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Interactions Between Learning and Evolution

A program of research into weakly supervised learning algorithms led us

to ask if learning could occur given only natural selection as feedback.
We developed an algorithm that combined evolution and learning, and
tested it in an artificial environment populated with adaptive and non-

adaptive organisms. We found that learning and evolution together were

more successful than either alone in producing adaptive populations that
survived to the end of our simulation. In a case study testing long-term
stability, we simulated one well-adapted population far beyond the original

time limit. The story of that population’s success and ultimate demise

involves both familiar and noveleffects in evolutionary biology and learning

algorithms.

 

1. EVOLUTION, LEARNING, ARTIFICIAL LIFE

‘The processesoflife involve change at many scales of space andtime, from the small,

fast biochemical cycles of cell energetics, to the growth and aging of an organism,

to the rise and fall of entire populations, entire species, entire orders. Choosing a

spatiotemporal scale emphasizes the changes at that scale, rendering smaller scales

essentially as noise, larger scales essentially as constant. Many useful investigations
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can be performed within a given scale of life—there are striking mixtures of order

and complexity almost. everywhere one looks—but, of course, such investigations

will be fundamentally limited by the assumptions of the rendering. Smaller scales
are not always insignificant, sometimes they becomedecisive; larger scales are not

always constant, sometimes they become cataclysmic.

Such limitations due to choice of scale can be partially eliminated by devis-

ing models that explicitly address multiple spatial and temporal scales (or, more
generally, by increasing the spatiotemporal bandwidth covered by a model). In this

chapter, we study interactions between adaptive processes on two adjacent levels—

individuals and populations. Learning is a process at the individual level whereby
an organism becomes optimized for its environment; evolution operates similarly

at the level of populations or species. The two scales are evident: An entirelife-
time of learning is but one tick of the clock for evolution. One trade-off between

the two processes is readily apparent: Learning is facilitated by long individual

lifetimes, whereas evolution benefits from rapidly passing generations. How else do

they interact?

Such multiple time-scale questions are generally very difficult, to answer in the

natural world. The depths of evolutionary history can be probedvia the fossil record

and molecular genetics, but such techniques provide only hints about the day-to-day

histories of long-passed organisms. Similarly, learning abilities can be studied in live
organisms, but feasible length experiments can observe an evolutionarily significant

numberof generations only with relatively short-lived and learning-limited species.
As the available computational power grows, the “artificial life” experimental

approach——-based on computer simulations of systems modeling selected aspects of

the natural world—becomes more and morefeasible. The rich diversity of material

in this book demonstrates some of the ways in which this power can be exploited.

For present purposes, it is the power to create artificial organisms that combine

reasonably long simulated lives—allowing for substantial learning—with reasonably
short real-time lives—allowing us to perform experiments that span many gener-

ations. Given the power of a computer workstation, an artificial creature can live
a simulated lifetime encompassing thousands of learning opportunities in only sec-

onds of elapsed time, and small populations of such organisms can be tracked over

thousands of generations in only days.

This chapter introduces, demonstrates, and studies an adaptation strategy

called evolutionary reinforcement learning (ERL), which combines genetic evolu-

tion with neural network learning, and an artificial life “ecosystem” called AL,

within which populations of ERL-driven adaptive “agents” struggle for survival.

Although ERL and AL are tremendously impoverished models—possessing only

a few stereotypical properties selected from the richness and depth of adaptation

and the natural world—they give rise to a broad range of behaviors and phenom-

ena. AL should be distinguished from single-level population-size models of species

interactions, such as Lotka-Volterra or Rosenstein-McArthur-Zweig.”° Instead of
modeling an ecosystem in terms of a priori birth, interaction, and death rates, AL

is 8 Moment-to-moment simulation of each organism’s lifetime in the ecosystem.
Quantities such as birth and death rates are not input parameters; instead they are
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observables whose values reflect the interacting consequences of each organism’s

decisions.

Section 2 presents ERL.? Section 3 presents AL and summarizes a comparative

study that supports the basic hypothesis that evolution and learning can mutually

aid each other. Section 4 presents an in-depth historical study of one successful

population, seeking an account of the population’s longevity, and an accountof its

eventual extinction. A phenomenon known as the “Baldwin effect””4 plays a role
in the former case, and a phenomenon that we call shielding plays a role in the

latter. Section 5 contains discussion, and Section 6 concludes the chapter.

 

2. EVOLUTIONARY REINFORCEMENT LEARNING

Learning algorithms require some sort of feedback to function, but different ap-

proaches vary widely in the amount and nature of the feedback required. One fun-
damental question is: How limited can the feedback be? Supervised paradigms*!:2?
supply immediate detailed correct answers as feedback; the system must learn to

produce them on demand. Reinforcement paradigms®?’ supply less-——only judg-

ments of right or wrong—-so the system must first discover and then remember

the correct responses. Viewed as a learning algorithm, the paradigm of natural
selection’! supplies still less—only birth and death. How can an organism learn in
such circumstances, where the only unarguablesign offailure is the organism’s own

death, and the reproduction process preserves only the genetic information, which

is unaffected by any learning performed during the organism’slife?

“Evolutionary Reinforcement Learning”? (ERL) provides one answer to this
question. In ERL, we allow evolution to specify not only inherited behaviors, but

also inherited goals that are used to guide learning. We do this by constructing a

genetic code that specifies two major components. The first componentis a set of

initial values for the weights of an “action network” that maps from sensory input

to behavior. These weights represent an innate set of behaviors that the individual]

inherits directly from its parents.

The second component is an “evaluation network” that maps from sensory

input to a scalar value representing the “goodness” of the current situation. By
learning to move from “bad”situations to “better” situations—-modifying its action
network weights in the process—anindividual achieves the goals of learning passed
down from its predecessors. Whether those inherited goals are actually sensible or

not is, of course, a separate issue; insofar as learning is a factor, each organism

stakes its life on the assumption that its inherited evaluation functionis reliable.

Figure 1 depicts the three central structures possessed by an individual. The

genetic code is a string of bits which the individual receives at birth. It is unchanged
by learning and is passed from parents to offspring modified by crossover (genetic
recombination!”) and mutation. (Asexual reproduction is employed if no mate can

be located; in such cases only mutation applies.)
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FIGURE 1 Overview of ERL.

The evaluation network is a feed-forward neural network that maps the or-

ganism’s sensory input to a real-valued scalar. The weights of this network are
determined solely by the genetic code and they do not change during thelifetime
of the individual.

The action network is a feed-forward neural network that maps sensory input

to behavioral output. The initial weights of this network are specified genetically.

However, they are adjusted over time by a reinforcement learning algorithm that

rewards behaviors that lead to an increase in the evaluation and punish those that

lead to a decline.

To limit the computational costs, in the simulations presented here we used

single-layer networks for both evaluations and actions. By design, however, all as-

pects of ERL carry over to the multi-layer case.

2.1. THE ERL ALGORITHM

The details of ERL are summarized in Figure 2. The first procedure is an imple-

mentation of evolution; the second, an implementation of learning. A few comments

may help clarify the more andless critical aspects of our approach.
In steps B1 and B2, a spatial distance measure is presumedto exist for purposes

of mate selection. In world AL (see Section 3) such a metric is readily available, but

one is not required for the algorithm to make sense. In principle, mates could be

chosen at random, or by some more elaborate mating ritual, and many interesting
questions arise in such situations. We chose this very simple method to avoid the

procedural complexities attending more realistic courting behavior.
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ERL: Evolutionary reinforcement learning

At Birth

Given: A parent agent A and an offspring O to be initialized.

Bl Clone. Copy A’s genetic code to O. If there are one or more other agents

within a prespecified distance of A, pick the closest such agent B and go to

B2, otherwise go to B3.

B2 Crossover. Modify O's genetic code by crossing with B’s using two random

crossover points.

B3 Mutate. With low probability mutate O’s genetic code by flipping random

bits.

B4 Elaborate. Translate O’s genetic code into weights for O’s evaluation net~-

work, and andinitial weights for O’s action network.

Living at timetf:

Given: A living agent A, and a new current input vector I;.

L1 Evaluation. Propagate I; through the evaluation network producing a scalar

evaluation B:.

L2 Learning. If this is A’s day of birth, go to L3. Otherwise, produce a

reinforcement signal by comparison with the previous evaluation: Ry, =

Ey, — B,1. Use the CRBPlearning algorithm to update the action net with

respect to the previous action X;_1 and previous input [y_;.

L3 Behave. Use the CRBP performance algorithm to generate a new action Xy

based on [;. Perform the chosen action.   
FIGURE 2 Summary of ERL.

Although we use a particular reinforcement learning algorithm called CRBP
(Section 2.2) in steps L1-L3, in principle any associative reinforcement learning

algorithm supporting multiple output bits could be employed. Regardless of the

specific choice of algorithm, a reinforcement function is required for learning to pro-

ceed. From a computational point of view, the primary novel contribution embodied

in ERLis the inheritable evaluation function that converts long-time-scale feedback
(lifetime-to-lifetime natural selection) into short-time-scale feedback (moment-to-
moment reinforcementsignals). As we shall see in Section 4, there are both benefits
and risks inherent in this approach.

It is important to recognize that natural selection, when viewed as a compu-

tational paradigm for search and learning, places severe restrictions on possible
adaptation strategies. There are only two circumstances in which a strategy has

decisions to make. The first situation—concerned with learning—is the choice of

behavior for a given agent at a given time step, and the second situation—concerned

with evolution—is the passage of genetic information to the offspring when a birth
occurs. Everything else is determined by the “laws of nature” of the world at hand.



492 David Ackley and MichaelLittman

For example, death requires no action on the part of the strategy. Also, in con-

trast to conventional genetic algorithms,!*17 a strategy is not free to specify the

existence and maintenance of any particular population size, nor who lives, who

dies, and who reproduces. The strategy influences such decisions only indirectly,

via the interactions between the (static and dynamic) properties of the world and
the behavior of the agents governed by the strategy.

2.2. CRBP

The ERL algorithm description in Figure 2 refers to a reinforcement learning algo-

rithm called CRBP—complementary reinforcement back-propagation®—in the im-

plementation of the action network. Although there is neither space nor pressing

need to enter into an extensive discussion of CRBP here, an algorithm summary

and a few brief comments may be useful for the interested reader.

Figure 3 summarizes CRBPas used in ERL to implement steps L1-L3. Com-

pared to previous presentations of CRBP,? this version performs the action function

and the learning function backwards, to reinforce the action at time ¢ based on the
input at time ¢+ 1. Thus, this version of CRBP is a simple temporal reinforcement

learning algorithm.?® Exploringthe effects of incorporating more sophisticated tem-
poral difference algorithms?’ would be an interesting extension to this work.

 

CRBP: Complementary reinforcement backpropagation (ERL version)

Given: A backpropagation network with input dimensionality n and output
dimensionality m, and a reinforcement function f(R",R") > r. Let ¢ = 0.

1. Receive vector i; € R”. Ift = 0 go to 6. Otherwise compute reinforcement

v= f (is te-4).
2. Generate output errors e;. Ifr > 0, let e; = (0; — s;)s;(1— 5;), otherwise

let ej = (1— 0; — 5;)s;(1— 5,).

3. Backpropagate errors.

4. Update weights. Aw, = nexsj, using 7 = ny ifr > 0, and y = y-
otherwise, with parameters 74,7_ > 0.

5. Forward propagate again to produce new s;’s. Generate temporary output

vector o*. If (r > 0 and o* # 0) or (r < 0 and o* =o), go to 2.

6. Set network input to iz. Forward propagate to produces;’s.

7. Generate a binary output vector o. Given a uniform randomvariable £ €
[0,1] and parameter 0 < vy <1,

op adh if (sj -9)/u + 3 > &
7 0, otherwise.

8. Perform the action associated with o. Lett =¢t+1. Go to 1.   
FIGURE 3 Summary of CRBP as used in ERL.
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CRBP extends the back-propagation neural network learning algorithm?? to

reinforcement learning.®:?8 Back-propagation byitself is a supervised learning al

gorithm in which the desired outputs corresponding to given inputs are provided

externally. By contrast, in reinforcement learning the network itself is given the

task of discovering desired outputs—i.e., those that produce a positive reinforce

ment signal. This search task is implemented by step 7, where weighted random

numbers are used to generate an output vector. Thus, the ERL action network has

the job of specifying output probabilities conditional on the current inputs.

Whenthe reinforcement signal is positive, the learning task is fairly clear: The

generated output vector should be made more probable given the same input vector.
If the output vectoris taken as the deszred target, back-propagation learningwill do

exactly that. Negative reinforcement, however, only says that the generated output

vector is wrong, without suggesting which other output vector would be right. What

should the desired target be?

Different reinforcement learning algorithms emerge depending on how that

question is answered. One strategy®® sidesteps the issue by taking the generated
output vector as the undesired target—in essence, simply flipping the signs of the

errors produced in the positive reinforcement case. CRBP embodies a somewhat

stronger heuristic—that the desired output on negative reinforcement is the com-

plement of the generated output. Without @ priori knowledge of the reinforcement
function, all treatments of negative reinforcement are fundamentally heuristic, but

fortunately, since search is an integral part of reinforcement learning,’ the occa-

sionalfailure of the assumption need not be catastrophic.

The loop introduced in step 5 implements a simple form of “mental rehearsal.”

On positive reinforcement, the reward continues until another stochastic output
generation produces the same result as the initial success, and on negative re-

inforcement, the punishment continues until another output generation produces

something different than the initial failure. In empirical studies of CRBP,? this loop
improved learning speed substantially without much overhead.

 

3. WORLD AL

We needed a source of naturalselection to illustrate and evaluate ERL, so we con-

structed an artificial life world we called “AL.” In doing so, we had to balance the

desire for richness and complex interactions against the need for compactness and

computational tractability. The result, has much in common with other artificial

life worlds.5:18:2%29 AJ, is a two-dimensional 100 x100 array of cells populated by
adaptive ERL agents and non-adaptive carnivores, plants, trees, and walls. The
world is summarized in Figure 4 and can also be seen in a video demonstration.4

The various rates and thresholds that determine the artificial physics of AL are

all fixed at constant values, as are the biological and physiological properties of
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FIGURE 4 Summary of World AL.

 

AL agent and carnivore action semantics
 

Contents of

Target Cell

Cell Visual

Appearance

Effect of

Agent action

Effect of

Carnivore action
 

Empty Empty Enter Enter
 

Plant Plant Eatall Enter
 

Empty Tree Tree Climb Noeffect?
 

Agent* in Tree ‘Tree Noeffect No effectt
 

Wall Wall Damageself Damage selft
 

Living carnivore? Carnivore Damage other Damageother!
 

Dead carnivore! Carnivore Eat some Eat some!
 

Living agent Agent Damage other Damage other
   Dead agent Agent  Eat some  Eat some
 

* Living or dead.

t Carnivores as programmedwill not choose these moves.

t Perhaps accompanied bya plant.

FIGURE 5 Effects of agent and carnivore actions.
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all inhabitants. All that must be supplied is an algorithm for agent learning and

evolution, and the nameof the game is mazimize agent population survival time.

The agents receive as input the visual appearance of the closest object not

further than four cells away in each of the four compass directions. Carnivores

can see objects six cells distant. All visual inputs in a given direction take value

zero if only empty cells are visible, and otherwise the input corresponding to the

visual appearance of the occupied cell takes a value from 0.5 to 1.0 proportional to

the closeness of the cell. An additional binary input indicates whether an agent is

currently on the ground or in a tree. Agents also have “proprioceptors” indicating

the amount of energy and health they possess. Agents must produce as output a 2-

bit pattern indicating the compass direction to their choice of target cell. Although

it seems likely that the specific details of the action interpretations in AL are not

critical to our basic results, for the sake of concreteness and as an aid to the reader’s

intuition, Figure 5 presents the complete “semantics” of agent and carnivoreactions.

Agents reproduce by accumulating enough energy from food and die by running

low on energy or health. Injured but alive agents and carnivores recover sponta-

neously over time. Dead agents and carnivores are eaten or simply decay until their

energy is gone. Carnivores reproduce by eating enough agents and die by starva-

tion (almost always), or agent-inflicted damage (very rarely—in a slugfest between
a healthy agent and a healthy carnivore, the agent always loses). At regular in-

tervals a carnivore is created in a random emptycell. Also, though they have not

been observed to be necessary, procedures are included to reseed plants and trees if

their numbersfall perilously low. Agents, of course, as the objects of our population

longevity study, receive no such safety nets.

Simulations of ERL in AL display phenomena at several time scales. Observ-

ing at highest resolution, agents are seen moving about or collecting in corners,

feeding or starving, encountering carnivores and escaping or not, and so on. AL

is not an overly kind world: Most initial agent populations die out quite quickly.

Observing summarystatistics at the x 100 time scale, in those populations that sur-

vive the most apparent features are irregular predator-prey oscillations involving

plants, agents, and carnivores, interspersed with periods of stable or slowly chang-

ing population sizes. In the simulation considered in Section 4, agent population

sizes were oscillating in the 30-60 range when one million steps were reached (see

the x 1,000 view in Figure 6).

3.1. A COMPARATIVE STUDY

Our evaluation of the algorithm consisted of the following test: we ran the sim-
ulation on 100 random initial agent populations and recorded the time at which
they eventually went extinct (up to 1 million time steps). We then used just the

evolution component of the algorithm (E), just the learning component (L), and
neither (I— Fixed random action networks), and ran the sametest. As a baseline,
we tested Brownian agents (B), who simply wander the world at random,ignoring
their inputs.
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FIGURE 6 ERLin AL: Species population sizes vs. time (x 1000) for a long-term
successful agent population.

Figure 7 displays the percentageof initial populations that survived to various
times for each ofthe five variations. No more than 18% of all populations reached
10,000 time steps and only 1.8% reached the 1 million time-step simulation limit.

There is a clear distinction in the first half-million time steps or so between the
two algorithms that included learning (ERL, L) and their non-learning counterparts
(E, F). The latter two algorithms even did poorly compared to the “brainless” B
agents. Learning appears to contribute towards keeping the agents alive during this
period.

Above about half a million time steps, ERL begins to pull away from learning-
only (L), suggesting that evolution has an impact at this timescale. ERL finally
goes on to produce seven populations that last to the 1 million time-step limit.

We were surprised that evolution without learning did so poorly, and that
learning without evolution did so well. The former was surprising since evolution
without learning is a common approachtoartificial life, and the latter was surprising
since, without evolution to improve the evaluation functions, strategy L can never
move beyond on the randomly generated evaluation functions found in the initial
populations.
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FIGURE 7 Cumulative plots showing the distributions of population lifetimes generated

by the five strategies. The point marked with a diamond, for example, indicates that
60% of the strategy E initial populations were extinct by about 1500 time steps.

We hypothesize that evolution alone has difficulty because survival in AL is no

trivial matter: Most agents with randomly generated action networks die quickly

(viz. the strategy F results). This puts evolution at a disadvantage: Either the

population dies out completely before there is time to evolve, or a single survivor

becomes the ancestorof all subsequent agents. In the latter case, all the agents are

close genetic kin, leaving little diversity for evolution to operate upon.

The success of learning alone was noteworthy. It is easy enough to conclude
merely that the space of genetic codes for action networks is moredifficult to search
than the code space for action-plus-evaluation networks, so that strategy L could
simply “luck into” good initial populations often enough to make the difference.

However, that cannot be the whole story. After all, the code space for L is thirty

orders of magnitude larger than that for E, so one might expect it to be harder to

search. Our explanation is that if is easier to generate a good evaluation function
than a good action function.

Notice, for example, that there are two output units in the action network, but
only one in the evaluation network. To specify an action in response to a particular

input requires specifying two weights, but to specify that a particular input is
“sood” requires only one weight. Furthermore,if the evaluation function specifies

that the energy level input is positively valued, then there is pressure towards
making “eating moves” more probable regardlessof the direction of the food source.
Thus, one evolutionarily specified learning weight can have the effect of specifying

the eight action weights involved in response to plants. The insight that strategy L
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highlights is that it can be much easier to specify goals than implementations—

assuming, of course, the existence of a search and learning process adequateto fill
in the details.

ERL, which combines evolution and learning into a single system, is better

at producing long-lasting populations than either alone. The interaction of these

components can result in successful adaptations and stable populations.

 

4. A LONGITUDINAL STUDY

One advantage ofartificial life studies over natural world studies, as we have seen,is

the fact that experimental conditions can be so easily controlled, precisely repeated,

and systematically varied. Another advantage is the abundance of data that such

experiments provide, at whatever granularity we choose.
The object of our study was the population depicted in Figure 6 and on video.*

It was doing well as it reached its 1-million-step birthday. Even in the depths

of population declines, dozens of agents survived. Its very long-term prospects—~
on the multimillion-step timescale—looked good. We reset the simulator to that

population’s initial seed, let it loose with no upper time limit, and went about
other business. By the next morning it had regained the million-step milestone and

pushed into new territory.

Days went by—more millions of steps—and the population survived. Checking

in on the simulation, it was clear that matters were more complex than they ap-

peared at i-million steps. There were periods of very large agent populations, and

dangerous agent population crashes. Eventually, after about a week, almost at the

9 million mark, the sole remaining agent, a memberof the 3,216th generation, died.

Figure 8 displays the population sizes over the entire run. What happened?

Each agent’s genetic sequence consists of 336 bits—84 weights total at 4 bits per
redundantly encoded weight. On average there were 40 agents alive at any one time
and each agent lived approximately 4,000 time steps. Almost 100,000 agents were
born during the entire run, yielding slightly over 4 megabytes of genetic information
from start to finish. Genealogical and census data added several more megabytes.

How does one go about reducing all this data? Averaged population size changes
indicated substantial dynamics in the multimillion step regime, but suggested little
in the way of explanation. We hoped to identify the relative importance of learning

and evolution in the survival of the agents and perhaps even detect changes in the

importance over time. If we were lucky, we hoped to find a genetic explanation for

the instability that lead to the population’s eventual extinction.

The biological literature suggested an approach we found fruitful: functional

constraints. By looking at the changes in given sites on the genomeover the millenia,

biologists argue that one can assess thosesites’ relative importance to survival.
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FIGURE 8 Population sizes vs. time (x 10,000) for full run.

We cameacross functional constraints in an article by Gould,!* who describes

a lovely application of the idea, recounting the work of Hendriks, Leunissen, Nevo,

Bloemendal, and de Jong!® on the blind mole rat spalar ehrenbergi. The argument
runs as follows: at the molecular level, one site is as likely as any other to mutate

during reproduction. On the one hand, some mutations will occur in irrelevant

portions of the genome(for instance, the so-called pseudogenes whichare evidently

non-expressed “commented out” portions of DNA). Such changeswill have noeffect

on the probability of survivalof the offspring, and will, therefore, tend to accumulate

in the population over time.

On the other hand, some mutations will disturb genetic sites that contain infor-
mation crucial to the survival of the organism. These changes will tend to disrupt
the functioning of the organism and will tend not to be passed downtolater gener-
ations. Thus, the lack of observed mutations in a gene sequence,over time, suggests
that sequence is “functionally constrained” by natural selection.

In the case of S. ehrenberg:, the researchers looked at the genes coding for
the protein aA-crystallin, which plays a role in the lens of vertebrates.!® Figure 9

presents some of their data, which they gleaned from a painstaking mix of fossil
data analysis and comparative biochemistry. A base mutation rate is computed

from observed pseudogene mutation rates. In sighted rodent species, the gene for
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Evolution of alpha-A-crystallin genes
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aA-crystallin mutates very slowly compared to the base rate. In Spalaz, they find

that the same gene is changing more rapidly than in sighted rodents but less fast
than pseudogenes. This supports the inference that this sight-related protein has
some survival value to the blind mole rat, but not as much as in sighted rodents.
The functional constraints on a gene are inversely related to its observed rate of
mutation.

Weapplied this technique to the agents in AL. Figure 10 displays the observed

rates of change of three types of genes: the action-related genes associated with

plants, the learning-related genes associated with plants, and a set of genes that

happened to code for nothing in our simulation.

As in the natural world example, we found that the non-coding genes changed
much more quickly over the generations than did the plant-related genes. We can
therefore infer that the plant-related genes were functionally constrained and had
a positive impact on fitness over the lifetime of the population.

Unlike our biological counterparts, with our densely sampled data, we can easily

perform more detailed data analyses. By partitioning the data into pre-600,000 and

post-600,000 time-step periods, we see that the relative importance of learning and

evolution changes (Figure 11). During the first 600,000 time steps, there is little

change in the genesrelated to plant evaluation. Therefore, changes in learning goals
are being selected against—learning is very important to survival. After 600,000,
however, it is the genes controlling the initial action towards plants which are
conserved more. Therefore, inherited behaviors are more significant during this
time.

Oneeffect suggested by the above data is that in the initial periods, the success-

ful behaviors are being represented in the evaluation network and that somehow,

later, these behaviors have showed up in the action networks. In other words,it ap-

pears that in the beginning, agents have learning-related genes that state “Plants

are good”!4] and from this, learn to approach plants. Later in the simulation, how-
ever, their action-related genes recommend approachingplants right from birth.

One might be tempted view this as a Lamarckian effect, with changes during an

organism’s lifetime somehow being transmitted genetically, but the mechanisms of

ERL make direct transmission of acquired characteristics impossible. Fortunately,

there is a Darwinian explanation, an effect first suggested in the biological literature

around the turn of the century by J. M. Baldwin (and several others) that has
come to be referred to as the “Baldwin Effect.”%?4 (Baldwin’s own term for the
phenomenon—organic selection—did not persist, but recently it has been proposed

as a more general term for a variety of effects including Baldwin’s.”*)
With ERL in AL, the Baldwin Effect often appears this way: In the beginning

era of successful populations, agents possess (mostly by luck) learning genestelling

1] “Plants are good” refers to both the antecedent— closeness to plants—and the consequent—

increase in energy— of eating. Similarly “carnivores are bad” refers to both closeness to carnivores

and decrease in health.
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FIGURE 11 Relative importance of learning and evolution as observed by mutation
rates, partitioned into pre- and post-600,000 time-step periods.

them plants are good. This is a big benefit for survival since the agents learn toeat,
leading to energy increases, and eventually offspring. From time to time, action-
related mutations occur that cause agents to approach plants instinctively. These

changes are favored by natural selection because they avoid the shortcoming of each
new agent having to rediscover that plants’ goodness means it should approach

them. Agents begin to eat at birth and are better able to survive.
The Baldwin Effect shows how inherited characteristics can mimic acquired

characteristics in a population using only conventional evolutionary mechanisms.

Though support from biologists for the concept been spotty, the phenomenon has

been previously demonstrated in a computational evolutionary simulation by Hin-

ton and Nowlan®:!® (see also Section 5).
To investigate further, we devised hypothetical fitness models for various sets of

agent genes, based on our sense of world AL.In Figure 12, the two graphs depict the
values over time offitness models for four sets of genes: the plant-evaluation, plant-

action, carnivore-evaluation, and carnivore-action. Maximum plant-evaluation fit-

ness implies a positive view of energy and positive responses to plants in all di
rections. Plant-action fitness is related to the probability that a plant will be ap-

proached in every direction. Carnivore-evaluation fitness incorporates a positive

attitude toward health with negative attitudes towards carnivores in all directions.

Carnivore-action fitness is inversely related to the probability that a carnivore will

be approached in every direction.
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lt must be stressed that these models, though plausible, are only hypothetical.

Lacking a closed form solution, only AL itself can model fitness exactly. For exam-

ple, although the handcrafted agents mentioned in Ackley and Littman? receive a

perfect score in plant-action fitness, their actual fitness, overall, is unclear.

Given these models to estimate genetic fitness, we can see in Figure 12 that in
the plant domain, the Baldwin Effect is evident. Although plant-evaluation fitness is

relatively high throughout the run, plant-action fitness rises steadily to supplantit.

What once had to be acquired, was now inherited by around the 3 million time-step

mark.

Whatleverage do these models give us in understanding the population’s even-
tual demise? We believe a crucial destabilizing factor is visible in the plot of
carnivore-evaluation fitness. It begins fairly low, rises quickly and levels off, then

suddenly plummets and even goes negative for a time. For more than a million time

steps, agents actually liked the sight of carnivores.It is distinctly possible that this

maladaptation contributed to the population’s eventual extinction.
How could this have come to be? Why would natural selection have permitted

such unfit organisms to proliferate? The answer appears to be that the organisms

were not actually unfit even though they possessed this “obvious” flaw. Although
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the carnivore-evaluation fitness was quite poor during the latter half of the sim-
ulation, the carnivore-action fitness was high and gradually increasing. The well-
adapted action network apparently shielded the maladapted learning network from
the fitness function. With an inborn skill at evading carnivores, the ability to learn
the skill is unnecessary.

Our data does not make a strong case for the Baldwin Effect at work in the
carnivore-related genes. In fact, based on preliminary analyses of other successful

runs, it appears that carnivore-action fitness is so important to survival that if the

mitially created agents are not at least partially able to evade carnivores instinc-

tively, the entire population dies out quickly. AL carnivores are dangerous beasts;

without some innate tendency to avoid them, an agentis likely to die before it can

learn to dodge.
Although our data does not clearly demonstrate both the Baldwin Effect and

shielding on the sameset ofgenes, it is easy to foresee the possibility of the combina-
tion, and the peculiar effect—which wecall goal regression—that would be likely

consequence. A successful inherited ability acquired via the Baldwin Effect will not

shield all learning genes equally—it will preferentially affect the learning genes that,

were responsible for the Baldwin Effect to begin with! The very goals that were
known to be adaptive—since they aided population survival initially—are exactly
those that become most shielded and subject to genetic deterioration—since the
inherited abilities supplanted the need for those goals.

Whennatural selection is the only source of feedback, shielding and goal re-
gression are potential hazards wherever the Baldwin Effect is a potential benefit.

 

5. DISCUSSION

The Baldwin Effect depends upon the stability of both a problem and its solution
over evolutionary time. On the one hand, if the solution changes, the genetic acqui-
sition of a specific solution is a lability. On the other hand,if the problem simply

vanishes, any addedfitness for possessing the solution vanishes with it. The effect

can only persist through extended evolutionary time if, somehow, improvements

can continually be added to the solution without ever really solving the problem.

Shielding and goal regression are possible consequences if the Baldwin Effect un-
dermines itself by solving the problem too well.

We can summarize the effects and their relationships this way:

es In an environment that poses a problem for survival, a population arises that

survives because it possesses learning ability and an inborn set of goals that
happens to be best satisfied when the problem is anticipated and avoided.

a Baldwin Effect: As generations pass, ways of anticipating and avoiding the

problem become incorporated and instinctive.
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se A successful inherited ability to avoid a problem—whether a consequence of

the Baldwin Effect or not—meansthat learning to avoid the problem confers
little advantage.

a Shielding: Genetic information related to learning the ability is less constrained

functionally; mutations can accumulate without affecting fitness.

a Goal regression: If the inherited ability did arise via the Baldwin Effect, shield-

ing will preferentially affect the original learning ability that the Baldwin Effect
relied upon.

In effect, the adaptations selected to avoid a problem tend to flatten the fit-
ness subspace related to learning to solve that problem. Goals can arise whose

achievement would actually aggravate the problem, but they can be shielded from

a fitness penalty because the inherited ability tends to avoid situations in which

the possibility of achieving the goals can be discovered.

Given the above descriptions, and scrutinizing Figure 12, a characterization of
the significant evolutionary time-scale events in that simulation would include the
Baldwin Effect at work in the plant-related genes, and shielding in the carnivore-
related genes. Although those seem to be major effects, there are clearly other
contributing factors at work in the simulation. Predation as the challenge to sur-
vival is one such factor, because the size of the predator population, and thus the

severity of the problem, interacts nonlinearly with the ability of the prey to evade.

The reduction in the size of the carnivore population, in effect, increases the size
of the “flat area” in fitness space, because the base rate of predator-prey interac-

tions is reduced. The effect of shielding is exaggerated, and the agent population
risks disastrous “population implosions” when the carnivore population begins to

rebound, giving the maladapted learning networks more opportunities for mischief.

Predation can be contrasted with a less reactive problem—suchas, say, an

ice age—which is largely unaffected by a population’s success at keeping warm

(ignoring possible long-term issues such as interactions between fire-making and
greenhouse gases). In such a case, opportunities for unlearning are hard to avoid

completely, so shielding and goal regression tend to incur a fitness penalty more
quickly.

It may seem strange that we have claimed such a close coupling between the

Baldwin Effect, shielding, and goal regression, given that the simulation of Hinton
and Nowlan!® displays only the first one. In this context, the critical distinction

between their approach and ERLis that they have assumed the a priori existence

of a criterion of success. Their organisms are presumed to possess an ability to

recognize when the problem has been solved and to therefore stop learning, but they
leave open the question of how this ability could be acquired via natural selection.

ERL provides an explanation—its evaluation network is an evolvable criterion of

success—but as we have seen, the price of a mutable evaluation function includes

a long-term risk of goal regression.
Goal regression may also give pause to theorists such as Schull?? who argue

that a species as a whole can fruitfully be viewed as an intelligent entity. The

Baldwin Effect is a central component of that viewpoint, which likens evolution
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to species-level learning, and likens individual organism’s Icarning experiences to

species-level “hypothetical thoughts.” Such viewpoints are not strictly amenable

to proof or refutation, but goal regression raises the possibility that sometimes a

species may fruitfully be viewed as a fairly stupid entity.!?

The architectural spht between actions and goals in ERL challenges Lloyd’s!®
assertion that “organic selection, to the extent that it produces evolutionary change,

eliminates phenotypic plasticity and replaces it with the genes that produce the

local optimal phenotype” (pg. 79, original emphasis). On the one hand, Lloyd’s
claim is clearly true of the Hinton and Nowlan!§ simulation. In that case, adaptive
sites and inherited sites are drawn from the same pool, so more inherited sites
necessarily means fewer adaptive sites. On the other hand, the picture is rather

different with ERL. One must carefully separate the source of individualplasticity—

the learning algorithm and the evaluation network—from any specific goal that may

be represented in the network. Via the Baldwin Effect, a specific goal may cease

to be relevant due to shielding and drift away, but some other goal will necessarily
replace it. The evaluation network is still there, and the learning algorithm; In ERL,
plasticity is not eliminated; at most it is redirected.

 

6. CONCLUSIONS

Weidentified two main interaction effects of learning and evolution in our system.
The first, known as the Baldwin Effect, made it possible for organisms to use learn-
ing to stay alive while waiting for successful behaviors to be incorporated directly
into the genetic code. We feel this accounts for the superiority of ERL over the
systems we studied that used evolution and learning in isolation.

The second interaction effect we encountered had not. previously been stud-
ied in a computational context. Here we saw that successful inherited behaviors
shielded (or reduced functional constraints on) the inherited preferences which con-
trol learned behavior. This effect appears to account for the long-term instability
of the population presented in Ackley and Littman* and Section 4.

In addition, the combination of the Baldwin Effect and shielding can lead to the
phenomenon of goal regression, in which the specific goals that initially facilitated
survival are preferentially eroded.

Functional constraints are powerful tools for inferring the relative impacts of

learning and evolution. The richness ofartificial life datasets allows statistics and
fitness models to be analyzed as detailed functions of evolutionary time—rather

than as scattered sample points—revealing the dynamical behavior of such systems.

Although in our simulations shielding and goal regression seemed to be lia-
bilities, it is worth noting that they have potential benefits as well. The shielded
learning genes might happen upon goals even better the original ones. For exam-
ple, although it is beyond the capability of the simple agents we simulated, the

potential exists in AL for sophisticated agents with shielded plant-learning genes to
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discover agriculture! A rough calculation shows that world AL could easily support

several hundred agents continuously if they controlled the plant population and

dispersal with selective feeding. Such a development could follow from just the sort
of goal—e.g., to walk away from some meals—that could be deadly at the outset.

There are manyobstacles to building and analyzing multiple-scale models. Size

and duration acquire multiple interpretations, introducing fundamental ambiguity

into such basic concepts as equilibrium and stability. Nonetheless, multiple-scale

research efforts such as this one offer hope of uniting the sometimes fractious re-
search groups that are separated only by a scale change. Caughley!° expressed our

sentiments well, while pondering how group selection could possibly occur if natural

selection operates solely at the individual level:

“A resolution to this dilemma must wait for population geneticists to grow
weary of their pivotal assumption that a population has no dynamics, and

for population dynamicists to abandon the belief that a population has no

genetics.” (pg. 113)

Computers, like microscopes, are instruments of empirical science. Multiple-

scale simulation models offer a way of casting light on elusive phenomenathat hide
in the cracks between levels due to scale-crossing interaction effects. Between evolu-

tionary theory and population biology, group selection may be such a phenomenon.

Between cognitive science and neuroscience, the emergence of mind from brain may

be another. The power of the computational microscope is growing by leaps and
bounds, and we are just beginning to learn how to useit.
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