.

Pearl, J. 1983. Heuristics. Addison Wesley.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127–177.

Sutton, R., and Barto, A. 1998. Introduction to Reinforce-
ment Learning. MIT Press.

28

