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Machine learning involves the modification or creation by program of stored information structures, so that machine-
deliverable information becomes more accurate, larger in amount, or cheaper or faster to deliver. A further
desideratum, concerned with intelligibility to the user, is reviewed in the light of recent work on computer induction.

INTRODUCTION

The first successful learning programs were developed in
the 1950s and belonged to a general category which was
at that time commonly known as 'hill-climbing'. Global
mathematical models of system performance were typi-
cally constructed in forms permitting multi-dimensional
representation in systems of orthogonal co-ordinate axes.
Numerical parameters were then automatically tuned at
run time in response to sensed deviations from computed
criteria of optimality. This scheme embraces classical
adaptive control, along with many studies of machine
learning in games and game-like situations. How the
problem appeared to AI workers of that epoch can be
gleaned from the proceedings of a celebrated symposium
held in 1957 under the title: Mechanisation of Thought
Processes (HMSO, London).

The present paper is the second of a series. The first
appeared nearly 20 years ago and proposed a new
principle for attaining the above purposes,1 now known
as 'rule-based' learning. The idea was to partition the
problem-domain into a mosaic of smaller sub-domains
and to associate a separate rule of action with each. In
the pre-learning state a rule may be stochastic or even
vacuous. In the learning mode, entry into a given sub-
domain invokes a global procedure for collecting data on
the sensed consequences of executing the associated rule
and for up-dating the rule's content in the light of these.
A worked toy example was supplied in the form of a
computer simulation of a machine for learning to play
Noughts and Crosses (Tic-Tac-Toe). Distinct equiva-
lence classes into which the positions can be grouped
were taken as the separate sub-domains. These were
represented as separate 'boxes', as in a card-filing system.

Successful tests of the 'boxes' principle were subse-
quently made on a hard dynamical problem, namely
automatically controlling the support point of an inverted
pendulum within a bounded space. The adaptive pole-
balancer was required to deliver 20 left-right decisions
per second to a motor-controlled cart on which was
balanced a pole free to move in the vertical plane defined
by a straight bounded track (Fig. I).2 The task of the
BOXES program was to acquire by trial and error, or
from being shown by a human tutor, or from a
combination of both, the ability to control the cart within
the bounds set by the ends of the track without permitting
the pole's angular deviation from the vertical to exceed
a pre-set tolerance. For experimental runs the precise

specification was: the system fails if any of four monitored
variables (position on track, velocity, pole angle, angular
velocity of pole) pass outside fixed bounds. Initially
decisions were taken randomly, and fail-free periods
were measured in seconds. After learning, the fail-free
periods lasted half an hour or more.

BOXES was the first system to be driven by a set of
independently modifiable production rules, and thus
foreshadowed today's 'expert systems'. The mode of
learning was primitive, being confined to revising the
action-recommendations associated with stored situa-
tion-patterns, the latter being fixed. The next series of
experiments at Edinburgh, involving computer-coordi-
nation of hand-eye robots, focused on the situation-
perception component of machine learning.

In the FREDDY robot work, the learning module built
new patterns in memory as the basis of adaptive
perception of situation-categories. The stored structures
were descriptions in semantic net form of the visual
appearances of various objects such as cup, spectacles,
axle, wheel, and so forth. From these the system was
required at run time to recognize instances from images
sampled from the television camera acting as the robot's
eye. In robot vision 'programming by example' becomes
a necessity. The infeasibility of programming in the
ordinary sense is apparent if one compares the police
task of identifying a culprit from photographs with
identification purely on the basis of verbal description.
The Edinburgh, versatile assembly program was thus
operating in the foothills of a domain now commonly
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Figure 1. An illustration of the BOXES program to control a motor-
driven cart running on a track of fixed length and balancing a pole
by a set of independently modifiable production rules.
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termed 'computer induction'. Although the method for
updating the stored relational structures was crude, the
descriptive power of these structures and of the algo-
rithms for manipulating and matching them was worthy
of note.

Quintan's ID3 program, developed from Hunt's earlier
proposals,3 builds internal descriptive structures in the
form of decision trees. They are executed as PASCAL
code. Tests were made using patterns from the King-
Rook-King-Knight end-game in chess which are straight-
forward for chess-masters to recognize but effectively
impossible to program. The induced decision trees
exemplify the cheaper information category. Non-learning
solutions are possible, and range from exhaustive search
to prior computation and storage of a look-up table of
428 distinct feature-vectors paired with decision-classes.

Comparative economics are given in Table 1. The first
information structure is a calculation-intensive program,
hand-coded along conventional lines. The second is a
look-up table of attribute combinations obtained from an
exhaustive computation, together with hand-coded rou-
tines for table-access. The third is a decision tree
synthesised by Qunilan's ID3 program by program
controlled sampling from the above table. A fourth
representation, not shown here, was Quinlan's own best
effort at a hand-coded pattern-directed search. This
proved to be about 30% less economical than the
machine-made representation. For a more complex
problem the differential rose to 400%.

Table 1. Three information structures for guiding a computer in
performing a difficult classification in chess

Classification method

Minimax search
Look-up
Machine-synthesized

decision tree

Execution time
(msec)

7-67
1.12

0.96

Memory required
( x 1K words)

2.1
67.7

2.5

Time x
memory

16.1
75.8

2.4

RULE-BASED SYSTEMS

The stored information structures through which ma-
chine learning is mediated cannot usually be described
unequivocally as either program or data. They lead a
double life, being in fact rules. During learning, a rule is
treated as a data structure. The process is then akin to
editing. When a rule is fired at runtime, it is executed as
program. For further learning to occur, some trace must
be saved of the result.

A rule is something which says

if <condition> then do <action>.

Satisfaction of the condition part is detected by matching
against a database which models the ongoing state of the
task environment. Execution of an action normally leaves
a mark on the database, either by updating it directly or
by affecting the environment which the program is
sampling.

Thus, for the task depicted in Fig. 1 the 'database' is
just a one-dimensional array of four numbers depicting
the state last sensed by the program. We can imagine a

rule like that shown in Fig. 2(a). Let us suppose that its
condition part matches the current state. The effect of
rule-execution will be to create a new state corresponding
to one of the 16 successor-states constructible from the
possible values listed in Fig. 2(b). Thereupon the new
successor-state is sensed and the database updated. The
matching process restarts, and the cycle iterates until one
or more of the state variables passes outside permitted
bounds and a failure is signalled.

(a) if cart is far left
and cart is hardly moving
and pole is hardly leaning
and pole is hardly swinging

then do
rightwards

end

(b) cart position: far left, somewhat left;
cart velocity: hardly moving, moving right;
pole angle: hardly leaning, somewhat left;
pole swing: hardly swinging, swinging left

Figure 2.(a) A specimen rule for the pole-and-cart problem, for
which the successful strategy consisted of 225 rules of this form.
(b) On application to a situation matching the rule's condition part,
a new situation results which must be one of these 2 x 2 x 2 x 2
derivable possibilities.

At this point the learning routine has the opportunity
to perform a post-mortem, and it is likely that the rule
displayed (Fig. 2(a)) will be implicated. The advice it
gives (in effect to move the cart to safety away from the
edge) looks sensible; but, because of the effects upon the
behaviour of the pole, it is short-sighted. As a result of
the rightwards acceleration imparted by the prescribed
action, the pole will soon present a dire problem: how to
prevent it from toppling over leftwards without first
having to run the cart back and possibly beyond the left
end of the track.

In the experiments from which this example is taken,
a cumulative tally of statistical evidence on the results of
actions was maintained for the complete set of 225 rules.
The tally was automatically updated for every rule used
during a given run. When, as in the case used for
illustration, the rule is faulty, then sooner or later the
balance of evidence tips against it and the rule's action
part is edited by substitution of 'leftwards' for 'right-
wards', or vice versa as the case may be.

The BOXES program also exemplified McCarthy's
dictum: 'In order for a program to be capable of learning
something it must first be capable of being told it.*4 By
dint of much practice, R. A. Chambers was able to
acquire moderate expertise in performing the control
task himself. In this mode the human decisions were
signalled to the machine by light pen. In each cycle the
light pen was first interrogated for a decision. If none was
found, then the program's own decision was implemented
instead. The remainder of the cycle, including the
interpreting and gathering of statistical evidence, pro-
ceeded just the same. BOXES thus harvested advice from
an expert tutor hand in hand with trial-and-error
accretion. It was able to do this only because the
production-rule representation which it introduced was
appropriate for the reception of advice. This program was
the earliest working rule-based system of the modern
kind.
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Meanwhile Eastwood5 had independently constructed
a solution to the pole-and-cart problem by use of the
Newtonian dynamical equations together with classical
control theory. Thanks to this, the BOXES work was
able to provide a vantage point for looking at orthodox
control engineering from an artificial intelligence per-
spective. The conclusion was that the executable strategy
arrived at by tuning a collection of situation-action rules
is more economical in operation than the complex fabric
of partial differential equations in which the classical
adaptive control solution is expressed. Crunching num-
bers is more costly than situation-action look-up. For
problems more complex than pole-balancing, such as
controlling a bicycle, the mathematical modelling ap-
proach can be expected to become intractable if real-
time operation is desired. This may be related to the fact
that children are not sent on courses in mechanics,
calculus, and control theory in order to help them learn
to ride bicycles. Tutorial preparation for the task of
designing, rather than being, a bicycle-rider would be
another matter. The point at issue, not widely appreci-
ated, concerns the adequacy of machine representations
to this or that purpose, and in particular the tradeoff
which exists between heuristic adequacy and epistemolog-
ical adequacy (see Ref. 6 for definitions of these terms).
The BOXES representation is a purely heuristic model;
that is to say, it models a skill. The differential equation
representation seeks primarily to model the causal and
predictive structure of the domain in which the skill is to
be exercised. The contrast can be expressed as follows:

Heuristic model: situations—factions
Causal model: situations x actions —> situations.

To construct a sophisticated predictive model when all
that is required is performance of a skill (as opposed to its
explication) is to build a cannon to swat a fly. Not only
may the cost of firing it be prohibitive, it may not even
win on the performance criterion.

If, on the other hand, the primary requirement of the
user is that the system should act as a source of scientific
understanding rather than of engineering performance,
then of course the matter stands differently. In this
connection the possibility of automatically generating
heuristic models from causal models deserves investiga-
tion. Some preliminary studies have been made.7

TWO LEVELS OF MACHINE LEARNING

In the BOXES algorithm the action parts of rules are
modified. Biologically, we would speak of the reinforce-
ment of responses to a fixed set of stimuli. The equivalent
in ordinary computation would be the construction of a
tabulation of some mathematical function (either by
calculation or by 'being told') in which individual entries
in the look-up table are tested in the field and corrected
in the light of their track-records. In the POP-2
programming system, facilities for doing this sort of
thing are provided by a library facility known as 'memo
functions'.10

The more interesting forms of learning belong to the
complementary type, in which the condition parts of
rules are changed. Biologically, we would speak of

classification of the stimulus. In computation, where we
might speak of 'situation learning' in contrast to 'action
learning', a counterpart would be the restructuring of a
look-up table without necessarily changing its entries. A
version of such a procedure will be familiar to anyone
who has done a tabulation in 'critical table' style as
commended by Comrie in his explanatory introduction
to Chambers' Mathematical Tables9 (see Table 2). A
program which minimally resets where necessary the
bounds on argument-intervals to accommodate newly
computed entries represents such machine learning. The
machine dynamically revises its remembered situations,
i.e. the argument-sets, found to map onto given result-
values. Van Emden's POP-2 implementation of memo-
functions allows this to be done.10

Table 2. (a). Comrie's explanation of'critical tables'.
(b) Comrie's account of the construction of 'critical
tables'.

(a) x sinx
0
0

0.0
2

0.1

14

20

26

33

40

48

58

71

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A function is normally tabulated at equal
intervals of the independent variable or
argument. If, however, the function is changing
slowly in its last figure, it is possible to write
down all the values that the function may
assume, and then to show the limiting values of
the independent variable that lead to each
function value. Suppose we wanted sines to one
decimal from angles in the first quadrant known
to the nearest degree. The necessary critical
table is shown alongside.

In this form the argument (here x) is on the
left and the respondent (here sin x) on the right
as usual, but on lines half way between those of
the argument. Thus any angle between 20° and
26° has a sine of 0.4.

sin x

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

X
0
2.9
8.6

14.5
20.5
26.7
33.4
40.5
48.6
58.2

0.95 71.8

The method of preparing such a table is to
compute the values of x corresponding to half-
way values of sin x, as shown in the table
alongside. The argument in critical tables is
never rounded off. It is rounded down if it is
increasing numerically, and up if it is decreasing
numerically, regardless of whether the
respondent is increasing or decreasing. Thus the
table shows 2' rather than 3° for its first
significant entry, and use of the table gives 0.1
for sin 3° to one decimal, which is correct.

The application to machine learning is brought out by
considering the case where no inverse procedure is to
hand for obtaining the x-values corresponding to the
bounds on each interval into which it is proposed to
subdivide the ̂ -variable. The machine must then perforce
compute ./(x) ad hoc for each new value of x as it comes
along. However, if the complete repertoire of possible y-
values is first listed, as in Comrie's construction, then
each newly computed f{x) can be used either to confirm
or to extend the interval embracing those values of x
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which map onto this particular >> after rounding, or more
generally canonicalization, of the result. If the x-y values
correspond to situation-action pairs, then the process
described amounts to the inductive learning of a strategy
expressed in production rule form. Marsh has elaborated
a worked example around this theme.1'

PRACTICAL NEED

Some three years ago enquiry was made through Butler
Cox & Partners on the subject of programmer productiv-
ity. The state of affairs then revealed is summarized in
Table 3. The author's published comment at the time
was: If the markets of" the booming microelectronics
industries are not to collapse from program starvation,
radical innovation, not just improvement here and there,
is needed in automatic programming.. .8 Various schools
and branches of computer science claim special relevance
to this problem. Conspicuous among these is artificial
intelligence.

Table 3. Growth of various indices of the computing industry
since 1955

Indicator

Industry size
Hardware performance for fixed

cost
Programmer productivity

1955 1965

1 20
1975

80

1985

320

1 100 10 000 1000000
1 2.0 2.7 3.6

was interpreting subliminal signals from his sense of
smell.

As Feigenbaum has made evident in his contributions
to this topic,12 the world of human expertise is not always
such a black hole of inscrutability; but as he also attests,
it is often quite black enough. The expert practitioner
does indeed thwart the analyst's efforts to obtain clear,
complete, and reliable accounts of how key descriptive
concepts of his craft should be operationally defined—
the concept of 'ripe' in the foregoing example. This is
where current laboratory results with inductive learning
holds out promise of a remedy. He may not be able to tell
you what to do with them, but the expert (although not
the cheese expert of the anecdote) can usually supply a
list of primitive features which at least contains all those
which are relevant, even though it may be padded out
with additional features which the expert thinks are
relevant but which are not. The expert typically possesses
the further gift of being able to induce a grasp of the
given concept in a trainee, by selecting and administering
a well-contrived sequence of examples.

We can sketch the domain expert's profile as in Table
4. Failure under heading (2) can be extreme, as in
checkers masters. A. L. Samuel (personal communica-
tion) failed, after intensive study to find any significant
connection between the verbal and written prescriptions
of the masters on the one hand and their actual play in
tournaments on the other. For effective machine play to
be evolved in this domain, it would seem that it is
machine learning or nothing, allowing under 'learning'
the induction-based training of the machine by a master,
described in the text.

In what follows, studies of learning with immediate
application to programmer productivity will be discussed.
The theme is that help is at hand for one particular chore
which analysts and programmers of complex systems
have to face, namely the need to encode rules of thumb
adopted intuitively by human practitioners of skilled
procedures. One does not design a program to do audits,
for example, without first talking to an auditor. Unfor-
tunately, human practitioners tend to describe their own
rules of operation in terms which do not subsequently
stand the test of practice. The story is told of a large
cheese factory whose camemberts were a by-word.
Crucial to their renown was the company's procedure for
quality control, by which every hundredth cheese was
sampled to ensure that the production process was still
on the narrow path separating the marginally unripe
from the marginally over-ripe. Success rested on the
uncanny powers developed by one very old man, whose
procedure was to thrust his index finger into the cheese,
close his eyes, and utter an opinion.

If only because of the expert's age and frailty,
automation seemed to be required, and an ambitious R
& D project was launched. After much escalation of cost
and elaboration of method, which included lowering into
the cheeses various steel probes wired to strain gauges
and other sensors, no progress had been registered.
Substantial inducements were offered to the sage for a
precise account of how he did the trick. He could offer
little, beyond the advice: 'It's got to feel right!' In the end
it turned out that feel had nothing to do with it. After
breaking the crust of the cheese with his finger, the expert

Table 4. Two views of an expert's repertoire of skills
Power to
recognize
examples of
key concepts
(1)

Power to Power to identify Power to
describe these key primitives (3) generate good
(2) tutorial

examples (4)

As seen by the
expert Good Excellent Excellent Good

As seen by the
analyst Excellent Very poor Fairly good Excellent

So far, research with expert systems has been concen-
trated on attempting to exploit heading (2) of this
tabulation. However, as the scope of systems increases,
so does the impracticality of extracting all the needed
descriptive patterns by this route. Eventually we must
stop harrassing the expert for manifestations of (2),
which he is unable and untrained to deliver, and instead
seek from him that which he can supply, namely (1), (3)
and (4). What do we then do with these? Given a learning
program analogous to the faculty possessed by a human
trainee, we say to our domain expert: 'Forget about
explaining this concept. Give us a list of primitive
features for our programmers to code and load. Then sit
down with the machine and train HV

New programming tools are making this practicable.
Rule acquisition from experts can be made quicker and
cheaper by an order of magnitude. Moreover we get
better rules, as demonstrated in a recent study by
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Michalski and Chilausky,1 J who compared the accuracy
of machine-derived with human-derived rules. Advan-
tages have been noted even in respect of sheer computa-
tional efficiency (i.e. the execution-costs of rules), amount-
ing in a recent study by Quinlan to a five-fold superiority
over the best that could be achieved by hand coding.14

This super-fast decision structure, however, proved to be
opaque to the eye of the domain expert. Inscrutability to
man of the executable products of machine learning
raises serious issues, to which we must now turn.

COMPUTER INDUCTION—
FRIENDLY AND UNFRIENDLY

Learning through stimulus reclassification belongs under
computer induction. The biological counterpart is con-
cept formation. Because computer users are human,
rather than, say, Martian, it is of interest to enquire
whether or not the descriptive structures formed by
computer induction are intelligible as concepts. The
products of inductive learning can be termed 'friendly' or
'unfriendly' according to whether or not the machine-
generated descriptions make sense to the human
practitioner.

Inductive learning procedures can thus be classified
not only according to the production cost, execution cost,
scope, and accuracy of their products, but also according
to user-friendliness. Knowledge-based systems are com-
ing into play in a widening range of industrial applica-
tions, some of them in socially critical areas such as the
control and troubleshooting of complex machinery. As
rising programmer costs exert increasing pressure to-
wards automatic construction of rule bases for such
systems, so the importance will grow of disciplining the
methods employed to do this. It will not be desirable for
control rooms in nuclear power stations, air traffic control
centres, and the like to become polluted with uncompre-
hended descriptions generated by their associated com-
puting systems. As a safeguard we recommend a
man/machine approach, the basic idea of which will be
illustrated with a test-tube size example. Our name for
this disciplined method is 'structured induction'.

machine of legal KPK positions into the decision classes
DRAWN and LOST (as seen from the lone King's
viewpoint). The task was convenient for studying the
extent to which computer induction can be made to
replace programming as a source of expert rules. The
chess expert or master can perform the classification 'at
a glance'. At the same time he can normally say a great
deal about how he does it, and much of this is systematized
in the chess books, including definitions and examples of
the key subconcepts, or primitive attributes, from which
the main concept is built. None the less it remains
extremely costly in time and brain-power fully to solve
this problem by any straightforward programming
approach.

For assessing the accuracy of machine-synthesized and
programmer-synthesized representations, M. R. B.
Clarke's precomputed database for KPK was available,16

comprising a look-up table for the complete problem
space. A diagram from Clarke's paper has been repro-
duced in the upper part of Fig. 3. It depicts the fact that
for every descriptive concept there exists a spectrum of
equally complete and correct machine representations,
differing according to the balance struck between
calculation and memory. The optimal compromise is
determined by the relative costs of these two commodi-
ties. If memory is arbitrarily cheap, then Clarke's table
look-up is optimal. If, on the other hand, processing is
cheap than exhaustive search, not depicted in the
diagram, would be best. Processing in this case must of
course be fast enough for computations to be completed
within the client's waiting time.

For the 'elementary' chess ending King and Pawn
versus King, four different machine representations have
been compared, strung out along a spectrum from all
look-up to mostly calculation. Only one of these (an
advice-oriented program by Bramer) is both human-
intelligible and human-executable. Beal's, although only
exemplifying the small step from 20 descriptive patterns
to 50,17 lies outside the 'human window' and is totally
meaningless to the eye of a chess expert. A representation
synthesized by computer induction using Quinlan's ID3
was equally inscrutable, although also highly efficient.
When, however, the problem was done using ID3 in

THE KING-PAWN-KING END-GAME

The play of King and Pawn against King (KPK) is one
of the elementary end-games, yet contains a surprising
degree of complexity. It is very hard to program using a
conventional tree-search plus evaluation function, since
the maximum depth of win (Pawn promotion) is 37. The
burden of decision is thus shifted from search onto the
evaluation function, which tends to be too simple and
weak a vehicle for coping adequately with all the
exceptional positions which crop up. For KPK it takes
months to write a good program, and even longer to
produce a correct one. Zuidema gives an account of the
programming problems arising from an even more
elementary ending, namely King-Rook-King.15 Success
left Zuidema, a chess-master and an accomplished
computer scientist, so exhausted that he resolved to
abstain from further work in the field.

The KPK task was defined as the classification by

('deep') ('shallow')

Lot of computing

Small mei:mory

Human-intelligible

Little computing

Urge memory J V " I DIAGRA

H uman-execu table

'Human window'

AM

'Human-intelligible' corresponds
H (roughly) to 'can be carried in

the head'

'Human-executable* means
(roughly) 'can be used as a crib'

CLARKE

King-pawn-king
machine representatio
to be tested as 'cribs'

BRAMER

Figure 3. A comparison of four machine representations for the
'elementary' chess ending: King and Pawn versus King.
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Table 5.

Program

Harris
Bramer
Beal
Clarke

A tabular expression of Figure 3

Amount of search

A lot
Little
Very little
None

No of concepts
('patterns')

About 10
About 20
About 50
About 100 000

Humanly
intelligible?

Yes
Yes
No
No

Humanly
executable ?

No
Yes
Yes
Yes

'structured induction' style, a representation was ob-
tained expressible in half a dozen easily comprehended
constituent patterns, superior on all-round assessment to
any of the programs of human authorship (Shapiro and
Niblett, 1981, see later).18

A window has been superimposed on the diagram of
Fig. 3. The location and extent of this 'human window'
are determined by the brain's own limitations on
calculation and memory—approximately 20 binary dis-
criminations per second, and 1010 bits respectively. By
this last figure we denote only that part of memory used
to store information acquired during a person's lifetime:
the limit is set by the maximal acquisition-rate, not by
the extent of potential storage. If a representation falls to
the left of the window, then it is too condensed for the
brain's feeble calculation powers to apply and get an
answer in acceptable time. Exhaustive minimax search
would be an extreme example: however understandable
this procedure is, there would be no prospect of an
unaided human being able to check it out in a case where
the machine's classification had been disputed. If a
representation falls to the right of the window, then it is
too expanded to be held in ready-access form by a device
(the brain) which only has room in short-term memory
for about seven pointers at one time, these being used to
address for purposes of access the subconcepts ('patterns')
held in long-term memory from which the total concept
is constructed. The result is that although the unaided
human can perfectly well check out such a representation
in a disputed case (in the extreme, by look-up in a print-
out of Clarke's table) it makes no sense to him. The
situation is as depicted in Table 5. The programs listed
were all of human authorship. It shows the two major
determinants of executability and intelligibility by the
human subject. The first is inversely related to the amount
of search, the second is inversely related to the number of
patterns to be processed. A third determinant, of a
structural nature, comes into the picture, as brought to
light in the Shapiro-Niblett experiments described later.
It is plainly of great interest, now that we are in a position
to use computer induction partially to automate the
synthesis of such programs, to discover the conditions
under which these machine products do or do not fall
within the human window.

QUINLAN'S ID3 PROGRAM FOR INDUCTIVE
LEARNING

For the Edinburgh experiments the induction engine
used by Shapiro and Niblett was Quinlan's PASCAL
program ID3, developed from Hunt's Concept Learning
System (CLS). Quinlan's extensions to Hunt's algorithm
allow the program iteratively to grow a small example set

from an exhaustive set of situations stored on a database,
such as, for example, the Clarke look-up table in the
KPK case under consideration. It is thus intended to be
used to accomplish database compression, rather than
training by example from the virtual database implicitly
contained in the expert's knowledge of the given domain.
We shall start, therefore, with the use made of Quinlan's
unmodified algorithm to replace Clarke's bulky database
with a relatively compact, and equally complete and
correct, representation in the form of a decision tree.

The small example set dynamically maintained by the
program during its operation on a given induction
problem is referred to by Quinlan as 'the window'.
Because of the inconvenient clash between this term and
the term 'human window' employed here for a quite
different notion, this set of examples will be referred to as
the 'working set'. The first step in database compression
is to use the repertoire of primitive attributes supplied by
the expert to replace the exhaustive set of individual
entries with a smaller set of'instances'. Each instance is
a vector of attribute-values, and if the attribute-repertoire
is adequate, all members of a given instance will be
associated with the same decision-class in the database:
otherwise a 'contradiction' exists. The 'working set' of
instances is used to induce a rule at each iteration of the
induction process, as follows:

1. Initialize the working set, of user-determined size,
with a random sample of instances.

2. Induce a rule from the working set.
3. Deal with contradictions.
4. Mark exceptions to current rule found by sampling

outside the working set.
5. If no exceptions found, go to 8.
6. Merge a user-determined number of exceptions into

the working set (in one mode, discardable instances
are dropped to make room).

7. Print statistics for this iteration and go to 2.
8. Print rule and exit.

Step 2 consists of the following:

1. If all members of the set belong to the same decision
class then label with the corresponding class name.

2. Otherwise, split the set into subsets by applying the
next attribute.

3. Repeat the above for each non-empty subset so
formed, continuing until all subsets are labelled.

The choice of 'next attribute' is critical to performance.
ID3 uses an information-theoretic criterion for this.

Step 3 involves marking with a keyword 'search' the
point(s) in the incomplete rule where contradictions
arise. This informs the user that the current set of
attributes is not adequate to classify the working set, and
another technique must be used at this point when the
rule is executed; alternatively the attribute set must be
changed.

When a complete and correct rule has been generated,
the working set contains example situations that embody
all the relevant features for a classification database for
the domain, often leading to spectacular compressions.
In passing it may be noted that for a given domain and
attribute set, the size of the minimal exemplary set is a
useful index of the domain's complexity. For more
information on ID3, Quinlan's accounts may be
consulted.14-19
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Using a set of 31 attributes, of which 29 were
incorporated in the synthesized rule, Shapiro and Niblett
obtained the result summarized in Table 6. The induced
decision-tree rule looked good by the criteria of synthesis-
cost, compactness, and execution efficiency; but it made
no sense to the chess expert. Not only was it conceptually
opaque, but difficult in the extreme to execute by hand,
for example for checking purposes.

Table 6. Results obtained by Niblett and Shapiro using Quintan's
ID3/PASCAL on a DEC-11/34 using 31 attributes for
the KPK domain

Number of examples in final working set 306
Number of nodes in final tree 79
Time taken to generate rule 113 CPU sec

It had been demonstrated that an equally efficient
representation could be generated which was extremely
clear and understandable to the expert, and also execut-
able by him without difficulty. This 'human window'
representation was achieved by first subdividing the
main top-level concept (DRAWN versus LOST) into a
few intermediate-level concepts by the kind of top-down
analysis recommended in structured programming. These
intermediate-level patterns were then induced as deci-
sion-tree rules, to be used as attribute-recognizers in a
final ID3 pass to induce the top-level concept.

Top-down analysis had already been performed by
Niblett in the course of writing an 'advice table' for the
KPK domain in the form of a PROLOG program (see
Ref. 20 for a worked example of the advice table
concept). In this way a decomposition into five suitable
subprograms had already been identified. The remainder
of the procedure is described below (from a technical
memorandum by Shapiro and Niblett).

We decided to extend the use of ID3, which had
been used to solve the NLOST2P problem in the
KRKN domain to the more complex problem of
determining whether any KPK position is lost or
drawn. Due to the difficulty of the problem we split it
into five subproblems, corresponding to the pieces of
advice in the KPK advice table.

For each subproblem a decision tree was generated
which determined whether the relevant piece of advice
was satisfiable from any given position. Each subprob-
lem was tackled using a different though sometimes
overlapping set of attributes.

The following stages were necessary for the genera-
tion of the ID3 decision trees.

1. A database was generated for the piece of advice
in question. This stated for every position whether
the piece of advice was satisfiable from that
position. The generation used techniques de-
scribed by Niblett.20 Each database required
about 20 minutes CPU time to generate on the
Edinburgh/ICF DEC 10.

2. A set of attributes was chosen by the 'domain
specialist' [TN]. These attributes were specific to
the advice in question.

3. The database was used to determine whether
these attributes created any 'clashes'. A clash
occurs when two positions have identical values
over all the usersiefined attributes, but in one
position the advice is satisfiable while in the other
it is not. There are at least two ways of tackling
this problem. In one the user supplies very many
attributes to ensure there are no clashes, letting
ID3 itself choose an adequate subset of these.
The method we chose was to select a small set of
attributes and examine those positions where
clashes arose, using ID3 to validate the chosen
attribute set.

4. The attribute set is refined in the light of the
clashes that occur. The domain expert will decide
either to refine the definition of a current
attribute, or to add one or more attributes to the
set. This decision is made (at present) on intuitive
grounds based on the expert's classification of
positions.

5. Steps 3 and 4 above are iterated until a clash-free
attribute set is found. A decision rule for the
advice is then induced by ID3.

Results for the subproblems are shown in Table 7.
Note that very large economies have been obtained in
machine time, reflecting the great reduction in the total
number of training examples needed to induce a complete
and correct rule. The rule itself together with its five
subrules, is in toto of comparable compactness to that of
Table 6, but it offers a striking contrast in transparency
and checkability by a human expert. The final form taken

Table 7. Quantitative data on the results of tackling the same
problem as that of Table 6, by structured induction

Subproblem i: pawn-can-run

no of examples in final working set
no of nodes in final tree
time taken to generate rule

Subproblem 2: r o o k p a w n

no of examples in final working set
no of nodes in final tree
time taken to generate rule

Subproblem 3: get-to-mainpatt
no of examples in final working set
no of nodes in final tree
time taken to generate rule

Subproblem 4: rank 5 6

no of examples in final working set
no of nodes in final tree
time taken to generate rule

Subproblem 5: rank 7

no of examples in final working set
no of nodes in final tree
time taken to generate rule

16
17
6 CPU sec

20
21

9 CPU sec

7
11
2 CPU sec

7
11
2 CPU sec

4
7
1 CPU sec

Special attribute: interfere (necessary for certain BTM positions)

Combining all of the above gave the following:

Main problem: position-is-DRAWN
no of examples in final working set
no of nodes in final tree
time taken to generate rule

9
13
2 CPU sec
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Figure 4. The top-level decision rule generated by structured induction is shown here as a decision tree.

by the top-level rule is given in Fig. 4, which also
characterizes all five subproblem rules—for 'canrn',
'mainp', 'rookp', etc. and the 'interfere' attribute. Each
of the subpatterns is represented as an ID3-induced
decision tree exhibiting the same fully-ordered check-list
form. Such a form puts the least possible burden on the
limited short-term memory of the human user of the rule.

Apart from the fact that all six rules make perfectly
good sense to the expert (some of this sense was* after all,
introduced by the initial top-down analysis) a feature
emerged which all the trees have in common, and which
gives a possible clue to their user-intelligibility. Each tree
has a depth equal to the number of its non-terminal
nodes. In other words each decision tree has the form of
an ordered list of tests, each test being a potential exit
point. To process such a list makes minimal demands
upon working memory. It is therefore not too surprising
that human beings, whose short-term memory has only
about seven locations (see Ref. 21), should find such
decision-structures easy to handle mentally. An equiva-
lent way of characterizing this form is to say that each
decision tree is a rule-based system in miniature.

Comparison of Tables 6 and 7 reveals a further gain of
structured over unstructured induction using ID3. The
total number of examples in the final working set in the
case of unstructured induction is over 300, as compared
with less than one quarter of that number for the
structured method.

Further simplification of some of the decision rules
occurred when induction was done using 'interactive
ID3\ a locally developed variant (by A Shapiro) which

uses the expert as a 'virtual database', i.e. as its source of
training examples. This corresponds to the anticipated
mode of operation for domains of economic relevance,
and eliminates the costly preliminary preparation of
exhaustive tabulations which in the typical application
will in any case not be feasible. For this reason we draw
particular encouragement from these first results with
the interactive version. .

The right way to handle computer induction so as to
generate humanly transparent decision-structures is at
present an open question. The Shapiro-Niblett experi-
ment illustrates the use of a fast, ultra-simple algorithm,
throwing the burden onto strict user-discipline to ensure
a humanly acceptable product. An alternative philosophy
is that adopted by Ryszard Michalski at the University
of Illinois, namely so to structure the induction algorithm
that its products are guaranteed in advance to possess the
desired user-friendly properties. Both approaches are
currently under test in a variety of application domains.
It will not be possible to pronounce on their respective
pros and cons until controlled comparisons have been
completed using common bench-mark problems.
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