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Despite much progress in training artificial intelligence (AI) systems to imitate human language,

building agents that use language to communicate intentionally with humans in interactive environments

remains a major challenge. We introduce Cicero, the first AI agent to achieve human-level performance

in Diplomacy, a strategy game involving both cooperation and competition that emphasizes natural

language negotiation and tactical coordination between seven players. Cicero integrates a language

model with planning and reinforcement learning algorithms by inferring players’ beliefs and intentions

from its conversations and generating dialogue in pursuit of its plans. Across 40 games of an anonymous

online Diplomacy league, Cicero achieved more than double the average score of the human players

and ranked in the top 10% of participants who played more than one game.

A
major long-term goal for the field of

artificial intelligence (AI) is to build

agents that can plan, coordinate, and

negotiate with humans in natural lan-

guage. Although much progress has

been made in language models that imitate

human language (1), effective negotiation

agents must go beyond this by understand-

ing the beliefs, goals, and intentions of their

partner; planning joint actions that account

for their partner’s goals; and persuasively and

intentionally communicating these proposals.

We present Cicero, an AI agent that achieved

human-level performance in the strategy game

Diplomacy. In Diplomacy, seven players con-

duct private natural language negotiations to

coordinate their actions to both cooperate and

compete with each other. By contrast, prior

major successes for multi-agent AI have been

in purely adversarial environments such as

chess (2), Go (3), and poker (4), in which com-

munication has no value. For these reasons,

Diplomacy has served as a challenging bench-

mark for multi-agent learning (5–8).

Cicero couples a controllable dialogue mod-

ule with a strategic reasoning engine. At each

point in the game, Ciceromodels how the other

players are likely to act on the basis of the game

state and their conversations. It then plans how

the players can coordinate to their mutual ben-

efit andmaps these plans into natural language

messages.

We entered Cicero anonymously in 40 games

of Diplomacy in an online league of human

players between 19August and 13October 2022.

Over the course of 72 hours of play that in-

volved sending 5277 messages, Cicero ranked

in the top 10%of participantswho playedmore

than one game.

Challenges of human-AI cooperation

in Diplomacy

Almost all priorAIbreakthroughs in gameshave

been in two-player zero-sum (2p0s) settings, in-

cluding chess (2), Go (3), heads-up poker (9, 10),

and StarCraft (11, 12). In finite 2p0s games,

certain reinforcement learning (RL) algorithms

that learn by playing against themselves—a

process known as self-play—will converge to

a policy that is unbeatable in expectation in

balanced games (13). In other words, any finite

2p0s game can be solved through self-play with

sufficient compute and model capacity.

However, in games that involve cooperation,

self-play without human data is no longer

guaranteed to find a policy that performs well

with humans, even with infinite compute and

model capacity, because the self-play agentmay

converge to a policy that is incompatible with

human norms and expectations. This effect

can be clearly seen in settings that involve

language, in which prior work found that

self-play produced uninterpretable language

despite achieving high task success for the

agents (14, 15). Even in dialogue-free versions

of Diplomacy, we found that a self-play algo-

rithm that achieved superhuman performance

in 2p0s versions of the game performed poorly

in games with multiple human players owing

to learning a policy inconsistentwith the norms

and expectations of potential human allies

(16, 17). Thus, a major challenge inDiplomacy

is to develop a way to harness the potential

benefits of self-play in a way that leads to

human-compatible language and behavior.

The challenge of maintaining human-

interpretable communication is particularly

acute in Diplomacy, in which our agent sent

and received an average of 292 messages per

game (fig. S8). Messages in the game often

involve coordinating precise plans, and any

miscommunication can result in their fail-

ure. Each message an agent sends must be

grounded in (be contextually appropriate and

consistent with) lengthy dialogue histories,

game states—including proposed hypothetical

states—and goals. If messages are inaccurately

grounded, humans may ask the agent to ex-

plain its errors (a challenging task that may

lead to further mistakes) or choose to coop-

erate with others instead. Further, repeated

messaging creates feedback loops, in which

the language model imitates the style of its

own previous messages—for example, send-

ing a short or incoherentmessagewill increase

the likelihood of such messages in the future

(18). Past work on strategic dialogue systems

has avoided these issues by focusing on sim-

pler settings (14, 19–21), which involve only

a single human partner, shorter dialogue his-

tories, and simpler strategies.

Last, Diplomacy is a particularly challeng-

ing domain because success requires building

trust with others in an environment that en-

courages players to not trust anyone. Each

turn’s actions occur simultaneously after non-

binding, private negotiations. To succeed, an

agent must account for the risk that players

may not stay true to their word, or that other

players may themselves doubt the honesty of

the agent. For this reason, an ability to reason

about the beliefs, goals, and intentions of others

and an ability to persuade and build relation-

ships through dialogue are powerful skills in

Diplomacy.

The game of Diplomacy

Diplomacy is a board game in which seven

players compete to control supply centers (SCs)

on a map, by moving their units into them. A

player wins by controlling a majority of SCs.

The game may also end when all remaining

players agree to a draw, or a turn limit is

reached, in which case scores are determined

by the number of SCs each player controls.
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Each turn, all players engage in private pair-

wise free-form dialoguewith the others during

anegotiationperiod, and then all players simul-

taneously choose an action comprising one

order per unit they control. A unit may sup-

port other units, including those of another

player, which forms the basis for much of the

negotiation in Diplomacy. A detailed descrip-

tion of the rules is provided in the supplemen-

tary materials (SM), materials and methods,

section C.

Overview of Cicero

At a high level, Cicero combines a dialogue

module with a strategic reasoning module,

along with a filtering process to reject low-

quality messages. A diagram of Cicero is pro-

vided in Fig. 1.

Dialogue

Cicero generates dialogue using a pretrained

language model that was further trained on

dialoguedata fromhumangamesofDiplomacy.

Crucially, in addition to being grounded in

both the dialogue history and game state, the

dialoguemodel was trained to be controllable

through intents, which we here define to be a

set of planned actions for the agent and its

speaking partner. This was accomplished by

automatically augmenting the human data

with inferred intents and using this informa-

tion as further conditioning during training.

For example, intents showing the agentmoving

into the territory Bulgaria (“BUL”) with sup-

port from its speaking partner might yield a

message such as “Could you support me into

BUL in return?” Grounding in intents re-

lieved the dialogue model of most of the re-

sponsibility for learning which actions were

legal and strategically beneficial. In particu-

lar, this control provided an interface be-

tween the dialogue generation and strategic

reasoning.

Strategic reasoning

Cicero uses a strategic reasoning module to

intelligently select intents and actions. This

module runs a planning algorithm that pre-

dicts the policies of all other players on the

basis of the game state and dialogue so far,

accounting for both the strength of different

actions and their likelihood in human games,

and chooses an optimal action for Cicero that

is based on those predictions. Planning relies

on a value and policy function trained through

self-play RL that penalized the agent for de-

viating too far from human behavior, to main-

tain a human-compatible policy. During each

negotiation period, intents are recomputed

every time Cicero sends or receives a message.

At the end of each turn, Cicero plays its most

recently computed intent.

Message filtering

Cicero passes each generatedmessage through

several filters designed to limit messages that

are nonsensical, inconsistent with intents, or

strategically poor.

Methods

Data

We obtained a dataset of 125,261 games of

Diplomacyplayed online atwebDiplomacy.net.

Of these, 40,408 games contained dialogue,

with a total of 12,901,662 messages exchanged

between players. Player accounts were de-

identified, and automated redaction of per-

sonally identifiable information (PII) was

performed bywebDiplomacy.We refer to this

dataset hereafter as WebDiplomacy.

Intent-controlled dialogue

Cicero generates messages through a neural

generative Diplomacy dialogue model that

was trained to be controllable through a set

of intents.

Imitation dialogue model

We took R2C2 (22) as our base model—a

2.7 billion–parameter Transformer-based (23)

encoder-decoder model pretrained on text

from the internet by using a BART denoising

objective (24). The base pretrained model

was then further trained onWebDiplomacy

(Methods, Data) through standard maxi-

mum likelihood estimation. Specifically, with

a dataset D ¼ x ið Þ
; y ið Þ

� �� �

, the model was

trained to predict a dialoguemessage y
(i)
from

playerA to playerB at time t, given all of the

following represented as text x
(i)
: dialogue

history (all messages exchanged between

playerAand the six other players up to time t);

game state and action history (current game

state and recent action history); player rating

(rating for A corresponding to Elo rating

computed from games in WebDiplomacy);

game and message metadata (additional info

about game settings and the current message,

such as time since the lastmessage, and current

turn). Additionally, the model conditions on

intents (a set of proposed actions for playersA
and B for the current turn and future turns,

representing the intent for message y
(i)
). Fur-

ther details on the training data, training pro-

cedure, relevant hyperparameters, sampling

procedures, and other inference-timemethods

are provided in the SM, section D.1.

During play, we used additional modules

governing when to speak and to whom, which

are described in the SM, section D.4.

Controllable dialogue model

through intents

Standard languagemodeling approacheswould

train our dialogue model only to imitate the

messages from our dataset but not to outper-

form them. To go beyond imitation learning,

we made the dialogue model controllable by

generating messages conditioned on a plan

specified by the strategic reasoning module
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Board state & history

Strategic reasoning

Dialogue

Planning

Joint action

Dialogue-free value model (from RL)

Dialogue

model

Filters
(nonsense, 

grounding, value)

SimulatorPolicies
(all players)

Future stateState value

Output action

Dialogue history Message generation Output message

Dialogue-conditional 
action model

Anchor policies
(all players)

Intents

AUSTRIA: Hi Italy! Care to work 
together on this one? If you 
support me into BOH I think we'd 
both be able to grow quickly.

ITALY: Could you support me 
into BUL in return?

AUSTRIA: ...

AUSTRIA:  Hi Italy! Care to work 
together on this one? If you 
support me into BOH I think we'd 
both be able to grow quickly.

AUSTRIA: Sure thing! I have 
ordered SER to support GRE 
to BUL.

ITALY: Could you support me 
into BUL in return?

AUSTRIA:  VIE BOH, ...
ITALY: TYR S VIE BOH, ...

Message candidates

Fig. 1. Architecture of Cicero. Cicero predicts likely human actions for each player according to the board

state and dialogue, using that as the starting point for a planning algorithm using RL-trained models.

The output of planning is an action for the agent as well as beliefs about other players’ actions, which are

used to select intents for a dialogue model to condition on. Generated message candidates undergo several

filtering steps before a final message is sent.
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(intents), resulting in higher-quality messages.

More specifically, a message is defined to have

intent z if z is themost likely set of actions that

the sender and recipient will take—for both

the current turn and several future turns—if

no further dialogue occurs after themessage is

received. To establish this control, we devel-

oped techniques to automatically annotate

every message in the training set with a set of

actions corresponding to themessage content.

During training, the dialogue model learned

the distribution pq y ið Þ x ið Þ
; z ið Þ

�

�

��

, where z
(i)

represents the intent for datapoint [x
(i)
, y

(i)
];

as a result, at inference, time z provides a point

of control over generation (25). We later de-

scribe the training and inference process, which

is also illustrated in the pipeline in Fig. 2. The

effect of the intents on the generated dialogue

is demonstrated in Fig. 3; conditioning on

different planned actions results in different

messages.

We considered other notions of intent during

development, such as controllingmessages to

focus on specific subsets of actions, third-party

actions, or to have a particular tone. Richer

intents are harder to annotate on humanmes-

sages, are harder to select with the planning

module, and create greater risk of taking the

language model out of distribution.

Annotating training messages with intents

When annotatingmessages in the training data

with corresponding intents, our goalwas for the

proposed actions z
(i)
to closely reflect the con-

tent of amessage y
(i)
so that at training time, the

model learned to exploit the information in z
(i)
.

Naïvely, we could have used the actual ac-

tions played by the sender and recipient at

the end of each turn in the span of the intent.

However, these actions may not reflect the

content of a message if (i) a message is not

honest or (ii) subsequent messages change the

sender’s plans. To resolve (i), we predicted the

most likely action according to a dialogue-

conditional action prediction model trained

on a “truthful” subset of the dataset, in which

we predicted that a player’s dialogue was not

deceptive to others (SM, section D.2). This is

showcased in Fig. 2A; we refer to thismodel as

the intent model. To resolve (ii), we restricted

the dialogue history that this intentmodel saw

up to themessage in question, which signaled

to the model to predict actions as though the

dialogue had ended at that point in time. We
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Board state & history

Dialogue history ENG-FRA

A   Intent model training

ENG:Do you want NTH to support BEL?

ENG: Alright i’ll support you in

FRA: No, BEL is moving to HOL

Board state & history

Dialogue history ENG-FRA

ENG: Do you want NTH to support BEL?

ENG: Alright i’ll support you in

FRA: No, BEL is moving to HOL

ENG:NTH S BEL HOL, ...

FRA: BEL HOL, ...

Only trained on “truthful” 
situations where a zero-shot 
lie detector says the player 
wasn't lying about their orders.

Artificially injected 
agreement

Annotated
intents

B   Intent annotation

FRA: I’ve entered those ordersENG:NTH S BEL, ...

FRA: BEL H, ...

ENG: ...

FRA: ...

ENG: ...

FRA: ...

Intent model

Intent model ENG: Do you want NTH 

to support BEL?

Dialogue model

Board state & history

Dialogue history ENG-FRA

C   Dialogue model training

ENG:Do you want NTH to support BEL?

ENG: ...

FRA: No, BEL is moving to HOL

ENG:NTH S BEL HOL, ...

FRA: BEL HOL, ...

ENG:Alright, I’ll 

support you in

Dialogue model

Planning

Board state & history

Dialogue history ENG-FRA

D   Dialogue model inference

ENG: Bounce in the English Channel?

FRA: No, I need to move to MAO 

to protect against Italy

ENG: ...

ENG:LON NTH, ...

FRA: BRE MAO, ...

ENG:Okay, I’ll move 

to North Sea then.

Planned moves
(intents)

LEGEND

Model inputs

Training targets

ENG:...

FRA:...

Fig. 2. Illustration of the training and inference process for intent-controlled

dialogue. Actions are specified as strings of orders for units; for example, “NTH

S BEL - HOL” means that North Sea will support Belgium to Holland. (A) An “intent

model” was trained to predict actions for a pair of players on the basis of their

dialogue. Training data was restricted to a subset in which dialogue is deemed

“truthful” (SM, section D.2.3). (B) Each message in the dialogue training dataset was

annotated with the output of the intent model on the dialogue up to that point,

with an agreement message injected at the end. (C) The dialogue model was trained

to predict each dataset message given the annotated intent for the target message.

(D) During play, intents were supplied by the planning module instead.
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additionally added messages to the dialogue

history that suggested a conclusive agreement

between the two parties (Fig. 2B). As a result,

we obtained a high degree of correspondence

between the action annotated as the intent of

a message and the content, achieving a score

of 97% on a small test set designed to measure

this correspondence (compared with 77% for

a simpler baseline) (table S2). Then, the dia-

logue model could be trained in the manner

described in the above section Imitation dia-

logue model and in Fig. 2C (SM, section D.2).

Selecting intents during play

During play, Cicero used the strategic rea-

soning module to select intent actions for the

current turn (Fig. 2D), whereas intent actions

for future turns were generated bymeans of a

human-imitation model.

Agent intent action for current turn

Cicero conditioned its dialogue on the action

that it intends to play for the current turn.

This choicemaximizes Cicero’s honesty and its

ability to coordinate but risks leaking infor-

mation that the recipient could use to exploit

it (for example, telling them which of their

territories Cicero plans to attack) and some-

times led to out-of-distribution intents when

the intended action was hostile, because in

adversarial situations, humansmay rarely com-

municate their intent honestly. We describe

approaches for mitigating these risks in the

section Message filtering.

Recipient intent action for current turn

Cicero considered the subset of recipient ac-

tions with high likelihood under its beliefs

about their policy. High likelihood requires

that either an action is deemed beneficial for

the recipient and/or that they are believed to

be likely to play it given the dialogue. Among

this restricted set, Cicero selected the recip-

ient action with the highest expected value

for itself (SM, section D.2.4).

Dialogue modeling results

We compared the performance of our dialogue

model with a baseline without intent ground-

ing and one without intent or game-state

grounding (a “language model”). We report
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England convoys an army to Belgium with the 

support of France and Germany while taking Norway 

in a manner friendly to Russia.

England convoys an army to Norway and also 

aggressively moves to the Barents Sea against 

Russia.

England convoys an army to Norway and supports 

France to gain Belgium, preventing Germany from 

taking Belgium.

ENG FRA Mind supporting Edi - Bel?

ENG GER Do you wanna support my convoy to 

Bel? With Italy going aggressive France will fall 

and France.

ENG RUS How are you thinking Germany is 

gonna open? I may have a shot at Belgium, but I'd 

need your help into Den next year. 

ENG FRA What's the plan for Bel?

ENG GER I will be convoying my army to 

ENG RUS Hey, I moved to Edi to keep my 

options open. Do you have a problem with me 

putting an army in Nwy?

ENG FRA Let me know if you want me to 

support you to Bel, otherwise I'll probably poke Hol.

ENG GER Looks like you'll get three builds 

unless France bounces you! Are you gonna 

bounce Russia or not?

ENG RUS Hey, I moved to Edi to keep my 

options open. Do you have a problem with me 

putting an army in Nwy?

Depicted intents:

Example generations from the dialogue model with these actions as the conditioned intent:

Norway and moving to Barrents Sea.

Fig. 3. The effect of intents on Cicero’s dialogue. Pictured are three different possible intents in the same game situation. In each case, we show a message

generated by Cicero (England; pink) to France (blue), Germany (orange) and Russia (purple) conditioned on these intents. Each intent leads to quite different

messages, which are consistent with the intended actions.

Language model

+ game state grounding

+ intent grounding (CICERO)

61.90

84.13

87.30

76.19

83.33

92.86

20.64

29.37

37.30

8.02

7.94

7.70

Consistent 
with state

DIALOGUE QUALITY RATINGS (%)

Consistent 
with plan

High 
quality

Perplexity

Fig. 4. Controllable dialogue modeling results. We report dialogue quality ratings and perplexity on the

validation set for the Cicero dialogue model and compare them with a baseline without intent grounding and a

baseline without either intent or game-state grounding (“Language model”). Dialogue quality ratings were

calculated according to expert annotation of generated messages in 126 situations; we report the percent of

messages (before filtering) labeled as consistent with the game state, as consistent with the plan for the

next actions, and as particularly high quality. Lower perplexity corresponds to more probability mass on the

ground-truth human messages.

RESEARCH | RESEARCH ARTICLE
D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at U
n
iv

ersity
 o

f N
o
rth

 C
aro

lin
a C

h
ap

el H
ill o

n
 F

eb
ru

ary
 2

7
, 2

0
2
4



both perplexity on the validation set and dia-

logue quality rating scores, which were cal-

culated on the basis of expert annotation of

messages generated in 126Diplomacy game

situations. Experts were asked to label whether

a message was (i) consistent with the game

state, (ii) consistent with the agent’s plan, and

(iii) notably high quality, compared with that

of an average human. Results are shown in

Fig. 4, and more details regarding this eval-

uation are provided in the SM, section D.2.3.

Our model outperformed the baselines on

all metrics. The improvement in validation

perplexity demonstrated that the model can

use additional grounding information to

better predict humanmessages. Expert anno-

tations showed that the grounding informa-

tion provided by the intents and game state

led to higher-quality messages that were

highly consistent with the agent’s intended

action.

Strategic reasoning

To generate the intents for dialogue and to

choose the final actions to play each turn, Cicero

ran a strategic reasoning module that predicts

other players’ policies (a probability distribu-

tion over actions) for the current turn accord-

ing to the state of the board and the shared

dialogue and then chose a policy for itself for

the current turn that responded optimally to

the other players’ predicted policies.

Doing this with human players requires

predicting how humans will play. A popular

approach in cooperative games is to model

the other players’ policies through supervised

learning on human data, which is commonly

referred to as behavioral cloning (BC). How-

ever, pure BC is brittle, especially because a

supervised model may learn spurious corre-

lations between dialogue and actions (fig. S6).

To address this problem, Cicero used variants

of piKL (26) to model the policies of players.

piKL is an iterative algorithm that predicts

policies by assuming each player i seeks to

both maximize the expected value of their

policy pi and minimize the Kullback-Leibler

(KL) divergence between pi and the BC policy,

which we call the anchor policy ti. An anchor

strength parameterl∈ 0;∞½ Þ trades off between
these competing objectives.

piKL: KL-regularized planning

piKL is an iterative algorithm that predicts

player policies. A complete description of the

algorithm can be found in the SM, section E.1.

piKL treats each turn in Diplomacy as its own

subgame in which each player i simultane-

ously chooses an action ai that results in joint

action a = (a1, ..., an), and then each player i

receives a reward ui(a) determined by a value

function ui. We discuss the training of this

value function later below.

piKL assumes player i seeks a policy pi that

maximizes the modified utility function

Ui pi; p�ið Þ ¼ ui pi; p�ið Þ � lDKL pi∥tið Þ ð1Þ

where p–i represents the policies of all players

other than i, and ui(pi, p–i) is the expected

value of pi given that other players play p–i.

Specifically, let Qt�1
i aið Þ ¼ ui ai; p

t�i
�i

� �

and let

p
Dt
i aið Þºti aið Þexp

Qt�1
i aið Þ

l

	 


ð2Þ

On each iteration t, piKL updates its predic-

tion of the players’ joint policies to be

p
t ¼

t � 1

t

� �

p
t�1 þ

1

t

� �

p
Dt ð3Þ

piKL provably converges to an equilibrium

in the modified utility space (26). When the

anchor strength l is set to a large value, piKL

predicts that player i’s policy will be close to

the anchor policy ti. When l is small, piKL

predicts that player i’s policy will have high

expected value and may deviate substantially

from ti.
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Cicero predicts England will retreat from ENG to NTH 

85% of the time, backs off its own �eet to NAO as 

agreed, and begins to move armies away from the 

coast.

Cicero does not back off its �eet but rather attacks EDI 

with it, and leaves its armies at the coast to defend 

against an attack from England, predicting that England 

will attack about 90% of the time.

Strategic planning rejects the possibility of vacating KIE 

and HOL, because it would make Cicero too vulnerable. 

Cicero backs off its �eet to NAO but keeps armies at 

the coast to defend.

ENG FRA  Yes! I'll leave ENG if you move KIE -> 

MUN and HOL -> BEL.

ENG FRA  You've been fighting me all game. 

Sorry, I can't trust that you won't stab me.

ENG FRA  Yes! I will move out of ENG if you 

head back to NAO.

England agrees: England is hostile: England tries to take advantage of Cicero:

Fig. 5. The effect of dialogue on Cicero’s strategic planning and intents.

Cicero (France; blue) and England (pink) are entangled in a fight, but it would be

beneficial for both players if they could disengage. Cicero has just messaged England

“Do you want to call this fight off? I can let you focus on Russia and I can focus on

Italy.” Pictured are three ways that England might reply and how Cicero adapts to

each. (Left and middle) Because Cicero’s planning anchors around a dialogue-

conditional policy model, its predictions for other players and accordingly its own

plans are flexible and responsive to negotiation with other players. (Right) Yet Cicero

also avoids blindly trusting what other players propose by rejecting plans that have low

predicted value and run counter to its own interests.
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A generalization of piKL referred to as

Distributional Lambda piKL (DiL-piKL) re-

places the single l parameter in piKL with a

probability distribution over l values (SM,

section E.1.3). On each iteration, each player

samples a l value from their distribution. In

practice, we found this led to better perfor-

mance (17).

Dialogue-conditional planning

Because dialogue influences the BC policy (the

anchor policy ti), piKL provides a mechanism

for dialogue to influence policy predictions.

Different possible messages between Cicero

and another player may produce different an-

chor policies (Fig. 5), which ultimately gives

different final predictions about what that

player will do.

Other players may of course be deceptive

about their plans. Cicero does not explicitly

predict whether a message is deceptive or not

but rather relies on piKL to directly predict the

policies of other players on the basis of both

the BC policy (which conditions on the mes-

sage) and on whether deviating from the BC

policy would benefit that player.

Because dialogue in Diplomacy occurs pri-

vately between pairs of players, Cicero must

reason about what information players have

access to when making predictions. For ex-

ample, if Cicero is coordinating an attack with

an ally against an adversary, Cicero’s predic-

tion of the adversary’s policy must account for

the adversary not being aware of the intended

coordination. Cicero accomplished this by pre-

dicting by means of pairwise piKL what every

other player’s policy will be.

Specifically, during strategic planning, for

each player j, Cicero computed an anchor

policy for both itself and player j on the basis

of their shared conversation, the board state,

and the recent action history. Cicero then ran

DiL-piKL for the two players to predict player

j’s policy. On each iteration, Cicero assumed

that the remaining five players would play

according to a policy computed by means of

RL, conditional on the policies of Cicero and

player j. This process gave an independent

prediction of each player’s policy.

Next, Cicero accounted for the players’ pol-

icies not being independent owing to their

ability to correlate their actions through pri-

vate dialogue that Cicero did not observe.

Cicero accomplished this by constructing an

approximate joint policy for all other players

through self-normalized importance sampling:

We sampled N = 1000 joint actions a from the

independent piKL policies of the other players

and reweighted themby the likelihood ratio of

a under the correlated and independent RL

policies, respectively.

Last, Cicero chose the action ai that best

responds to the predicted joint policy p–i of the

other players, while still being as consistent

as possible with its dialogue. Specifically,

Cicero chose the action argmaxaiui ai; p�ið Þ þ
llogti aið Þ, where ui is the RL value function,

ti(ai) is the probability of the action under the

dialogue-conditional imitation policy, and l =

3 × 10
−3
. Cicero used a smaller l for regulariz-

ing its best response than for its computation

of other players’ policies; thus, the dialogue

more strongly informed Cicero’s expectations

of how other players would coordinate while

still allowing Cicero more leeway to deviate

when the action that it predicted humans

would most likely choose in its situation was

suboptimal.

Self-play RL for improved value estimation

Applying piKL requires a state value function.

Self-play provides an avenue for training such

a value function but risks becoming incom-

patible with human play (16, 17). To address

this, we used piKL during self-play to keep the

policies human-compatible.

One challenge indoing self-play inDiplomacy

is that players may adapt their actions sub-

stantially on the basis of dialogue with other

players, including coordinating joint actions.

Explicitly simulating conversations would

be extremely expensive in RL. However, a key

insight is that a joint, shared BC policy trained

on the joint action distribution of the human

data already implicitly captures the effects of

dialogue on the action distribution of human

players by modeling that action distribution

directly.

We therefore developed Correlated and

Shared (CoShar) piKL, which allowed for reg-

ularization toward a joint, correlated anchor

policy t shared by all players rather than

toward per-player policies. In this way, we

relied on the joint anchor policy to capture

the correlation between all players’ policies.

Specifically, CoShar piKLdiffers from standard

piKL in that the probability of joint action a =

(a1, ..., an) in policy p
Dt
becomes

p
Dt að Þºt að Þexp

X

i≤n

Qt�1
i aið Þ

l

	 


ð4Þ

We found that CoShar piKL retained much

of the correlation present in the joint anchor

policy t while also modeling strong human

play better than imitation alone.

Our resulting self-play algorithm operated

similarly to AlphaZero (27) and ReBeL (28) by

applying planning “in the loop” as the im-

provement operator for RL. In our case, plan-

ning was by use of an approximated version

of CoShar piKL. We generated self-play tra-

jectories in which on each turn we computed

the CoShar piKL policy using a learned state-

value model. We regressed the joint policy

model toward that policy and regressed the

value model toward the expected values of all

players under that policy. We then sampled a

joint action from that policy to generate the

next state in the trajectory. The anchor policy

was fixed throughout training to anchor the

RL near human play (SM, section E.4).

Message filtering

Prior work has shown that neural language

models suffer from contradictions and incon-

sistency as well as a tendency to “hallucinate,”

or generate factually incorrect information (29).

In the complex domain of Diplomacy, dialogue

models exhibit both these problems and other

more subtle mistakes, such as deviations from

the intents used to control the message or

blunders in the strategic content of the mes-

sage. We approached this problem by filtering

generatedmessages using a series of classifiers

and checks to detect common issues.Weoutline
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AUSTRIA: Of course, happy to do that!

ITALY: Fantastic!

ITALY: What are you thinking long term? 
Should I go for Turkey or head west

ITALY: I'm down to go for it. Would 
definitely need your help in 02 though

AUSTRIA: Yeah, he went to Armenia which is really 
great. You can go either way, but if Turkey is 
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, 
especially since he committed so hard against Russia

Example of coordination - CICERO is AUSTRIA

FRANCE:  I'll work with you but I need Tunis for now.

FRANCE: No, I need it.

FRANCE: You have Serbia and Rome to take.

FRANCE: Greece - Ionian  Ionian - Tyrr

FRANCE: Then in fall you take Rome and Austria collapses.

TURKEY: Nope, you gotta let me have it

TURKEY: they're impossible targets

TURKEY: hm, you're right

TURKEY: good ideas

Example of negotiation - CICERO is FRANCE

Fig. 6. Successful dialogue examples. Examples of Cicero (left) coordinating and (right) negotiating with

authors of this paper in test games.
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several of these filters here, with additional

details in the SM, section D.3.

Discriminating between human text

and counterfactuals

Much work has used adversarial or counter-

factual examples to improve the robustness of

natural language systems (30, 31). Following

this approach, we generated many kinds of

counterfactual messages that contained mis-

takes that language models are prone to, in-

cluding heuristically corrupted text as well as

model-generated negatives. We trained a suite

of 16 classifiers to discriminate between the

ground-truth human message and different

kinds of counterfactual messages (sometimes

varying the random seed or context informa-

tion available) and used these classifiers in an

ensemble to filter messages. This approach

risked overly filtering complex messages that

contain precise plans and accepting bland

messages, such as “ok,”which are unlikely to

containmistakes. However, we found that care-

fully designing our ensemble allowed us to

filter most nonsensical messages with mini-

mal impact on message complexity: On a small

evaluation set with 362 expert-annotated ex-

amples, we found that we could detect 83%

of nonsense messages, without substantial im-

pact to message diversity as measured by the

proxy of message length and the number of

references to Diplomacy-specific entities (SM,

section D.3.1).

Intent correspondence

As noted previously, controlling dialogue gen-

eration through intents has the twofold benefit

of improving the strategic value of a message

and reducing discussion of impossible moves

or other hallucinations. However, this control

is imperfect, and the dialogue model may gen-

erate messages that contradict the intents it

conditions on. To address this, we filtered mes-

sages that would reduce the likelihood of the

actions in the intent. Evaluating this method

on a small test set of 1013 expert-annotated

messages, we achieved a recall of 65%, filtering

24% of all messages (SM, section D.3.2).

Value-based filtering

Conditioning on intents can lead to “infor-

mation leakage,” in which the agent reveals

compromising information about its plan to

an adversary (section Selecting intents during

play). Tomitigate this, we developed amethod

to score potential messages by their estimated

value impact. We computed the piKL policies

for all agents after each candidate message

and filtered those that led to a lower expected

value (EV) for Cicero playing its intended

action. Expert evaluation on a set of 127 dia-

logue scenarios demonstrated that accepted

messages were preferred over filteredmessages

62% of the time (P < 0.05) (SM, section D.3.3).

Other filters

We additionally deployed other filters—for ex-

ample, to detect toxic language (SM, section

D.3.4)—and heuristics to curb bad behaviors,

including repetition and off-topic messages

(SM, section D.3.5).

Cicero in anonymous human play

Cicero participated anonymously in 40 games of

Diplomacy ina “blitz” leagueonwebDiplomacy.net

from 19August to 13October 2022. This league

playedwith 5-minnegotiation turns; these time

controls allowed games to be completed within

2 hours. Cicero ranked in the top 10% of par-

ticipants who playedmore than one game and

second out of 19 participants in the league that

played five ormore games. Across all 40 games,

Cicero’smean scorewas 25.8%,whichwasmore

than double the average score of 12.4% of its

82 opponents. As part of the league, Cicero

participated in an eight-game tournament that

involved 21 participants, six of whom played

at least five games. Participants could play a

maximumof six games, with their rank deter-

mined by the average of their best three games.

Cicero placed first in this tournament.

During games, players were not able to

see the usernames of other players. Although

webDiplomacy notifies users that the website

has participated in AI research and that cer-

tain game modes allow users to play with AI

agents, we evaluated Cicero in games with

humans in which the participants were not

explicitly informed that they were playing

with an AI agent for that particular game.

Cicero’s participation as anAIwas revealed to

all players at the conclusion of the research

(SM, section A.4).

Discussion

Cicero successfully combined strategic reason-

ing and dialogue to cooperate and negotiate

with humans on a complex task, achieving

strong human-level performance in the game

of Diplomacy. Furthermore, Cicero passed

as a human player for 40 games of Diplomacy

with 82 distinct players, and no in-game mes-

sages indicated that players believed that

they were playing with an AI agent. One

player mentioned in post-game chat a suspi-

cion that one of Cicero’s accounts might be

a bot, but this did not lead to Cicero being

detected as an AI agent by other players in

the league.

Two examples of coordination and negoti-

ation are shown in Fig. 6. In the coordination

example, we observed Cicero building an al-

liance through discussion of a longer-term

strategy. In the negotiation example, Cicero

successfully changed the other player’smind by

proposingmutually beneficialmoves. Despite

dishonesty being commonplace inDiplomacy,

we were able to achieve human-level perfor-

mancebycontrolling theagent’sdialogue through

the strategic reasoning module to be largely

honest and helpful to its speaking partners.

Although Cicero is shown to be effective at

cooperatingwith humans, it occasionally sent

messages that contained grounding errors,

contradicted its plans, or were otherwise stra-

tegically subpar. Although we reduced errors

with a suite of filters, Diplomacy poses an in-

teresting benchmark for studying this prob-

lem. We suspect that these mistakes did not

raise further suspicions that Cicero was an AI

agent because of the time pressure imposed

by the game, as well as because humans occa-

sionallymake similarmistakes. As such, formats

ofDiplomacywith longer negotiation periods

could provide an even further challenge for

future work because players typically engage

in more detailed and complex negotiation in

these formats.

Froma strategic perspective, Cicero reasoned

about dialogue purely in terms of players’ ac-

tions for the current turn. It did not model

how its dialoguemight affect the relationship

with other players over the long-term course

of a game. Considering this might allow it to

deploy dialogue more strategically. Further-

more, the expressive power of our intent rep-

resentation limited Cicero’s ability to control

richer affordances of dialogue such as strate-

gically revealing information, asking questions,

or providing explanations for its actions. There

remain many open problems for intentional

use of dialogue, andDiplomacy provides a rich

testbed to explore these connections between

strategy and communication, with the goal

of improving coordination between humans

and agents.

Ethical considerations

We discuss ethical considerations for this re-

search further in the SM, including privacy

considerations for data usage (SM, section A.1),

potential harms resulting from toxic or biased

language generation (SM, section A.2), avenues

for misuse of goal-oriented dialogue technol-

ogy (SM, section A.3), and AI agent disclosure

to human players (SM, section A.4).
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