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1. Introduction

Biological inspiration in computer science, especially in algorithms engin-

eering, can be traced back to the early pioneers in the field. The list of

illustrious names includes John von Neumann, who had more in mind

than single-processor number crunchers. Far beyond the technological possi-

bilities of their era those pioneers already dreamt of intelligent and even

self-reproducing machines.

Three paradigms aside of the strong artificial intelligence realm have

survived the last three to four decades and recently found a common umbrella

under domain names like computational intelligence (Michalewicz et al.,

1994; Fogel et al., 1998), soft computing, or natural computation. Two of

them mimic individual brain procedures by means of either using artificial

neural networks or reasoning with fuzzy logic. The third paradigm, evolu-

tionary computation (EC), aims at benefiting from collective phenomena in
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adaptive populations of problem solvers underlying birth and death, variation

and selection, in an iterative, respectively generational, loop.

Again, three of the nearly contemporaneous sources of the evolutionary

algorithms (EA) have been kept alive over three decades and experienced an

amazing increase of interest during the last fifteen years. Two of them are

lying in the United States of America, the source of evolutionary program-

ming (EP) in San Diego (Fogel, 1962; Fogel et al., 1966), the source of

genetic algorithms (GA) in Ann Arbor (Holland, 1962; Holland, 1975).

Evolution strategies (ES), the third main variant of EA, were founded by

students at the Technical University of Berlin (TUB) (Rechenberg, 1965;

Rechenberg, 1971; Schwefel, 1965; Schwefel, 1975).

This paper gives an overview over the ES, its birth and history, its basic

ideas and philosophy, and its state-of-the-art. It is organized as follows.

Section 2 is intended to provide deeper insight into the history of ES

research building the basis and philosophy of contemporary ES. The basic

ideas and principles as well as the ingredients for designing ES algorithms,

such as mutation, recombination, and selection operators are introduced and

explained in section 3. As we will see, performance aspects are closely related

to the adaptive behavior of the operators mentioned. Section 4 is devoted to

the different approaches to adaptation. Theoretical aspects of ES research

such as the evolutionary dynamics, convergence, local and global perform-

ance issues in real-valued and discrete search spaces, and time complexity

are the subject of section 5. The paper closes with an outlook providing some

ideas on the future evolution of ES research.

2. A short history of evolution strategy research

In the following we concentrate on ES and refer the historically interested

reader to a less concise report about the history of all EA in the Handbook of

Evolutionary Computation (De Jong et al., 1997). An even more shimmering

picture of the “fossil record” has been gathered in a voluptuous volume with

annotated reprints dating back into the late fifties of the last century (Fogel,

1998).

2.1 Experimental evolutionary optimization

In the beginning, evolution strategies were not devised to compute minima

or maxima of real-valued static functions with fixed numbers of variables

and without noise during their evaluation. Rather, they came to the fore as a

set of rules for the automatic design and analysis of consecutive experiments

with stepwise variable adjustments driving a suitably flexible object/system
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into its optimal state in spite of environmental noise, e.g., a slender 3D

body in a wind tunnel flow into a shape with minimal drag per volume.

The experimentum crucis was performed in June 1964 with a 2D joint plate

in turbulent air flow and demonstrated that a simple randomized heuristic

outperformed the univariate as well as a discrete gradient-oriented strategy,

which were adopted from numerical mathematics. Under noisy and obviously

multimodal conditions, the new strategy showed up to be effective and suffi-

ciently efficient to be used for a couple of other experimental optimization

tasks, e.g., the design of a 3D convergent-divergent hot water flashing nozzle

(Schwefel, 1968; Klockgether and Schwefel, 1970). In order to be able to

vary the length of the nozzle and the position of its throat, gene duplication

and gene deletion was mimicked to evolve even the number of variables, i.e.,

the nozzle diameters at fixed distances. The perhaps optimal, at least unexpec-

tedly good and so far best-known shape of the nozzle was counterintuitively

strange, and it took a while, until the one-component two-phase supersonic

flow phenomena far from thermodynamic equilibrium, involved in achieving

such good result, were understood.

Being enthusiasts of the then “modern” disciplines cybernetics and

bionics, the students called their simple set of rules for designing and evalu-

ating the consecutive experiments “cybernetic solution path” and “evolution

strategy.” Actually, there were no more than two rules:

1. Change all variables at a time, mostly slightly and at random.

2. If the new set of variables does not diminish the goodness of the device,

keep it, otherwise return to the old status.

Rule one seemed to resemble mutations in nature, and rule two liter-

ally modeled the “survival of the fittest”, thus corresponding to Spencer’s

explanation of Darwin’s natural selection principle. Since there was just one

old (parent) and just one new (offspring) object (individual) per iteration

(generation) and since the selection took place among those two, this simplest

form of an ES has later been called two-membered or (1 + 1)-ES. Its oppon-

ents often mistook (malevolently?) the term mutation as a synonym for pure

random trials, thus denying any kind of learning or adaptation in the course

of stepwise improvements. Even today, chance is mostly taken as a synonym

for accidents to be avoided than for opportunities, unpredicted/unexpected

innovations, or lucky discoveries.

2.2 From discrete to continuous decision variables and first theoretical

results

A diploma thesis (Schwefel, 1965) investigated the (1 + 1)-ES with bino-

mially distributed mutations on a two dimensional parabolic ridge.1 The

study found out that the process could get stuck at certain positions, because
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nearest-neighbor positions were all worse, whereas improvements needed

larger mutations that were improbable if not impossible under the mutation

distribution used. This led to the idea of using continuous variables and

Gaussian distributions for the changes of the variables.

In 1971 the first dissertation (Rechenberg, 1971; Rechenberg, 1973) in the

field of ES was completed. It presented approximate analyses of the (1 + 1)-

ES with Gaussian mutations on two very different real-valued functions, the

hypersphere and rectangular corridor models, showing that

− the convergence velocity, i.e., the expected distance traveled into the

useful direction per iteration, is inversely proportional to the number

of variables and proportional to an orographic measure of the isohypses’

curvedness of the objective function;

− linear convergence order can be achieved if the mutation strength (or

mean step-size or standard deviation of each component of the normally

distributed mutation vector) is adjusted to the proper order of magnitude,

permanently;

− the optimal mutation strength corresponds to a certain success probab-

ility that is independent of the dimension of the search space and in the

range of one fifth for both model functions.

By means of simulating the first type of a multimembered ES, the (µ+1)- or

steady-state ES, Rechenberg further demonstrated that

− crossover can speed up the evolution substantially if the speed is

measured per generation, not per function evaluation;

− the population may learn itself to adjust the mutation strength underlying

an embedded mutation process without external control.

There are µ parents at a time in the (µ + 1)-ES. Two of them are chosen

at random and recombined to give life to an offspring, which also underlies

mutation. The selection resembles “extinction of the worst,” may it be the

offspring or one of the parents, thus keeping constant the population size.

2.3 Numerical evolutionary optimization superimposed onto simulation

models

By the time the (main frame) computers entered the campuses, it was

tempting to adapt the newborn strategy to problems of searching for optimal

parameters within simulation models, e.g. models simulating stress and devi-

ation of civil engineering structures under load (Hartmann, 1974). Such tasks

were the domain of numerical optimization procedures that had seen a boom

phase in the 1960s, mainly under the topic of operations research, scarcely

in the engineering sciences. Obviously, it was necessary to compare the effi-

ciency and robustness of the evolution strategies with that of its competitors,

especially those, which do not need derivatives explicitly. The results of that
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study were presented in another dissertation at the TUB in 1974 (Schwefel,

1975; Schwefel, 1977).

Like with all classical methods, the performance of the evolution strategies

largely depends on the adjustment of the internal parameters, prominently

the mutation strength(s). The observation that the above mentioned first

multimembered ES has an intrinsic tendency toward reducing the mutation

strength, whether this is appropriate or not, led Schwefel to introduce two

further versions of multimembered ES, i.e.,

− the (µ + λ)-ES, in which not only one offspring is created at a time or

in a generation, but λ ≥ 1 descendants, and, to keep the population size

constant, the λ worst out of all µ+ λ individuals are discarded;

− the (µ, λ)-ES, in which the selection takes place among the λ offspring

only, whereas their parents are “forgotten” no matter how good or bad

their fitness was compared to that of the new generation. Obviously, this

strategy relies on a birth surplus, i.e., on λ > µ in a strict Darwinian

sense of natural selection.

Whereas the first applications of ES in the field of experimental optimiz-

ation were greeted as innovative despite of lacking proofs of convergence

toward an absolute (global) optimum, people were much more sceptical

with respect to numerical evolutionary optimization and its possible bene-

fits. Besides of other reasons, the 1960s had seen substantial progress in

classical numerical optimization including theory as well as practical recipes

for deterministic heuristics. No need for other methods was seen, especially

not for a randomized biologically inspired one operating with more than one

search point at a time.

Had the (µ+1)-ES already been laughed at because it makes use not only

of the so far best individual to produce an offspring, but also of the second

best, even the worst out of µ parents, one can imagine that the (µ+λ)-ES was

welcomed as a further step into a wrong direction, because it does not make

immediate use of new information gathered by the next offspring. Instead, it

delays the selection decision until all λ descendants are born. The step from

the plus to the comma version finally seemed to climb to the top of mount

nonsense in so far as now even better intermediate solutions can get lost and

be replaced by worse ones.

It is true that it is easier to assure convergence to a (µ + λ)-ES because

its worst behavior is premature stagnation, e.g., when the mutation strength

becomes too low before reaching the optimum, whereas a comma version can

even diverge, especially when the mutation strength is too high. The motifs

for introducing the seemingly ridiculous ES versions with µ parents and λ

offspring per generation were twofold:
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1. Self-adaptation to the optimal mutation strength at a success probability

Ps should generally require a birth surplus or selection pressure λ/µ of

at least 1/Ps. Otherwise, smaller mean step-sizes with higher success

probabilities are preferred. The comma ES with negative progress in case

of too large step sizes should enhance the self-adaptation by preferring

offspring which step back least in such situation. Within large populations

with diverse individuals, both with respect to the object variables as well

as the strategy variable(s), i.e., the mean step-size(s) of the mutations, the

difference between a plus and a comma version should fade away.

2. On parallel computers with λ processors the set of offspring could easily

be evaluated at the same time, thus speeding up the evolution substan-

tially – per generation.2 However, nearly no expert in the 1970s believed

in commercial parallel computing before the end of the millennium.

Next to the self-adaptation of one common standard deviation for all

changes of N object variables, the multimembered ES offers a chance to let N

variances vary individually. This should lead to an opportunity of self-scaling

if it were important to largely differentiate the changes of the different object

variables. One may achieve such a feature in several ways. Schwefel (1975)

mentioned the possibility of introducing two separate factors for mutating the

standard deviations by means of multiplying with one log-normally distrib-

uted factor common for all mean step-sizes and N additional log-normally

distributed factors acting on individual mean step-sizes in different ways.

His numerical experiments, however, used a special form of intermediary

recombination to let theN standard deviations adapt individually. If the selec-

tion pressure is too high and the population size too small, there is a tendency

to search in subspaces of the N-dimensional search space. Otherwise, the

collective online learning of the internal or strategy parameters works quite

well (Schwefel, 1987). The two-factors approach is dangerous just as the

comma version and the mutative self-adaptation as such (Kursawe, 1999).

The utmost flexibility of the Gaussian normal distribution is reached when

there are not only N individual positive variances but also up to N(N − 1)/2

covariances leading to rotating hyperellipsoids as surfaces of equal mutation

probability densities. Such proposal was made and investigated already in

1975, but not published before 1980/81 (e.g. Schwefel, 1981). Generating

correlated mutations with proper characteristics can be achieved by means

of an N-fold rotation procedure (Rudolph, 1992). The lack of ample number

crunching power in the 1970s, the lack of thorough theoretical analyses, and

– still today – the tendency to work with very small populations has led to

neglect the full flexibility of the normal distribution.
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3. The basic ES-Algorithm

This section presents the ingredients of state-of-the-art ES capable of self-

adaptation (concerning the meaning of self-adaptation, see section 4.2). In

section 3.1 the standard (µ/ρ +, λ)-ES notation will be introduced and the

general ES algorithm will be outlined. Section 3.2 is devoted to the selec-

tion operator, section 3.3 deals with the mutation operator, and section 3.4

describes the recombination operators.

3.1 The (µ/ρ +, λ)-ES Notation and Algorithm

The usual goal of an evolution strategy is to optimize3 (some) given objective

or quality function(s) F with respect to a set of decision variables or control

parameters y := (y1, y2, . . .) – in ES context – often referred to as object

parameters

F(y) → opt., y ∈ Y. (1)

In principle, Y can be any set of data structures of finite but not necessarily

fixed length. Examples for Y are the real-valued N-dimensional search space

R
N , the integer search space Z

N , the binary search space B
N , the space of

permutations PN as well as mixtures of different spaces and subspaces (due

to constraints).

Evolution strategies operate on populations P of individuals a. An indi-

vidual ak with index k comprises not only the specific object parameter set (or

vector) yk and its objective function value Fk := F(yk), sometimes referred

to as fitness, but usually also a set of endogenous (i.e. evolvable) strategy

parameters sk

ak := (yk, sk, F (yk)). (2)

The endogenous strategy parameters are a peculiarity of ES: they are used to

control certain statistical properties of the genetic operators, especially those

of the mutation operator (see section 3.3). Endogenous strategy parameters

can evolve during the evolution process and are needed in self-adaptive ES

(see section 4.2).

Within one ES generation step, λ offspring individuals ãl (note, the tilde

is used to mark complete offspring) are generated from the set of µ parent

individuals am. That is, the size λ of the offspring population Po is usually

not equal to the size µ of the parent population Pp. The strategy-specific

parameters µ and λ as well as ρ (the mixing number, see below) are called

“exogenous strategy parameters” which are kept constant during the evolution

run.
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Procedure (µ/ρ +, λ)-ES; line

Begin 1

g := 0; 2

initialize

(

P
(0)
p :=

{(

y
(0)
m , s

(0)
m , F (y

(0)
m )

)

, m = 1, . . . , µ
})

; 3

Repeat 4

For l := 1 To λ Do Begin 5

El := marriage

(

P
(g)
p , ρ

)

; 6

sl := s_recombination(El); 7

yl := y_recombination(El); 8

s̃l := s_mutation(sl); 9

ỹl := y_mutation
(

yl, s̃l
)

; 10

F̃l := F(ỹl) 11

End; 12

P
(g)
o :=

{(

ỹl, s̃l, F̃l

)

, l = 1, . . . , λ
}

; 13

Case selection_type Of 14

(µ, λ) : P
(g+1)
p := selection

(

P
(g)
o , µ

)

; 15

(µ+ λ) : P
(g+1)
p := selection

(

P
(g)
o ,P

(g)
p , µ

)

16

End; 17

g := g + 1; 18

Until termination_condition 19

End 20

Figure 1. Pseudo-code of the (µ/ρ +, λ)-ES

The way the offspring population is generated is expressed by the (µ/ρ +,
λ) notation to be read as “mu slash rho plus or comma lambda.” The ρ

refers to the number of parents involved in the procreation of one offspring

(mixing number). For ρ = 1 (cloning), we have the special ES cases without

recombination, usually denoted by (µ, λ) and (µ+λ), respectively.4 All other

cases (ρ > 1) are strategies with recombination. The “+,” refers to the kind

of selection used, i.e., “+”- and “,”-selection, respectively (see section 3.2,

below).

Figure 1 shows the pseudo-code of the (µ/ρ +, λ)-ES. In what follows we

give a brief description of the algorithm postponing most of the details to the

next sections.

At generation g = 0, the parental population P(0)
p := (a1, . . . , aµ) is

initialized in line #3. After initialization the repeat-until-loop is entered (lines
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#4–19). From the parental population P
(g)
p at generation g a new offspring

population P
(g)
o is produced by running λ times through the lines #6–11. Each

cycle generates one offspring: First, in the marriage step, a parent family E of

size ρ is randomly chosen from the parent pool of sizeµ. This marriage selec-

tion process is random-based, i.e., it is independent of the parental objective

values F . (In the special case of ρ = µ, all parents become members of

the parent family E.) This is in contrast to standard selection techniques

in genetic algorithms (Goldberg, 1989). Recombination of the endogenous

strategy parameters takes place in line #7 and for the object parameters in

line #8. Note, if ρ = 1, the recombinant is simply a copy of the parent.

The mutation of the strategy parameters is done in line #9 and those of the

object parameters in line #10. While the order of recombination (lines #7 and

8) can be exchanged, the application order of the mutation operators must

not be changed in order to ensure a correctly working self-adaptation (see

section 4.2).

After having a complete offspring population P
(g)
o , selection is performed

with the result of a new parent population P
(g+1)
p .

Finally the termination condition is checked. As termination conditions

the standard stopping rules can be used

− resource criteria:

• maximum number of generations,

• maximum cpu-time

− convergence criteria:

• in the space of fitness values,

• in the space of object parameters,

• in the space of strategy parameters.

3.2 Selection

Each evolutionary algorithm needs a goal oriented selection operator in order

to guide the search into promising regions of the object parameter space.

Selection is thus the antagonist to the variation operators (also referred to

as genetic operators) mutation and recombination. It gives the evolution a

direction. Selection in ES is just like animal or plant breeding: only those indi-

viduals with promising properties, e.g., high fitness values (objective function

values), get a chance of reproduction. That is, a new parental population at

(g + 1) is obtained by a deterministic process guaranteeing that only the µ

best individuals a from the selection pool of generation (g) are transferred

into P
(g+1)
p (this selection technique is also called “truncation” or “breeding”

selection)

P(g+1)
p := {a1;γ , . . . , aµ;γ }. (3)
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Here we have used the “m; γ ” notation reminiscent of the “µ:γ ” notation of

order statistics (see e.g. Arnold et al., 1992). It means

am;γ := “Take the mth best individual out of γ individuals.” (4)

There are two versions of this selection technique, depending on whether

or not the parental population at (g) is included in this process, i.e., plus

selection, denoted by (µ + λ), and comma selection, denoted by (µ, λ),

respectively.

In the case of (µ, λ) selection, only the λ newly generated offspring indi-

viduals, i.e. the P
(g)
o population, define the selection pool. In other words, the

parents from generation (g) are forgotten per definitionem even when they are

better than all offspring. It is quite clear that a necessary (but not sufficient)

condition of convergence toward an optimal solution must be µ < λ. The

limit case µ = λ cannot work because all offspring are selected as parents.

That is, selection provides no search-relevant information and as a result the

population performs a random walk in the search space.

In contrast to comma selection, the plus selection takes the old parents into

account. The (µ+λ) notation indicates that both the parents and the offspring

are copied into the selection pool which is therefore of size γ = µ+λ. Unlike

comma selection, there is no theoretical restriction on the offspring number

λ. Cases with µ = λ or µ > λ are possible. The special case (µ + 1) is

also referred to as steady-state ES. It is often used in asynchronous parallel

implementations on multiprocessor systems (see, e.g., Kappler et al., 1996).

Plus selection guarantees the survival of the best individual found so far.

Since it preserves the best individual such selection techniques are also called

elitist. Elitism is a sufficient condition a selection operator should obey in

order to prove the ES’s global convergence property. Due to the elitism in

plus strategies, parents can survive an infinitely long time-span.

Both selection variants have their specific application areas. While the

(µ, λ) selection is recommended for unbounded search spaces Y, especially

Y = R
N (Schwefel, 1987), the (µ + λ) selection should be used in discrete

finite size search spaces, e.g., in combinatorial optimization problems (Herdy,

1990; Beyer, 1992).

3.3 Mutation

3.3.1 General aspects

The mutation operator is usually a basic variation operator in ES. That is, it is

the primary source of genetic variation.5 The design of mutation operators is

problem-dependent. While there is not an established design methodology

up to now, some rules have been proposed (Beyer, 2001b) by analyzing

successful ES implementations and by theoretical considerations:
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1. reachability,

2. unbiasedness,

3. scalability.

3.3.1.1 Reachability. Given a parental state (yp, sp), the first requirement

ensures that any other (finite) state (ỹ, s̃) can be reached within a finite

number of mutation steps or generations. This is also a necessary condition

for proving global convergence.

3.3.1.2 Unbiasedness. This requirement can be derived from our “philo-

sophy of Darwinian evolution.” Selection and variation serve different and

somehow antagonistic purposes: Selection exploits the fitness information in

order to guide the search into promising search space regions, whereas varia-

tion explores the search space, i.e., it should not use any fitness information

but the search space information from the parental population. Therefore,

there is no preference of any of the selected individuals (parents) in ES,

and the variation operators should not introduce any bias. Being maxim-

ally unbiased, given the parental state(s), is therefore a design criterion for

variation operators. Following this road we end up in a natural manner at

the maximum entropy principle (for an introduction, see e.g. Jaynes, 1979).

The application of this principle leads immediately to the normal distribution

(Gaussian distribution) in the case of unconstrained real-valued search spaces

R
N . In unconstrained integer search spaces Z

N Rudolph (1994) has shown

that this principle suggests the geometrical distribution. Other cases have not

been investigated so far.

3.3.1.3 Scalability. The scalability requirement states that the mutation

strength6 or the average length of a mutation step should be tunable in order

to adapt to the properties of the fitness landscape. The goal of adaptation is

to ensure the evolvability of the “ES system,” i.e., of the ES algorithm in

conjunction with the objective function. Here, we use the term “evolvability”

in an intuitive and informal manner expressing the idea that the variations

should be generated in such a way that improvement steps are likely, thus

building a “smooth” evolutionary random path through the fitness landscape

toward the optimum solution (Altenberg, 1994). Since the properties of the

fitness landscape are determined by the objective function and the variation

operators, “smoothness” of the fitness landscape (but not necessarily of the

objective function) may be regarded as a prerequisite of efficient evolutionary

optimization. The smoothness assumption is sometimes expressed in terms of

the (strong) causality concept (Rechenberg, 1994) stating that small changes

on the genetic level should result on average in small changes in the fitness

values (for a formalization of this concept see also Sendhoff et al., 1997).
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Since there is no general rule for ensuring evolvability independently of

the optimization problem at hand, we fall back to the minimal requirement

of scalability which can be guaranteed easily in real-valued search spaces.

However, even this requirement can be difficult to meet, e.g., for combinat-

orial search problems where there is always a “minimal move step” defining

the limits of scalability (for example, in symmetric traveling salesman prob-

lems this is the so-called Lin-2-Opt step, see Lin and Kernighan, 1973 and

below).

Even though the design principles given may serve as guiding lines,

it should be mentioned that – depending on the optimization problem

considered – their importance can differ and a mutation operator violating

these requirements does not necessarily fail in a specific application.

3.3.2 Examples

In what follows we present standard mutation operators for object para-

meters (i.e., the operator in line # 10, Figure 1), the operators for mutating

endogenous strategy parameters are introduced in section 4.2.

3.3.2.1 Real-valued search spaces. Considering the R
N search space and

given the standard deviation σ (mutation strength) as the only endogenous

strategy parameter s, the maximum entropy principle yields

ỹ := y + z, (5)

with

z := σ (N1(0, 1), . . . ,NN (0, 1)), (6)

where the Ni(0, 1) are independent random samples from the standard

normal distribution. That is, each component ỹi of the mutant ỹ obeys the

density function

p(ỹi) =
1√

2πσ
exp

(

−1

2

(ỹi − yi)
2

σ 2

)

. (7)

Figure 2a shows the effect of a single component mutation z. As one can

see, the mutation operator prefers small changes depending on the mutation

strength σ chosen. Due to its symmetry it introduces no bias: the expected

value is zero and the mutants ỹi are distributed symmetrically around the

parental state. This also transfers to the N-dimensional case. Furthermore, as

one can infer from Figure 2b the samples are isotropically distributed around

the parental state yp. This can easily be shown by considering the joint density
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of  success

yP

local  domain

a) 1-D p(z) density curve b) 2-D mutation samples

Figure 2. (a) displays density functions of a single mutation component z = ỹi − yi using

different mutation strengths σ .

(b) depicts the shape of an isotropic mutation cloud of density p(z1)p(z2) in a 2-dimensional

search space. The three closed curves are lines of constant fitness, mutations located in the

“local domain of success” represent fitness improvements.

distribution p(z) =
∏N

i=1 pi(zi): Since it is assumed that pi(zi) = p(ỹi−yi),

the surface of constant density builds concentric spheres around the parental

state y.

The isotropic mutation operator defined by equations (5) and (6) has the

advantage that it needs only one endogenous strategy parameter for its control

(as for the adaptation of this parameter, see section 4). However, there are

situations where it can be beneficial to have mutation vectors those surfaces

of constant density are ellipsoidal

z := (σ1N1(0, 1), . . . , σNNN (0, 1)). (8)

Such a situation is depicted in Figure 3.

P

local  domain
of  success

y P

local  domain
of  success

y

Figure 3. Simple situation of a fitness landscape where it is beneficial to use non-isotropic

Gaussian mutations (right-hand side) instead of isotropic mutations (left-hand side).

It shows the simplest case of an axes-parallel mutation ellipsoid. The set

of endogenous strategy parameters associated with comprises a vector of N
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standard deviation parameters s := (σ1, . . . , σN ) to be adapted appropriately.

The most general situation is given when the ellipsoid is arbitrarily rotated in

the search space (see Figure 4).

P

local  domain
of  success

yP

local  domain
of  success

y

Figure 4. Situation of a fitness landscape where it is beneficial to have correlated Gaussian

mutations (right-hand side) instead of non-correlated (left-hand side).

z := M (σ1N1(0, 1), . . . , σNNN (0, 1))′, (9)

where M is a (orthgonal) rotation matrix. In this most general situation, the

matrix M introduces correlations between the components of z. That is, the

correlation matrix C = M′M is nondiagonal and the density reads

p(z) = 1
(√

2π
)N

1√
det[C]

exp

(

−1

2
z′C−1z

)

. (10)

Using M in (9) introduces N(N − 1)/2 additional parameters. Thus, the

whole mutation operator (9) comprises N(N + 1)/2 strategy parameters to

be controlled accordingly.

3.3.2.2 Binary search spaces. In binary search spaces Y ⊆ B
N , mutation

is realized by random bit-flips of the binary parent vector y. Unbiasedness is

accomplished here by “microscopic reversibility”, i.e., the probability pm of

flipping a 1-bit is equal to the opposite process. The mutation rate pm can be

considered as the pendant to the mutation strength.

In the simplest case, each bit position in y is mutated independently.

In such situations there is empirical as well as some theoretical evidence

for choosing pm = 1/N (Bäck, 1996; plus selection should be used). The

mutation rate pm can be controlled, however, its usefulness in practical appli-

cations has not been demonstrated satisfactorily up until now. Only recently

Jansen and Wegener (2000) presented a proof that a periodically cycling

pm = f (g) with 1/N ≤ pm ≤ 1/2 can improve the performance of a

(1 + 1)-ES on a very synthetic (specially designed) pseudo-boolean fitness

function.
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The inclusion of bitwise and higher-order correlations would be the

next logical step marked out by the experiences gathered from real-

valued ES applications. Interestingly, only recently Mühlenbein and Mahnig

(1999), who propose the so-called factorized distribution algorithm, as well

as Pelikan et al. (1999), proposing the so-called Bayesian optimization

algorithm, followed this road indicated long before by former ES results.

3.3.2.3 Combinatorial search spaces. The realm of combinatorial optimi-

zation tasks is extremely versatile. We will restrict our presentation to simple

ordering problems where the fitness of an individual is determined by the

specific order of its components. Different objective states are represented

by the permutation order of these components. A typical example is the

traveling salesman problem (TSP). Mutations are realized by permutation of

the parental order. This can be done in different ways. Figure 5 presents a

collection of elementary move steps. These elementary search step operators

define certain neighborhoods, i.e., numbers of states which can be reached

from the parental state within one step.

3 4 5 6

1 2 6 5 4 3 7 8 9
by  inversion
(Lin-2-Opt)

parent

offspring

random  positions

1 2 3 5 6 7 8 9

1 2 3 8 45 6 7

4

9

random  positions

parent

offspring by  2-exchange

parent

offspring

1 2 3 4 5 6 7 8 9

1 2 4 5 6 3 7 8 9
by  insertion

(Or-Opt)

random  positions

parent

offspring

1 2 3 4 5 6 7 8 9

1 5 6 2 3 4 7 8 9 by  shifting

random  positions

98721

Figure 5. The effect of the four mostly used elementary (per-) mutation operators for ordering

problems. Each numbered cell indicates an object component. The operators change this

ordering by randomly cutting the connections between the cells and exchanging the cells

in a specific way. Top left: “inversion” (also known as “Lin-2-Opt”), top right: “insertion”

(also known as “Or-Opt”), bottom left: “2-exchange” (also known as “reciprocal exchange”),

bottom right: “shifting” (also known as “displacement”).

The neighborhood size can be regarded as the pendant to the mutation

strength in real-valued search spaces. Since the neighborhood size is usually

constant, the scalability requirement of the mutation steps cannot be guaran-

teed. There is a rudimentary way of realizing scalability by generating more

complex mutations through the repeated application of, say s, elementary

move steps. Thus, s becomes an endogenous strategy parameter which can be

regarded as “mutation strength.” However, the mutation strength depending
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operator realized in this way has only restricted scaling behavior. Its muta-

tion strength is bounded from above by O(N), i.e., on average it takes only

s < const.·N elementary steps to jump through the whole search space. More

critically, usually the mutation strength s cannot be smaller than one. Due to

the fixed neighborhood size, there are no “fractional” move steps allowing

for a successive and evolutionary smooth path to a global optimum state.

An ad hoc approach for realizing “fractional” move steps may be the artifi-

cial restriction of the neighborhood size using optimization problem specific

information taking strong causality properties into account (Herdy, 1990).

3.4 Recombination

3.4.1 Standard ES recombination operators

While mutation performs search steps based on the information of only one

parent and – if applicable – on its endogenous strategy parameters, recombi-

nation shares the information from up to ρ parent individuals (Schwefel,

1975; Rechenberg, 1978; Rechenberg, 1994). If ρ > 2, we speak of multi-

recombination. Unlike standard crossover in GA (see, e.g., Goldberg, 1989)

where two parents produce two offspring, the application of the standard

ES recombination operator to a parent family of size ρ produces only one

offspring (see Figure 6).

There are two standard classes of recombination used in ES: “discrete

recombination” sometimes referred to as “dominant recombination” and the

“intermediate recombination.”
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intermediate   recombination:
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ak ak ak
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r k r Dr 1 r 2

recombinant  r  by

dominant  (discrete)  recombination:

a1 ak aDa2

a1 ak aDa2

random  choice

arithmetic  mean

Figure 6. Standard µ/ρ (multi-) recombination operators in ES. The upper left part of the

figure pictures the mating process as realized by the marriage operator in line # 6, Figure 1. It

generates the parent family of size ρ. Intermediate ρ recombination is displayed to the right

and the dominant ρ recombination is at the bottom.
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In Figure 6 both versions are depicted. Given a parental vector a =
(a1, . . . , aD) (object or strategy parameter vector), the dominant ρ recombi-

nation produces a recombinant r = (r1, . . . , rD) by coordinate-wise random

selection from the ρ corresponding coordinate values of the parent family

(r)k := (amk
)k, with mk := Random{1, . . . , ρ}. (11)

In other words, the kth component of the recombinant is determined exclus-

ively by the kth component of the randomly (uniformly) chosen parent

individual mk that can also be interpreted as “dominance.”

In contrast to discrete (dominant) recombination the intermediate reco-

mbination takes all ρ parents equally into account. It simply calculates the

center of mass (centroid) of the ρ parent vectors am.

(r)k :=
1

ρ

ρ
∑

m=1

(am)k. (12)

While this procedure is well defined for real-valued state spaces, the appli-

cation in discrete spaces needs an additional procedure such as rounding or

probabilistic rounding in order to map back onto the discrete domain.

3.4.2 On the benefits of recombination and design principles

3.4.2.1 The building block hypothesis. There is still an ongoing debate as to

the usefulness and functioning principles of recombination. In GA research

the building block hypothesis (BBH) (Goldberg, 1989; Holland, 1995) has

been suggested in order to explain the working mechanism of crossover:

different good building blocks from different parents are mixed together,

thus combining the good properties of the parents in the offspring. While

this explanation is intuitively appealing, finding test functions to support

this hypothesis appeared surprisingly difficult (Mitchell et al., 1994). Only

recently Jansen and Wegener (2001) were able to construct an artificial test

function where one-point crossover essentially improves the time complexity,

thus providing a clue toward the usefulness of the BBH in that special

situation.

3.4.2.2 Genetic repair and similarity extraction. During the 1990s, ES

theory research has revealed another interesting functioning mechanism of

recombination – the genetic repair (GR) effect (Beyer, 1995), giving rise to

the GR hypothesis (Beyer, 1997). This hypothesis is in counterposition to

the BBH: Not the different (desired) features of the different parents flow

through the application of the recombination operator into the offspring, but

their common features. That is, recombination extracts the similarities from
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the parents. This becomes immediately evident when considering two-parent

recombination (ρ = 2) in B
N . Bit positions common to both parents are

conserved by the standard recombination operators, whereas the other posi-

tions are randomly chosen from the parents. That is, considering dominant

ρ = 2 recombination as well as uniform crossover (as used in GA, see

Syswerda, 1989), these non-common positions are randomly filled up. Such a

mechanism is somehow reminiscent of self-adaptation (see also section 4.2):

It is reasonable to assume that corresponding components in the parental

genomes which are similar to each other carry a higher probability of being

beneficial with respect to the individual’s fitness (because they are in the

fittest, i.e. selected, individuals). The best a variation operator can do (from

the viewpoint of maximum entropy) is to conserve these components. The

other components are more or less irrelevant or they even may be harmful.

Therefore, they can be mutated or randomly rearranged.

The performance gain by similarity extraction and the GR effect become

especially evident when considering (µ/µ)-multirecombination of inter-

mediate type in R
N search spaces using isotropic mutations. The object

parameter update rule of a (µ/µ, λ)-ES with this kind of recombination can

be expressed very concisely since all mutations z are applied to the parental

centroid 〈y〉

〈y〉 := 1

µ

µ
∑

m=1

ỹm;λ. (13)

Using the notations from equations (4), (5), and (12), we have

〈y〉(g+1) := 〈y〉 + 1

µ

µ
∑

m=1

zm;λ. (14)

That is, the new parental centroid is obtained from the old one by adding the

vector average 〈z〉 of the µ best mutations.

In order to visually explain the GR mechanism, we decompose each z

mutation into a component toward the desired improvement direction (usually

the direction to the optimum) xeopt and a perpendicular part h representing

the harmful components driving the offspring away from the improvement

direction.

z = xeopt + h, with h′eopt = 0. (15)

The insertion of (15) into (14) yields
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〈y〉(g+1) = 〈y〉 + 〈z〉 = 〈y〉 + eopt

1

µ

µ
∑

m=1

xm;λ +
1

µ

µ
∑

m=1

hm;λ

= 〈y〉 + 〈x〉eopt + 〈h〉.

This decomposition is depicted in Figure 7.

Figure 7. On the visualization of the genetic repair effect in a real-valued search space. The

bold curve represents the line of constant fitness F(y) = F(〈y〉). Better fitness values are

located above this curve. Although even the four best mutants are worse than the parental

centroid 〈y〉, after recombination the new centroid 〈y〉 + 〈z〉 yields better fitness.

Due to selection, the x components of the best mutations have a certain

(positive) tendency toward the improvement direction eopt.
7 However, the h

components are almost isotropically distributed in the subspace orthogonal to

eopt. This has been expressed in Figure 7 by drawing the best four z vectors

almost symmetrically. Now taking the average in order to determine 〈z〉, one

can see that the improvement component is more or less conserved. Its value

〈x〉 is within the bounds min{x1;λ, . . . , xµ;λ} ≤ 〈x〉 ≤ max{x1;λ, . . . , xµ;λ}.
As to the h components, averaging has a beneficial effect: it reduces the

length, it “genetically repairs” the harmful parts. This is so because of the

isotropy and therefore statistical independence of the h vectors. Put it another

way, the h vectors are almost uncorrelated. As has been shown (Beyer, 1995),

assuming statistical independence of the h components, the expected length

of 〈h〉 can be up to a factor of
√
µ smaller than the expected length of a single
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h vector. This is the performance increasing effect of genetic repair, it reduces

the fitness decreasing effect of the harmful parts of the mutants, thus, also

allowing for a larger mutation strength and therefore a larger improvement

step. To summarize, by conserving the beneficial parts of the mutations and

dampening their harmful parts through genetic repair, intermediate recombi-

nation provides an efficient mechanism for similarity extraction in real-valued

search spaces.

While the effect of similarity extraction in real-valued as well as binary

search spaces is quite obvious, the derivation of design rules for recombina-

tion operators for combinatorial optimization problems is still a challenge.

Similarity must be defined in a problem specific manner and the outcome

of recombination should be a visible individual (otherwise a special repair

procedure must be applied that might violate the similarity condition).

Concerning symmetric TSPs, an example which adheres to the design prin-

ciples just discussed can be found in Herdy (1990). Similar design criteria for

the breeding of programs are presented in Droste and Wiesmann (2000).

4. Adaptation of endogenous strategy parameters

This section is devoted to the adaptation of strategy parameters controlling

the statistical properties of the variation operators, especially of the mutation

operators. In section 4.1 we will present the motivation and the famous 1/5th-

rule for controlling the mutation strength in (1 + 1)-ES. The second section

will introduce into the ideas of self-adaptation – the standard evolutionary

adaptation technique based on (temporo-) local population information.

Section 4.3 gives a short introduction into advanced adaptation techniques

using nonlocal search space information.

4.1 Motivation and the 1/5th-rule

4.1.1 The discovery of the “evolution window”

The necessity of controlling endogenous strategy parameters becomes

evident when running a simple (1+ 1)-ES with isotropic Gaussian mutations

(6) and constant mutation strength σ on a simple objective function F(y).

Such a minimization run, using a sphere model Fsp(y)

F (y) = Fsp(y) = c‖y‖α, y ∈ R
N (16)

as objective function with c = 1, α = 2, N = 10, is depicted in Figure 8.

A constant mutation strength σ = 1 has been chosen and the parent at

generation g = 0 was initialized at y
(0)
k = 10.
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Figure 8. Evolutionary dynamics of a (1 + 1)-ES minimizing a sphere model. The mutation

operator uses isotropic Gaussian mutations with constant mutation strength σ = 1 throughout

the whole ES run. After a period of good performance the ES has lost its evolvability.

Therefore, the mutation strength must be adapted appropriately.

Even though one can show that this strategy is globally convergent

(Rechenberg, 1973), one sees that after a period of improvements the strategy

becomes extremely slow – the system has lost its evolvability. This is due to

the fixed mutation strength σ .

In order to get an intuitive feeling how σ influences the local perform-

ance of the ES in real-valued search spaces, Figure 9a presents a view in

an R
2 search space with a fitness landscape depicted by lines of constant

F(y) values. The optimum is located at the “∗”-position. Since we consider

a (1+ 1)-ES, there is only one parental state yp at generation (g) from which

offspring are generated by isotropic mutations. Because of equation 6, the

expected length of the mutations is proportional to σ . If σ is chosen very

small, on average every second mutation will hit the local success domain,

which is defined by the interior of the curve F(y) = F(yp) = const., and

will be accepted as the parent of generation (g + 1). This is so because of

the smoothness of the fitness landscape and the symmetry of the mutations

used. In other words, using a very small mutation strength ensures a high

degree of evolvability. The success probability Ps by which an offspring

replaces a parent becomes Ps → 1/2. However, since the improvement steps

scale with σ , progress toward the optimum point scales with σ , too. The

measure describing this expected local approach to the optimum is called

the progress rate ϕ (see Figure 12, section 5.2.2, below). Summarizing, we

have for smooth fitness landscapes

σ → 0 : Ps → 1/2, but ϕ → 0. (17)
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a) Mutations in an R
2 search space. b) Progress rate and “evolution window.”

Figure 9. On the influence of the mutation strength σ on the evolvability and performance of

the ES system. As one can infer from a), using (very) small mutations ensures a high degree

of evolvability. However, b) reveals an “evolution window,” i.e., performance ϕ of the ES

depends sensitively on the mutation strength chosen.

That is, even though we have a high degree of evolvability for sufficiently

small mutation strengths, the performance of the ES will be rather poor.

Now, let us consider the opposite case choosing σ very large. The muta-

tions produced from the parental state yp are too large such that hitting the

local success domain becomes a rare event. Therefore Ps → 0, the evolvab-

ility changes to the worse, and also the expected progress ϕ will be small due

to the smallness of Ps

σ →∞ : Ps → 0 and ϕ → 0. (18)

Between the two extremes (17) and (18) there is a bandwidth of muta-

tion strengths σ guaranteeing nearly optimal ϕ performance – the “evolution

window,” a term which has been coined by Rechenberg (1973). As can

be seen in Figure 9b, choosing the right mutation strength σ allows for

maximizing the performance.

4.1.2 The 1/5th-rule

Based on the fact that both the performance ϕ and the success probability Ps

depend on σ , a σ control rule can be envisaged. Figure 10 displays Ps and

the normalized progress rate ϕ∗ calculated for the sphere model (16) in the

asymptotic limit case N →∞ (Rechenberg, 1973; Beyer, 2001b). As we can

see, for the model considered, the progress rate is a function of the success

probability ϕ∗ = f (Ps). There is an optimal success probability P̂s ≈ 0.27
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maximizing the progress rate. An investigation of the totally different model

function “corridor” (a linear objective function with 2(N − 1) inequality

constraints) provided a surprisingly similar result P̂s ≈ 0.184 (Rechenberg

1973, p. 122). Since both models have been regarded as somehow “typical”

models of real objective functions, a compromise success probability of 0.2

was proposed by Rechenberg – leading to the 1/5th-rule:

1 2 3 4 5 6
σ
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0.3
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0.5
P
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ϕ∗

opt
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for   the spherical   model

P

s

*

*

for   the spherical   model
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Figure 10. On the dependency of the normalized progress rate ϕ∗ on the success probability

Ps for the sphere model (16).

In order to obtain nearly optimal (local) performance of the (1+1)-ES in

real-valued search spaces, tune the mutation strength in such a way that

the (measured) success rate is about 1/5.

Due to the monotonicity of Ps with respect to the normalized σ (denoted as

σ ∗ := σN/R, cf. Figure 10), the tuning of σ can be accomplished easily:

If Ps < 1/5 the mutation strength must be reduced, whereas in the opposite

case Ps > 1/5, σ must be increased.
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The implementation of the 1/5th-rule does not fully fit into the algorithmic

skeleton of Figure 1, therefore we present a short description in Figure 11.

1. perform the (1 + 1)-ES for a number G of generations:

− keep σ constant during this period,

− count the number Gs of successful mutations during this

period

2. determine an estimate of Ps by

Ps := Gs/G (19)

3. change σ according to

σ :=







σ/a, if Ps > 1/5

σ · a, if Ps < 1/5

σ, if Ps = 1/5

(20)

4. goto 1.

Figure 11. On the implementation of the 1/5th-rule.

The changing of σ is done multiplicatively. The optimal value of the factor

a depends on the objective function to be optimized, the dimensionality N

of the search space, and on the number G. If N is sufficiently large N ≥
30, G = N is a reasonable choice. Under this condition Schwefel (1975)

recommended using 0.85 ≤ a < 1.

4.2 Self-adaptation

In section 4.1 we presented the motivation for tuning the endogenous strategy

parameter σ in order to get nearly (local) optimal performance of the

(1 + 1)-ES in real-valued search spaces. While the arguments for adapting

σ are of general interest, the adaptation rule presented there, the 1/5th-rule,

was a very special one: the control heuristic represents the simplest version

of deterministic nonlocal adaptation. It uses the global information of success

probability, to be obtained by collecting statistical data over a number G of

generations, in order to deterministically change the mutation strength. It is

quite clear that the 1/5th-rule has its specific application domain:

− it is restricted to the application of one strategy parameter,

− the fitness landscape must obey certain properties in order to ensure that

for sufficiently small mutation strengths Ps > 1/5 (otherwise one may

observe premature stagnation, see Schwefel, 1995, pp. 116f),

− it is usually used in (1 + 1)-ES only (other strategies have different

optimal Ps).
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In this section we present a more flexible and evolutionary, i.e. temporo-

local, control method which can be regarded as the standard approach in ES

– the self-adaptation. The basic idea of self-adaptation will be explained in

the next section, implementation details are given in section 4.2.2

4.2.1 The basic idea

The principal idea of self-adaptation in ES rests on the individual coupling

of endogenous (evolvable) strategy parameters with the object parameters.

That is, as already introduced in equation (2), each individual a has its own

set of strategy parameters. These endogenous strategy parameters are subject

to variation. This has been taken into account in the pseudo-code of the

(µ/ρ +, λ)-ES, Figure 1. The strategy parameters may undergo recombina-

tion and are (always) subject to mutation. The mutated strategy parameters

are used then to control the mutation operator applied to the individual’s

object parameters. Due to the inclusion of the strategy parameters in the

individual’s genome, they are selected and inherited together with the indi-

vidual’s object parameters. Thus, they have a higher probability of survival

when they “encode” object parameter variations that produce (on average)

fitter object parameters. Following these plausibility arguments, one can hope

that the individuals will learn the (nearly) optimal strategy parameters during

the evolution process.

4.2.2 Implementation details

The concrete realization of self-adaptive ES depends on the kind of strategy

parameters to be adapted. In what follows we consider the adaptation of a

single mutation strength parameter σ in detail. The generalization to more

than one mutation parameter will be discussed briefly. Concerning other

strategy parameter types as well as self-adaptive behavior in real-coded GA

the reader is referred to Beyer and Deb (2001) and the references listed there.

4.2.2.1 How to mutate the mutation strength σ . The design principles of

section 3.3 should also hold for the strategy parameter operators. However,

practical experience shows that some of the principles can be violated to

a certain extent without severe consequences. Probably the most critical

requirement concerns the scalability in R
N search spaces.

In order to ensure scalability in R
N the mutation of the mutation strength

must be performed multiplicatively. There are at least two reasons. First,

σ represents the standard deviation of the mutation distribution, this is per

definition positive. An additive mutation operator cannot guarantee positive-

ness, there is always a certain probability for mutations leading to negative

σ . Secondly, by plausibility arguments considering the sphere model (for a

more detailed discussion see Beyer, 2001b, p. 260). It is quite clear that there
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exists always an optimal mutation strength σ̂ given a parental state yp. Due to

the symmetry of the sphere model, σ̂ depends only on the parental distance rp

to the optimum. If the state space and the mutations are scaled by a constant

factor, say κ , both σ̂ and rp are scaled in the same way. Thus, we have σ̂ ∝ r,

i.e., σ̂ /r = const. Now, consider two consecutive generations, it follows

σ̂ (g)/r(g) = σ̂ (g+1)/r(g+1) ⇒ σ̂ (g+1) = σ̂ (g) r
(g+1)

r(g)
. (21)

Under stationary conditions, i.e., correctly working self-adaptation, the

expected relative r change should be constant (scaling behavior!). Therefore,

in expectation σ should change by a constant factor.

Using the arguments from above, the s mutation operator in Figure 1, line

# 9, can be expressed as

σ̃l := σl exp(ζl), (22)

where ζl is a sample from a random number source to be specified below.

The use of the exponential function in (22) is, however, mainly for cosmetic

reasons: taking the natural logarithm on both sides of (22), one gets ln(σ̃l) :=
ln(σl) + ζl . On a logarithmic scale the strategy mutations are performed in

the same manner as the mutations of the object parameters. It is therefore

reasonable to sample ζ from a normal distribution (Schwefel, 1975). The

mutation operator realized in this way is also referred to as “log-normal

operator” because of the logarithmic normal σ̃ distribution generated

σ̃l := σl exp(τNl(0, 1)). (23)

The τ in (23) is the so-called learning parameter. This exogenous strategy

parameter determines the rate and precision of self-adaptation. Theoretical as

well as empirical investigations suggest that τ should be chosen according to

(Schwefel, 1975; Beyer, 1996)

τ ∝ 1√
N

(24)

(as a first guess, τ = 1/
√
N may be chosen; in highly multimodal fitness

landscapes smaller learning rates, such as τ = 1/
√

2N , should be tried).

It might appear as a little surprise, but ζ ∼ τN (0, 1) is not the only choice

possible. One may even violate the reachability requirement of section 3.3.1

and can still obtain a satisfactorily working self-adaptive ES. Rechenberg’s
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(1994) “two-point rule” is of such a kind. It simply flips a coin in order to

choose ζ = ±ǫ. Writing ǫ = ln(α), the two-point rule reads

σ̃l :=
{

σl α, if u(0, 1] ≤ 1
2

σl/α, if u(0, 1] > 1
2

α > 1, (25)

where u(0, 1] is a uniform random source and α a learning parameter. As

has been shown (Beyer, 1996), choosing α = 1 + τ provides nearly optimal

performance on the sphere model.

4.2.2.2 Mutation rules for a set of strategy parameters. The multiplicative

σ mutation technique can be extended to the case where we have a vector

of strategy parameters s = σ = (σ1, . . . , σN) as needed in equation (8).

Schwefel (1977) suggests using an extended log-normal rule which reads

(suppressing the offspring index)

σ̃ := exp(τ0N0(0, 1)) ·
(

σ1 exp(τN1(0, 1)), . . . ,

σN exp(τNN (0, 1))
)

. (26)

The idea here is to have a general mutative multiplier with learning parameter

τ0 and coordinate-wise mutations with learning parameter τ . Each component

of σ is mutated independently and finally the whole vector is mutatively

scaled by the random factor exp(τ0N0(0, 1)). This technique allows for

learning axes-parallel mutation ellipsoids. As learning parameters

τ0 =
c√
2N

and τ = c
√

2
√
N

(27)

are recommended (c = 1 is a reasonable choice for a (10, 100)-ES, see

Schwefel, 1995, p. 388).

Going a step further, correlated mutations (9) could be considered next.

However, this is beyond the scope of this introductory paper (see, e.g.,

Schwefel, 1995, Schwefel and Rudolph, 1995, Hansen and Ostermeier,

2001).

4.2.2.3 How to recombine the endogenous strategy parameters. As argued

in section 3.4 one main effect of recombination is the extraction of similar-

ities. With respect to strategy parameter adaptation, this is a desired effect.

As observed in experiments, the evolutionary dynamics of the strategy para-

meters appears very often as a noisy process with large fluctuations. These

fluctuations usually degrade the performance of the ES. Therefore, techniques
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capable of reducing the fluctuations are needed. It is this the reason why

intermediate (µ/µ) recombination is highly recommended.

There are also other techniques for reducing strategy parameter fluctu-

ations, especially the method of rescaled mutations should be mentioned here

(Rechenberg, 1994; Beyer, 2000).

4.3 Nonlocal adaptation approaches

4.3.1 Motivation

Self-adaptation on the level of the individuals as introduced in section 4.2

can fail. The reason for such possible failures is often a behavior that might

be called “opportunism:” Evolution rewards short term success, i.e., if local

progress and global progress are not positively correlated, evolution might

choose those offspring states that finally end up in a local optimum or even

may exhibit so-called premature convergence.

It should be clear that there is no general solution to these convergence

problems, however, countermeasures may be taken in order to reduce the

risk of such events in concrete situations. As to the adaptation of strategy

parameters, e.g., “optimality” of a parameter chosen may be better assessed

by comparing partially isolated evolution processes. This immediately leads

to the idea of nested ES, i.e., competing populations by meta-ES with isola-

tion time parameter γ (Herdy, 1992; Rechenberg, 1978; Rechenberg, 1994).

This approach is clearly based upon nonlocal information (nonlocality with

respect to time).

In this section we will focus on advanced techniques for strategy para-

meter adaptations which are based upon nonlocal information. By this we

mean the collection of search space information gathered from more than

one population either by considering a history or aggregation of (specially

defined) state variables or by explicit use of “parallel” evolving (sub-) popu-

lations. The simplest of such techniques has already been discussed in detail

– the 1/5th-rule. Here we will shortly review the application of meta-ES. In a

second section we will present the idea of cumulative path-length control.

4.3.2 Meta-ES

Meta-ES or synonymously “nested ES” or “hierarchically organized ES” are

strategies to be described in terms of the

[

µ′/ρ ′ +, λ′ (µ/ρ +, λ)γ
]

-ES (28)

notation. There are µ′ parental populations of (µ/ρ +, λ) strategies producing

λ′ offspring (µ/ρ +, λ) strategies which run without any communication

a time period of γ generations. After γ generations, selection in the outer
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brackets takes place in order to determine the best µ′ of the (µ/ρ +, λ)

strategies building the basis for the next population of λ’ offspring strategies.

There are at least three distinctive application domains of such nested

strategies:

1. As meta-heuristic search strategies for global optimization in – princip-

ally – simple search spaces. The inner strategies perform “local search”

and the outer strategy performs search on the set of the local optima

approximated by the inner strategies (Lohmann, 1992; Rechenberg,

1994).

2. Search spaces composed from different kinds of simple search spaces,

e.g., mixed-integer search spaces and combinatorial optimization with

continuous weights (neural network design). In such applications, the

evolution of the structure is usually performed by the outer ES, while

the weights are evolved by the inner ES (see, e.g., Yao, 1999).

3. Optimizing the performance of the inner ES through “breeding” by the

outer ES.

The third application is of interest here. The outer ES is used to optimize

the endogenous strategy parameters of the inner ES. In the simplest case,

this can be done implicitly by a [1, 2 (µ/ρ, λ)1]-ES without any isola-

tion. The duty of the outer loop is simply to select the population with the

better objective value of the new parental centroid (i.e., after selecting the

offspring in the inner ES). This simple meta-ES is already able to adapt

optimal mutation strengths in the case of (µ/µ) recombination, a problem

where it is known that the performance of the ES depends sensitively on the

learning parameter τ when using standard self-adaptation techniques (Grünz

and Beyer, 1999).

In a more general case, adapting a larger set of endogenous strategy para-

meters will usually necessitate the use of isolation γ > 1. If the strategy

parameter set is of order N , the isolation time should be chosen accordingly,

γ ∝ N . In this situation it can also be reasonable to keep the endogenous

strategy parameters in the inner ES constant and perform their mutations in

the outer ES.

4.3.3 Cumulative path-length control – CSA-ES

There is a class of deterministic nonlocal techniques for adapting the muta-

tion operators in R
N the idea of which can be attributed to Ostermeier et al.

(1994): the cumulative path-length control. In order to get an intuitive feeling

of what is meant by this wording, let us consider a so-called evolution path

v, that is, – in the simplest case – the vector sum of the actually realized

evolution steps over a number of G generations.
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Provided that there were no selective pressure and σ = const., we would

have random selection resulting in

u =
G

∑

g=1

z(g) = σ

G
∑

g=1

N (g)(0, 1) (29)

(writing u instead of v) and the length u becomes

u = σ

√

√

√

√

N
∑

k=1

G
∑

g=1

(N
(g)

k (0, 1))2. (30)

There is a sum of G ·N independent squared standard normal variates in (30),

i.e., this sum is χ2 distributed with degree GN and the expected length u is

simply proportional to the expectation of χ

u = σχNG ≃ σ
√
NG. (31)

Now, consider the influence of selection. If the mutation steps are too small,

then on average selection will prefer larger steps, the expected value of the

actual length v of the evolution path v will be larger than u and σ should be

increased. If, however, the mutation steps are too large, the smaller steps will

be selectively preferred. Therefore, the expected v will be smaller than u and

σ should be decreased (see also Hansen and Ostermeier, 1996).

The basic idea presented is somehow reminiscent of the 1/5th-rule (20).

The main difference is in the way how the nonlocal population information is

used. While the 1/5th-rule discards any search space information, but simply

counts the number of individuals hitting the local success domain, the evolu-

tion path related techniques elaborate search space information in a more

advanced manner. This becomes evident when considering implementations

of the basic idea such as the cumulative step-size adaptation (CSA) and

the covariance matrix adaptation CMA (Hansen and Ostermeier, 2001). In

equation (32) the standard implementation of the CSA-ES is presented

∀l = 1, . . . , λ : w
(g)

l := σ (g)Nl(0, 1), (a)

z(g) := 1

µ

µ
∑

m=1

w
(g)

m;λ, (b)

y(g+1) := y(g) + z(g), (c)

v(g+1) := (1 − c)v(g) +
√

c(2 − c)

√
µ

σ (g)
z(g), (d)

σ (g+1) := σ (g) exp

[‖v(g+1)‖ − χN

DχN

]

. (e)


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
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
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(32)
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The first three lines in (32) represent the standard (µ/µ, λ)-ES with interme-

diate recombination in object parameter space: produce λ normally distrib-

uted mutations wl (a), recombine the µ fittest mutations by a centroid

operation (b), and update the new parental state (c). The CSA is realized

by cumulating the actual evolution path v (d) in a weighted manner. The

mutation strength update (e) is accomplished by comparing the length of v

with the expected length χN of the N-dimensional N (0, 1) random vector.

As for all adaptation techniques, there are some exogenous strategy

parameters to be fixed appropriately (Hansen and Ostermeier, 1997). The

cumulation time parameter c, 0 ≤ c ≤ 1, is usually chosen to be c ∝
1/
√
N , the damping parameter D ∝

√
N , and for χN the approximation

χN ≈
√
N(1 − 1/4N + 1/21N2) may be used.

The idea of cumulation can be extended to allow for the adaptation of

covariance matrices C needed to produce correlated mutations (10). The

description of the respective CMA-ES is beyond the scope of this paper, the

reader is referred to Hansen and Ostermeier (2001).

5. Theoretical aspects

5.1 Motivation

It is often claimed in the EC community that the usefulness of theory in this

field is rather questionable (see, e.g., Eiben et al., 1999, p. 126). However,

stepping back and having a much wider perspective, it should be clear that

each EA practitioner uses “some kind” of/or “his” theory. Theory in this sense

should be understood as a collection of experiences or knowledge useful for

making predictions on the behavior of the system considered. This includes,

of course, mathematical theorems and their proofs, but it also comprises

“softer knowledge” the correctness of which has not been proven or those

validity might prove itself restricted to special cases with the progression

of rigorous mathematical theory in future. From this perspective, most of

the material presented in this paper so far belongs to the latter category.

This does not necessarily exclude that there are certain clues from current

(rigorous mathematical) theory. Some of the design principles presented in

sections 3 and 4 can be regarded as extrapolations from a (mathematical)

theory which considers the evolutionary algorithm and the fitness function as

an evolutionary system obeying a specific evolutionary dynamics. From this

point of view the goal of a mathematical theory of evolutionary algorithms

(EA) is to predict the EA-dynamics.

This section is mainly devoted to quantitative aspects of the ES-dynamics,

i.e., the mathematical description and investigation of the ES in the time
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domain. Evolutionary algorithms are Markovian processes and as such they

are governed by so-called Chapman-Kolmogorov equations, the generaliza-

tion of Markov chains used in discrete search spaces (see, e.g., Fisz, 1971).

These equations map the joint state density p(·) (or the probability vector in

the discrete case) of the (parental) population Pp from one generation to the

next. Using the notations from section 3 this reads

p(g)(P(g)
p ) !→ p(g+1)(P(g+1)

p ). (33)

The general treatment of the stochastic mapping (33), i.e., the determination

of the “full dynamics” is almost always excluded, except for the simplest

cases. On the other side, the information provided by p(Pp) is difficult to

interpret. We are more interested in aggregated information related to the

optimization performance of the ES, in detail:

− the dynamics of the average, best, and worst fitness,

− dynamics of the expected distance R to the optimum,

− local performance properties, such as:

• progress rates,

• quality gains,

− global performance properties, such as:

• convergence proofs and orders of convergence,

• expected running times and time complexities.

In some cases it is possible to obtain such results bypassing the determination

of the full dynamics.

As an example, global convergence proofs for elitist ES versions (i.e.,

those using plus selection) are to be mentioned here (Rechenberg, 1973; Born,

1978). Considering continuous search spaces, the idea is to show that the

probability of reaching a certain ǫ-vicinity (level set) of the global optimum

F̂ = F(ŷ) by a sequence of search points y(g) is one, if the number of

generations goes to infinity8

∀ǫ > 0 : lim
g→∞

Pr
(

|F(y(g))− F̂ | ≤ ǫ
)

= 1. (34)

While proofs of equation (34) are of certain mathematical interest and are

relatively easy to be accomplished (for a comprehensive collection of such

proofs, see Rudolph, 1997a), their relevance with respect to local and global

performance properties of the ES is rather limited. This is so because ES

users have only a limited amount of time, whereas equation (34) concerns a

statement on the infinite time behavior.

Local and global performance properties are more important. However,

performance measures and the dynamics of aggregated states are difficult to
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obtain. In order to keep the mathematics tractable, simple objective func-

tions or simplified algorithms must be considered with the hope that these

simplifications still carry the characteristics of EA applied to real-world

applications. We shall report some of such results in sections 5.3 and 5.4.

The next section, however, will provide some example dynamics.

5.2 The goal: Predicting the evolutionary dynamics

5.2.1 Motivation

Looking at practical applications of evolutionary algorithms, in most cases

the user does not know the structure of the fitness landscape. He typically has

to face black-box scenarios and does not know the “hardness” of approx-

imating or finding the optimum. In this typical situation, optimization of

real-world problems is rather an online procedure than an offline algorithm

usually considered and investigated in the framework of running time and

complexity theory. This is a peculiarity of evolutionary search – optimization

becomes amelioration and the emphasis is necessarily on the evolutionary

process, i.e., on the dynamics of the optimum search. By looking at the

dynamics of the fitness and other aggregated quantities of the population, the

user gets valuable information in order to decide whether to stop or continue

the search process. That is why we put such an emphasis on the dynamics of

the process.

This does not imply that investigations concerning the time complexity of

evolutionary algorithms are of no use, however, such investigations present

a rather static view of the performance problem. Wegener (2000) argues that

evolutionary algorithms are randomized algorithms (Motwani and Raghavan,

1995) and that they should be analyzed using the paradigms and tools

from classical research on efficient algorithms. This reflects the computer

scientist’s interest in the resources needed by a program in order to solve

a specific problem of given size N . The most crucial resource is usually the

time needed to solve a given problem. Since ES are probabilistic optimization

techniques, there is always a positive probability that the optimum will not

be visited in a given time. Therefore the concept of expected (first) hitting

time must be considered. This concept has proven especially successful when

considering the performance of the ES on pseudo-Boolean functions (see

section 5.4; for an overview, e.g., Wegener, 2001).

5.2.2 Examples

Let us consider two examples of amelioration processes in a real-valued and

in a combinatorial search space. Figure 12 presents typical simple instances

of best-so-far fitness dynamics (i.e., fitness function values F over number g

of generations).
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Figure 12. Typical dynamics of best fitness values in the case of an extremely multimodal RN

optimization problem (left-hand side) and in a combinatorial problem (right-hand side).

The graphs on the left-hand side of Figure 12 are from a single

(50/50, 100)-ES run with isotropic Gaussian mutations, standard self-

adaptation (log-normal rule, τ = 1/
√

2N ), and intermediate recombination

(for both object and strategy parameters) applied to the so-called Rastrigin

test function FRas(y) =
∑N

k=1[y2
k + B(1 − cos 2πyk)] with B = 2 and

N = 30. The number of local minima is known to be of the order (2A+ 1)N

(for B = 2 one can estimate A = 6). While finding the global optimum

among such many local optima is usually a hopeless endeavor, the structure

of FRas is of such a kind that there is a “certain tendency” toward the global

minimum: Far away from the global minimum, the fitness landscape is quad-

ratic. Approaching the global optimizer the landscape becomes increasingly

rippled, however, all the local optima are concentrated around the global
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attractor. Therefore, there is a certain chance for the ES to pass through the

region of deception and locate the global attractor.

The approach to the optimum can be observed by looking at the fitness

dynamics of the ES. The graphs on the left-hand side of Figure 12 display

all the same (single) ES run, however, using different scales. As one can see,

the linear-log-plot is the most informative one, whereas the linear-linear-plot,

usually used for displaying the optimization dynamics, as well as the log-

log-plot are not suited in this special situation. The linear-log-plot reveals

a characteristical dynamics often observed when using self-adaptive ES in

real-valued search spaces: linear convergence order.9 The logF(g) curves

are almost piecewise linear according logF(g) ≈ −ag + b.10 That is, the

F -dynamics is an exponentially falling function of time F ∝ e−αg (α > 0).

This holds for the dynamics of the residual distance R to the optimum as well

(for an explanation, see section 5.3). In our special example, one can see that

the ES provides linear convergence when being far off the optimum and also

in the attractor region of the global minimum. Approaching and leaving the

region of local optima changes the convergence velocity (i.e., the slope of the

logF(g) curve). Pass through the “sea of ripples” the velocity is considerably

reduced. And it can also happen that the ES will be trapped by one of the local

attractors (in order to reduce the probability of being trapped, the learning

parameter τ should be chosen rather small).

The graphs on the right-hand side of Figure 12 show typical runs of a

(µ, λ)-ES and a (µ + λ)-ES, µ = 5, λ = 12, on an N = 2228 cities TSP

with random uniform distance matrix using the 2-exchange mutation oper-

ator from Figure 5. Again, the F(g) plot is not very informative, but in this

case, the log-log-plot is the most appropriate one. There are two interesting

observations. First, (µ, λ)-ES are not well suited for combinatorial optim-

ization, after a short phase of improvements they approach a steady-state

behavior far off the optimum. Second, the fitness dynamics of the (µ + λ)-

ES appears almost linear as long as the ES has not reached a local attractor

(the final convergence phase has not been depicted in Figure 12). That is,

in combinatorial optimization problems we typically observe some kind of

sublinear convergence. In such situations, the F -dynamics can be described

by an F ∝ g−α law, α > 0 (for an explanation, see Nürnberg and Beyer,

1997).

5.3 Real-valued search spaces

There is a long tradition in theoretical ES research dating back to the

very beginning of ES. Schwefel (1965) presented analyses of (1 + 1)-ES

on a discretized parabolic ridge as well as on the hyperplane and sphere

model using isotropic Gaussian mutations. This work has been continued
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by Rechenberg (1973) and Schwefel (1975) resulting in such concepts like

progress rates and success probabilities. In this section we will review

the basic concept of progress rate, present some examples and show the

connections to the evolutionary dynamics.

5.3.1 Local performance measures

Local performance measures are expected values of (aggregated) population

states. They are usually defined in such a manner that they can be used to

evaluate the amelioration power of the ES locally. When saying “locally”

we mean local in time, i.e., the measures describe the amelioration success

between two consecutive generations (g) and (g + 1).

5.3.1.1 The progress rate definition. The amelioration progress can be

measured in the fitness space as well as in the object parameter space. The

latter measure is called “progress rate,” whereas the former is usually called

“quality gain” (for a comprehensive overview, see Beyer, 2001b). Here we

will only consider the progress rate ϕ. It is defined in Figure 13 as the

expected distance change .r of the parental population centroid in the object

parameter space (search space) toward the optimizer ŷ. Note, we used the

lower case letter r in order to express that this (aggregated) quantity is a

random variate, whereas the capital R is used to denote its expected value,

i.e., R = E[r].
From the ϕ definition (35) it becomes clear that the progress rate depends

on a number of factors: the ES and fitness function used and also on the

parental population state P
(g)
p . Calculating ϕ is difficult and only tractable for

simple objective function models F(y). This is one of the reasons why the

investigations were mainly concentrated on the sphere model. Only recently,

the so-called ridge function class, defined by Frid(y) = v′y− d‖(v′y)v− y‖α ,

with v′v = 1, has attracted intensive research (Oyman, 1999; Oyman et al.,

2000; Oyman and Beyer, 2000; Beyer, 2001a).

5.3.1.2 Example: Sphere model The most prominent test function is the

sphere model, already introduced in equation (16). It represents a highly

symmetric function class the function values of which depend only on the

distance R of y to the optimum. That is, R can be used as an aggregated state

variable allowing for a reduction of the N-dimensional dynamics to the one-

dimensional R-dynamics. Considering ES with isotropic Gaussian mutations

of strength σ and given a parental state R, the progress rate ϕ depends only

on the three parameters R, N , and σ . Using the normalizations

ϕ∗ := ϕ
N

R
and σ ∗ := σ

N

R
, (38)
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Figure 13. On the definition of the progress rate ϕ.

it can be shown that the normalized progress rate ϕ∗ depends only on the

normalized mutation strength σ ∗ and the search space dimension N . The

dependency on N is rather weak such that considering the asymptotic case

N → ∞, ϕ∗ = f (σ ∗) often suffices (Beyer, 2001b). Figure 14a shows such

progress rate curves.

a) progress rate ϕ∗ b) efficiency

Figure 14. On the local performance of different ES on the sphere model. The performance

depends on the mutation strength (note, a logarithmic scale has been used).

Various conclusions concerning the performance of the ES on the sphere

model can be drawn from that picture:

1. Plus strategies exhibit always positive progress independent of the muta-

tion strength chosen (for the (1+1)-ES, see also Figure 10). That is, they

continuously converge to the optimum.
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2. Comma strategies can converge provided that the mutation strength is

chosen appropriately. If the mutation strength is too large the strategy

departs from the optimum, it exhibits divergent behavior.

3. Using a population λ > 1 increases the performance.

4. A (µ+ λ)-ES performs always better than a (µ, λ)-ES.

5. Using µ/µ intermediate recombination yields the best performance.

6. Recombinative strategies attain their performance maximum at higher

mutation strengths.

In summary one may conclude that given the performance measure at hand,

recombinative strategies are the ones that should be chosen.

As can be shown, the (µ/µ, λ)-ES can exhibit a performance speedup of

up to λ compared to the (1 + 1)-ES. However, this speedup is a parallel one.

It concerns a full generation step, but not the cost for generating the offspring

and the fitness evaluations. Performance on a serial computer should be

better evaluated by considering the number of fitness evaluations needed to

obtain a certain improvement. That is, we have to investigate the progress

per offspring. The related progress measure is called (fitness) efficiency and

defined by η := ϕ∗/λ. It is depicted in Figure 14b. Under this condition the

(1 + 1)-ES is the most efficient strategy. As has been shown theoretically,

in the limit N → ∞, λ → ∞, the (µ/µ, λ)-ES approaches asymptotically

the performance maximum of the (1 + 1)-ES. The optimum truncation ratio

becomes µ/λ ≃ 0.270 . . ..

5.3.1.3 Example: Noisy sphere. For a long time period it was an open

problem to find a simple test function where it can be shown by theory that

the (µ/µ, λ) efficiency can exceed that of the (1 + 1)-ES. Recently, two

breakthroughs have been made without leaving the realm of spherical models:

first, a bimodal sphere model in B
N , to be reported in section 5.4; secondly,

the noisy sphere model in R
N

Fnsp(y) := c‖y‖α + ε, with ε ∼ N (0, σ 2
ε ). (39)

In equation (39) the fitness c‖y‖α is disturbed by Gaussian noise with vari-

ance σ 2
ε . The asymptotical progress rate formula (N → ∞) reads (Arnold

and Beyer, 2001)

ϕ∗ = σ ∗2

[

cµ/µ,λ
√

σ ∗2 + σ ∗2
ε

− 1

2µ

]

, with σ ∗
ε := σε

N

cαRα
, (40)

where cµ/µ,λ is the so-called progress coefficient. It can be approximated by

the inverse error function erf−1

cµ/µ,λ ≃
λ

µ

1√
2π

exp

[

−
(

erf−1
(

1 − 2
µ

λ

))2
]

(41)
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and its values are of order O(
√

ln(λ/µ)). (Note, formula (40) contains also

the noise-free sphere and the (1, λ)-ES as special cases.)

As can be shown for any level σ ∗
ε < ∞ of noise, the (µ/µ, λ)-ES reaches

asymptotically the (maximal) efficiency of the (1 + 1)-ES without noise,

whereas the efficiency of the (1+1)-ES with noise degrades increasingly with

σ ∗
ε . That is, the (µ/µ, λ)-ES outperforms the (1 + 1)-ES when the objective

function is disturbed by noise. While this is correct for N → ∞, Figure 15a

shows that this also holds for N <∞ and sufficiently high noise levels.
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Figure 15. Optimal performance of maximally efficient strategies on the noisy sphere.

Figure 15a compares the result from the (1 + 1)-ES performance analysis

(Arnold and Beyer, 2000a) with the optimal efficiency of (µ/µ, λ)-ES using

the N-dependent progress rate theory (Arnold and Beyer, 2000b). Note,

these graphs do not correspond to a fixed µ and λ value. As shown in

Figure 15b, the offspring size λ depends on N and the normalized noise level

σ ∗
ε . Interestingly, the optimal µ/λ ratio is again µ/λ ≈ 0.27.

5.3.2 Dynamics

The mean value dynamics of aggregated population states is usually governed

by a system of N + Ns difference equations, where Ns is the dimensionality

of the strategy parameter set. Under certain conditions and assumptions this

system reduces to a single difference equation.

For example, when considering the sphere model, the residual distance

R to the optimum and the mutation strength σ ∗ of the parental centroid can

be used as aggregated state variables. Using the ϕ definition (35) and the

normalization (38), one gets

R(g+1) = R(g)

(

1 − ϕ∗(σ ∗(g))

N

)

. (42)
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Provided that |ϕ∗/N | ≪ 1, this difference equation can be approximated by

the differential equation

dR(g)

dg
= −R(g)ϕ

∗(σ ∗(g))

N
. (43)

Its formal solution reads

R(g) = R(g0) exp

(

− 1

N

∫ t=g

t=g0

ϕ∗(σ ∗(t)) dt

)

. (44)

This solution still depends on the time behavior of the mutation strength σ ∗,
i.e., the R-dynamics is governed by the dynamics of the σ control algorithm.

Special case: σ ∗(g) = const. That is, it is assumed that the σ control, e.g.,

σ self-adaptation, has reached nearly steady-state behavior at time g0. Under

this condition, equation (44) has a simple solution

R(g) = R(g0) exp

(

−ϕ∗(σ ∗)

N
(g − g0)

)

. (45)

Provided that ϕ∗ > 0, the residual distance decreases exponentially fast.

Taking the logarithm in (45) one immediately sees that we have linear conver-

gence order (cf. section 5.2.2) that also transfers to the fitness dynamics.

Equation (45) can be used to estimate the time complexity and the

number of fitness evaluations needed to reach a certain vicinity of the

optimum. To this end, we consider the expected relative amelioration progress

over a number G of generations. Using (45), one finds R(g+G)/R(g) =
exp(−ϕ∗G/N) and solving for G yields the expected run time

G = N
ln(R(g)/R(g+G))

ϕ∗
. (46)

Given fixed exogenous strategy parameters µ and λ (i.e., µ, λ $= f (N)), the

expected running time scales linearly in N . This holds also for the number of

functions evaluations ν because ν = λG+ µ.

5.3.2.2 Evolution criteria and non-convergence. Convergence toward the

optimum is ensured as long as the residual R distance decreases with time.

Using equation (43) one sees that this is equivalent to ϕ∗ > 0. As an example,

let us again consider the (µ/µ, λ)-ES on the sphere model. Taking equa-

tion (40) into account one immediately finds the evolution criterion by which

convergence is ensured

σ ∗2 + σ ∗2
ε < 4µ2c2

µ/µ,λ. (47)
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Considering the noise free case σ ∗
ε = 0, one finds σ ∗ < 2µcµ/µ,λ. What

happens when the nonnormalized mutation strength is kept constant? In that

situation σ ∗ increases with decreasing R(g) because of (38). This increase

proceeds until the evolution criterion (47) is violated, i.e., in the noise free

case σN/R(g) = σ ∗(g) = 2µcµ/µ,λ. That is, the ES does not converge to

the optimum. The evolution stagnates and the population fluctuates around a

specific R, the final localization error

R∞ = σN

2µcµ/µ,λ
. (48)

This is a typical situation for comma strategies when the mutation strength

cannot be down-scaled arbitrarily (cf. Figure 12d, e, f).

A similar behavior can be observed when considering a constant noise

strength σε in (39). Criterion (47) can be used to derive a lower bound for the

final localization error (for details, see Beyer, 2000).

5.4 Binary search spaces

Theoretical investigations concerning the dynamical behavior of ES in

B
N search spaces on pseudo-Boolean functions are still to be performed.

However, considerable progress has been made concerning the expected run

time and global success probabilities of ES with plus selection. We will

review only some of these results referring the reader to the original work

by Wegener et al. (see below).

Unlike continuous search spaces, where the number of states is uncount-

ably infinite, the B
N search space is of finite size 2N . Therefore, one can

consider the event of first visiting the optimum state ŷ, i.e., the number t of

function evaluations or test states generated until y(t) = ŷ or F(y(t)) = F̂

is fulfilled. Taking the expectation of t , one gets the expected run time

T := E[t].

5.4.1 Global performance of the (1 + 1)-ES

Most results obtained so far concern the performance of the (1 + 1)-ES. For

linear functions

Flin(y) := w0 +
N

∑

k=1

wkyk, with ∀k : wk $= 0, wk ∈ R, (49)

Droste et al. (1998b) were able to bracket the expected run time T of a (1 +
1)-ES with bit mutation rate 1/N to

T (N) = 6(N logN). (50)
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The 6 notation indicates that N logN is both the upper and the lower bound,

i.e., κ1N logN ≤ T (N) ≤ κ2N logN with 0 < κ1 < κ2 < ∞.

Rudolph (1997a) proposed the “LeadingOnes” function

FLO(y) :=
N

∑

j=1

j
∏

k=1

yk (51)

which counts the number of leading ones in the binary string. He proved the

upper bound O(N2) for maximizing this function, while Jansen (2000) was

able to show

T (N) = 6(N2), (52)

thus closing the lower bound.

In an attempt to show the superiority of crossover in genetic algorithms

against simple mutative EA, Horn et al. (1994) proposed so-called long-path

problems where a hillclimber is intended to follow an exponentially long path

while a recombinative strategy bypasses the long path. The designers of the

original model function oversaw, however, that the standard mutation oper-

ator using pm = 1/N can perform jumps of Hamming distance greater than 1

with a certain probability. Therefore, Rudolph (1997b) was able to prove that

T (N) = O(N3) holds for the original problem. Furthermore, he presented

other versions of long-path problems having a higher time complexity. Droste

et al. (1998a) followed this road and presented unimodal model functions

with exponential optimization duration.

For a subclass of quadratic functions

Fqua(y) := w0 +
N

∑

k=1

wkyk +
N

∑

j=1

N
∑

k=j+1

wjkyjyk, (53)

withwk, wjk > 0 and n as the number of non-zero weights, T can be bounded

from above

T (N) = O(nN2) = O(N3), (54)

i.e., T ≤ κnN2 (Wegener and Witt, 2001). Among others the authors also

proved that the square of Flin(y) is optimized in expected time T (N) =
O(N logN) with success probability 1/8 − ǫ (ǫ > 0 arbitrarily small). In

other words (Flin(y))
2 can be efficiently treated by a multistart version of the

(1 + 1)-ES.



EVOLUTION STRATEGIES 45

5.4.2 Performance increase by recombination in (µ/2 + 1)-ES

After a long period of unsuccessful attempts (Mitchell et al., 1994, Horn

et al., 1994) to show performance benefits of recombination in B
N , Jansen and

Wegener (1999) presented a test function where discrete (ρ = 2) recombina-

tion (11) provably decreases the expected run time compared to an ES using

mutation with rate pm = 1/N only. The function they considered, FJump(y),

is a sphere model using the Hamming distance ‖y‖ =
∑N

k=1 yk as radius

FJump(y) = F(‖y‖) =
{

‖y‖, if ‖y‖ ≤ N −M or ‖y‖ = N ,

N − ‖y‖, otherwise.
(55)

Unlike the unimodal sphere models considered in section 5.3, FJump is a

bimodal one having a local (degenerated) maximum at Hamming distance

‖y‖ = N −M and the global maximum at ‖y‖ = N . The function value first

increase with ‖y‖ up to N −M, then it drops down, and finally it jumps to

N . That is, there is a gap of size M the ES must bridge.

There is a lower bound for optimizing FJump using the (1+ 1)-ES. It reads

(1 + 1)-ES: T (N) = :(NM), (56)

here the : symbol expresses that T (N) ≥ κNM . When using pm = 1/N it

can be shown that T (N) = 6(NM).

In order to prove the performance benefits of recombination the authors

considered a steady-state ES with discrete two-parent recombination, i.e.,

(µ/2 + 1). Using a somehow unusual and very small recombination prob-

ability of pc = 1/(N logN) (usually pc = 1), they obtained

(µ/2 + 1)-ES:

{

T (N) = O(N2 logN), if M $= f (N),

T (N) = O(N3 logN), if M = ⌊logN⌋. (57)

Comparing the second line in (57) with (56) it becomes clear that the (1+1)-

ES needs superpolynomial time while the recombinative ES has polynomial

expected run time. Thus, it has been shown that recombination can help.

While this was a first step in showing a (serial) performance advantage of

recombinative strategies, the question remained whether the superpolynomial

to polynomial time gap could be extended to an exponential to polynomial

time gap. This can be shown indeed, however, up to now only by using a very

artificial fitness function (see Jansen and Wegener, 2001).
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6. Outlook

Above, we have considered only mainstream ES, i.e., established older

instantiations of evolution strategies that mimic just a few basic principles

gleaned from nature. Organic evolution has got many more features, some

more of which might be worth to be considered as additional sources of

inspiration for creating artificial optimum seeking and adaptation procedures.

Some proposals of that kind, though neither having gone yet through rigorous

analysis nor exhaustive empirical testing, will be sketched below.

The maximal lifespan of an individual is not required to be either unlim-

ited as in the plus version of the standard algorithm or limited to just one

iteration (generation) as in the comma version. Any positive integer κ can be

used to control the maximal number of iterations (now better reproduction

cycles) an individual is allowed to stay within the population. Only after κ

cycles it will be deleted from the gene pool even if it cannot be replaced

by a better or at least equally fit descendent. This version has been called

(µ, κ, λ, ρ)-ES (Schwefel and Rudolph, 1995), in which ρ, as usual, stands

for the number of predecessors an offspring is composed of by recombination.

One might expect that certain κ values are better than others to support the

self-adaptation of strategy parameters.

Two good reasons led to a rather different type of an evolutionary

algorithm without explicit generation transition. One reason was the unavoid-

able idling of processors of a parallel computer due to the fact that

the simulations delivering the fitness values of a generation’s offspring

(perhaps also testing their feasibilities) often are of very different dura-

tion. Lesser synchronization of the selection and the reproduction phases

should enhance the efficiency of the evolutionary search substantially in

some cases. The second reason for a predator-prey approach (Laumanns

et al., 1998; Laumanns et al., 2001) in modeling interwoven exploration and

exploitation processes was the easiness with which multiple objectives can be

handled just by letting different predators select according to different criteria

at the same time. In order to implement such strategy it seems quite natural to

let the prey, who bear the object variables as well as the strategy parameters,

inhabit distinct places on a (toroidal) grid. The predators perform random

hunting walks on the same grid eating the weakest prey in a certain neigh-

borhood and thus opening positions for newborn offspring of the survivors

among the prey. Hopefully, the prey finally roam in the vicinity of the Pareto

set of nondominated solutions. As always, the variation strength control is

crucial for the functioning of this approach (Rudolph and Agapie, 2000).

Further still mostly unexplored options of enhanced ES/EA are the intro-

duction of diploidy or even polyploidy (Kursawe, 1992) and of multicellu-

larity together with somatic mutations (Schwefel and Kursawe, 1998). More
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advances in these and other directions can be expected in future issues of

the handful journals in the field of evolutionary computation as well as in

the proceedings of the nearly two dozens of relevant conferences being held

annually all around the world.

Acknowledgements

The author acknowledges support as Heisenberg Fellow of the Deutsche

Forschungsgemeinschaft under grant Be 1578/4-2.

Notes

1 In order to achieve a mutation with zero mean change from the parent position, the

difference of two binomially distributed random samplings was used, actually – with

probability parameters 1/2 and repetition numbers according to the wanted variance.
2 This kind of performance measure does not take into account the cost of parallel

computation. If cost considerations become important, the benefit of an earlier result must,

however, also be taken into account.
3 While optimization is the main application domain of ES, it has been demonstrated that ES

can also be applied to the simulation of dissipative systems (Beyer, 1990).
4 Note, in many papers on ES the notations (µ, λ) and (µ+λ) always included some kind of

recombination implicitly. The (µ/ρ +, λ) notation has been introduced in (Rechenberg, 1978)

first.
5 Note, this does not mean that recombination is of secondary importance. It only means that

recombination usually serves a different purpose. If applicable, the use of recombination is

strongly recommended (see sections 3.4 and 5.3).
6 The term “mutation strength” is used here intuitively, in real-valued search spaces it refers

to the standard deviation of a single component of the mutation vector.
7 Note, without selection the components would be isotropically distributed (i.e.,

symmetrically with respect to the improvement direction) because of the isotropy of the z

mutations used.
8 For discrete search spaces (34) simplifies to limg→∞ Pr

(

F(y(g)) = F̂
)

= 1.

9 Analyzing (1 + 1)-ES like random search strategies on convex optimization problems,

Rappl (1989) was the first to introduce the concept of convergence order in this field.
10 This assumes the global minimum value F̌ = 0. If F̌ $= 0, log(F(g) − F̌ ) must be

considered instead. Alternatively, one can consider the residual distance R to the optimum

(measured in the object parameter search space).
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