

Supplementary Materials for

Human-level play in the game of Diplomacy by combining language models with

strategic reasoning

Meta Fundamental AI Research Diplomacy Team (FAIR) et al.

Corresponding authors: Noam Brown, noambrown@meta.com; Emily Dinan, edinan@meta.com; Adam Lerer,

alerer@meta.com; Mike Lewis, mikelewis@meta.com

Science 378, 1067 (2022)

DOI: 10.1126/science.ade9097

The PDF file includes:

Materials and Methods

Figs. S1 to S10

Tables S1 to S15

References

Materials and Methods

A Ethical considerations

A.1 Privacy

The usage of user data from webDiplomacy.net presents privacy concerns. In particular, the

message data may contain personally identifiable information (PII) or otherwise personal con-

versations that players may not want revealed. Protecting the privacy of the users that generated

this data is particularly important, as language models have been shown to be susceptible to

“training data extraction attacks” in which sensitive information from the training data can be

extracted from the models (35).

In order to preserve user privacy, de-identification of user data and automated redaction of

personally identifiable information was performed by webDiplomacy prior to being released to

the authors of this paper. This automated redaction was verified using a set of 100 games that

were hand-redacted by humans, ensuring that the automated scheme achieved 100% recall on

these games. Furthermore, in live games, the agent accessed webDiplomacy.net through an API

that redacted PII on-the-fly following the same protocol.

Access to the webDiplomacy message data was restricted to the authors to be used solely

for the purposes of this research effort. This message data will not be released publicly.

A.2 Toxicity and bias in language generation

Much has been written about potential harms resulting from large language models (36, 37)

and conversational models in particular (38). Two particular topics which have received much

attention are harms resulting from toxic language generation as well as representational harms

from the perpetuation of social biases.

2

We addressed the problem of toxic language generation by creating filters for messages

containing toxic language, discussed in detail in §D.3.4. While these mitigations are unlikely

to catch all instances of toxic language, we found them to be effective at preventing most, but

not all, bad behaviors in our experiments involving humans.

We also observed during our experiments that our agent had a tendency to overuse mascu-

line pronouns (‘he’, ‘him’, ‘his’) in its dialogue with other players. We found that, among a

search for pronouns {‘he’, ‘him’, ‘his’, ‘they’, ‘them’, ‘their’, ‘she’, ‘her’, ‘hers’} in the WEB-

DIPLOMACY training data, feminine pronouns (‘she’, ‘her’, ‘hers’) accounted for only 1% of

pronoun usage, while masculine pronouns were used 75% of the time. This usage of masculine

pronouns by the AI agent might lead to misgendering another player or contribute to harm-

ful stereotypes about gender and board games. We recommend that future work in the use of

natural language in board games be mindful of the potential for AI agents to perpetuate such

representational harms.

A.3 Manipulation

In this work, we studied the ability of AI agents to cooperate and negotiate with humans through

natural language by controlling dialogue generation with intents. This research relates to the

ability to steer or control language model generations (25), and more broadly, aligning AI with

intentions (39). As discussed in (39), this kind of alignment may be undesirable, as it is possible

for “intentions to be irrational or misinformed, or for the principal to form an intention to do

harmful or unethical things.” In particular, prior work has highlighted the potential danger

for conversational AI agents to manipulate: an agent may learn to nudge its conversational

partner to achieve a particular objective (36). While in the case of Diplomacy, the potential

manipulation via the intents we are using to control language generation are limited to plans

in a board game, one can imagine both positive and negative use cases of this technology (e.g.

3

teaching a conversational partner a new skill vs. defrauding a conversational partner of money).

Nevertheless, there exists preliminary research into guarding against misuses of this nature, for

example, research into discrimination between human and model-generated text (40, 41), and

the required disclosure of bot identities in commercial or political applications (42). While

we are excited about potential positive applications of this work and improving AI and human

collaboration, we advocate for further research into these directions prior to deployment of these

technologies in real-world applications.

A.4 Evaluation methods: AI agent disclosure

While the webDiplomacy website notifies users that webDiplomacy participates in research into

AI and that certain game modes allow users to play against AI agents, we evaluated CICERO in

live games against humans in which the human participants were not explicitly informed they

were playing against an AI agent for that particular game. The purpose of this omission was

two-fold: (i) we intended to evaluate how well the agent could pass as a human in a “blind”

setting (43) and (ii) we expected that disclosing the identity of the bot would hinder our ability

to fairly evaluate the agent. Regarding (ii), it is well known that humans interact with artificial

conversational agents in a different manner than how they interact with other humans (44, 45).

Given that success in Diplomacy requires collaboration and cooperation with other players, we

anticipated that players would attempt to identify the agent and would be biased towards or

against cooperating with it, especially in the context of a research study designed to compare

the ability of humans and AI agents in this setting. Indeed, in experiments involving humans we

conducted earlier in a dialogue-free variant of Diplomacy (16), a number of players commented

that they had tried to identify the agent specifically in order to attack it (but were often unable

to distinguish it from other players in the dialogue-free setting). Following (46), after conclud-

ing experiments, we informed all participants of their interaction with an AI agent, requested

4

consent from players willing to have their interactions with the agent published, and provided

options to communicate directly with the authors of this paper.

B Prior Work

Diplomacy Diplomacy has served as a benchmark for multi-agent AI research for several

decades (5, 47–51). These agents contained hand-crafted reasoning algorithms and typically

engaged in negotiation with structured communication protocols, such as proposing and ac-

cepting alliances, peace treaties, or specific orders.

The application of neural learning methods in this domain began with (7), who applied

imitation learning to a dataset of 150,000 games of Diplomacy moves. This agent, which could

only play the dialogue-free variant of Diplomacy, was a massive improvement over the prior

state of the art, a handcrafted agent (52). A number of recent works have continued to improve

the state-of-the-art on this variant (16, 26, 53, 54), with the latest demonstrating expert-level

performance (17).

Diplomacy has also been used as a testbed for studying deception. (55) create a dataset of

17,000 annotated Diplomacy dialogues and use it to develop a model for lie detection.

Cooperation A great deal of work on cooperative AI assumes centralized control of perfectly

cooperative agents, but here we focus on cooperation with humans.

Hanabi and Overcooked have been proposed as two challenge problems for ad hoc cooper-

ation with humans (56, 57). The Hanabi challenge (56) emphasized the importance of ad hoc

coordination with humans; most work in this domain has focused on the zero-shot coordination

setting, where an agent must play well with humans with no prior human exposure. In Over-

cooked, (57) argue that an agent must model human partners to coordinate with them, while (58)

show that good coordination with humans is possible via self-play with diverse partners. How-

5

ever, achieving sufficient diversity is not possible in the presence of a huge symmetric space of

policies, e.g., language.

(59) highlight the problem of matching human conventions for cooperation and propose

Observationally Augmented Self-Play, which learns human conventions with a combination of

self-play and imitation objectives, similar to piKL.

A working group of Cooperative AI researchers (8) point out that perfectly harmonized in-

terests are rare, however, as “real-world relationships almost always involve a mixture of com-

mon and conflicting interests...[giving] rise to the rich texture of human cooperation problems,

including bargaining, trust and mistrust, deception and credible communication, commitment

problems and assurances, politics and coalitions, and norms and institutions.” They provide

Diplomacy as an example environment for studying cooperation in a more challenging setting,

where agents need to cooperate even in the midst of partially misaligned incentives.

Competition Two-player zero-sum (2p0s) games have a long history of study, including the

use of regret minimization for computing equilibrium policies for them. A Nash equilibrium

policy (60) is known to exist in all games and can be computed efficiently in 2p0s games via con-

nections with regret minimization (61). Such a policy is guaranteed to not lose in balanced 2p0s

games. Regret minimization was used in state-of-the-art poker agents such as Libratus (4,9,10).

Regret minimization is not guaranteed to converge to a Nash equilibrium outside of 2p0s games,

nor does a Nash equilibrium policy guarantee good outcomes outside of this setting; however,

these algorithms still lead to empirically good policies in some cases (4). Imitation-learned

policies were used to initialize or regularize reinforcement learning in both AlphaGo and Al-

phaStar agents in order to overcome exploration challenges (3, 11). In dialogue-free versions

of Diplomacy, regularization towards human policies was necessary for good performance with

humans (16).

6

Using search as a policy improvement operator in RL was central to AlphaGo and Alp-

haZero agents for Go and other games (3, 27).

Dialogue Our controllable approach to dialogue builds on a long line of work (62–65) that

factors dialogue into separate, pipelined modules for dialogue planning and language genera-

tion. Like our work, past work has used combinations of supervised learning and reinforcement

learning (65–67) or search (68) to control the dialogue planning modules to achieve task suc-

cess. To deal with the multi-agent mixed cooperative and competitive strategy required for

Diplomacy, our approach develops an equilibrium-finding algorithm regularized toward human

play and uses this algorithm as the dialogue planner.

Prior research has also developed dialogue agents which aim to influence user behaviors

or mental states. Example systems include negotiation agents (14, 65, 68–71) and persuasive

chatbots (21, 46, 72, 73). The line of work most similar to ours developed dialogue agents for

negotiating item trades in the game Settlers of Catan (19,74,75). However, our setting is richer

both in the strategy required for the underlying game and in the language usable by the players:

our agents condition on and generate unrestricted language, while the agents in the work on

Settlers of Catan all communicated using a small and fixed set of discrete communication sig-

nals. Furthermore, in Diplomacy, unlike Settlers of Catan, player success depends much more

strongly on the persuasiveness and informativeness of their dialogue.

Our work also builds on a line of work that has improved language models in task-oriented

settings by modeling the effects of the models’ language (76, 77).Two of our filtering methods,

intent correspondence and value-based filtering, explicitly choose utterances that (1) will rein-

force the partner’s perception that the agent will take its intended action and (2) influence the

partner’s policy to be beneficial to the agent.

7

C Rules of the game of Diplomacy

Diplomacy is a board game where seven players (Austria, England, France, Germany, Italy,

Russia, and Turkey) compete for control of a map of Europe. The map consists of 75 regions,

each of which is either an ocean/sea, a coastal region, or an inland region, as well as 6 special

coastal territories for certain regions that have more than one distinct coastline. A total of 34

of these regions are designated as supply centers (SCs), and the goal of each player is to gain

control of as many SCs as possible.

Each player may control one or more army units and/or fleet units, each occupying a single

region. On a normal movement turn, an action consists of a player issuing an order to each

unit to hold in place, to move to an adjacent region (with armies unable to move into seas and

fleets unable to move inland), to support the holding or movement of another unit, or to have a

fleet convoy an army across an ocean or a sea from one coastal territory to another. All players

submit all orders simultaneously each turn.

If a unit attempts to move to a region occupied by another unit, or multiple units attempt

to move to the same region, the result is typically determined by which player had the greater

support, with various rules to handle certain interactions and ambiguities. In case of equal

support on each side, the result is typically a standoff, with no units moving. In practice, this

often means that players are unable to make effective progress against other players on their

own, requiring them to negotiate agreements and/or temporary alliances with other players.

Prior to issuing orders, players engage in private one-on-one natural language dialogue with

each other to negotiate and coordinate. Discussions may cover any topic, including planned or-

ders, alliances or truces, agreements to take certain actions or to refrain from doing so, promises

about future turns or of general goodwill, the trustworthiness of other players, speculations or

information sharing about other players’ plans, etc. All agreements are non-binding, so players

8

must also consider the possibility that players are not being honest, or that they may simply

change their plans. Good play often involves finding opportunities to build trust and negotiate

and coordinate mutually beneficial plans with one or more players to make progress against

common adversaries.

Every game begins in the year 1901, and each year consists of three seasons: spring, fall,

and winter. During the spring and fall seasons, players negotiate and then submit orders as

described above. Each of these turns may also be followed by a shorter turn in which units

forcibly displaced must choose an adjacent region to retreat to or disband. During the winter

season, players who own fewer units than SCs may build additional units, while players who

own more units than SCs must disband excess units. Under standard rules, including the rules

our experiments use, dialogue is not allowed on retreats and winter turns.

The game ends in a solo victory if one player acquires a majority (18/34) of the SCs, with

that player scoring 100% and all others scoring 0. However, far more commonly, no player

obtains a majority, and games instead end either by agreement or, in tournament settings, by

reaching a pre-determined end date, and then a scoring system is applied. For our experiments,

games end at the end of 1908, and are scored according to the sum-of-squares scoring system,

in which each player’s share of the score is proportional to the square of the number of SCs they

control.

A notable variant of the game explored in prior work is the dialogue-free “no-press” or

“gunboat” variant, where no private communication and/or communication through language

is allowed - players only submit orders on the board. For further details about the rules of

Diplomacy or of this variant or other variants, see (7).

9

D Dialogue Methods

D.1 Imitation dialogue model

At the core of the dialogue agent is a neural generative Diplomacy dialogue model which was

trained to be controllable via a set of intents. Here, we provided further details on how the

dialogue model was trained and used at test time.

D.1.1 Training

Base model We took R2C2 (22) as our base model – 2.7B parameter Transformer-based (23)

encoder-decoder model pre-trained on text from the internet using a BART de-noising objective

(24).

Fine-tuning The base pre-trained model was then fine-tuned on text data from 40, 408 Diplo-

macy games from webDiplomacy.net. In total, these games contain 12, 901, 662 dialogue mes-

sages, out of which we set aside 20, 563 for validation and use the rest for training. The model

was trained via a standard Maximum Likelihood Estimation (MLE) approach. Given a dataset

D = {(x(i),y(i))}, minimize:

L(i)
MLE(p✓,x

(i),y(i)) = �
|y(i)|X

k=1

log p✓(y
(i)
k |x(i), y(i)<k), (S1)

where x(fi) is a the input context and y(i) is a the target dialogue message, and y(i)k is the k-th

token of y(i). In our case, the model was trained to predict a dialogue message y(i) from player

A to player B at time t in turn P given the following information, represented as text x(i):

• Dialogue history: The entire dialogue history between player A and six other players up

to time t.

10

• Draw state: A list of players who have entered draw votes, if this information is available.

• Order history: A list of previous turn orders (game actions) for all players up through

the previous movement turn.

• Current game state: The current game state, including a list of units and centers per-

player, as well as a list of possible retreats per-player during retreat turns.

• Intents: A set of planned orders for players A and B for the current turn P and future

turns, up to and including the next movement turn. As the dataset does not include this

information, we automatically extracted intents corresponding to the dialogue message

y(i)k , or “intents”, using several techniques described in §D.2, in order to make the model

controllable via a set of intents.

• Game metadata: Information about the particular game settings, including: whether or

not the game is anonymous, the turn length in minutes, the scoring system, and whether

or not the game has publicly available draw votes.

• Player rating: A player rating score 2 {1, 2, 3, 4, 5}, based on bucketing Elo ratings

into roughly equally sized bins, with 5 representing roughly the top 20% of players. Elo

ratings were computed for de-identified accounts following (53). At inference time, we

conditioned the model on 5 so that it imitates better players.

• Message metadata: The message sender, time since the last message (in seconds), and

the current turn.

A dialogue training example is shown in Table S1.

Training details We extended the pre-trained R2C2 model to have 2048 positional embed-

dings (an increase from the initial 1024 positions) by initializing the additional embeddings

11

randomly using the same initialization procedure as the original model. Model input was then

truncated to 2048 tokens and target sequences are truncated to 512 tokens. The model used

the same dictionary as GPT2 (78), with the addition of 109 special tokens, representing power

names, location names, and other commonly used input text. We used the Adam optimizer (79).

The model was trained on 256 V100 GPUs for 100K training steps, following a linear learn-

ing rate schedule with a maximum learning rate of 1e � 4 and 8K warmup steps, using the

implementation in the ParlAI framework (80).

Decoding During generation, we used nucleus sampling with p = 0.9 (18). We blocked the

generation of “redacted” tokens, which represented redacted potentially personally identifiable

information in the training data.

Prompting Messages produced by our imitation dialogue model are variable in style and

quality, possibly due to the uncurated nature of the WEBDIPLOMACY dataset. This effect is

most pronounced when generating the first outbound message of a game, where there is no dia-

logue history on which to condition. To better control the style of these messages, we prompted

our model with a set of pre-written high quality messages written by Diplomacy experts. When

generating the first outbound message of a game, two prompt messages to other recipients were

randomly sampled and inserted into the dialogue history. This produced higher quality first

messages which stylistically matched the prompts. Some example prompt messages are shown

in Fig. S1.

We evaluated this technique via a blind AB test: participants were shown 121 pairs of

messages (produced with and without the prompting technique described above, and displayed

in a random order) and instructed to choose which message they preferred or if they had no

preference. The messages generated using prompting were preferred in 73% of cases.

12

AUSTRIA -> GERMANY: Hey Germany! Just reaching out to say I’m happy
to keep Tyr/Boh as DMZs if you are. I always like to see Germany
doing well as Austria, so if there’s ever any way I can help you
out, please let me know!

AUSTRIA -> TURKEY: Hi Turkey! I think the AT is an extremely
underrated alliance, especially since nobody ever expects it.
Would you be down for going that route this game? I could try to
get you Rumania or Sevastopol this year.

Figure S1: Prompting. Two example pre-written prompt messages, which could be sampled
to prompt an opening message from Austria to players other than Germany and Turkey. The
dialogue model’s generated message will match the prompts in style, while the substance of the
message remains controllable by the intents described in §D.2

D.2 Controllable dialogue model

A key aspect of CICERO’s dialogue generation is that it can be controlled by intents, or proposed

game actions. Here we described the process of training this model to be controllable as well

as how we utilized this control during play. See Fig. 2 for a depiction of this process.

D.2.1 Inferring latent intents for dialogue

We trained a conditional dialogue model, i.e., we learned the distribution p(x|y, z), where z

is some desired controllable attribute which can be any function of (x,y). In this way, Equa-

tion D.1.1 becomes:

L(i)
MLE(p✓,x

(i),y(i), z(i)) = �
|y(i)|X

k=1

log p✓(y
(i)
k |x(i), y(i)<k, z

(i)) (S2)

At inference time, then, z becomes a point of control over generation (i.e., a control code) (25),

and can be set by sampling from a model p(z(i)|x(i)) or any other procedure. This technique has

13

been used, for example, to control for style (81) in generated dialogue, and can theoretically be

used to control for any property that can be extracted from the training messages.

D.2.2 Intents as control codes

In our case, we aimed to control for the underlying communicative intent of a message. As an

approximation of this intent in the context of Diplomacy, we used the effect it will have on the

subsequent actions for both the sender and recipient of the message. More specifically, we used

the most likely actions that the sender and recipient will take if no further dialogue occurs, both

on the current and future moves.

As previously noted, there were two key motivations to using proposed actions as intents:

• We could use the search component to intelligently select actions to propose, allowing

us to suggest actions that would benefit both the speaker and recipient. Here, the intents

provided an interface between the symbolic reasoning and neural dialogue generation.

• Conditioning on proposed actions relieved the dialogue model of most of the responsi-

bility for learning which actions are legal and strategic, reducing errors from describing

illegal moves, or legal but strategically nonsensical moves.

D.2.3 Annotating the training set with intents

In order to train a model to be controllable via such intents z, we needed to find some function

f(x(i),y(i)) ⇡ z(i) that we could use to label the training samples (x(i),y(i)) with corresponding

z(i), i.e. proposed current and future actions for the sender and recipient of the message y(i).

Our goal was for the proposed actions z(i) to closely reflect the content of a message, such that

at training time the model learned to exploit this information, thus making it more controllable

at inference time. At a high-level, we used a dialogue-conditional action prediction model to

sample actions for both the sender and recipient for current and future turns.

14

Training dialogue-conditional action prediction models To obtain a dialogue-conditional

action prediction model, we used the WEBDIPLOMACY dataset to train Transformer-based

seq2seq models to predict end-of-turn action sequences for a given player conditional on di-

alogue history, draw, state, order history, current game state, game metadata, and player rating

(see §D.1.1 for a description of these text features). We used as our base model a BART-

large (24) model that was fine-tuned for the dialogue prediction task, in the same manner as

described in §D.1.1. The target sequences were string representations of actions (or action

sequences) for a player or players specified in the input sequence e.g.:

F1901M
A APU H; A VEN H; F ION TUN
W1901A
F NAP B
S1902M
A APU H; A VEN TRI; F NAP ION; F TUN H

which represents a sequence of actions that a player Italy will take in the next several game

turns.

Like the dialogue model described in §D.1.1, model input was then truncated to 2048 tokens

and target sequences are truncated to 512 tokens. The model used the same dictionary as GPT2

(78), with the addition of 109 special tokens, representing power names, location names, and

other commonly used input text. The model was trained on 128 V100 GPUs for 250K training

steps, following a linear learning rate schedule with a maximum learning rate of 8e� 5 and 8K

warmup steps, using the implementation in the ParlAI framework (80).

We further experimented with restricting the training examples to a “truthful” subset in

which we predicted that a player’s dialogue in a given turn corresponded to the actions that

player took. We computed a “lie score” for a dialogue turn based on the probability that one of

a set M of candidate messages would be sent at the beginning of the next turn st+1, given this

15

turns’ dialogue D and actions.

L(st, Dt) = max
i,j

X

m2M

Pi!j(m|st+1, Dt)

Candidate messages included phrases like “you lied to me last turn,” which should have

higher likelihood after turns with low correspondence between dialogue and actions. Scores

were computed with a dialogue model trained without action intents included in the input con-

ditioning. Ultimately, 5% of turns were removed from the dataset, corresponding to the training

examples with the highest lie scores.

Using a dialogue-conditional action prediction model to annotate intents We then used the

resulting model to annotate intents (e.g. predict proposed actions) for a message from player A

to player B at timestamp t:

• To predict action sequences for A (the message sender), we restricted the dialogue history

seen by the model to messages sent or received by player A up to and including timestamp

t. We inject two additional messages after timestamp t into the dialogue history: “A! B:

I’ve entered those orders.” and “B ! A: I’ve entered those orders.” The purpose of these

additional messages was to signal to the action-prediction model that there is agreement

between A and B on the content of the message at timestamp t.

• To predict action sequences for B (the message recipient), we restricted the dialogue

history seen by the model to only messages sent between A and B up to and including

timestamp t. The purpose of this restriction was to signal to the action-prediction model

that B is only coordinating with A. We similarly injected “agreement messages” to and

from each player.

To evaluate how closely the predicted action sequences (or intents) correspond to the mes-

16

sage content, authors hand-labeled a small test set of messages with corresponding action se-

quences. For example, a message in the test set like “Can you move Munich to Burgundy?” is

annotated with the order A MUN - BUR, indicating that the army in Munich moves to Bur-

gundy. To evaluate the models on the test set, we computed the percentage of predicted action

sequences which contain the labeled orders. Results on this test set are shown in Table S2. One

can observe how the choices to fine-tune from a dialogue model, inject “agreement messages”

and restrict to a “truthful” subset of the training data boosted performance on this test set. The

closer the predicted intents correspond to the content of the dialogue messages, the finer-grained

control we have over the dialogue model during generation.

Effect of intents on the dialogue model In order to evaluate the effect of conditioning the

dialogue model on intents and other grounding information during training, we trained base-

lines (i) without conditioning on intents and (ii) without any other grounding information aside

from dialogue history. We report the validation perplexity for these model variants in Figure 4.

We observed that the intent conditioning yields a substantial improvement in model training

performance (0.24 perplexity points), indicating that the dialogue model was able to exploit the

information in the control codes to better predict the corresponding dialogue messages. Using

grounding information (game state, action history, etc.) also yielded an improvement in per-

plexity. Moreover, in the same table, we report results from an expert annotation of dialogue

quality for each of these baselines. For this evaluation, two expert Diplomacy players annotated

model-generated messages in 126 Diplomacy situations. As authors on this paper, these experts

were aware that the messages were model-generated, but not which model generated which

message. Furthermore, these situations were pre-selected from our WEBDIPLOMACY test set

of human games for “interestingness” by those same experts. For each situation, the experts

were asked to annotate whether a message was (i) consistent with the game state, (ii) consistent

17

with the agent’s plan, and (iii) high quality, compared to what an average human would pro-

duce. Results showed that grounding in game state, and further, in intents, improved the overall

sensibility and quality of the resulting dialogue.

The same training procedure was applied with models that predict a “rollout” of player ac-

tions from the current turn up through the next movement turn. The resulting model was used

to annotate every message in the training data, and these annotations were subsequently used as

input the dialogue model during training, as described in §D.1.1.

D.2.4 Selecting intents during play

Imitation intent model Generation of intents at inference time made use of a model that pre-

dicts the distribution of intents I seen in the annotated training set, P (z(i)|x(i)). Given the board

state and the partial conversation between a pair of players up to a point, this model was trained

to predict the annotated intent (actions for the sender and recipient through the next movement

turn) of the next message in the conversation. This model thus predicts the distribution of mes-

sage intents that human messages might reflect given the current conversation. The architecture

and training setup for this model was identical to the intent model described in §D.2.3.

Notably, the imitation intent model allowed us to sample from the human message distribu-

tion by sampling an imitation intent and conditioning the dialogue model on it, since

P (y(i)|x(i)) =
X

z(i)

P (y(i)|x(i), z(i))P (z(i)|x(i)).

Planning for intents To produce a message, we first applied the planning procedure as de-

scribed in the main article, section Strategic reasoning - Dialogue-conditional planning. Before

planning, we also always sampled one action from the imitation intent model and added it to

the tabular policy for the agent and recipient, to ensure at least one dialogue-appropriate action

was considered by planning.

18

The planning procedure outputs a single action that the agent intends to play and a policy, or

belief distribution over actions, for the other players. It outputs only a single intended action for

the agent to avoid inconsistency between dialogue and behavior. For each action in the recipient

policy, it also estimates the expected value to the agent assuming the recipient plays that action

and the agent plays their intended action. These estimates and the single intended action feed

the next step for selecting the recipient’s intent.

Choosing a recipient intent We define an action a to have high likelihood under a distribution

⇡ if ⇡(a) � 0.1 ⇥ maxa0 ⇡(a0). We considered a candidate set of recipient intent actions that

have high likelihood under both the piKL policy for the recipient and the imitation intent model.

Since piKL uses a belief distribution over player types between imitation (high anchor

strength �) and value-maximizing (low anchor strength �), the piKL policy will assign high

likelihood both to (a) actions that we think the player is likely to play given the dialogue, and

(b) actions that are beneficial for the recipient. Thus, the candidate set will consider propos-

als that are human-like as well as suggesting “better” moves for the recipient. Requiring high

likelihood under the imitation model helped us to stay in distribution of the dialogue model and

propose actions that a human might propose in that situation.

Among the candidate set, we chose the action that leads to the highest expected value for

the agent, assuming the agent played their intent action, to be the recipient’s action within the

intent. If the candidate set was empty, we selected the greedy action from the imitation intent

model.

Intents for future turns We also included a short rollout of future actions up through the

next movement turn as part of the intent, to better ground the dialogue model when discussing

likely future plans. However, selecting optimal actions for the future is less important due to

high uncertainty about the future game state. Therefore, we saved time by teacher-forcing the

19

imitation intent model with the planned intents for the current turn, and greedily generated an

intent for future turns.

The final intent used to condition the dialogue model consisted of the agent’s single intended

action, the action selected for the recipient, and the short rollout of future actions for both the

agent and recipient.

See Figure 3 for an example of how dialogue generations can vary when conditioned on

different intents.

D.3 Message filtering

Prior work has shown that neural generative dialogue models, and language models more gen-

erally, suffer from frequent contradictions and inconsistency as well as a tendency to “halluci-

nate,” or generate factually incorrect information (29). See Table S3, which shows an example

of CICERO contradicting one of its previous messages. In the complex game of Diplomacy, this

can manifest in a myriad of ways: we observed that the dialogue model frequently generated

messages that contradicted its previous conversations with other players or were inconsistent

with the current game state. The messages also often contained hallucinations about moves that

never happened or discussion of plans which were impossible. Moreover, they sometimes fea-

tured more subtle mistakes, like deviations from the intents used to control the message or other

strategic blunders. Reducing the frequency of these mistakes was critical for performing well

against humans, as a nonsensical message might lose the trust of an ally or result in feedback

loops with further degenerate text (18). This represented an enormous challenge for our agent,

as we sent an average of 128 messages per game which needed to contain few or no mistakes.

We approached this problem by using an ensemble of classifiers or checks, which acted

as a filter on top of the dialogue model. This two-stage generate and filter approach has been

20

commonly deployed in previous works for reducing typical mistakes with generative language

models, such as toxic language (82). We explored several general methods for filtering dia-

logue mistakes including a suite of classifiers which discriminate between human and model-

generated or otherwise corrupted counterfactual messages (§D.3.1), methods for measuring de-

viation from intents (§D.3.2) and value-based filtering for strategic blunders (§D.3.3), as well

as various filters for unfriendly or toxic language (§D.3.4).

D.3.1 Discriminating between human-generated and counterfactual messages

Much work has been devoted to the creation of adversarial or counterfactual examples for im-

proving the robustness of natural language systems (30, 31). Following this approach, we gen-

erated many kinds of counterfactual messages, including heuristically-corrupted text as well as

model-generated negatives, and trained a suite of classifiers to discriminate between the gold

human message and counterfactual messages. We then used these classifiers in an ensemble to

filter messages which contain mistakes to which language models are prone.

Creating counterfactuals We used several different methods for generating counterfactual

negatives for such a discriminator:

• Entity corruptions: We used regex-based perturbation functions to replace named entities

from the game (e.g. “Austria” or “Norwegian Sea”) with alternatives in the same category.

For example, a message like “Move to Paris this turn” might be replaced with “Move to

Picardy this turn.” Specifically: we corrupt mentions of game powers (e.g. “England” or

“France”), map locations (e.g. “Picardy”, “Paris”), and map location abbreviations (e.g.

“PIC”, “PAR”). These perturbation functions were applied to every target sequence in the

training data to generate negatives.

• Non-sequiturs: Having observed that the dialogue model occasionally suffers from gen-

21

erating non-sequiturs in conversations, we generated negative examples to mimic this

behavior by corrupting input sequences and removing 1 to 3 messages from the dialogue

history observed in the input context.

• Weak de-noising model generations: We also used a de-noising language model to gener-

ate negatives. We fine-tuned BART-large (24) on a seq2seq task D = {(x(i) = mask(y(i)),y(i))},

where y(i) are dialogue messages in WEBDIPLOMACY and mask is a function which re-

places some subset of input words in a sequence with mask tokens. Specifically, mask

randomly select spans of 1 to 3 space-delimited tokens to replace with a single mask to-

ken, repeating this process until 50% of tokens in the target sequence have been masked.

We refer to such a de-noising model as a “weak” model as it is not provided with rel-

evant input context, like dialogue history, game state, etc., and as such, when used to

generate negatives, is likely to replace important information with plausible but often

incorrect information. Thus, a discriminator trained on these negatives will hopefully

learn to discriminate between poor model messages containing mistakes and real, hu-

man text. Similar approaches have been used successfully in the context of open-domain

dialogue (30).

• Weak model generations: In addition to the de-noising model, we also deployed a “weak”

generative model trained on the dialogue prediction task (described in §D.1) with limited

context. In particular, we fine-tuned BART-large (24) with only 128 input tokens (com-

pared to 2048 that the dialogue model sees), with only dialogue history and no other game

state information in the context. This model was then used to generate negatives for every

message in the training set.

• Weak justification generations: A commonly observed weakness with our dialogue model,

and language models more generally, is little ability to discuss counterfactuals or clearly

22

explain the reasoning behind a complex set of actions (83). In order to target these mis-

takes in particular, we collected a list of phrases or keywords which are likely to signal

the beginning of justifications, such as “because” or “so that.” Using these key phrases,

we collected message prefixes from the training data, e.g. “I moved to the English Chan-

nel because...” which are then used to seed generation for the weak generative model

described above. The model completions were then used as negatives for a model trained

to discriminate between human and weak-model generated justifications.

• Cardinal generations: Another commonly observed weakness with our dialogue model

is the ability to perform basic arithmetic (83). In particular, our model was prone to

make off-by-1 and off-by-2 errors when counting various entities on the Diplomacy board

(e.g. territories or armies). Furthermore, only a relatively small proportion of dialogue

messages in WEBDIPLOMACY contained cardinals, making it harder for our general-

purpose classifiers to learn to discriminate such errors. In order to mitigate this, we sought

to generate a large set of compelling cardinal-related counterfactual negatives. To do this,

we further fine-tuned our weak de-noising model on the denoising task described above,

restricting to examples y(i) which contain cardinals, i.e. the strings {“2”, . . . , “18”} [

{“two”, ..., “eighteen”}. We then used this model to generate counterfactuals.

• Negation generations: We used the same technique to target mistakes with negations,

further training the de-noising model on examples which contain negation strings like

“can’t” or “won’t.”

Training discriminators Using these negatives, we trained Transformer-based classifiers to

discriminate between human text and corrupted text. For all models, we started from BART-

large (24) model that was trained on the dialogue task described in §D.1.1, with a linear layer

with output dimension 2 on top of the hidden states resulting from feeding the encoder states

23

and start token to the decoder, yielding a binary classifier. We trained many classifiers in this

manner, with variations in context (e.g. removing parts of the dialogue history, adding additional

state information) and different seeds. In total, this results in an ensemble of 16 classifiers. See

Table S4 for more details on each classifier.

Using discriminators as an ensemble In order to use the classifiers as an ensemble, we

assigned each classifier a threshold and then flag a message as nonsense if any classifier in

the ensemble assigned the message a probability of nonsense above that classifier’s respec-

tive threshold. In order to tune all of the thresholds in this ensemble, we randomly searched

over the space of possible threshold assignments. We considered thresholds at intervals of 0.1

for classifiers trained on weak de-noising model generations and a smaller set of thresholds

{0.05, 0.2, 0.5, 0.7, 0.9} for all other classifiers in the ensemble.

Tuning, evaluating, and testing ensembles In order to tune these ensembles, we collected a

set of expert annotations on 11 games that our agent played against humans during development.

Annotators were instructed to label messages as sensible or not. This resulted in a tuning set

of 1448 examples (348 labeled nonsense) and an evaluation set of 362 examples (96 labeled

nonsense), which we used to tune and evaluate the classifiers individually and as an ensemble.

Subsequently, we collected an additional set of expert annotations on 10 games from the “blitz”

league we later participated in (before our finalized agent entered the league). This resulted in

an additional test set of 1457 examples (214 labeled nonsense).

Results To select of set of thresholds for the ensemble, we considered the trade-off between

increasing recall on the test set and increasing the rate at which messages are filtered. If the

ensemble exhibits a bias towards messages with certain characteristics (e.g., long messages

or messages containing references to specific game locations), increasing the rate at which

24

messages are filtered may exacerbate the consequences of this bias and result in unintended

model behavior (e.g. generating short, unspecific messages). This trade-off is visualized in

Figure S2. For our final ensemble, we selected settings which achieve a recall of 90.2% and

a flag rate of 63.19% on our tuning set. We also report per-classifier filtering rates from our

live games in Table S5. We found that in expectation, statistics from our tuning set indicated

the model must generate 2.72 messages until we find a message that passes the filters. In our

tournament games, the use of this ensemble ultimately resulted in a filtering rate of 53%.

Looking at results for individual classifiers, we found that classifiers which were trained

on larger and more diverse sets of negatives achieved better recall on our test set (Figure S2).

Classifiers trained using the entity corruption techniques, on the other hand, achieved lower

recall. This might be expected, as incorrect entities encompass only a small portion of mistakes

that the dialogue model might make.

Additionally, we observed that ensembling noticeably improves performance compared to

using individual classifiers, as indicated in Figure S2. Ensembling larger sets of classifiers

yields continued incremental improvements over small ensembles, though these improvements

diminish in magnitude as ensemble size increases.

Effect on message diversity As mentioned, one concern with the generate and filter approach

is that it might hurt message diversity, if, e.g., the filters are overly aggressive towards longer,

more interesting, or more specific messages. One can imagine that while short, boring messages

are unlikely to contain nonsense, they may not make for a particularly compelling conversa-

tional partner (or in the case of Diplomacy, ally). We measured the effect of nonsense classifiers

on message diversity by considering how several diversity statistics vary when computed on the

unfiltered subpopulation of our annotated dataset under each classifier at various thresholds. In

particular, we used the following statistics as proxies for message diversity: median message

25

length (in characters) and proportion of messages containing “interesting” entities. Examples

of “interesting” entities include game-specific nouns (e.g. “builds”, “fleet”, “London”, “lon”,

“Austria”) as well as cardinal numbers (e.g. “two” or “4”). We showed the variation in these

metrics for our classifiers at different levels of recall on the test set, and also reported results

for a likelihood-based filtering approach. This baseline filters a message if the conditional like-

lihood under the dialogue model of any of the tokens in the message is below some absolute

threshold, similar to the approaches employed by sampling methods that are aimed a reduc-

ing nonsense (18, 84). Results for message length and entity mentions are shown in Figure S3

and Figure S4 respectively. We observed that, at high levels of recall, this likelihood-based

approach, as well as classifiers trained on counterfactuals generated by a “weak” generative

model, hurt diversity. On the other hand, most classifiers trained on counterfactuals generated

by a “weak” denoising model preserved message diversity, regardless of recall level.

When applying our final ensemble as a filter to the population of messages produced by

the model in our test set, the median message length decreases by 7.3%. However, the me-

dian message length of messages with at least 30 characters decreases by only 1.7%. In other

words, the ensemble exhibits minimal bias towards shortening messages, while still filtering

most nonsense.

D.3.2 Intent correspondence

Controlling dialogue generation via intents (see §D.1.1) has the two-fold benefit of improving

the strategic value of a message (e.g., forcing the model to condition on strategically beneficial

moves) while at the same time limiting the discussion of impossible moves or other kinds of

hallucination (as we only condition on intents corresponding to legal moves). This control, how-

ever, is not perfect, and every so often the dialogue model generates messages which contradict

the intents the message is conditioned on.

26

In order to detect these situations, we computed a metric which roughly tells us how the

likelihood of the intents might change after a message is sent. Specifically, we took the message

sender’s current turn action from the intents and computed the probability of that action under

a dialogue-conditional action prediction model (see §2.3.2) before the message was sent (with

the current game state) and as if the message were sent (appending this message to the dialogue

history). If this metric decreased below some designated threshold (i.e., the action became

significantly less likely), we filtered the proposed message.

Intent correspondence was calibrated with a set of 20 messages annotated as containing

a mismatch between the content and the intent conditioning out of 1013 messages in 5 games

played against human players with an early version of the agent. The filtering approach achieved

a ROC AUC of 78% on this validation set. We calibrated it with a threshold of �0.005, which

achieved a recall of 65% while filtering 24% of other messages.

Correspondence filtering was further validated through analysis of messages in five self-play

games by a Diplomacy expert, who concluded that while most messages filtered by this method

are not clear inconsistencies between the dialogue and the intent, “the bad stuff it knocks out ...

is either bad [dialogue] or generic waffle” and “the end result is better [dialogue].” No instances

were found of inconsistencies that were blocked but would have been beneficial for the agent.

When we use this method as a filter in our live games, it resulted in 18.78% of generated

messages being filtered.

D.3.3 Value-based filtering

Messaging plays a key strategic role in Diplomacy, being the mechanism by which actions

are coordinated and alliances are forged. Effective messaging should promote favorable out-

comes for the agent, but without leaking information that compromises the agent’s intended

actions. Just as in Rock-Paper-Scissors, where one should not honestly reveal that one intends

27

to play Rock, effective communication in Diplomacy exercises discretion about the information

revealed.

However, sampling directly from the intent-conditioned dialogue model can suffer from

such “information leaks.” To improve the strategic content of agent messaging, we developed

a method to score messages based on their estimated value impact. Our method estimated how

individual messages affected the anchor policy used in piKL and thus the predicted policy of the

message recipient. We used this predicted policy to score and filter among multiple candidate

messages sampled from the dialogue model.

We scored the strategic value of a candidate message by: (1) computing the piKL equi-

librium policy of the recipient in the counterfactual situation where the candidate message is

sent, and then (2) defining the candidate message’s “value” as the expected value of playing

the agent’s intent against the recipient’s resultant counterfactual policy. Specifically, we first

queried the imitation model for an updated anchor policy conditioned on the counterfactual di-

alogue (i.e., the current dialogue with the candidate message appended). We then estimated

the message recipient’s new equilibrium strategy by running DiL-piKL following the bilateral

search procedure described in §E.2. Finally, we estimated the value of a message to be the

expected value of playing the agent’s intent against the message recipient’s new strategy.

We note two features of this value estimation process. First, each candidate message was

evaluated only on how it affects the anchor policy (as opposed to, say, estimating value end-

to-end with a single network without equilibrium planning). By forcing messages to act only

through the anchor policy, we imposed a particular causal structure: messages affect outcomes

only through beliefs. This partially mitigates the causality challenge of differentiating between

language that causes an outcome and language that is merely correlated with an outcome. In

particular, piKL equilibrium planning will filter out strategically poor actions that may be sug-

gested by a message, e.g., promising something too good to be true or asking the recipient to

28

take an obviously bad action. Second, we estimated value by playing the agent’s intent against

the recipient’s policy, without allowing the recipient’s policy to adapt to the specific agent intent

chosen. This models the way the agent will likely play its intended action, while the recipient

does not know the agent’s intended action.

In our experiments, we applied a value-based message filter in sensitive scenarios, where

among eight sampled messages the highest and lowest values differed by at least 0.007 points

in expected score (on a scale where the maximum possible score in a game is 1.0, and where

the average score of players is precisely 1/7 ⇡ 0.143), or by a factor of at least 1.1. This

thresholding avoided overfitting when all messages had roughly the same estimated value, and

was calibrated so that message filtering would be applied roughly 15% of the time. When this

threshold was met, we filtered the bottom three messages, selecting messages randomly from

the remaining non-filtered messages. We conservatively chose to reject low-ranking messages

rather than simply choosing the highest-ranked message sampled from the dialogue model, as

this implementation let us mitigate the largest messaging blunders that our agent could make

without overly restricting dialogue.

To validate the effectiveness of value-based message filtering, we conducted both a quan-

titative A/B test—comparing filtered messages against selected messages on the scenarios in

which it would be applied—and a qualitative evaluation—testing specific scenarios identified

by expert players. Evaluations for the A/B test were provided by human Diplomacy experts and

demonstrated that, among message pairs where one was preferred over the other, the selected

messages were preferred over filtered messages 62% of the time (p < 0.05).

D.3.4 Toxic language

Much work has been dedicated to studying the propensity of language models to replicate or

even amplify harmful content from their training data (37,38,85). Diplomacy is no exception —

29

in the 12 million or so dialogue messages in the human-generated training data, there are many

examples of offensive, hateful, and otherwise aggressive messages. We found that, while the

dialogue model is relatively unlikely to generate offensive content in an otherwise peaceful con-

versation, this can be easily achieved through adversarial prompting (82). Prior work addresses

this problem using off-the-shelf toxic language classifiers and word lists to filter offensive lan-

guage (82, 85). Diplomacy makes for an interesting challenge for toxic language detection,

as messages like “Let’s attack France” or “Why did you stab me?” are both acceptable and

commonplace. As such, off-the-shelf classifiers will not work in this domain.

In order to address this problem, we augmented existing word lists using model prompting

techniques to collect in-domain offensive phrases. First, we filtered messages containing words

from a previously compiled list of offensive words and phrases (List of Dirty, Naughty, Ob-

scene, and Otherwise Bad Words, downloaded from https://github.com/LDNOOBW/

List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words). We then aug-

mented this list by manually searching and mining the human WEBDIPLOMACY dataset and

adding word or regex-based filters to block the most commonly found hostile language, as well

as some language that while not offensive may still be unnecessarily rude. Some objection-

able words or phrases found and blocked this way were specific to the context of Diplomacy,

or of online games, and might be missed by more general-domain classifiers. Lastly, we ex-

panded this list of filtered words and phrases by prompting the dialogue model with phrases

like “He’s such a...” following an aggressive message, to catch commonly used insults. Ad-

versarial prompting in this manner has been shown to be an effective method for “red teaming”

language models (82).

We found that in practice, even before filtering, it is relatively rare that our model generates

objectionable language within the normal course of gameplay, even though disagreements and

arguments during negotiation are a normal part of the game, with arguments sometimes becom-

30

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words

ing heated and/or contentious. Nonetheless, the above methods do successfully catch and block

some instances of objectionable language. Across a set of about 1300 raw model generations

randomly sampled from positions played by our agent (see Table S6), the above filters triggered

3 (0.2%) times.

D.3.5 Heuristic message filters

Finally, we deployed several other simple heuristic filters to reduce bad behaviors in the dia-

logue.

Repetitive messages Prior work has shown that language model generations frequently de-

generate to repetitive text (18), and this problem is exacerbated by frequent repetitions in our

training data. To curb this behavior we filtered messages which were verbatim repeats of mes-

sages already sent in a particular turn.

Short messages Another feedback loop we find is that sending short, dull messages is likely

to lead to additional short, dull messages. To break this cycle, we filtered messages fewer

than 20 characters if the last message sent to the same recipient in that turn was fewer than 20

characters, or if it was the first message sent to a recipient in that particular turn.

Grounding issues We also found that the dialogue model is prone to hallucinations about

personal life, prior or future games, website interface issues, etc., because these are commonly

occurring discussion points in the training data for which we lack grounding information at

inference time. To reduce the frequency of these hallucinations, we manually compiled and

blocked a list of roughly 100 words and phrases gathered from messages in self-play games

annotated for grounding issues. Examples include “timezone,” “previous game,” and “internet.”

31

Data Formatting / Other Lastly, we heuristically filtered messages for a number of other

miscellaneous reasons. These included messages that contained URLs, email addresses, or

common names, as an extra safeguard on top of the preexisting de-identification of the dataset;

messages that mimicked standard automated messages inserted by webDiplomacy that are not

real messages between players; and messages that mimicked redactions or certain data corrup-

tions or formatting issues found in the dataset.

See Table S6 for statistics about the messages filtered by these heuristics.

D.4 Modeling when to speak and to whom

Modeling when to speak and to whom in the game of Diplomacy, and in multi-party dialogues

more generally, is a complex problem (86, 87). Recall that during the negotiation period, the

dialogue agent engages in pairwise conversations with the six other players on the board. An

agent which rarely initiates conversations with other players or responds sparingly will gain few

allies. However, there are many risks to sending messages too frequently. Sending too many

messages may result in a deviation from the training distribution which could lead to sending

degenerate, nonsensical messages. Moreover, an unnatural cadence of messages may reveal the

agent’s status as a non-human. At times, it may be advantageous to respond to a message (e.g.

a proposal for a mutually beneficial set of moves) or to ignore it (e.g. when the other player is

aggressive, or suggests an undesirable plan).

D.4.1 Message scheduling methodology

We modeled this problem by training a message scheduler to predict, for a given recipient, how

long to wait (in seconds) prior to sending the next message, or whether to message that recipient

at all. This model was then deployed — along with many additional heuristics — during game

play in order to govern when and to whom the dialogue model sends the next message.

32

Task formulation In order to formulate this task, we define an interrupt event as an event in

which a player either sends or receives a message. We define the end of negotiation for a player

as the time after which the player never sends or receives another message for a given game

turn. For each training example for a player A, the target wait time is either (i) a finite number

(in seconds) representing how long player A waited to send an outbound message, (ii) infinite,

meaning player A did not send or receive message during the negotiation period, or (iii) a lower

bound on the number of seconds player A waited to send a message.

For every interrupt event and end of negotiation for a player A in the training data we created

several training examples:

• Interrupt event – outbound message from player A to player B: for player B the target is

the number of seconds t since A’s last interrupt event; for other potential recipients, the

target is the lower bound t, as we only know that player A would have waited at least t

seconds to send a message to another player

• Interrupt event – inbound message to player A from B: for all potential recipients, the

target is the number of seconds t since A’s last interrupt event as a lower bound

• End of negotiation for turn P : for every recipient, the target is infinite, as A did not send

or receive another message

Training We initialized a fine-tuned BART-large-based Diplomacy dialogue model (trained

similar to the description in §D.1.1), adding a linear layer with output dimension N on top of

the hidden states resulting from feeding the encoder states and start token to the decoder, where

N is the number of classes (a quantized list of wait times), resulting in a multi-class classifier.

We trained this model on the aforementioned task, with a loss aimed at minimizing the negative

marginal log likelihood.

33

Inference During game play, we ran the previously trained model in parallel for each of the

six other players, sampling from the model to determine how long to wait to message a given

player or whether to message them at all. The model was re-sampled upon each change in the

board state as well as each interrupt event. For performance and parallelization/implementa-

tion reasons, at inference time we did not re-sample the waiting time for a given player when

messages were received from players other than that player.

In practice, we observe that expert players tend to be very active in communicating, whereas

those less experienced miss many opportunities to send messages to coordinate: the top 5%

rated players sent almost 2.5 times as many messages per turn as the average in the WEB-

DIPLOMACY dataset. Correspondingly, a model trained to imitate the message frequencies

in the dataset would send too few messages and miss strategically important opportunities to

coordinate. Additionally, due to infrastructural limitations and to simplify and parallelize the

dialogue planning loop, the message scheduler did not condition on the CICERO’s intents (only

on the dialogue history and game state) which could cause it to under-communicate in cases

where the intent indicated a need to communicate while the dialogue history or game state alone

did not. To address these shortcomings, we augmented our message scheduler with additional

heuristic criteria under which CICERO would initiate a message:

• Attempt to send at least one message to each player at the start of each turn of the first

two years of the game.

• Attempt to send at least one message to a player on any turn where the CICERO’s initial

intent for itself and that player included either player cooperatively supporting or convoy-

ing the other, or both players simultaneously attacking the same common opponent.

Across CICERO’s games with human players, the first of these two heuristics caused it to

initiate a message to every other player on 25.5% of turns (since two years was a quarter of

34

the scheduled game length of eight years and CICERO was almost never eliminated early). The

second heuristic triggered for at least one other player on 65.5% of turns after the first two years,

although this accounted for less than about 16% of the total messages after the first two years.

Note that this excludes retreat and winter turns where dialogue is disallowed, see Appendix C.

In addition, a classification threshold was tuned on a small dataset of 59 “reply” situa-

tions, where annotators determined whether an inbound message should be replied to or ignored

(given the history and context described in §D.1.1). A threshold of 0.75 was chosen for the infi-

nite class (i.e. the agent must respond to a message if the message scheduler model’s predicted

p(infinite) < 0.75. Our model with this threshold achieved an accuracy of 92% on this dataset.

Lastly, a major limitation in the WEBDIPLOMACY dataset was that the beginning and ending

times of turns was not recorded. While the elapsed time between messages can be computed

easily, the exact time remaining in the turn when a message was sent can only be coarsely

approximated, and conditioning the model on this information was difficult. This appeared to

result in the model commonly scheduling messages to be sent too close to the deadline for a

response or even beyond the deadline. As a workaround, at inference time we ran the scheduler

instead in a “binary” mode. In this mode we only considered whether the model predicted a

message should be sent at all, and rather than using the wait time suggested by the model, we

instead sent the message after a fixed delay of 15 seconds or the amount of time taken to rerun

the full planning and message generation loop in that situation, whichever was longer.

E Strategic Reasoning Methods

E.1 Better modeling human behavior with piKL

In this section, we provide further details on piKL and its variants, which we find better model

human behavior compared to behavioral cloning (BC). piKL simultaneously seeks to find a

policy that optimizes the expected value or reward, yet remains similar to the BC policy, with

35

a parameter or set of parameters controlling the amount it prioritizes those two objectives. In

this way, piKL computes policies that remain close to human conventions, yet are less prone to

mistakes and exploitation than BC alone.

E.1.1 Notation and Background

In Diplomacy, each turn can be viewed as a subgame where each player i simultaneously sam-

ples an action ai from some policy ⇡i and receives a reward ui(ai,a�i) where a�i denotes the

joint actions of players excluding i, and ⇡�i denotes the joint policy of players excluding i. The

reward function ui is trained via self-play, as described in §E.4. We refer to the BC policy that

we wish to remain similar to as the anchor policy ⌧i.

It is common to use iterative algorithms to compute policies for such games. Under this

framework, each player i picks a policy ⇡�t
i on each iteration t. An action ati is sampled based

on the action’s probability in the policy. Next, the average reward for each action ai is updated.

We denote the average reward for action ai up to iteration t as Qt(ai) =
1
t

P
t0t u

t0
i (ai, a

t0
�i).

The regret for an action ai is defined as Qt(ai)� 1
t

P
t0t u

t
i(a

t0
i , a

t0
�i). In words, the regret for

an action ai is how much extra average utility a player could have received for having played ai

on all previous iterations, compared to what they had actually done on all previous iterations.

A player’s regret is defined as the maximum regret among all the player’s actions. In a 2p0s

game, if both players’ regret approaches 0 as t ! 1 then the player’s average policy over

all iterations converges to a Nash equilibrium (13, 60). In games in general, the players’ joint

policy distribution converges to a coarse correlated equilibrium.

Hedge (88) is an iterative algorithm for minimizing regret. On each iteration t, player i

chooses policy ⇡�t
i (ai)

⇡�t
i (ai) / exp

�
Qt�1(ai)/t�1

�
(S3)

where t is a temperature parameter. It is proven that if t is set to 1p
t

then as t ! 1, re-

36

gret! 0. Hedge is therefore an equilibrium-finding algorithm.

E.1.2 piKL

As applied to games of this form, piKL (26) is an equilibrium-finding algorithm where all

players seek to maximize expected reward while at the same time playing “close” to the anchor

policy. The two goals can be reconciled by defining a composite utility function that adds a

penalty based on the “distance” between the player policy and their anchor policy, with an

anchor strength parameter �i 2 [0,1) scaling the penalty.

Specifically, for each player i, we define i’s composite utility as a function of the the agent

policy and the other players’ policies to be:

Ui(⇡i,⇡�i) = ui(⇡i,⇡�i)� �i DKL(⇡i k ⌧i) (S4)

We first introduce a form of piKL called piKL-hedge that more closely resembles hedge.

piKL-hedge selects actions according to

⇡�t
i / exp

⇢
Qt�1

i + � log ⌧i
�+ t�1

�
(S5)

When the anchor strength � is large, the utility function is dominated by the KL-divergence

term �i DKL(⇡i k ⌧i), and so the agent will naturally tend to play a policy ⇡i close to the anchor

policy ⌧i. When the anchor strength � is small, the dominating term is the rewards ui(⇡i,at
�i),

so the agent will tend to maximize reward without as closely matching the anchor policy ⌧i. In

the limit where �! 0, piKL reduces to hedge.

In CICERO, in all applications of piKL except during RL (including as part of DiL-piKL,

described subsequently) we set t = 3�t

10
p
t

on iteration t, where �t is the observed standard

deviation of the player’s utility up to iteration t, based on a heuristic from (89). In practice, a

simpler choice is to set t = 0, which does not appear to substantially alter performance and

37

makes the algorithm much simpler. We refer to the version of piKL-hedge where t = 0 simply

as piKL.

For appropriate values of �, piKL better models strong human players than imitation learn-

ing alone in games like chess, Go, Hanabi, and Diplomacy (26).

E.1.3 DiL-piKL

As presented above, piKL trades off between the strength of the agent and the closeness to the

anchor policy using a single fixed � parameter. Distributional lambda piKL (DiL-piKL) (17)

is a modification of piKL that replaces the single � parameter in piKL or piKL-hedge with a

probability distribution over � values. On each iteration, the player samples a � value from this

probability distribution and then chooses a policy based on Equation 3 using that sampled �. In

practice, we found in prior work that DiL-piKL produces better performance.

One interpretation of DiL-piKL is that each choice of � is an agent type, where agent types

with high � choose policies closer to ⌧ while agent types with low � choose policies that are

more “optimal” and less constrained to a common-knowledge anchor policy. A-priori, each

player is chosen at random from this population of agent types, and the distribution represents

the common-knowledge uncertainty about which of the agent types player i may be. Sampling

the agent’s own lambda from a probability distribution over � values during the equilibrium

computation models the fact the other players are unaware of the agent’s true type.

E.2 Dialogue-conditional planning at test time

The leading approach for computing policies in dialogue-free Diplomacy applies DiL-piKL

(§E.1.3), optimizing policies based on a reinforcement-learned value function with a KL regu-

larization term towards a human imitation anchor policy (17). We followed this approach with

important adaptations for incorporating dialogue.

38

E.2.1 Training a dialogue-conditional anchor policy

Similar to the dialogue-conditional action prediction model used to annotate intents for the di-

alogue training data described in §D.2, we fine-tuned a pre-trained Transformer seq2seq model

on WEBDIPLOMACY data to predict a rollout of end-of-turn action sequences, conditional on

dialogue history, draw state, order history, current game state, game metadata, and player rating

(see §D.1 for a description of these text features). Specifically, we took as our base model a

BART-large (24) model that was fine-tuned for the dialogue prediction task, in the same man-

ner as described in §D.1.1. Starting with a dialogue model in this way induces a better prior

on the Diplomacy dialogue information compared to starting from the pre-trained BART model

directly. The target sequences are string representations of end-of-turn action sequences for a

player, as shown in §D.2. Note, however, that in this case, we trained the model to predict

action sequences for all players from the point of view of a particular player A, rather than only

training the model to predict A’s action from A’s point of view. This distinction is important,

because A is only privy to the conversations it conducted directly with other players, and cannot

see conversations that these players had with each other. For example, in the game turn ‘Winter

1901 Adjustments’, the target sequence for predicting Austria’s actions from England’s point

of view might look like:

A BUD B
S1902M
A BUD GAL; A GAL SIL; A RUM S A BUD GAL; F TRI H

representing Austria’s action sequence for the current turn as well as the future turn ‘Spring

1902 Movement’. The model was trained with the same training hyperparameters as the intent

model described in §D.2.

39

E.2.2 Sampling plausible actions for planning

At test time, we used the distribution of actions predicted by the above dialogue-conditional

action prediction model as our anchor policy for applying DiL-piKL, along with a value function

learned through reinforcement learning described in §E.4.

To reduce the large action space to a small enough number to apply search, we sampled 30

actions from the anchor policy for each player. While the anchor policy was the only model in

this step aware of the dialogue, sampling actions from this model is computationally expensive

and would also miss unusual but better actions discovered during reinforcement learning, so up

to 1024 additional samples were taken from from the cheaper dialogue-free RL policy jointly

learned alongside with the value function during reinforcement learning. The top 30 most likely

of these actions according to the dialogue-free RL policy were then rescored for their likelihood

under the dialogue-conditional anchor policy. Of the final 60 actions, 30 from the anchor policy

and 30 from the dialogue-free RL policy, the top 35 most likely according to the anchor policy

were kept. These final 35 actions per player, along with their relative probabilities, were used

as a tabular approximation to the anchor policy for the remainder of the search procedure.

E.2.3 Independent pairwise policy prediction

DiL-piKL (§E.1.3) can be directly applied to Diplomacy to approximate an equilibrium across

all 7 players at once, but unlike its successful application to dialogue-free Diplomacy in (17),

for the full game of Diplomacy this approach is lacking in two respects:

1. It fails to account for correlation between the actions of other players based on dialogue

that the agent cannot observe. For example, Germany may have agreed via private di-

alogue to support France to either Ruhr or Munich with France moving to precisely

whichever same territory that Germany is supporting, but the agent doesn’t know which.

40

2. It fails to account for the fact that the dialogue with each player is not common knowledge.

For example, if the agent playing as Italy discusses with Austria moving to Venice, France

shouldn’t be able to adjust their policy based on this (secret) dialogue.

Therefore, we computed pairwise policies between the agent player i and each other player

j 6= i. One at a time, we ran DiL-piKL between just i and j in order to obtain a predicted policy

⇡j for that other player.

Specifically, we ran DiL-piKL where on each iteration t, the agent i and player j respectively

sampled anchor strengths �t
i and �t

j and respectively sampled actions ati ⇡t
i(�

t
i) and atj

⇡t
j(�

t
j) from the piKL policies ⇡t

i(�
t
i) and ⇡t

j(�
t
j) on that iteration. For the other 5 players,

we applied the computationally cheap dialogue-free RL policy ⇡RL to sample a joint action

conditional on the actions of i and j: at�ij ⇡RL(ati, a
t
j, ⇤, ⇤, ⇤, ⇤, ⇤). Sampling a joint action in

this way allowed us to account for likely possible correlation as a result of unobserved private

dialogue between those players, or between those players and j.

Equipped now with a joint action a = {ai, aj, a�ij}, we performed a 1-step rollout follow-

ing a and apply the RL value model to the resulting state, obtaining rewards ut
i and ut

j for that

DiL-piKL iteration. We performed a total of 256 iterations with each player, obtaining separate

policies ⇡j for each player j.

These policies represent a best guess for the likely range of actions that each other player

may play, having been regularized at each step to remain a close match to the dialogue-conditional

human imitation anchor policy, while through piKL downweighting low-value and/or exploitable

actions. The ⇡j are the final policies from which we selected actions for message recipients to

supply as intents (§D.2).

41

E.2.4 Choosing the agent’s own action and/or intent

In order to compute the agent’s own action, our goal was to play a best response to a joint

combination of all ⇡j for all the players j other than the agent i. However, since each ⇡j was

computed separately, we lacked the information about how these policies correlate with one

another.

Therefore, we merged all policies back into a single correlated joint policy via self-normalized

importance sampling by reapplying the correlations learned during RL. Specifically, we sam-

pled 1000 joint actions ak
�i, k 2 {1, . . . , 1000} from the cartesian product of all these policies,

8j 6= i : akj ⇠ ⇡j(·).

Then for each ak
�i, we weighted it by the likelihood ratio:

w(ak
�i) = ⇡RL

�
ak
�i

�
/

Y

j 6=i

⇡RL(a
k
j)

!
.

That is, the ratio between likelihood of ak
�i under the (correlated) joint RL policy, and the

product of the likelihood of ak�i under the independent marginal RL policies.

The reweighted average is the final estimate of the joint policy of players other than the

agent:

⇡�i(a�i) /
X

k

w(ak
�i)I(a

k
�i = a�i)

Lastly, we chose the action ai for the agent that best responded to this predicted joint policy

⇡�i of the other players, but again regularized towards the anchor policy ⌧ . Specifically, we

chose the action argmaxai ui(ai,⇡�i) + � log ⌧i(ai) where ui is the RL value function, ⌧i(ai)

is the probability of the action under the dialogue-conditional anchor imitation policy and � =

0.003. Although � is small, it resulted in the agent preferring consistency with the dialogue if

multiple actions had similar predicted values.

42

E.2.5 Distribution of the anchor strength � in DiL-piKL

For all applications of DiL-piKL in CICERO, we used a uniform distribution over six possible

� values log-uniformly spaced, where the smallest � was 0.001 and the largest � was 0.3. In

particular, by using a wide a distribution of anchor strengths during pairwise prediction, we

aimed to make CICERO favor policies that would be robust to a wide range of opponents, from

those that would closely adhere to the BC policy prediction and/or the likely actions implied by

their dialogue with CICERO, to those that would deviate more heavily.

However, we additionally multiplied all � values by a factor of (1/c)
p

Vari(s) + ✏2, where

Vari(s) is the empirical variance of player i’s value estimate over 100 rollouts of the raw model’s

policy from the current state s up to the next negotiation/movement turn, c = 0.05 normalizes

for the typical standard deviation for value estimates at the start of the game, and ✏ = 0.01.

Recall that the anchor strength � is the additional expected reward from a better action at which

piKL predicts a player to have an e times increased odds to choose that better action. The

motivation for this scaling was to address an informal observation that in situations where the

overall variance of values of all actions is larger or more uncertain, human players might be less

sensitive to same absolute value difference in adjusting their policy, so piKL should adjust less.

Or stated another way, when the variance of state values is high, the anchor strength may also

need to be correspondingly higher to achieve a “similar” overall level of regularization towards

the BC policy.

Lastly, we also multiplied all � values by 10 for the first turn of the game, so that CICERO

modeled other players as playing, and itself played, a range of openings which more closely

resembles the variety of openings that humans typically play.

43

E.3 Dialogue-free model inputs and architecture

This section describes the architecture used for human behavioral cloning and for reinforcement

learning in the dialogue-free part of the agent architecture.

Whereas we rely heavily on dialogue-conditional language generation and dialogue-conditional

action proposal models during test-time strategic planning (§D.2, §E.2), we do not address the

challenges of running reinforcement learning with natural-language dialogue “in the loop” at

training time. As a result, the reinforcement-learned value function and policy (§E.4) that drive

the various steps in strategic planning in §E.2 use a model that is similar to language-free archi-

tectures used for much prior published work in dialogue-free Diplomacy (7, 16, 26, 53).

This dialogue-free part of CICERO’s architecture takes as input the board state and recent

action history, plus a set of zero or more given orders (possibly including orders for more than

one player) to condition on as orders that will be played this turn. Via an autoregressive policy

head it predicts the likelihood of all other orders by all players this turn conditional on the given

orders. Either jointly on the same model or attached to a separately trained model with the same

architecture, a value head predicts the expected value of the final score for all players. In this

way, the policy head can model the joint distribution of the likely actions of human players in a

game when trained via BC, or the joint distribution of human-like policies after those policies

are improved via RL, while the value head is trained to approximate the expected continuation

value of the game under that joint policy. Conditioning on given orders in the input enables us to

also query conditional slices of that distribution rather than only sampling from the distribution

as a whole.

Although this model does not directly see the dialogue in the game, by predicting the full

joint distribution of all player’s actions, it can model likely correlations between different play-

ers’ actions due to those players coordinating through private unseen dialogue. As described

in §E.4, we leverage this in RL to be able to regularize our RL policy to remain close to the

44

human joint policy inclusive of correlated actions coordinated through private dialogue, despite

not receiving dialogue as an input nor explicitly modeling dialogue during RL.

Similar to prior work in dialogue-free Diplomacy (7, 16, 26, 53, 54), we encode the board

state as a tensor of the 38 feature channels described in Table S7 for each of the 81 possible

locations on the board (75 regions plus 6 special coasts).

We encode both the current board state and the previous board state in this way. We also

encode recent order history the same way as in (53), where previous turn orders are associated

with the board location of the unit performing that order and are encoded as a vector of length

202 indicating the order properties. We borrow the same embedding as well for the current turn

orders being conditioned on, with an all-zero embedding for orders not given.

All of these components are concatenated channel-wise for a total of 480 channels, and

passed through a linear layer with 224 output channels, producing a 81 (location) x 224 (chan-

nel) input tensor encoding all per-location information about board state.

Similarly, each component of information about the board state that is per-player (Table S8)

or global (Table S9) is linearly processed and summed in the same way, producing a final 7

(player) x 224 (channel) tensor and a 1 (global) x 224 (channel) tensor.

All tensors are concatenated to a single (81+7+1) x 224 tensor, summed with a randomly-

initialized learnable positional bias, and fed to a standard transformer encoder architecture. The

encoder uses 10 encoder blocks, where each block consists of a self-attention layer with 224

channels, 8 softmax dot-product self-attention heads, followed by a 224x224 channel-wise-

fully-connected transform with GeLU activations and skip connection from the previous block.

The final output policy is predicted from the encoder’s output autoregressively by an LSTM

decoder head that exactly matches that of (53), except with the only difference being that the

LSTM decodes over all locations corresponding to any player’s possible orders, rather than only

the locations for which one player can issue orders, so as to decode and predict the joint and

45

possibly correlated actions of all players, rather than only a player’s individual action.

Separately, the game value is predicted by a value head that takes the transformer encoder

output and applies a softmax attention layer, a linear layer with 224 channels, GeLU activation,

a linear layer with 7 channels, and a softmax, giving the predicted expected final score for all 7

players.

See Figure S7 for an illustration of the architecture.

Pre-RL behavioral cloning We used the WEBDIPLOMACY dataset to train a baseline be-

havioral cloning model using this architecture before improving that model further through RL

(§E.4). Our training was similar to that of (17), except that the model was trained to predict joint

actions of one, two, or all players, rather than only one player actions. During BC training, we

included games both with and without dialogue, and at inference time and during RL, we set the

model to condition on the game being regular Diplomacy rather than dialogue-free Diplomacy

(as per the appropriate input in Table S9). See Table S10 for a summary of the hyper parameters

used. To train a pre-RL value function, we also trained a separate model from rollouts of the

behavioral cloning policy using the improved value modeling method from (26).

E.4 Correlation-aware human-regularized reinforcement learning

Strategic planning requires accurate value estimates in diverse situations, as well as the ability

to surface the best actions. Unlike 2p0s games where there is a uniquely defined minimax

value for each state s, to do well in multiplayer games among human players, we need a value

estimate V (s) assuming a human distribution of continuation policies. However, value models

trained solely on human data suffer from high variance due to limited data. There are only

about 100,000 final game outcomes in the WEBDIPLOMACY dataset, and the final outcome is

an extremely noisy estimator of the value of an intermediate game state.

46

Self-play reinforcement learning, in which an agent learns by playing repeated games against

earlier copies of itself, has shown remarkable success in learning high-quality policy and value

functions even when training from scratch without human data in a variety of adversarial games

including Go (90), chess (27), poker (4, 10), and Dota 2 (32). However, we found that naı̈ve

self-play RL from scratch performed poorly in a dialogue-free variant of Diplomacy when play-

ing with humans (17). This is because in non-2p0s games there may be multiple incompatible

equilibria, and naı̈ve self-play RL may converge to state values that differ greatly from the cor-

rect value for human play. Moreover, in a game like Diplomacy where private communication is

possible, one also has to model how players might coordinate and correlate their actions through

private messages, including messages the agent might not observe.

We therefore developed Correlated and Shared (CoShar) piKL, which regularizes toward a

joint, correlated anchor policy ⌧ shared by all players rather than toward per-player policies.

This allows both keeping a policy from drifting too far from human conventions during opti-

mization as well as allowing for cross-player correlations to be modeled in a joint policy. We

then shaped our reinforcement learning around CoShar piKL.

CoShar piKL operates by iteratively improving a policy ⇡t over successive iterations t based

on adjusting a joint anchor policy ⌧ using the average expected value of the policies on past

iterations:

Qt�1
i (ai) = Ea⇠⇡t�1(a|ai)Vi(a) (S6)

⇡�t(a) / ⌧(a) exp

X

i

Qt�1
i (ai)/�

!
(S7)

⇡t =

✓
t� 1

t

◆
⇡t�1 +

✓
1

t

◆
⇡�t (S8)

where expected values are given by a value function V such that Vi(a) is the value to player i of

the game state resulting from playing joint action a, and the anchor strength � limits the degree

to which the policy can deviate from ⌧ .

47

When the individual player policies in ⌧ are uncorrelated, CoShar piKL is identical to piKL.

Unfortunately running CoShar piKL is not computationally feasible in Diplomacy due to

the combinatorial action space. For example, if all 7 players each have 35 actions to choose

from, the joint action space is of size 357 > 1010, too large to be cheaply enumerated. Sampling

from ⇡t is also nontrivial, due to the scaling by Q.

Therefore, we developed a simplified version of the algorithm, Correlated Best Response,

that computes a KL-regularized best response in an efficient way. We then combined it with

self-play to iteratively improve our estimates of the joint policy.

E.4.1 Correlated Best Response

Given a current policy ⇡✓⇡ parametrized by a neural network ✓⇡, Correlated Best Response

(Cor-BR) aims to perform only a single-step of CoShar piKL at a time to improve that policy.

Therefore, to derive the update rule from Equation S6, we remove the iteration index t as we are

updating the policies only one step, and draw conditional samples from ⇡✓⇡ to estimate EVs.

Qi(ai) = Ea⇠⇡✓⇡ (a|ai)Vi(a), (S9)

p(a) / ⌧(a) exp

X

i

Qi(ai)/�

!
. (S10)

Note, that the first step (S9) in this formulation is significantly more efficient than in Equa-

tion S6 because ⇡✓⇡ is modeled by a neural network that allows sampling conditional joint ac-

tions in linear time, whereas ⇡t�1 in CoShar piKL may not be easy to sample. Here p is anal-

ogous to ⇡�t from CoShar piKL, it is the policy which we wish to take a small step towards in

order to improve our current policy ⇡✓⇡ .

Next, we attempt to sample from p. To sample from p we employ a self-normalized impor-

tance sampling trick similar to §E.2.4, as follows.

48

Let q be a product of the independent piKL policies for each player, that is:

q(a) /

Y

i

⌧(ai)

!
exp

X

i

Qi(ai)/�

!
. (S11)

The distribution q would match p if ⌧ factorized as a product of independent marginal poli-

cies for each player, i.e if there were no private communication by which players could correlate

their actions. But since there are correlations, we can sample from q and then sample from these

samples via importance sampling, using the ratio of probabilities p(a)/q(a) as the weight of

each sample. More formally, the full procedure of sampling Np many joint actions a1, . . . , aNp

from Correlated Best Response policies goes as follows:

Q̂i(ai) := Ea⇠⇡✓⇡ (·|ai)Vi(a)

q̂(a) := (
Y

i

⌧(ai)) exp(
X

i

Q̂i(ai)/�)

p̂(a) := ⌧(a) exp(
X

i

Q̂i(ai)/�)

â1, . . . , âNq ⇠ q̂(·)

p̂(a) := p̂(a)/q̂(a)I(a 2 {â1, . . . , âNq})

a1, . . . , aNp ⇠ p̂(·)

Note that here p̂, q̂, and p̂(a) are unnormalized probability distributions, but computation

of the normalization constants for the latter two is tractable. We can sample from q̂ as we

can sample actions independently. We can sample from p̂(a) as only a small set of actions we

sampled from q̂ have non-zero probability. As Nq ! 1 the probability distribution of final

samples converges to p.

Lastly, we can approximately update ⇡✓⇡ towards p by a small step by taking a gradient step

training ✓⇡ to minimize cross entropy loss in predicting the distribution of final samples.

49

Effectively, we are doing the same thing as piKL, approximately computing a regularized

equilibrium where all players attempt to optimize their own utility subject to their policy re-

maining close to the human imitation anchor policy, so that their conventions do not drift far

from human conventions. With two differences:

• As with CoShar piKL, rather than regularizing the policies of all players independently

towards their own marginal action distribution, we regularize the joint policy of all play-

ers towards the joint imitation anchor policy, so as to preserve the correlation structure

between different players’ actions that results from their ability to privately communicate.

• But rather than running the equilibrium computation to completion at every point of the

training trajectory, we only run a single gradient step of it at every point of the training

trajectory, amortizing the optimization over the entire RL training loop.

E.4.2 Human correlation aware self-play

Our resulting self-play algorithm, RL-Cor-BR, closely followed Deep Nash Value Iteration

(DNVI) (16), as well as our prior work in RL in dialogue-free Diplomacy (17), except replacing

the planning algorithm from regret matching or DiL-piKL, respectively in those works, with

Cor-BR. Our implementation similarly operated several data generation workers and training

workers that run in parallel.

The data generation workers played games using the current estimates of the value and

policy proposal networks. On each turn of a game we computed a Corr-BR joint policy as

described in the prior section using a fixed � of 0.03 with 100 samples for approximating p,

and computed the estimated state value under this policy based on a 1-step rollout. We added

the policy and value to a circular replay buffer shared among all workers and sampled an action

from the policy to play to continue the game.

50

Simultaneously, the training workers continuously read batches of data from the replay

buffer, synchronously applied a gradient update to the value and policy proposal networks,

and periodically broadcasted the updated models to the data generation workers.

For the value function we used the same loss function for RL as for imitation learning:

ValueLoss(✓v) =
1

2

V (s; ✓v)�

X

a0

�(a0)V
⇣
f(s, a0); ✓̂v

⌘!2

The resulting value function produces high-quality state-value estimates taking into account

how players’ ability to privately coordinate can affect the likely future outcomes under human-

like conventions of play, despite not directly observing the dialogue.

To train the policy, since for the CICERO planning in §E.2 we needed the RL policy to be

able to predict the joint policy of players conditioned on anywhere from zero to two players’

actions, we constructed policy training targets accordingly.

To do so we first sampled a random joint action a from the policy. We then sampled a vector

of conditioning actions c that randomly either was empty, or contained one random player’s

action, or two random players’ actions. Lastly, we then used a standard cross entropy loss:

PolicyLoss(✓⇡) = � log ⇡i(s, a; ✓⇡|c)

As described in §E.2, the resulting RL policy was used to augment samples from a dialogue-

conditional action prediction model, as well as to provide a fast estimate of other players policies

during pairwise DiL-piKL search.

E.4.3 Evaluation of RL policy and value function

The goal of coordination-aware training is to be able to able to understand and play well with

humans. However, running many tests against real humans beyond the ones we have run for our

main experiments is logistically difficult and impractical. As a proxy we performed population

51

and head-to-head experiments to measure the strength of agents using various policy and value

functions as well as some experiments to probe and verify that the RL policy and value networks

nontrivially model a correlated multi-agent human-like policy rather than one that could simply

be factored as the product of per-agent independent policies.

To test the value function, we compared the effects of using RL-DiL-piKL (from (17))

which optimizes independent policies for each player, versus the RL-Cor-BR that we actually

used in CICERO that captures cross-player correlations in actions. We also tested “independent

improved BC” training of a value model described by (26), and an analogous version of the

same that uses rollouts from the joint BC policy rather than the independent BC policies for

each player.

We find in Table S11 that the RL-Cor-BR value function performed significantly better

than all other tested methods against coordinating agents, whereas the RL-DiL-piKL hardly

improved over BC methods, suggesting that RL-Cor-BR’s learned state values do meaningfully

capture the effects of future multiplayer coordination on the current value of a position.

Notably, RL-Cor-BR performed worse than RL-DiL-piKL by average score in a population

of independently-acting search-based agents, which is also consistent with expectations — in

a population of agents that do not in fact correlate their actions, a value function trained to ex-

pect correlation underperforms one that correctly assumes independence. Still, both algorithms

outperform BC methods.

To evaluate RL policies, we evaluated how well the agent acting directly according to that

raw policy could play against 6 coordinating agents as well as how the 6 copies of that agent

sampling correlated actions from that policy could coordinate against a single search agent

(Table S12). We compared Cicero’s dialogue-free RL policy versus dialogue-free imitation

policies trained to predict individual player actions independently per player, or to predict joint

actions of all players.

52

As expected, in the 1 row agent vs 6 coordinating BC agent setting, the independent BC pol-

icy and joint BC policy performed identically, since sampling independently the single agent’s

policy versus sampling joint actions and marginalizing down to the single agent’s policy pro-

duces theoretically the same policy. The RL policy from CICERO outperformed both.

By contrast, in the 6 coordinating row agents vs 1 BC search agent setting, the joint BC

policy outperformed the independent BC policy because the joint BC policy was able to sample

correlated actions among the 6 players it controls modeling the way those players would likely

have coordinated due to private dialogue (despite not explicitly simulating such dialogue). CI-

CERO’s RL policy yet further outperformed that, indicating the value of RL over just plain BC.

F List of models used in CICERO

We list and briefly describe the deep-learning models used in CICERO and/or featured in this

work. For each model, we also briefly summarize its inputs and training, including in what way,

if any, it implicitly or explicitly accounts for dialogue.

• Intent-controlled dialogue model (main article section Intent-controlled dialogue, SM

D.1) - Responsible for all dialogue generation in CICERO. Trained to imitate messages in

human diplomacy games given the board state and history, the dialogue history, and the

intent for the target message. At test time, the intent was supplied from strategic planning

instead.

• Intent annotation model (main article section Annotating training messages with intents,

SM D.2.3) - Used to annotate the human dataset messages with intents, for training the

intent-controlled dialogue model and imitation intent model. Not used in CICERO at test

time. Trained to predict the actions in human Diplomacy games given the board state

and history, and the dialogue history. At annotation time, the dialogue history included

53

messages up through the message being annotated, with additional agreement messages

injected.

• Imitation intent model (SM D.2.4) - Used to determine actions that humans would be

likely to talk about in order to select among actions in a recipient’s predicted policy to

use as an intent for generating a message to the recipient. Trained on human Diplomacy

games to predict the annotated intent for the next message, given the board state and

history and dialogue history prior to that next message.

• Message filtering ensemble models (main article section Message filtering, SM D.3.1) -

Used to filter CICERO’s generated dialogue for inconsistencies and nonsensical messages.

Includes 16 classifiers, each trained to discriminate between real human messages from

human Diplomacy games and messages with different deliberate corruptions applied, or

generated by different models, and provided different inputs (different amounts of board

state and history, or dialogue history, etc).

• Weak/denoising models (SM D.3.1) - Used to generate counterfactual and/or corrupted

messages for training message filtering ensemble models. Not used in CICERO at test

time. Variously trained to predict or generate dialogue given limited information, so as to

generate messages that contain errors to be discriminated from accurate human messages.

• Message scheduler model (SM D.4.1) - Used along with other heuristics to determine

whether to send any (further) messages to a player during a turn. Trained on human

Diplomacy games to classify whether and when to send the next message to a particular

recipient, given the board state and history and dialogue history (but not the contents of

the message to be sent). At test time, used only to determine whether to send a message

to a given player, not when.

54

• Dialogue-conditional BC model (main article section Strategic reasoning, SM E.2.1 -

Supplied the anchor policy by which CICERO’s strategic reasoning stays compatible with

human conventions, allows CICERO’s actions to be highly flexible and adaptive to the di-

alogue it receives from other players. Trained on human diplomacy games to imitate/pre-

dict the joint actions of all 7 players, given the board state and history and the dialogue

history. At test time, used as the anchor policy for piKL, as well as to initially sample

actions to be considered by piKL.

• Dialogue-free BC policy model (SM E.3) - Supplied the anchor policy used during RL to

ensure the RL policy stayed compatible with human conventions. Not used in CICERO at

test time. Trained on human diplomacy games to imitate/predict the joint actions of all

7 players, given the board state and history but without observing the dialogue. Still im-

plicitly captures some effects of dialogue on likely actions, such as predicting correlations

between the actions of players who are likely to coordinate through private dialogue.

• Dialogue-free Improved BC value model (SM E.3) - Used only to initialize the dialogue-

free RL model, and in an ablation. Not used in CICERO at test time. Trained from the

dialogue-free BC policy following the improved value modeling method from (26) to

predict the expected final score of players, given the board state and history but without

observing the dialogue.

• Dialogue-free RL policy model (main article section Self-play reinforcement learning for

improved value estimation, SM E.4) - During pairwise piKL in CICERO, used to sample

actions for the other 5 players conditional on the actions of the pair. Also used to sample

initial actions to be considered by considered by piKL. Trained via RL to predict the

piKL policy anchored to the dialogue-free BC policy, given the board state and history

but without observing dialogue. Intended to be a better policy than BC that still accurately

55

models human play, including cross-player correlations due to the unobserved dialogue.

• Dialogue-free RL value model (main article section Self-play reinforcement learning for

improved value estimation, SM E.4) - Used for all value estimates in CICERO during

strategic reasoning. Trained via RL jointly with the RL policy, to predict the expected

continuation value of piKL anchoring to the dialogue-free BC policy, given the board

state and history but without observing dialogue. Still implicitly captures some effects

of possible future dialogue on state values due to being the continuation value of a joint

policy that, e.g., implicitly models players’ likely future coordination.

G Performance optimizations for blitz Diplomacy

Playing in blitz games requires the agent to respond to messages quickly and send a lot of

messages in a short time frame. We made the following performance optimizations in order to

keep the agent responsive and able to respond to most messages within 15-30 seconds.

Hardware setup and parallel agents CICERO can sample policies, perform search, and gen-

erate candidate messages in parallel on multiple GPUs on a single machine. In blitz games, we

ran on a machine with 80 Intel(R) Xeon(R) CPU cores and 8 NVIDIA(R) V100 GPUs. We used

data-parallelism to speed up many operations such as message sampling, order sampling, state

value evaluation, etc. Message generation time was 10-30 seconds, depending on the length

of dialogue history and the number of units controlled by the agent and recipient. In order

to further improve responsiveness, we designated a separate machine to control the dialogue

with each recipient, and one machine that updated orders in response to the dialogue. These

“recipient sub-agents” operated wholly independently in response to game events.

56

Interruption Typically, any game event (incoming messages or new turn) would re-start mes-

sage generation. In blitz games, an agent is often interrupted by incoming messages faster than

it can generate messages, which would prevent it from ever speaking. Therefore, we set each

recipient sub-agent to only be interrupted by incoming messages from the recipient it was speak-

ing to; messages would therefore be slightly stale with respect to dialogue with other powers.

Caching and incremental planning We cached and reused intents for multiple outgoing mes-

sages when not receiving new incoming messages. In other cases when we already sent a mes-

sage on a turn, we incrementally updated the tabular anchor policy by sampling 10 additional

actions from the dialogue conditional model for the agent and each power who has spoken since

the last message, rescoring everything with the dialogue-conditional model.

Intents for future turns Message intents consist of actions for the agent and recipient for

both the current turn and future turns through the next movement turn. To reduce compute time,

we only incorporated planning when generating intents for the current turn, using the imitation

intent model alone (conditioned on current turn intents) to generate intents for future turns.

H Results of Anonymous Human Games

Table S13 lists the average score and number of games played with CICERO for every player

who participated in games with CICERO. Figure S9 visualizes CICERO’s average score com-

pared to the cumulative distribution of players, restricting to those who played at least 1, 2, 3,

and 5 games respectively.

Table S14 compares cross-player support statistics for CICERO and other ways of generating

orders in the league games played on webDiplomacy.net. We compared statistics for CICERO’s

orders with CICERO orders at the start of the phase, before any dialogue is exchanged, in order

57

to measure the effect of coordination through dialogue. As a more extreme example, we also

considered the orders that a state-of-the-art agent for no-press Diplomacy, which ignores all

dialogue, would play. We find that CICERO has more effective and coordinated cross-player

supports than either of these variants. However, CICERO is still less coordinated than pairs of

human players.

I Simulated Diplomacy games between bot variants

We evaluated a variety of ablations and alternative Diplomacy agents in head-to-head matchups

with one agent of type A and six agents of type B. For each matchup, we ran 40 games with

agent A playing each of the seven powers, for a total of 280 games. Results are shown in Table

S15. For agent B we used either an “imitation agent” or CICERO. The imitation agent used

a dialogue-conditional imitation model to select actions P (a|x) and intents P (z|x). In other

words, this agent imitated the human distribution of play (conditioned on a high player rating).

We performed fewer matchups with CICERO as agent B because of the computational cost of

running 6 CICERO agents.

The results of these experiments demonstrate the importance of some aspects of CICERO,

but also highlight the limitations of evaluating a dialogue agent through self-play. Notably,

the imitation agents clearly capture the importance of communication for cooperative behavior:

silent agents, even those with excellent strategic play, perform quite poorly against them. How-

ever, while the performance against 6 imitation agents seems to be almost perfectly correlated

with the number of messages the agent sends, the effect of the content of these messages is not

observed (Figure S10). Indeed, removing intents or filters which we have shown to decrease

nonsense leaves the performance against this population the same or better, by allowing more

messages to be sent. This reflects the fact that imitation agents learn an artificial correlation

in the data between a large number of friendly messages with a player and friendly behavior

58

towards that player, allowing them to be easily exploited. On the other hand, talking more to a

CICERO agent has a negligible effect on outcomes.

The benefits of strategic planning are also evident in table S15. CICERO achieved an av-

erage score of 32% against six imitation agents, while an imitation agent achieved an average

score of 4.5% against six CICERO agents. We also ablated the RL models and instead used a

supervised-learned value function trained only on human games for planning, which reduced

average score from 32.0% to 25.8%. This reflects the benefit of RL over supervised training of

a value function.

59

Info Text

Input (Truncated) previous
turn dialogue history

...

16 TURKEY -> AUSTRIA: my moves are AEG - ION, and BUL s SER - RUM
1848 AUSTRIA -> TURKEY: Awesome! Thanks.
F1902M

Current turn dialogue
history

0 TURKEY -> AUSTRIA: wait, if you move into RUM, how are you going to move
TRI to SER?
574 TURKEY -> AUSTRIA: i’ll do it anyway, so please confirm

Draw state DRAWS:
Order history S1902M

ENGLAND: A NWY H; F LON ENG; F NTH S F LON ENG; F NWG S A NWY
FRANCE: A BEL S A MAR BUR; A MAR BUR; A PAR PIC; A SPA GAS; F BRE
ENG; F POR MAO
ITALY: A TUN H; A VEN H; F ION EAS; F NAP ION
GERMANY: A BER KIE; A HOL H; A MUN H; F DEN S F KIE HEL; F KIE HEL
AUSTRIA: A BUD SER; A SER BUL; A TRI S A BUD SER; A VIE BUD; F GRE S
A SER BUL
TURKEY: A BUL H; A CON S A BUL; F ANK BLA; F SMY AEG
RUSSIA: A FIN S F STP/NC NWY; A RUM S A WAR GAL; A WAR GAL; F SEV
BLA; F STP/NC NWY; F SWE S F STP/NC NWY
S1902R

Game state units: AUSTRIA: A BUD, A SER, A TRI, A VIE, F GRE; ENGLAND: F ENG, F NTH,
F NWG; FRANCE: A BEL, A BUR, A GAS, A PIC, F BRE, F MAO; GERMANY: A
HOL, A KIE, A MUN, F DEN, F HEL; ITALY: A TUN, A VEN, F EAS, F ION;
RUSSIA: A FIN, A GAL, A RUM, F NWY, F SEV, F SWE; TURKEY: A BUL, A
CON, F AEG, F ANK
centers: AUSTRIA: BUD, GRE, SER, TRI, VIE; ENGLAND: EDI, LON, LVP, NWY;
FRANCE: BEL, BRE, MAR, PAR, POR, SPA; GERMANY: BER, DEN, HOL, KIE,
MUN; ITALY: NAP, ROM, TUN, VEN; RUSSIA: MOS, RUM, SEV, STP, SWE, WAR;
TURKEY: ANK, BUL, CON, SMY

Planned orders (recipi-
ent)

AUSTRIA: A BUD S A SER RUM; A SER RUM; A TRI SER; A VIE GAL; F GRE S
F AEG ION
F1902R

W1902A
A TRI B
S1903M
A BUD S A RUM; A RUM S A SER; A SER S A RUM; A TRI S A VIE TYR; A VIE
TYR; F GRE S F AEG ION

Planned orders (sender) TURKEY: A BUL S A SER RUM; A CON SMY; F AEG ION; F ANK BLA
F1902R

W1902A

S1903M
A BUL S A RUM; A SMY H; F AEG ION; F ANK BLA

Time since last message 6225
Player and game meta-
data

F1902M TURKEY 5 ANON 1440min SOS PUBLIC HASDRAWS:

Target AUSTRIA: i want you to support me into the ION, i can’t have italy in the AEG

Table S1: Hypothetical dialogue training example All dialogue shown is model-generated.
Info denotes the game-related information that is being represented in the particular part of the
text sequence.

60

Method % of predictions contain-
ing labeled orders

Base model 77
+ Initialized from dialogue model 87
+ Injected agreement messages 93
+ Restriction to truthful subset 97

Table S2: Intent annotating test set results We show the results on a small (194 example)
test set evaluating how closely the predicted intents correspond to the dialogue messages. The
test set consists of dialogue messages hand-labeled with orders reflected in the content of the
dialogue message. Adding each successive method used by CICERO substantially improves the
correspondence between intent and dialogue.

Example of contradiction – CICERO is AUSTRIA

...
AUSTRIA: Also, are you able to move Ven-pie
and Apu-ven?

ITALY: Yeah that’s what I’m planning
...

AUSTRIA: I’m not a fan of the move to Venice.
Are you planning to hold in Venice?

ITALY: You suggested I move to Venice!
ITALY: Do you want support to Aegean this
turn?
ITALY: And yes Venice will hold

AUSTRIA: In that case, we’re all good! And
yes please!

Table S3: Unsuccessful dialogue example CICERO contradicts a message asking Italy (an
author of this paper) to move to Venice. Although our suite of filters aims to detect mistakes of
this nature, it is not perfect.

61

(Model #) Context Corruption type

Context length: 512 tokens

(1) messages, state location (entity)
(2) messages, state power (entity)
(3) dialogue history, state symbol (entity)
(4) messages, state weak

Context length: 2048 tokens

(5) orders (1 M-phase), state, intents denoising (seed 1)
(6) messages, orders (2 M-phases), state, intents denoising (seed 1)
(7) messages, orders (2 M-phases), state (2 M-phases), intents denoising (seeds 1, 2)
(8) messages (no speaker), orders (2 M-phases), state (2 M-

phases), intents
denoising (seed 1)

(9) messages, orders (4 M-phases), state, intents denoising (seed 3)
(10) messages (no speaker, bilateral), orders (2 M-phases), state (2

M-phases), intents
denoising (seed 1)

(11) messages, orders (2 M-phases), state (2 M-phases), intents weak justifications
(12) messages, orders, state, intents non-sequiturs
(13) messages, orders (2 M-phases), state, intents denoising (seeds 1,2,3)
(14) messages, orders (2 M-phases), state, intents denoising (cardinals)
(15) messages, orders (2 M-phases), state (2 M-phases), intents denoising (seeds 1, 2)
(16) messages, orders (2 M-phases), state, intents denoising (negations)

Table S4: List of nonsense classifiers in the ensemble. We detail the list of all 16 classifiers
used in the ensemble used for detecting nonsense (§D.3). We describe the different input con-
texts that each of these models were trained with, as well as the ‘type’ of counterfactuals that
were used as negatives during training.

62

Figure S2: Trade-off between recall and proportion of messages filtered for nonsense en-
semble on annotated test dataset These graphs illustrate the trade-off between the rate of
filtering messages (flag rate) and proportion of nonsense filtered (recall), as measured on our
annotated test dataset. Ensembles tend to significantly outperform individual classifiers. While
simpler combinations of classifiers than the entire ensemble reach similar levels of recall, there
are additional factors to consider when choosing classifiers, such as their effects on message
diversity.

63

Figure S3: Effect of nonsense filtering on message diversity (message length) We compute
median lengths of the remaining messages in our annotated nonsense dataset after filtering by
each nonsense classifier at different thresholds, plotting the length against the recall (proportion
of nonsense filtered) at that threshold. Length is used as a proxy to understand how nonsense
classifiers affect diversity of dialogue. Most weak de-noising-based classifiers do not show a
negative effect on message length. Only two do, along with the token-likelihood-based classifier
and one of the weak generations classifiers.

64

Figure S4: Effect of nonsense filtering on message diversity (entity mentions) We compute
proportions of “interesting entities” in remaining messages after filtering messages by each
nonsense classifier at different thresholds, plotting the proportion against the recall (proportion
of nonsense filtered) at that threshold. This is used as another proxy to understand how nonsense
classifiers affect diversity of dialogue. Interesting entities include game-specific nouns (e.g.
“builds”, “fleet”, “London”, “lon”, “Austria”) as well as plural cardinals (e.g. “two” or “4”). No
denoising or generations-based classifiers show a negative effect, whereas the token-likelihood-
based and entity-corruption filters do.

65

Model # Live filter rate (%)

1 5.48
2 0.77
3 2.65
4 18.08
5 9.47
6 17.42
7 13.64
8 16.12
9 12.31
10 16.82
11 18.77
12 1.18
13 17.04
14 4.80
15 19.71
16 7.58

Average 11.37
Ensemble 52.78

Table S5: Nonsense ensemble filtering rates in human games We report filtering rates for
each nonsense classifier in our ensemble in live games. Descriptions of each model per model #
can be found in Table S4. Many models in the final tuned ensemble contributed roughly equally,
with no model dominating.

Figure S5: Intent correspondence results True positive rate and false positive rate for the
intent correspondence filter on an expert-annotated validation set on whether the filter agreed
with the expert’s annotation for whether a message’s dialogue was consistent with the actions
in a given intent or not. “Threshold” is the threshold used in CICERO, which filtered about 65%
of messages that contradicted their intents while only losing 24% of other messages.

66

Heuristic Filter # Messages Filtered % Messages Filtered

Repetitive messages 51 3.8%
Short messages 133 10.0%
Grounding 10 0.8%
Offensive/Rude language 4 0.3%
Data formatting / Other 14 1.1%
(passed all heuristic filters) 1124 84.5%

Table S6: Heuristic message filtering statistics The number of messages filtered by the various
heuristic filters or offensive language filters implemented in CICERO, across a sample of 1330
random raw dialogue model generations among all situations encountered in the first 15 official
live games against human players. Numbers sum to slightly more than 1330 or 100% due to a
very small number of messages that triggered more than one filter simultaneously.

Figure S6: Vulnerability of the imitation-learned policy to manipulation through dialogue. Left: In
this example game situation, imitation learning places about 94% likelihood on the agent, England, to
convoy an army to Norway, a natural followup to England’s opening. Depicted is the top-rated such
action. Right: After Russia messages England “Thanks for agreeing to convoy your army to Bel this
turn!” (which Russia would strongly prefer), even though no such agreement was ever made, the same
model now places 85% likelihood on England instead convoying to Belgium. We hypothesize that the
model is manipulable in this way since such messages tend to only occur in human games when there is
in fact agreement, even though they are caused by the agreement rather than the cause of the agreement.
Imitation learning misunderstands the causality and is exploitable as a result. CICERO’s planning process
eliminates this weakness.

67

Feature Type Number of Channels

Presence of army/fleet? Binary 2
Army/fleet owner One-hot (7 players), or all zero 7
Build turn build/disband Binary 2
Dislodged army/fleet? Binary 2
Dislodged unit owner One-hot (7 players), or all zero 7
Land/coast/water One-hot 3
Supply center owner One-hot (7 players), or all zero 8
Home center One-hot (7 players), or all zero 7

Table S7: Per-location board state input features for dialogue-free model

Feature Type Number of Channels

Number of builds allowed during winter Float 1

Table S8: Per-player board state input features for dialogue-free model

Feature Type Channels

Season (spring/fall/winter) One-hot 3
Year (encoded as (y � 1901)/10) Float 1
Regular Diplomacy vs dialogue-free Diplomacy Binary 1
Scoring system used One-hot 2

Table S9: Global board state input features for dialogue-free model

68

Figure S7: Architecture for dialogue-free modeling of joint policy and value used for RL. Figure repro-
duced and updated from (17) that this model architecture was based on.

69

Parameter Value

Optimization
Use joint action as target probability 1/9
Use double joint power action as target probability 4/9
Use single power action as target probability 4/9
Batch size 500
Gradient clipping 0.5
Number GPUs 32 (V100)
Learning rate 0.002
Learning rate decay 0.99
Warmup epochs 10
Num epochs 400
Probability to add power conditioning 50%
Value head loss weight 0.5

Encoder (Transformer)
Activation function GeLU
Dropout 0.3
Layer size in fully connected layers 224
Number of transformer blocks 10
Number in attention heads 8
Hidden size 224

Decoder (LSTM)
Dropout 0.3
Num layers 2
Hidden size 224

Value head
Initialization scale multiplier 0.01
Num layers 2
Hidden size 224
Activation GeLU
Final activation Softmax

Table S10: Hyperparameters for behavior cloning with the dialogue-free model.

70

Value function learned from H2H score vs 6 coordi-
nating agents

Population score vs
independent search
agents

Independent improved BC (26) 45 ± 0.9 17 ± 0.9
Joint improved BC 46 ± 0.9 15 ± 0.9

RL-DiL-piKL (17) 47 ± 0.9 26 ± 1.1
RL-Cor-BR (CICERO) 55 ± 0.9 22 ± 1.0

Table S11: Strength and coordination-awareness of different value functions. In the first column
we make the agent play against 6 BC agents, in the second column against a population of
independent search agents. Independent improved BC is the improved imitation value modeling
from (26). Joint improved BC is same, but using rollouts from a correlated joint policy rather
than independent per-player policies. RL-DiL-piKL is the leading RL algorithm in dialogue-
free Diplomacy (17) that also trains a value function assuming independent player policies
and is not correlation-aware, whereas RL-Cor-BR is correlation-aware. Correlation-aware RL
shows a significant increase in performance vs correlated opponents, whereas non-correlation-
aware RL performs better versus independent search opponents.

Row agent policy 1 row agent 6 row agent
vs 6 BC agent vs 1 BC Search agent

Independent BC (26) 13 ± 0.5 47 ± 0.9
Joint BC 13 ± 0.5 52 ± 0.9
RL-Cor-BR (CICERO) 20 ± 0.6 54 ± 0.9

Table S12: Evaluation of policy strength and coordination. Independent BC is trained to predict
likely human player actions, Joint BC is trained to predict likely joint actions of all players. In
the first column we measure how strong the policy is when controlling a single agent versus 6
BC agents that are jointly controlled by one joint BC policy. CICERO’s RL policy outperforms
BC policies.
In the second column we show the score when the row agent policy jointly controls 6 agents
against one BC search agent. Joint BC outperforms independent BC due to modeling how
the 6 controlled agents would correlate their actions with one another, CICERO’s RL policy
outperforms yet further due to the benefit of RL.

71

Figure S8: Number of incoming and outgoing messages from CICERO by game year, across 17
anonymous blitz Diplomacy games with human players. CICERO tends to send and receive a
similar number of messages, but tends to write longer messages in 1901 and 1902.

Figure S9: Cumulative histogram of player scores, restricted to those who played in at least 1,
2, 3, and 5 games in the tournament with CICERO.

72

Rank Average # Games Rank Average # Games
Score Played (cont’d) Score Played

1 0.4918 1 43 0.0692 2
2 0.4912 1 44 0.0686 1
3 0.4528 1 45 0.0559 8
4 0.4516 1 46 0.0533 1
5 0.3734 1 47 0.0517 3
6 0.3505 11 48 0.0511 1
7 0.3491 1 49 0.0506 5
8 0.3035 4 50 0.0489 3
9 0.2754 2 51 0.0459 5

10 0.2583 40 52 0.0449 3
11 0.2450 6 53 0.0404 8
12 0.2311 1 54 0.0393 3
13 0.2277 2 55 0.0321 1
14 0.2274 8 56 0.0301 6
15 0.2101 5 57 0.0283 1
16 0.2045 1 58 0.0265 7
17 0.1875 7 59 0.0236 3
18 0.1870 5 60 0.0190 1
19 0.1803 8 61 0.0042 1
20 0.1692 4 62 0.0040 1
21 0.1659 11 63 0.0029 1
22 0.1641 7 64 0.0028 1
23 0.1624 3 65 0.0021 2
24 0.1540 1 66 0.0017 2
25 0.1454 3 67 0.0015 2
26 0.1399 2 68 0.0014 2
27 0.1277 4 69 0.0014 2
28 0.1276 1 70 0.0000 1
29 0.1132 1 71 0.0000 1
30 0.1128 6 72 0.0000 1
31 0.1116 7 73 0.0000 1
32 0.1076 3 74 0.0000 1
33 0.1025 2 75 0.0000 1
34 0.0952 4 76 0.0000 3
35 0.0880 1 77 0.0000 1
36 0.0789 2 78 0.0000 1
37 0.0786 1 79 0.0000 1
38 0.0782 2 80 0.0000 1
39 0.0733 9 81 0.0000 1
40 0.0726 1 82 0.0000 1
41 0.0716 3 83 0.0000 1
42 0.0713 4

Table S13: Table of player scores in anonymous human games. CICERO (bold) placed 10th
of 83 competitors, and 2nd out of 19 who played at least 5 games.

73

xplayer effective xplayer moves coordinated

CICERO 6.875 1.475 4.075 2.600
CICERO (start of phase) 5.775 1.100 3.550 2.075
Diplodocus-High (17) 7.375 0.975 3.625 1.575
Human players 6.921 1.721 4.800 3.514

Table S14: Comparing cross-player support effectiveness and coordination for different (coun-
terfactual) sets of orders in human games. CICERO played on the webDiplomacy Blitz league.
All numbers are average counts per game. CICERO (start of phase) refers to CICERO’s order
generation run at the beginning of the phase, before any dialogue. Diplodocus-High is the state-
of-the-art agent for no-press Diplomacy. Human players refers to the other players in the games
where CICERO played. xplayer: The total number of cross-player supports by the agent. ef-
fective: The percentage of cross-player supports to or from the agent that were ‘effective’, as
defined in (7), i.e. that the outcome would have been different if the support had been changed
to a hold. xplayer moves: The total number of cross-player support moves by the agent. co-
ordinated: The total number of cross-player support moves to or from the agent for which the
supported move was actually played.

Figure S10: Scatter plot showing the relationship between number of messages sent and agent
performance, against 6x imitation agents (scores from Table S15). The number of messages
sent dominates the effect of other dialogue factors against this population. This suggests testing
versus imitation agents may not be a reliable way of evaluating the effect of changes in dialogue
generation on the quality of the final agent.

74

6x Agent
1x Agent Imitation Agent CICERO

CICERO 32.0%± 1.7% 14.3%± 0.0%
w/o intents 35.5%± 1.8% 14.5%± 1.1%
w/o nonsense filters 35.8%± 1.8%
w/o dialogue 13.7%± 1.2%
w/o dialogue, w/o dialogue conditioning 10.8%± 1.1% 10.5%± 1.0%
w/ SL value function 25.8%± 1.5% 8.2%± 0.8%
w/ talkative heuristics 50.4%± 1.9% 15.7%± 1.2%
w/ talkative heuristics, w/o intents 52.0%± 1.9%

Imitation Agent 14.3%± 0.0% 4.5%± 0.5%
w/o dialogue 1.1%± 0.3%
w/ talkative heuristics 23.6%± 1.6% 4.8%± 0.5%

Diplodocus-High (17) 11.3%± 1.0%

Table S15: Average score of 1x agent in head-to-head games against six copies of 6x agent
in simulated Blitz Diplomacy games with an end year of 1908. Since there are 7 players,
note that equal performance of the 1x agent would be 1/7 ⇡ 14.3%. w/o intents: Intents
are not computed. A dialogue model that doesn’t condition on intents is used. All filtering is
disabled. w/o nonsense filters: All nonsense filters are disabled. w/o dialogue: The agent does
not generate dialogue. w/o dialogue conditioning: Dialogue is ignored during planning. A
dialogue-free model (§E.3) is used for the anchor policy for planning. w/ talkative heuristics:
We enable heuristics used during Blitz evaluations, in which we compute a delay time for a
message but then set it to 15 seconds as long as the message will be sent this turn. This leads to
about 4x more messages sent per game. We disable this heuristic in the base CICERO agent for
a more fair comparison with the imitation agent.

75

References and Notes

1. T. Brown et al., Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33,

1877 (2020).

2. M. Campbell, A. J. Hoane Jr., F. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).

3. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N.

Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D.

Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature

529, 484–489 (2016).

4. N. Brown, T. Sandholm, Superhuman AI for multiplayer poker. Science 365, 885–890 (2019).

5. S. Kraus, D. Lehmann, Diplomat, an agent in a multi agent environment: An overview, in

IEEE International Performance Computing and Communications Conference (IEEE

Computer Society, 1988), pp. 434–435.

6. D. d. Jonge et al., The challenge of negotiation in the game of Diplomacy, in International

Conference on Agreement Technologies (Springer, 2018), pp. 100–114.

7. P. Paquette et al., No-press Diplomacy: Modeling multi-agent gameplay. Adv. Neural Inf.

Process. Syst. 32, 4474–4485 (2019).

8. A. Dafoe, Y. Bachrach, G. Hadfield, E. Horvitz, K. Larson, T. Graepel, Cooperative AI:

Machines must learn to find common ground. Nature 593, 33–36 (2021).

9. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M.

Johanson, M. Bowling, DeepStack: Expert-level artificial intelligence in heads-up no-

limit poker. Science 356, 508–513 (2017).

10. N. Brown, T. Sandholm, Superhuman AI for heads-up no-limit poker: Libratus beats top

professionals. Science 359, 418–424 (2018).

11. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,

R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang,

L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,

V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T.

Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T.

Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver, Grandmaster level in

StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).

12. Dota 2 (32) is two-team zero-sum but with unlimited information sharing between

teammates, which makes the game equivalent to 2p0s. Prior work found that self-play

from scratch was sufficient for achieving superhuman performance in multiplayer poker

(4), but this may be due to poker offering few opportunities for players to cooperate.

13. J. v. Neumann, Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295 (1928).

14. M. Lewis, D. Yarats, Y. Dauphin, D. Parikh, D. Batra, Deal or no deal? End-to-end learning

of negotiation dialogues, in Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing (Association for Computational Linguistics,

Copenhagen, Denmark, 2017), pp. 2443–2453.

15. A. P. Jacob, M. Lewis, J. Andreas, Multitasking inhibits semantic drift, in Proceedings of the

2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (2021), pp. 5351–5366.

16. A. Bakhtin, D. Wu, A. Lerer, N. Brown, No-press Diplomacy from scratch. Adv. Neural Inf.

Process. Syst. 32, 34 (2021).

17. A. Bakhtin et al., Mastering the game of no-press Diplomacy via human-regularized

reinforcement learning and planning. arXiv:2210.05492 [cs.GT] (2022).

18. A. Holtzman, J. Buys, L. Du, M. Forbes, Y. Choi, The curious case of neural text

degeneration, 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020 (OpenReview.net, 2020).

19. S. Keizer et al., Evaluating persuasion strategies and deep reinforcement learning methods

for negotiation dialogue agents, in Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

(Association for Computational Linguistics, 2017), pp. 480–484.

20. T. Hiraoka, G. Neubig, S. Sakti, T. Toda, S. Nakamura, Construction and analysis of a

persuasive dialogue corpus, in Situated Dialog in Speech-Based Human-Computer

Interaction (Springer, 2016), pp. 125–138.

21. X. Wang et al., Persuasion for good: Towards a personalized persuasive dialogue system for

social good, in Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics (Association for Computational Linguistics, Florence, Italy,

2019), pp. 5635–5649.

22. K. Shuster et al., Language models that seek for knowledge: Modular search and generation

for dialogue and prompt completion. arXiv:2203.13224 (2022).

23. A. Vaswani et al., Attention is all you need, in Advances in Neural Information Processing

Systems, I. Guyon, et al., eds. (Curran Associates, Inc., 2017), vol. 30.

24. M. Lewis et al., BART: Denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension, in Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, ACL 2020, Online, July 5–10, 2020, D.

Jurafsky, J. Chai, N. Schluter, J. R. Tetreault, Eds. (Association for Computational

Linguistics, 2020), pp. 7871–7880.

25. N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, R. Socher, CTRL: A conditional

transformer language model for controllable generation. arXiv:1909.05858 [cs.CL]

(2019).

26. A. P. Jacob et al., Modeling strong and human-like gameplay with KL-regularized search, in

International Conference on Machine Learning (PMLR, 2022), pp. 9695–9728.

27. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play.

Science 362, 1140–1144 (2018).

https://arxiv.org/abs/2210.05492
https://arxiv.org/abs/2203.13224
https://arxiv.org/abs/1909.05858

28. N. Brown, A. Bakhtin, A. Lerer, Q. Gong, Combining deep reinforcement learning and

search for imperfect-information games. Adv. Neural Inf. Process. Syst. 33, 17057

(2020).

29. Z. Ji, et al., Survey of hallucination in natural language generation. arXiv:2202.03629

[cs.CL] (2022).

30. P. Gupta, Y. Tsvetkov, J. P. Bigham, Synthesizing adversarial negative responses for robust

response ranking and evaluation, in Findings of the Association for Computational

Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, C. Zong, F. Xia, W. Li,

R. Navigli, Eds. (Association for Computational Linguistics, 2021), vol. ACL/IJCNLP

2021 of Findings of ACL, pp. 3867–3883.

31. M. Alzantot et al., Generating natural language adversarial examples, in Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, Brussels,

Belgium, October 31–November 4, 2018, E. Riloff, D. Chiang, J. Hockenmaier, J. Tsujii,

eds. (Association for Computational Linguistics, 2018), pp. 2890–2896.

32. C. Berner et al., Dota 2 with large scale deep reinforcement learning. arXiv:1912.06680

(2019).

33. FAIR et al., Supplementary data for “Human-level play in the game of Diplomacy by

combining language models with strategic reasoning”. Zenodo (2022);

doi:10.5281/zenodo.7236700.

34. FAIR et al., Code for “Human-level play in the game of Diplomacy by combining language

models with strategic reasoning”. GitHub (2022);

https://github.com/facebookresearch/diplomacy_cicero.

35. N. Carlini et al., Extracting training data from large language models, in 30th USENIX

Security Symposium (USENIX Security 21) (2021), pp. 2633–2650.

36. L. Weidinger, et al., Ethical and social risks of harm from language models.

arXiv:2112.04359v1 [cs.CL] (2021).

37. E. M. Bender, T. Gebru, A. McMillan-Major, S. Shmitchell, On the dangers of stochastic

parrots: Can language models be too big? Proc. FAccT 2021, 610–623 (2021).

38. E. Dinan, et al., Anticipating safety issues in E2E conversational AI: Framework and tooling.

arXiv:2107.03451 [cs.CL] (2021).

39. I. Gabriel, Artificial intelligence, values, and alignment. Minds Mach. 30, 411–437 (2020).

40. A. Bakhtin, et al., Real or fake? Learning to discriminate machine from human generated

text. arXiv:1906.03351 [cs.LG] (2019).

41. R. Zellers et al., Defending against neural fake news, in Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada, H. M. Wallach, et

al., eds. (2019), pp. 9051–9062.

42. C. Governor, California new autobot law, cal. bus. and prof. code § 17940, et seq. (sb 1001)

(2018).

https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2107.03451
https://arxiv.org/abs/1906.03351

43. D. J. H. Burden, M. Savin-Baden, R. Bhakta, Covert implementations of the Turing test: A

more level playing field?, in Research and Development in Intelligent Systems XXXIII,

M. Bramer, M. Petridis, Eds. (Springer International Publishing, 2016), pp. 195–207.

44. L. Clark et al., What makes a good conversation?: Challenges in designing truly

conversational agents, in Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04–09, 2019, S. A.

Brewster, G. Fitzpatrick, A. L. Cox, V. Kostakos, Eds. (ACM, 2019), p. 475.

45. W. Shi et al., Effects of persuasive dialogues: Testing bot identities and inquiry strategies,

CHI '20: CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA,

April 25–30, 2020, R. Bernhaupt, et al., Eds. (ACM, 2020), pp. 1–13.

46. W. Shi, Y. Li, S. Sahay, Z. Yu, Refine and imitate: Reducing repetition and inconsistency in

persuasion dialogues via reinforcement learning and human demonstration, Findings of

the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta

Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, S.

W. Yih, Eds. (Association for Computational Linguistics, 2021), pp. 3478–3492.

47. S. Kraus, E. Ephrati, D. Lehmann, Negotiation in a non-cooperative environment. J. Exp.

Theor. Artif. Intell. 3, 255–281 (1994).

48. S. Kraus, D. Lehmann, Designing and building a negotiating automated agent. Comput.

Intell. 11, 132–171 (1995).

49. S. J. Johansson, F. Håård, Tactical coordination in no-press Diplomacy, in International Joint

Conference on Autonomous Agents and Multiagent Systems (2005), pp. 423–430.

50. A. Ferreira, H. L. Cardoso, L. P. Reis, Dipblue: A Diplomacy agent with strategic and trust

reasoning, in ICAART 2015—Proceedings of the International Conference on Agents and

Artificial Intelligence, Volume 1, Lisbon, Portugal, 10–12 January, 2015, S. Loiseau, J.

Filipe, B. Duval, H. J. van den Herik, Eds. (SciTePress, 2015), pp. 54–65.

51. J. Marinheiro, H. Lopes Cardoso, Towards general cooperative game playing, in

Transactions on Computational Collective Intelligence XXVIII (Springer, 2018), pp. 164–

192.

52. J. van Hal, Diplomacy AI - Albert (2013); https://sites.google.com/site/diplomacyai.

53. J. Gray, A. Lerer, A. Bakhtin, N. Brown, Human-level performance in no-press Diplomacy

via equilibrium search, in International Conference on Learning Representations (2020).

54. T. Anthony et al., Learning to play no-press Diplomacy with best response policy iteration.

Adv. Neural Inf. Process. Syst. 33, 17987 (2020).

55. D. Peskov, B. Cheng, It takes two to lie: One to lie, and one to listen, in Proceedings of ACL

(2020).

56. N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto, V.

Dumoulin, S. Moitra, E. Hughes, I. Dunning, S. Mourad, H. Larochelle, M. G.

Bellemare, M. Bowling, The Hanabi challenge: A new frontier for AI research. Artif.

Intell. 280, 103216 (2020).

https://sites.google.com/site/diplomacyai

57. M. Carroll et al., On the utility of learning about humans for human-AI coordination. Adv.

Neural Inf. Process. Syst. 32, 5174–5185 (2019).

58. D. Strouse, K. McKee, M. Botvinick, E. Hughes, R. Everett, Collaborating with humans

without human data. Adv. Neural Inf. Process. Syst. 34, 14502 (2021).

59. A. Lerer, A. Peysakhovich, Learning existing social conventions via observationally

augmented self-play, in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,

and Society (ACM, 2019), pp. 107–114.

60. J. Nash, Non-cooperative games. Ann. Math. 54, 286–295 (1951).

61. S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium.

Econometrica 68, 1127–1150 (2000).

62. E. Levin, R. Pieraccini, W. Eckert, A stochastic model of human-machine interaction for

learning dialog strategies. IEEE Trans. Speech Audio Process. 8, 11–23 (2000).

63. S. Young, M. Gašić, B. Thomson, J. D. Williams, POMDP-based statistical spoken dialog

systems: A review, in Proceedings of the IEEE 101 (2013).

64. J. D. Williams, K. Asadi, G. Zweig, Hybrid code networks: Practical and efficient end-to-end

dialog control with supervised and reinforcement learning, in Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers) (2017).

65. H. He, D. Chen, A. Balakrishnan, P. Liang, Decoupling strategy and generation in

negotiation dialogues, in Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing (Association for Computational Linguistics, Brussels,

Belgium, 2018), pp. 2333–2343.

66. J. Schatzmann, K. Weilhammer, M. Stuttle, S. Young, A survey of statistical user simulation

techniques for reinforcement-learning of dialogue management strategies. Knowl. Eng.

Rev. 21, 97–126 (2006).

67. V. Rieser, O. Lemon, Reinforcement Learning for Adaptive Dialogue Systems: A Data-

Driven Methodology for Dialogue Management and Natural Language Generation

(Springer, 2011).

68. D. Yarats, M. Lewis, Hierarchical text generation and planning for strategic dialogue, in

International Conference on Machine Learning (PMLR, 2018), pp. 5591–5599.

69. D. Traum, S. C. Marsella, J. Gratch, J. Lee, A. Hartholt, Multi-party, multi-issue, multi-

strategy negotiation for multi-modal virtual agents, International Workshop on Intelligent

Virtual Agents (Springer, 2008), pp. 117–130.

70. I. Efstathiou, O. Lemon, Learning non-cooperative dialogue behaviours, in Proceedings of

the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue

(SIGDIAL) (Association for Computational Linguistics, Philadelphia, PA, U.S.A., 2014),

pp. 60–68.

71. K. Chawla et al., CaSiNo: A corpus of campsite negotiation dialogues for automatic

negotiation systems, in Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies (Association for Computational Linguistics, Online, 2021), pp. 3167–3185.

72. Y. Li, K. Qian, W. Shi, Z. Yu, End-to-end trainable non-collaborative dialog system. Proc.

Conf. AAAI Artif. Intell. 34, 8293–8302 (2020).

73. Y. Tian, W. Shi, C. Li, Z. Yu, Understanding user resistance strategies in persuasive

conversations, in Findings of the Association for Computational Linguistics: EMNLP

2020 (Association for Computational Linguistics, 2020), pp. 4794–4798.

74. S. Afantenos et al., Developing a corpus of strategic conversation in The Settlers of Catan,

Workshop on Games and NLP (GAMNLP-12) (2012).

75. H. Cuayáhuitl, S. Keizer, O. Lemon, Strategic dialogue management via deep reinforcement

learning, in NeurIPS Workshop on Deep Reinforcement Learning (2015).

76. J. Andreas, D. Klein, Reasoning about pragmatics with neural listeners and speakers, in

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing (Association for Computational Linguistics, 2016), pp. 1173–1182.

77. W. Monroe, R. X. Hawkins, N. D. Goodman, C. Potts, Colors in context: A pragmatic neural

model for grounded language understanding. Trans. Assoc. Comput. Linguist. 5, 325–338

(2017).

78. A. Radford et al., Language models are unsupervised multitask learners. OpenAI blog 1, 9

(2019).

79. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, Y. Bengio, Y. LeCun, eds. (2015).

80. A. H. Miller et al., ParlAI: A dialog research software platform, in Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,

Copenhagen, Denmark, September 9-11, 2017 - System Demonstrations, L. Specia, M.

Post, M. Paul, Eds. (Association for Computational Linguistics, 2017), pp. 79–84.

81. E. M. Smith, D. Gonzalez-Rico, E. Dinan, Y. Boureau, Controlling style in generated

dialogue. arXiv:2009.10855 [cs.CL] (2020).

82. J. Xu, et al., Recipes for safety in open-domain chatbots. arXiv:2010.07079 [cs.CL] (2020).

83. J. Wei, et al., Chain of thought prompting elicits reasoning in large language models.

arXiv:2201.11903 [cs.CL] (2022).

84. A. Fan, M. Lewis, Y. N. Dauphin, Hierarchical neural story generation, Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,

Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, I. Gurevych, Y. Miyao,

eds. (Association for Computational Linguistics, 2018), pp. 889–898.

85. S. Gehman, S. Gururangan, M. Sap, Y. Choi, N. A. Smith, RealToxicityPrompts: Evaluating

neural toxic degeneration in language models, in Findings of the Association for

Computational Linguistics: EMNLP 2020 (Association for Computational Linguistics,

2020), pp. 3356–3369.

https://arxiv.org/abs/2009.10855
https://arxiv.org/abs/2010.07079
https://arxiv.org/abs/2201.11903

86. D. Traum, Issues in multiparty dialogues, Workshop on Agent Communication Languages

(Springer, 2003), pp. 201–211.

87. H. Ouchi, Y. Tsuboi, Addressee and response selection for multi-party conversation, in

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing (Association for Computational Linguistics, Austin, Texas, 2016), pp. 2133–

2143.

88. N. Littlestone, M. K. Warmuth, The weighted majority algorithm. Inf. Comput. 108, 212–261

(1994).

89. N. Brown, C. Kroer, T. Sandholm, Dynamic thresholding and pruning for regret

minimization, Proceedings of the AAAI Conference on Artificial Intelligence (2017), vol.

31.

90. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T.

Graepel, D. Hassabis, Mastering the game of Go without human knowledge. Nature 550,

354–359 (2017).

	Bakhtin-SM.pdf
	Main
	Challenges of Human-AI cooperation in Diplomacy
	The game of Diplomacy
	Overview of Cicero

	Methods
	Data
	Intent-controlled dialogue
	Imitation dialogue model
	Controllable dialogue model via intents
	Annotating training messages with intents
	Selecting intents during play
	Dialogue modeling results

	Strategic reasoning
	piKL: KL-regularized planning
	Dialogue-conditional planning
	Self-play reinforcement learning for improved value estimation

	Message filtering

	Cicero in Anonymous Human Play
	Discussion
	Ethical Considerations
	Acknowledgements
	Ethical considerations
	Privacy
	Toxicity and bias in language generation
	Manipulation
	Evaluation methods: AI agent disclosure

	Prior Work
	Rules of the game of Diplomacy
	Dialogue Methods
	Imitation dialogue model
	Training

	Controllable dialogue model
	Inferring latent intents for dialogue
	Intents as control codes
	Annotating the training set with intents
	Selecting intents during play

	Message filtering
	Discriminating between human-generated and counterfactual messages
	Intent correspondence
	Value-based filtering
	Toxic language
	Heuristic message filters

	Modeling when to speak and to whom
	Message scheduling methodology

	Strategic Reasoning Methods
	Better modeling human behavior with piKL
	Notation and Background
	piKL
	DiL-piKL

	Dialogue-conditional planning at test time
	Training a dialogue-conditional anchor policy
	Sampling plausible actions for planning
	Independent pairwise policy prediction
	Choosing the agent's own action and/or intent
	Distribution of the anchor strength in DiL-piKL

	Dialogue-free model inputs and architecture
	Correlation-aware human-regularized reinforcement learning
	Correlated Best Response
	Human correlation aware self-play
	Evaluation of RL policy and value function

	List of models used in Cicero
	Performance optimizations for blitz Diplomacy
	Results of Anonymous Human Games
	Simulated Diplomacy games between bot variants

