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Abstract. This paper introduces an advanced setting of machine learn-
ing problem in which an Intelligent Teacher is involved. During train-
ing stage, Intelligent Teacher provides Student with information that
contains, along with classification of each example, additional privileged
information (explanation) of this example. The paper describes two mech-
anisms that can be used for significantly accelerating the speed of Stu-
dent’s training: (1) correction of Student’s concepts of similarity between
examples, and (2) direct Teacher-Student knowledge transfer.
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1 Introduction

During the last fifty years, a strong machine learning theory has been developed.
This theory (see [21], [18], [19], [5]) includes:

– The necessary and sufficient conditions for consistency of learning processes.
– The bounds on the rate of convergence, which, in general, cannot be improved.
– The new inductive principle of Structural Risk Minimization (SRM), which

always achieves the smallest risk.
– The effective algorithms (such as Support Vector Machines (SVM)), that

realize the consistency property of SRM principle.

This material is based upon work partially supported by AFRL and DARPA under
contract FA8750-14-C-0008. Any opinions, findings and / or conclusions in this mate-
rial are those of the authors and do not necessarily reflect the views of AFRL and
DARPA.

c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 3–32, 2015.
DOI: 10.1007/978-3-319-17091-6 1



4 V. Vapnik and R. Izmailov

The general learning theory appeared to be completed: it addressed almost
all standard questions of the statistical theory of inference. However, as always,
the devil is in the detail: it is a common belief that human students require far
fewer training examples than any learning machine. Why?

We are trying to answer this question by noting that a human Student has an
Intelligent Teacher1 and that Teacher-Student interactions are based not only on
brute force methods of function estimation. In this paper, we show that Teacher-
Student interactions are also based on special mechanisms that can significantly
accelerate the learning process. In order for a learning machine to use fewer
observations, it has to use these mechanisms as well.

This paper considers the model of learning that includes the so-called Intel-
ligent Teacher, who supplies Student with intelligent (privileged) information
during training session. This is in contrast to the classical model, where Teacher
supplies Student only with outcome y for event x.

Privileged information exists for almost any learning problem and this infor-
mation can significantly accelerate the learning process.

2 Learning with Intelligent Teacher: Privileged
Information

The existing machine learning paradigm considers a simple scheme: given a set
of training examples, find, in a given set of functions, the one that approximates
the unknown decision rule in the best possible way. In such a paradigm, Teacher
does not play an important role.

In human learning, however, the role of Teacher is important: along with
examples, Teacher provides students with explanations, comments, comparisons,
metaphors, and so on. In this paper, we include elements of human learning into
classical machine learning paradigm. We consider a learning paradigm called
Learning Using Privileged Information (LUPI), where, at the training stage,
Teacher provides additional information x∗ about training example x.

The crucial point in this paradigm is that the privileged information is avail-
able only at the training stage (when Teacher interacts with Student) and is
not available at the test stage (when Student operates without supervision of
Teacher).

In this paper, we consider two mechanisms of Teacher–Student interactions
in the framework of the LUPI paradigm:

1. The mechanism to control Student’s concept of similarity between training
examples.
2. The mechanism to transfer knowledge from the space of privileged infor-
mation (space of Teacher’s explanations) to the space where decision rule is
constructed.

1 Japanese proverb assesses teacher’s influence as follows: “better than a thousand
days of diligent study is one day with a great teacher.”
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The first mechanism [20] was introduced in 2006, and here we are mostly
reproduce results obtained in [22]. The second mechanism is introduced in this
paper for the first time.

2.1 Classical Model of Learning

Formally, the classical paradigm of machine learning is described as follows: given
a set of iid pairs (training data)

(x1, y1), ..., (x�, y�), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y), find,
in a given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗)
that minimizes the probability of incorrect classifications (incorrect values of
y ∈ {−1,+1}). In this model, each vector xi ∈ X is a description of an example
generated by Nature according to an unknown generator P (x) of random vectors
xi, and yi ∈ {−1,+1} is its classification defined according to a conditional
probability P (y|x). The goal of Learning Machine is to find the function y =
f(x, α∗) that guarantees the smallest probability of incorrect classifications. That
is, the goal is to find the function which minimizes the risk functional

R(α) =
1
2

∫
|y − f(x, α)|dP (x, y), (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability
measure P (x, y) = P (y|x)P (x) is unknown but training data (1) are given.

2.2 LUPI Model of Learning

The LUPI paradigm describes a more complex model: given a set of iid triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�), xi ∈ X, x∗

i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y), find,
in a given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗)
that guarantees the smallest probability of incorrect classifications (2).

In the LUPI paradigm, we have exactly the same goal of minimizing (2) as in
the classical paradigm, i.e., to find the best classification function in the admis-
sible set. However, during the training stage, we have more information, i.e., we
have triplets (x, x∗, y) instead of pairs (x, y) as in the classical paradigm. The
additional information x∗ ∈ X∗ belongs to space X∗ which is, generally speaking,
different from X. For any element xi of training example generated by Nature,
Intelligent Teacher generates both its label yi and the privileged information x∗

i

using some unknown conditional probability function P (x∗
i , yi|xi).

Since the additional information is available only for the training set and
is not available for the test set, it is called privileged information and the new
machine learning paradigm is called Learning Using Privileged Information.
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Next, we consider three examples of privileged information that could be
generated by Intelligent Teacher.

Example 1. Suppose that our goal is to find a rule that predicts the outcome y
of a surgery in three weeks after it, based on information x available before the
surgery. In order to find the rule in the classical paradigm, we use pairs (xi, yi)
from past patients.

However, for past patients, there is also additional information x∗ about pro-
cedures and complications during surgery, development of symptoms in one or two
weeks after surgery, and so on. Although this information is not available before
surgery, it does exist in historical data and thus can be used as privileged informa-
tion in order to construct a rule that is better than the one obtained without using
that information. The issue is how large an improvement can be achieved.

Example 2. Let our goal be to find a rule y = f(x) to classify biopsy images
x into two categories y: cancer (y = +1) and non-cancer (y = −1). Here images
are in a pixel space X, and the classification rule has to be in the same space.
However, the standard diagnostic procedure also includes a pathologist’s report
x∗ that describes his/her impression about the image in a high-level holistic
language X∗ (for example, “aggressive proliferation of cells of type A among
cells of type B” etc.).

The problem is to use images x along with the pathologist’s reports x∗ as a
privileged information in order to make a better classification rule just in pixel
space X: classification by a pathologist is a difficult and time-consuming pro-
cedure, so fast decisions during surgery should be made automatically, without
consulting a pathologist.

Example 3. Let our goal be to predict the direction of the exchange rate of
a currency at the moment t. In this problem, we have observations about the
exchange rates before t, and we would like to predict if the rate will go up or
down at the moment t + Δ. However, in the historical market data we also have
observations about exchange rates after moment t. Can this future-in-the-past
privileged information be used for construction of a better prediction rule?

To summarize, privileged information is ubiquitous: it usually exists for
almost all machine learning problems.

In Section 4, we describe a mechanism that allows one to take advantage of
privileged information by controlling Student’s concepts of similarity between
training examples. However, we first describe statistical properties enabling the
use of privileged information.

3 Statistical Analysis of the Rate of Convergence

According to the bounds developed in the VC theory [21], [19], the rate of
convergence depends on two factors: how well the classification rule separates
the training data

(x1, y1), ..., (x�, y�), x ∈ Rn, y ∈ {−1,+1} (4)

and the VC dimension of the set of functions in which the rule is selected.
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The theory has two distinct cases:

1. Separable case: there exists a function f(x, α�) in the set of functions
f(x, α), α ∈ Λ that separates the training data (4) without errors:

yif(xi, α�) > 0 ∀i = 1, ..., �.

In this case, the function f(x, α�) that minimizes the empirical risk (on
training set (4)) with probability 1 − η has the bound

p(yf(x, α�) ≤ 0) < O∗
(

h − ln η

�

)
,

where p(yf(x, α�) ≤ 0) is the probability of error for the function f(x, α�)
and h is VC dimension of the admissible set of functions. Here O∗ denotes
order of magnitude up to logarithmic factor.

2. Non-separable case: there is no function in f(x, α), α ∈ Λ that can sep-
arate data (4) without errors. Let f(x, α�) be a function that minimizes
the number of errors on (4). Let ν(α�) be the error rate on training data
(4). Then, according to the VC theory, the following bound holds true with
probability 1 − η:

p(yf(x, α�) ≤ 0) < ν(α�) + O∗
(√

h − ln η

�

)
.

In other words, in the separable case, the rate of convergence has the order of
magnitude 1/�; in the non-separable case, the order of magnitude is 1/

√
�. The

difference between these rates2 is huge: the same order of bounds requires 320
training examples versus 100,000 examples. Why do we have such a large gap?

3.1 Key Observation: SVM with Oracle Teacher

Let us try to understand why convergence rates for SVMs differ so much for
separable and non-separable cases. Consider two versions of the SVM method
for these cases.

In the separable case, SVM constructs (in space Z which we, for simplicity,
consider as an N -dimensional vector space RN ) a maximum margin separating
hyperplane. Specifically, in the separable case, SVM minimizes the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ 1, ∀i = 1, ..., �;

2 The VC theory also gives more accurate estimate of the rate of convergence; however,
the difference remains essentially the same.
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while in the non-separable case, SVM minimizes the functional

T (w) = (w,w) + C
�∑

i=1

ξi

subject to the constraints

(yi(w, zi) + b) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, ..., �.

That is, in the separable case, SVM uses � observations for estimation of N
coordinates of vector w, while in the nonseparable case, SVM uses � observations
for estimation of N + � parameters: N coordinates of vector w and � values of
slacks ξi. Thus, in the non-separable case, the number N + � of parameters to be
estimated is always larger than the number � of observations; it does not matter
here that most of slacks will be equal to zero: SVM still has to estimate all � of
them. Our guess is that the difference between the corresponding convergence
rates is due to the number of parameters SVM has to estimate.

To confirm this guess, consider the SVM with Oracle Teacher (Oracle SVM).
Suppose that Teacher can supply Student with the values of slacks as privileged
information: during training session, Teacher supplies triplets

(x1, ξ
0
1 , y1), ..., (x�, ξ

0
� , y�)

where ξ0i , i = 1, ..., � are the slacks for the Bayesian decision rule. Therefore, in
order to construct the desired rule using these triplets, the SVM has to maximize
the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ ri, ∀i = 1, ..., �,

where we have denoted

ri = 1 − ξ0i , ∀i = 1, ..., �.

One can show that the rate of convergence is equal to O∗(1/�) for Oracle SVM.
The following (slightly more general) proposition holds true [22].

Proposition 1. Let f(x, α0) be a function from the set of indicator functions
f(x, α), α ∈ Λ with VC dimension h that minimizes the frequency of errors
(on this set) and let

ξ0i = max{0, (1 − f(xi, α0))}, ∀i = 1, ..., �.

Then the error probability p(α�) for the function f(x, α�) that satisfies the
constraints

yif(x, α) ≥ 1 − ξ0i , ∀i = 1, ..., �

is bounded, with probability 1 − η, as follows:

p(α�) ≤ P (1 − ξ0 < 0) + O∗
(

h − ln η

�

)
.



Learning with Intelligent Teacher 9

Fig. 1. Comparison of Oracle SVM and standard SVM

That is, for Oracle SVM, the rate of convergence is 1/� even in the non-separable
case. Figure 1 illustrates this: the left half of the figure shows synthetic data
for a binary classification problem using the set of linear rules with Bayesian
rule having error rate 12% (the diagonal), while the right half of the figure
illustrates the rates of convergence for standard SVM and Oracle SVM. While
both converge to the Bayesian solution, Oracle SVM does it much faster.

3.2 From Ideal Oracle to Real Intelligent Teacher

Of course, real Intelligent Teacher cannot supply slacks: Teacher does not know
them. Instead, Intelligent Teacher, can do something else, namely:

1. define a space X∗ of (correcting) slack functions (it can be different from
the space X of decision functions);
2. define a set of real-valued slack functions f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗

with VC dimension h∗, where approximations

ξi = f∗(x, α∗)

of the slack functions3 are selected;
3. generate privileged information for training examples supplying Student,
instead of pairs (4), with triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�). (5)

3 Note that slacks ξi introduced for the SVM method can be considered as a realization
of some function ξ = ξ(x, β0) from a large set of functions (with infinite VC dimen-
sion). Therefore, generally speaking, the classical SVM approach can be viewed as
estimation of two functions: (1) the decision function, and (2) the slack function,
where these functions are selected from two different sets, with finite and infinite
VC dimension, respectively. Here we consider two sets with finite VC dimensions.
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During training session, the algorithm has to simultaneously estimate two func-
tions using triplets (5): the decision function f(x, α�) and the slack function
f∗(x∗, α∗). In other words, the method minimizes the functional

T (α∗) =
�∑

i=1

max{0, f∗(x∗
i , α

∗)} (6)

subject to the constraints

yif(xi, α) > −f∗(x∗
i , α

∗), i = 1, ..., �. (7)

Let f(x, α�) be a function that solves this optimization problem. For this
function, the following proposition holds true [22].

Proposition 2. The solution f(x, α�) of optimization problem (6), (7) sat-
isfies the bounds

P (yf(x, α�) < 0) ≤ P (f∗(x∗, α∗
� ) ≥ 0) + O∗

(
h + h∗ − ln η

�

)

with probability 1 − η, where h and h∗ are the VC dimensions of the set
of decision functions f(x, α), α ∈ Λ and the set of correcting functions
f∗(x∗, α∗), α∗ ∈ Λ∗, respectively,

According to Proposition 2, in order to estimate the rate of convergence
to the best possible decision rule (in space X) one needs to estimate the rate
of convergence of P{f∗(x∗, α∗

� ) ≥ 0} to P{f∗(x∗, α∗
0) ≥ 0} for the best rule

f∗(x∗, α∗
0) in space X∗. Note that both the space X∗ and the set of functions

f∗(x∗, α∗), α∗ ∈ Λ∗ are suggested by Intelligent Teacher that tries to choose
them in a way that facilitates a fast rate of convergence. The guess is that a
really Intelligent Teacher can indeed do that.

As shown in the VC theory, in standard situations, the uniform convergence
has the order O(

√
h∗/�), where h∗ is the VC dimension of the admissible set of

correcting functions f∗(x∗, α∗), α∗ ∈ Λ∗. However, for special privileged space
X∗ and corresponding functions f∗(x∗, α∗), α∗ ∈ Λ∗ (for example, those that
satisfy the conditions defined by Tsybakov [15] or the conditions defined by
Steinwart and Scovel [17]), the convergence can be faster (as O([1/�]δ), δ > 1/2).

A well-selected privileged information space X∗ and Teacher’s explanation
P (x∗, y|x) along with sets f(x, α�), α ∈ Λ and f∗(x∗, α∗), α∗ ∈ Λ∗ engender a
convergence that is faster than the standard one. The skill of Intelligent Teacher
is being able to select of the proper space X∗, generator P (x∗, y|x), set of func-
tions f(x, α�), α ∈ Λ, and set of functions f∗(x∗, α∗), α∗ ∈ Λ∗: that is what
differentiates good teachers from poor ones.

4 SVM+ for Similarity Control in LUPI Paradigm

In this section, we extend SVM to the method called SVM+, which allows one
to solve machine learning problems in the LUPI paradigm [22].
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Consider again the model of learning with Intelligent Teacher: given triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�),

find in the given set of functions the one that minimizes the probability of
incorrect classifications.4

As in standard SVM, we map vectors xi ∈ X onto the elements zi of the
Hilbert space Z, and map vectors x∗

i onto elements z∗
i of another Hilbert space

Z∗ obtaining triples
(z1, z∗

1 , y1), ..., (z�, z
∗
� , y�).

Let the inner product in space Z be (zi, zj), and the inner product in space Z∗

be (z∗
i , z∗

j ).
Consider the set of decision functions in the form

f(x) = (w, z) + b,

where w is an element in Z, and consider the set of correcting functions in the
form

f∗(x∗) = (w∗, z∗) + b∗,

where w∗ is an element in Z∗. In SVM+, the goal is to minimize the functional

T (w,w∗, b, b∗) =
1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗]+

subject to the linear constraints

yi((w, zi) + b) ≥ 1 − ((w∗, z∗) + b∗), i = 1, ..., �,

where [u]+ = max{0, u}.
The structure of this problem mirrors the structure of the primal problem

for standard SVM, while containing one additional parameter γ > 0.
To find the solution of this optimization problem, we use the equivalent

setting: we minimize the functional

T (w,w∗, b, b∗) =
1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗ + ζi] (8)

subject to constraints

yi((w, zi) + b) ≥ 1 − ((w∗, z∗) + b∗), i = 1, ..., �, (9)

and
(w∗, z∗

i ) + b∗ + ζi ≥ 0, ∀i = 1, ..., � (10)

4 In [22], the case of privileged information being available only for a subset of examples
is considered: specifically, for examples with non-zero values of slack variables.
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and
ζi ≥ 0, ∀i = 1, ..., �. (11)

To minimize the functional (8) subject to the constraints (10), (11), we construct
the Lagrangian

L(w, b, w∗, b∗, α, β) = (12)

1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗ + ζi] −

�∑
i=1

νiζi −

�∑
i=1

αi [yi[(w, zi) + b] − 1 + [(w∗, z∗
i ) + b∗]] −

�∑
i=1

βi[(w∗, z∗
i ) + b∗ + ζi],

where αi ≥ 0, βi ≥ 0, νi ≥ 0, i = 1, ..., � are Lagrange multipliers.
To find the solution of our quadratic optimization problem, we have to find

the saddle point of the Lagrangian (the minimum with respect to w,w∗, b, b∗

and the maximum with respect to αi, βi, νi, i = 1, ..., �).
The necessary conditions for minimum of (12) are

∂L(w, b, w∗, b∗, α, β)
∂w

= 0 =⇒ w =
�∑

i=1

αiyizi (13)

∂L(w, b, w∗, b∗, α, β)
∂w∗ = 0 =⇒ w∗ =

1
γ

�∑
i=1

(αi + βi − C)z∗
i (14)

∂L(w, b, w∗, b∗, α, β)
∂b

= 0 =⇒
�∑

i=1

αiyi = 0 (15)

∂L(w, b, w∗, b∗, α, β)
∂b∗ = 0 =⇒

�∑
i=1

(αi − βi) = 0 (16)

∂L(w, b, w∗, b∗, α, β)
∂ζi

= 0 =⇒ βi + νi = C (17)

Substituting the expressions (13) in (12) and, taking into account (14), (15),
(16), and denoting δi = C − βi, we obtain the functional

L(α, δ) =
�∑

i=1

αi − 1
2

�∑
i,j=1

(zi, zj)yiyjαiαj − 1
2γ

�∑
i,j=1

(αi − δi)(αj − δj)(z∗
i , z∗

j ).

To find its saddle point, we have to maximize it subject to the constraints

�∑
i=1

yiαi = 0 (18)
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�∑
i=1

αi =
�∑

i=1

δi (19)

0 ≤ δi ≤ C, i = 1, ..., � (20)

αi ≥ 0, i = 1, ..., � (21)

Let vectors α0, δ0 be the solution of this optimization problem. Then, according
to (13) and (14), one can find the approximation to the desired decision function

f(x) = (w0, zi) + b =
�∑

i=1

α∗
i (zi, z) + b

and to the slack function

f∗(x∗) = (w∗
0 , z

∗
i ) + b∗ =

�∑
i=1

(α0
i − δ0i )(z∗

i , z∗) + b∗

The Karush-Kuhn-Tacker conditions for this problem are
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α0
i [yi[(w0, zi) + b] − 1 + [(w∗

0 , z
∗
i ) + b∗]] = 0

(C − δ0i )[(w∗
0 , z

∗
i ) + b∗ + ζi] = 0

ν0
i ζi = 0

Using these conditions, one obtains the value of constant b as

b = 1 − yk(w0, zk) = 1 − yk

[
�∑

i=1

α0
i (zi, zk)

]
,

where (zk, z∗
k, yk) is a triplet for which α0

k 	= 0 and δ0k 	= C.
As in standard SVM, we use the inner product (zi, zj) in space Z in the form

of Mercer kernel K(xi, xj) and inner product (z∗
i , z∗

j ) in space Z∗ in the form
of Mercer kernel K∗(x∗

i , x
∗
j ). Using these notations, we can rewrite the SVM+

method as follows: the decision rule in X space has the form

f(x) =
�∑

i=1

yiα
0
i K(xi, x) + b,

where K(·, ·) is the Mercer kernel that defines the inner product for the image
space Z of space X (kernel K∗(·, ·) for the image space Z∗ of space X∗) and α0 is
a solution of the following dual space quadratic optimization problem: maximize
the functional

L(α, δ) =
�∑

i=1

αi−
1
2

�∑
i,j=1

yiyjαiαjK(xi, xj)−
1
2γ

�∑
i,j=1

(αi−δi)(αj −δj)K∗(x∗
i , x

∗
j )

(22)
subject to constraints (18) – (21).
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Remark. In the special case δi = αi, our optimization problem becomes equiva-
lent to the standard SVM optimization problem, which maximizes the functional

L(α, δ) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjK(xi, xj)

subject to constraints (18) – (21) where δi = αi.
Therefore, the difference between SVM+ and SVM solutions is defined by

the last term in objective function (22). In SVM method, the solution depends
only on the values of pairwise similarities between training vectors defined by the
Gram matrix K of elements K(xi, xj) (which defines similarity between vectors
xi and xj). The SVM+ solution is defined by objective function (22) that uses
two expressions of similarities between observations: one (xi and xj) that comes
from space X and another one (x∗

i and x∗
j ) that comes from space of privileged

information X∗. That is, Intelligent Teacher changes the optimal solution by
correcting concepts of similarity.

The last term in equation (22) defines the instrument for Intelligent Teacher
to control the concept of similarity of Student.

To find value of b, one has to find a sample (xk, x∗
k, yk) for which αk > 0, δk <

C and compute

b = 1 − yk

[
�∑

i=1

yiαiK(xi, xk)

]
.

Efficient computational implementation of this SVM+ algorithm for classifi-
cation and its extension for regression can be found in [14] and [22], respectively.

5 Three Examples of Similarity Control Using Privileged
Information

In this section, we describe three different types of privileged information
(advanced technical model, future events, holistic description), used in similarity
control setting [22].

5.1 Advanced Technical Model as Privileged Information

Homology classification of proteins is a hard problem in bioinformatics. Experts
usually rely on hierarchical schemes leveraging molecular 3D-structures, which
are expensive and time-consuming (if at all possible) to obtain. The alternative
information on amino-acid sequences of proteins can be collected relatively easily,
but its correlation with 3D-level homology is often poor (see Figure 2). The
practical problem is thus to construct a rule for classification of proteins based
on their amino-acid sequences as standard information, while using available
molecular 3D-structures as privileged information.



Learning with Intelligent Teacher 15

Fig. 2. 3D-structures and amino-acid sequences of proteins

Fig. 3. Comparison of SVM and SVM+ error rates

Since SVM has been successfully used [8], [9] to construct protein classification
rules based on amino-acid sequences, the natural next step was to see what perfor-
mance improvement can be obtained by using 3D-structures as privileged infor-
mation and applying SVM+ method of similarity control. The experiments used
SCOP (Structural Classification of Proteins) database [11], containing amino-acid
sequences and their hierarchical organization, and PDB (Protein Data Bank) [2],
containing 3D-structures for SCOP sequences. The classification goal was to deter-
mine homology based on protein amino-acid sequences from 80 superfamilies (3rd
level of hierarchy) with the largest number of sequences. Similarity between amino-
acid sequences (standard space) and 3D-structures (privileged space) was com-
puted using the profile-kernel [8] and MAMMOTH [13], respectively.
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Standard SVM classification based on 3D molecular structure had an error
rate smaller than 5% for almost any of 80 problems, while SVM classification
using protein sequences gave much worse results (in some cases, the error rate
was up to 40%).

Figure 3 displays comparison of SVM and SVM+ with 3D privileged infor-
mation. It shows that SVM+ never performed worse than SVM. In 11 cases it
gave exactly the same result, while in 22 cases its error was reduced by more
than 2.5 times. Why does the performance vary so much? The answer lies in
the nature of the problem. For example, both diamond and graphite consist of
the same chemical element, carbon, but they have different molecular structures.
Therefore, one can only tell them apart using their 3D structures.

5.2 Future Events as Privileged Information

Time series prediction is used in many statistical applications: given historical
information about the values of time series up to moment t, predict the value
(qualitative setting) or the deviation direction (positive or negative; quantitative
setting) at the moment t + Δ.

One of benchmark time series for prediction algorithms is the quasi-chaotic
(and thus difficult to predict) Mackey-Glass time series, which is the solution of
the equation [10], [4]

dx(t)
dt

= −ax(t) +
bx(t − τ)

1 + x10(t − τ)
.

Here a, b, and τ (delay) are parameters, usually assigned the values a = 0.1, b =
0.2, τ = 17 with initial condition x(τ) = 0.9.

The qualitative prediction setting (will the future value x(t+T ) be larger or
smaller than the current value x(t)?) for several lookahead values of T (specifi-
cally, T = 1, T = 5, T = 8) was used for comparing the error rates of SVM and
SVM+. The standard information was the vector xt = (x(t − 3), x(t − 2), x(t −
1), x(t)) of current observation and three previous ones, whereas the privileged
information was the vector x∗

t = (x(t+T −2), x(t+T −1), x(t+T +1), x(t+T +2))
of four future events.

The experiments covered various training sizes (from 100 to 500) and several
values of T (namely, T = 1, T = 5, and T = 8). In all the experiments, SVM+
consistently outperformed SVM, with margin of improvement being anywhere
between 30% and 60%; here the margin was defined as relative improvement
of error rate as compared to the (unattainable) performance of the specially
constructed Oracle SVM.

5.3 Holistic Description as Privileged Information

This example is an important one, since holistic privileged information is most
frequently used by Intelligent Teacher. In this example, we consider the problem
of classifying images of digits 5 and 8 in the MNIST database. This database
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Fig. 4. Sample MNIST digits ans their resized images

contains digits as 28*28 pixel images; there are 5,522 and 5,652 images of digits 5
and 8, respectively. Distinguishing between these two digits in 28*28 pixel space
is an easy problem. To make it more challenging, the images were resized to
10*10 pixels (examples are shown in Figure 4). A hundred examples of 10*10
images were randomly selected as a training set, another 4,000 images were used
as a validation set (for tuning the parameters in SVM and SVM+) and the
remaining 1,866 images constituted the test set.

For every training image, its holistic description was created (using natural
language). For example, the first image of 5 (see Figure 4) was described as
follows:

Not absolute two-part creature. Looks more like one impulse. As for two-

partness the head is a sharp tool and the bottom is round and flexible. As

for tools it is a man with a spear ready to throw it. Or a man is shooting an

arrow. He is firing the bazooka. He swung his arm, he drew back his arm and

is ready to strike. He is running. He is flying. He is looking ahead. He is swift.

He is throwing a spear ahead. He is dangerous. It is slanted to the right. Good

snaked-ness. The snake is attacking. It is going to jump and bite. It is free and

absolutely open to anything. It shows itself, no kidding. Its bottom only slightly

(one point!) is on earth. He is a sportsman and in the process of training.

The straight arrow and the smooth flexible body. This creature is contradictory

- angular part and slightly roundish part. The lashing whip (the rope with a

handle). A toe with a handle. It is an outside creature, not inside. Everything

is finite and open. Two open pockets, two available holes, two containers. A

piece of rope with a handle. Rather thick. No loops, no saltire. No hill at all.

Asymmetrical. No curlings.

The first image of 8 (Figure 4) was described as follows:

Two-part creature. Not very perfect infinite way. It has a deadlock, a blind

alley. There is a small right-hand head appendix, a small shoot. The right-

hand appendix. Two parts. A bit disproportionate. Almost equal. The upper
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one should be a bit smaller. The starboard list is quite right. It is normal like it

should be. The lower part is not very steady. This creature has a big head and

too small bottom for this head. It is nice in general but not very self-assured. A

rope with two loops which do not meet well. There is a small upper right-hand

tail. It does not look very neat. The rope is rather good - not very old, not very

thin, not very thick. It is rather like it should be. The sleeping snake which

did not hide the end of its tail. The rings are not very round - oblong - rather

thin oblong. It is calm. Standing. Criss-cross. The criss-cross upper angle is

rather sharp. Two criss-cross angles are equal. If a tool it is a lasso. Closed

absolutely. Not quite symmetrical (due to the horn).

These holistic descriptions were mapped into 21-dimensional feature vectors.
Examples of these features (with range of possible values) are: two-part-ness

(0 - 5); tilting to the right (0 - 3); aggressiveness (0 - 2); stability (0 - 3);

uniformity (0 - 3), and so on. The values of these features (in the order they
appear above) for the first 5 and 8 are [2, 1, 2, 0, 1], and [4, 1, 1, 0, 2], respec-
tively. Holistic descriptions and their mappings were created prior to the learning
process by an independent expert; all the datasets are publicly available at [12].

The goal was to construct a decision rule for classifying 10*10 pixel images in
the 100-dimensional standard pixel space X and to leverage the corresponding
21-dimensional vectors as the privileged space X∗. This idea was realized using
the SVM+ algorithm described in Section 4. For every training data size, 12
different random samples selected from the training data were used and the
average of test errors was calculated.

To understand how much information is contained in holistic descrip-
tions, 28*28 pixel digits (784-dimensional space) were used instead of the 21-
dimensional holistic descriptions in SVM+ (the results shown in Figure 5). In
this setting, when using 28*28 pixel description of digits, SVM+ performs worse
than SVM+ using holistic descriptions.

6 Transfer of Knowledge Obtained in Privileged
Information Space to Decision Space

In this section, we consider one of the most important mechanisms of Teacher-
Student interaction: using privileged information to transfer knowledge from
Teacher to Student.

Suppose that Intelligent Teacher has some knowledge about the solution of
a specific pattern recognition problem and would like to transfer this knowledge
to Student. For example, Teacher can reliably recognize cancer in biopsy images
(in a pixel space X) and would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distin-
guishes cancer (f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the
pixel space X. Unfortunately, Teacher does not know this function explicitly (it
only exists as a neural net in Teacher’s brain), so how can Teacher transfer this
construction to Student? Below, we describe a possible mechanism for solving
this problem; we call this mechanism knowledge transfer.
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Fig. 5. Error rates for the digit recognition task

Suppose that Teacher believes in some theoretical model on which the knowl-
edge of Teacher is based. For cancer model, he or she believes that it is a result
of uncontrolled multiplication of the cancer cells (cells of type B) which replace
normal cells (cells of type A). Looking at a biopsy image, Teacher tries to gener-
ate privileged information that reflects his or her belief in development of such
s process; Teacher can holistically describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher is developing a special language that is appropriate
for description x∗

i of cancer development using the model he believes in. Using
this language, Teacher supplies Student with privileged information x∗

i for the
image xi by generating training triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�). (23)

The first two elements of these triplets are descriptions of an image in two
languages: in language X (vectors xi in pixel space), and in language X∗ (vectors
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x∗
i in the space of privileged information), developed for Teacher’s understanding

of cancer model.
Note that the language of pixel space is universal (it can be used for descrip-

tion of many different visual objects; for example, in the pixel space, one can
distinguish between male and female faces), while the language used for describ-
ing privileged information is very specific: it reflects just a model of cancer
development. This has an important consequence: the set of admissible func-
tions in space X has to be rich (has a large VC dimension), while the the set of
admissible functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (23):

1. The problem of constructing a rule y = f(x) for classification of biopsy in
the pixel space X using data

(x1, y1), ..., (x�, y�). (24)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in
the space X∗ using data

(x∗
1, y1), ..., (x

∗
� , y�). (25)

Suppose that language X∗ is so good that it allows to create a rule y = f∗
� (x∗)

that classifies vectors x∗ corresponding to vectors x with the same level of accu-
racy as the best rule y = f�(x) for classifying data in the pixel space.5

Since the VC dimension of the admissible rules in a special space X∗ is much
smaller than the VC dimension of the admissible rules in the universal space
X and since, the number of examples � is the same in both cases, the bounds
on error rate for rule y = f∗

� (x∗) in X∗ will be better6 than those for the rule
y = f�(x) in X. That is, generally speaking, the classification rule y = f∗

� (x∗)
will be more accurate than classification rule y = f�(x).

The following problem arises: how one can use the knowledge of the rule
y = f∗

� (x∗) in space X∗ to improve the accuracy of the desired rule y = f�(x) in
space X?

6.1 Knowledge Representation

To answer this question, we formalize the concept of representation of the knowl-
edge about the rule y = f∗

� (x∗).
Suppose that we are looking for our rule in Reproducing Kernel Hilbert

Space (RKHS) associated with kernel K∗(x∗
i , x

∗). According to Representer The-
orem [7], [16], such rule has the form

f∗
� (x∗) =

�∑
i=1

γiK
∗(x∗

i , x
∗) + b, (26)

5 The rule constructed in space X∗ cannot be better than the best possible rule in
space X, since all information originates in space X.

6 According to VC theory, the guaranteed bound on accuracy of the chosen rule
depends only on two factors: frequency of errors on training set and VC dimen-
sion of admissible set of functions.
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where γi, i = 1, ..., � and b are parameters.
Suppose that, using data (25), we found a good rule (26) with coefficients γi =

γ∗
i , i = 1, ..., � and b = b∗. This is now our knowledge about our classification

problem. Let us formalize the description of this knowledge.
Consider three elements of knowledge representation used in AI [1]:

1. Fundamental elements of knowledge.
2. Frames (fragments) of the knowledge.
3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge the smallest number of
the vectors u∗

1...., u
∗
m from space X∗ that can approximate7 the main part of the

rule (26):

f∗
� (x∗) − b =

�∑
i=1

γ∗
i K∗(x∗

i , x
∗) ≈

m∑
k=1

β∗
kK∗(u∗

k, x∗). (27)

Let us call the functions K∗(u∗
k, x∗), k = 1, ...,m the frames (fragments) of

knowledge. Our knowledge

f∗
� (x∗) =

m∑
k=1

β∗
kK∗(u∗

k, x∗) + b

is defined as a linear combination of the frames.

6.2 Scheme of Knowledge Transfer Between Spaces

In the described terms, knowledge transfer from X∗ into X requires the following:

1. To find the fundamental elements of knowledge u∗
1, ..., u

∗
m in space X∗.

2. To find frames (m functions) K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗.

3. To find the functions φ1(x), ..., φm(x) in space X such that

φk(xi) ≈ K∗(u∗
k, x∗

i ) (28)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that

uses some (unknown) generator P (x∗, y|x).

Note that the capacity of the set of functions from which φk(x) are to be chosen
can be smaller than that of the capacity of the set of functions from which the
classification function y = f�(x) is chosen (function φk(x) approximates just one
fragment of knowledge, not the entire knowledge as function y = f∗

� (x∗), which
is a linear combination (27) of frames). Also, as we will see in the next section,
estimates of all the functions φ1(x), ..., φm(x) are done using different pairs as
training sets of the same size �. That is, our hope is that transfer of m fragments
of knowledge from space X∗ into space X can be done with higher accuracy
than estimating function y = f�(x) from data (24).

7 In machine learning, they are called the reduced number of support vectors [3].
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After finding approximation of frames in space X, the knowledge about the
rule obtained in space X∗ can be approximated in space X as

f�(x) ≈
m∑

k=1

δkφk(x) + b∗,

where coefficients δk = β∗
k (taken from (26)) if approximations (28) are accurate.

Otherwise, coefficients δk can be estimated from the training data, as shown in
Section 6.3.

Finding Fundamental Elements of Knowledge. Let our functions φ belong
to RKHS associated with the kernel K∗(x∗

i , x
∗), and let our knowledge be defined

by an SVM method in space X∗ with support vector coefficients αi. In order to
find the fundamental elements of knowledge, we have to minimize (over vectors
u∗
1, ..., u

∗
m and values β1, ..., βm) the functional

R(u∗
1, ..., u

∗
m;β1, ..., βm) = (29)

∣∣∣∣∣
∣∣∣∣∣

�∑
i=1

yiαiK
∗(x∗

i , x
∗) −

m∑
s=1

βsK
∗(u∗

s, x
∗)

∣∣∣∣∣
∣∣∣∣∣
2

RKGS

=

�∑
i,j=1

yiyjαiαjK
∗(x∗

i , x
∗
j ) − 2

�∑
i=1

m∑
s=1

yiαiβsK
∗(x∗

i , u
∗
s) +

m∑
s,t=1

βsβtK
∗(u∗

s, u
∗
t )

The last equality was derived from the following property of the inner product
for functions from RKHS [7], [16]:

(
K∗(x∗

i , x
∗),K(x∗

j , x
∗)

)
RKHS

= K∗(x∗
i , x

∗
j ).

Fundamental Elements of Knowledge for Homogenous Quadratic Ker-
nel. For general kernel functions K∗(·, ·), minimization of (29) is a difficult
computational problem. However, for the special homogenous quadratic kernel

K∗(x∗
i , x

∗
j ) = (x∗

i , x
∗
j )

2,

this problem has a simple exact solution [3]. For this kernel, we have

R =
�∑

i,j=1

yiyjαiαj(x∗
i , x

∗
j )

2−2
�∑

i=1

m∑
s=1

yiαiβs(x∗
i , u

∗
s)

2+
m∑

s,t=1

βsβt(u∗
s, u

∗
t )

2. (30)

Let us look for solution in set of orthonormal vectors u∗
i , ..., u

∗
m for which we can

rewrite (30) as follows

R̂ =
�∑

i,j=1

yiyjαiαj(x∗
i , x

∗
j )

2 − 2
�∑

i=1

m∑
j=1

yiαiβs(x∗
i , u

∗
s)

2 +
m∑

s=1

β2
s (u∗

s, u
∗
s)

2. (31)
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Taking derivative of R̂ over u∗
k, we obtain that the solutions u∗

k, k = 1, ...,m
have to satisfy the equations

dR̂

duk
= −2βk

�∑
i=1

yiαix
∗
i x

∗T
i u∗

k + 2β2
k(u∗

ku∗T
k )u∗

k = 0.

Introducing notation

S =
�∑

i=1

yiαix
∗
i x

∗T , (32)

we conclude that the solutions satisfy the equation

Su∗
k = βku∗

k, k = 1, ...,m.

That is, the solutions u∗
1, ..., u

∗
m are the set of eigenvectors of the matrix S corre-

sponding to non-zero eigenvalues β1, . . . , βm, which are coefficients of expansion
of the classification rule on the frames (uk, x∗)2, k = 1, . . . , m.

Using (32), one can rewrite the functional (31) in the form

R̂ = 1TS1 −
m∑

k=1

β2
k, (33)

where we have denoted by 1 the (� × 1)-dimensional matrix of ones.
Therefore, in order to find the fundamental elements of knowledge, one has

to solve the eigenvalue problem for (n×n)-dimensional matrix S and then select
an appropriate number m of eigenvectors corresponding to m eigenvalues with
largest absolute values. One chooses such value of m that makes functional (33)
small. The number m does not exceed n (the dimensionality of matrix S).

Finding Images of Frames in Space X. Let us call the conditional average
function

φk(x) =
∫

K∗(u∗
k, x∗)p(x∗|x) dx∗

the image of frame K∗(u∗
k, x∗) in space X. To find m image functions φk(x) of the

frames K(u∗
k, x∗), k = 1, ...,m in space X, we solve the following m regression

estimation problems: find the regression function φk(x) in X, k = 1, . . . , m, using
data

(x1,K
∗(u∗

k, x∗
1)), ..., (x�,K

∗(u∗
k, x∗

� )), k = 1, . . . ,m, (34)

where pairs (xi, x
∗
i ) belong to elements of training triplets (23).

Therefore, using fundamental elements of knowledge u∗
1, ...u

∗
m in space X∗,

the corresponding frames K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗, and the train-

ing data (34), one constructs the transformation of the space X into m-
dimensional feature space

φ(x) = (φ1(x), ...φm(x)),

where k coordinates of vector function φ(x) are defined as φk = φk(x).
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6.3 Algorithms for Knowledge Transfer

1. Suppose that our regression functions can be estimated accurately: for a
sufficiently small ε > 0 the inequalities

|φk(xi) − K∗(u∗
k, x∗

i )| < ε, ∀k = 1, ...,m and ∀i = 1, ..., �

hold true for almost all pairs (xi, x
∗
i ) generated according to P (x, x∗, y). Then

the approximation of our knowledge in space X is

f(x) =
m∑

k=1

β∗
kφk(x) + b∗,

where β∗
k , k = 1, ...,m are eigenvalues corresponding to eigenvectors u∗

1, ..., u
∗
m.

2. If, however, ε is not too small, one can use privileged information to employ
both mechanisms of intelligent learning: controlling similarity between training
examples and knowledge transfer.

In order to describe this method, we denote by vector φi the m-dimensional
vector with coordinates

φi = (φ1(xi), ..., φm(xi))T .

Consider the following problem of intelligent learning: given training triplets

(φ1, x
∗
1, y1), ..., (φ�, x

∗
� , y�),

find the decision rule

f(φ(x)) =
�∑

i=1

yiα̂iK̂(φi, φ) + b. (35)

Using SVM+ algorithm described in Section 4, we can find the coefficients
of expansion α̂i in (35). They are defined by the maximum (over α̂ and δ) of the
functional

R(α̂, δ) =

�∑
i=1

α̂i − 1
2

�∑
i,j=1

yiyjα̂iα̂jK̂(φi, φj) − 1
2γ

�∑
i,j=1

yiyj(α̂i − δi)(α̂j − δj)K∗(x∗
i , x

∗
j )

subject to equality constraints

�∑
i=1

α̂iyi = 0,

�∑
i=1

α̂i =
�∑

i=1

δi
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and inequality constraints

α̂i ≥ 0, 0 ≤ δi ≤ C, i = 1, . . . , �

(see Section 4).

Remark. One can use different ideas to represent knowledge obtained in the
space X∗. The main factors of these representations are concepts of fundamen-
tal elements of the knowledge. They could be, for example, just the support
vectors or coordinates xt∗, t = 1, ..., d of d-dimensional privileged space X∗.
However, the fundamental elements defined above have some good properties:
for the quadratic kernel, the number m of fundamental elements does not exceed
the dimensionality of the space. Also, as was shown in multiple experiments with
digit recognition [3], in order to generate the same level of accuracy of the solu-
tion, it was sufficient to use m elements, where the value m was at least 20 times
smaller than the corresponding number of support vectors.

6.4 Kernels Involved in Intelligent Learning

In this paper, among many possible Mercer kernels (positive semi-definite func-
tions), we consider the following three types:

1. Radial Basis Function (RBF) kernel:

KRBFσ
(x, y) = exp{−σ2(x − y)2}.

2. INK-spline kernel. Kernel for spline of order one with infinite number of
knots. It is defined in the nonnegative domain and has the form

KINK1(x, y) =
d∏

k=1

(
1 + xkyk +

|xk − yk|max{xk, yk}
2

+
(max{xk, yk})3

3

)

where xk ≥ 0 and yk ≥ 0 are k coordinates of d-dimensional vector x.
3. Homogeneous quadratic kernel

KPol2 = (x, y)2,

where (x, y) is the inner product of vectors x and y.

The RBF kernel has a free parameter σ > 0; two other kernels have no free
parameters. That was achieved by fixing a parameter in more general sets of
functions: the degree of polynomial was chosen to be 2, and the order of INK-
splines was chosen to be 1. Note that INK-splines are sensitive to the selection of
minimum value a of coordinates x; as illustrated in [6], for reliable performance
one should select a = −3 and reset all the values smaller than that to a (assuming
all the coordinates are normalized to N(0, 1) by subtracting the empirical means
and dividing the values by empirical standard deviations).
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It is easy to introduce kernels for any degree of polynomials and any order
of INK-splines. Experiments show excellent properties of these three types of
kernels for solving many machine learning problems. These kernels also can be
recommended for methods that use both mechanisms of Teacher-Student inter-
action.

6.5 Knowledge Transfer for Statistical Inference Problems

The idea of privileged information and knowledge transfer can be also extended
to Statistical Inference problems considered in [23], [24].

For simplicity, consider the problem of conditional probability P (y|x) esti-
mation8 from iid data

(x1, y1), ..., (x�, y�), x ∈ X, y ∈ {0, 1}, (36)

where vector x ∈ X is generated by a fixed but unknown distribution function
P (x) and binary value y ∈ {0, 1} is generated by an unknown conditional prob-
ability function P (y = 1|x), (P (y = 0|x) = 1 − P (y = 1|x)); this is the function
we would like to estimate.

As shown in [23], [24], this requires solving the Fredholm integral equation
∫

θ(x − t)P (y = 1|t)dP (t) = P (y = 1, x)

if probability functions P (y = 1, x) and P (x) are unknown but iid data (36)
generated according to joint distribution P (y, x) are given. Papers [23], [24]
describe methods for solving this problem, producing the solution

P�(y = 1|x) = P (y = 1|x; (x1, y1), ..., (x�, y�)).

In this section, we generalize classical Statistical Inference problem of conditional
probability estimation to a new model of Statistical Inference with Privileged
Information. In this model, along with information defined in the space X, one
has the information defined in the space X∗.

Consider privileged space X∗ along with space X . Suppose that any vector
xi ∈ X has its image x∗

i ∈ X∗.
Consider iid triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�) (37)

that are generated according to a fixed but unknown distribution function
P (x, x∗, y). Suppose that, for any triplet (xi, x

∗
i , yi), there exist conditional

probabilities P (yi|x∗
i ) and P (yi|xi). Also, suppose that the conditional prob-

ability function P (y|x∗) defined in the privileged space X∗ is better than the
conditional probability function P (y|x) defined in space X; here by “better”

8 The same method can be applied to all problems described in [23], [24].
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we mean that the conditional entropy for P (y|x∗) is smaller than conditional
entropy for P (y|x):

−
∫

[log2 P (y = 1|x∗) + log2 P (y = 0|x∗)] dP (x∗) <

−
∫

[log2 P (y = 1|x) + log2 P (y = 0|x)] dP (x).

Our goal is to use triplets (37) for estimating the conditional probability
P (y|x; (x1, x

∗
1, y1), ..., (x�, x

∗
� , y�)) in space X better than it can be done with

training pairs (36). That is, our goal is to find such a function

P�(y = 1|x) = P (y = 1|x; (x1, x
∗
1, y1), ..., (x�, x

∗
� , y))

that the following inequality holds:

−
∫

[log2 P (y = 1|x; (xi, x
∗
i , yi)�

1) + log2 P (y = 0|x; (xix
∗
i , yi)�

1)]dP (x) <

−
∫

[log2 P (y = 1|x; (xi, yi)�
1) + log2 P (y = 0|x; (xi, yi)�

1, )]dP (x).

Consider the following solution for this problem:

1. Using kernel K(x̂∗, x∗) = (x̂∗, x∗)2, the training pairs pairs (x∗
i , yi) extracted

from given training triplets (37) and the methods of solving our integral
equation described in [23], [24], find the solution of the problem in space of
privileged information X∗:

P (y = 1|x∗; (x∗
i , yi)�

1) =
�∑

i=1

α̂i(x∗
i , x

∗)2 + b.

2. Using matrix S =
∑�

i=1 α̂ix
∗
i x

∗T
i , find the fundamental elements of knowl-

edge (the eigenvectors u∗
1, ..., u

∗
m corresponding to the largest norm of eigen-

values β1, ..., βm of matrix S).
3. Using some universal kernels (say RBF or INK-Spline), find in the space X

the approximations φk(x), k = 1, . . . ,m of the frames (u∗
k, x∗)2, k = 1, ...,m.

4. Find the solution of the conditional probability estimation problem
P (y|φ; (φi, yi)�

1) in the space of pairs (φ, y) where φ = (φ1(x), . . . , φm(x)).

6.6 General Remarks About Knowledge Transfer

What Knowledge Does Teacher Transfer? In previous sections, we linked
the knowledge of Intelligent Teacher about the problem of interest in space X
to his knowledge about this problem in space X∗. For knowledge transfer, one can
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consider a more general model. Teacher knows that goal of Student is to construct
a good rule in space X with one of the functions from the set f(x, α), x ∈ X, α ∈
Λ with capacity V CX . Teacher also knows that there exists a rule in space X∗

of the same quality which belongs to the set f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ that
has much smaller capacity V CX∗ . This knowledge can be defined by the ratio
of the capacities

κ =
V CX

V CX∗
.

The larger is κ, the more knowledge Teacher can transfer and fewer examples
will Student need to select a good classification rule.

What Are the Roots of Intelligence? In this paper, we defined the roots of
intelligence via privileged information produced by Teacher according to Intel-
ligent generator P (x∗, y|x). Existence of triplets9 (x, x∗, y) in description of the
World events reflects Holism branch of philosophy, in which any event has multi-
ple descriptions that cannot be reduced to a single point of view. In the opposite
Reductionism branch of philosophy, descriptions of events can be reduced to a
single major point of view (this is reflected in many branches of natural science).

We believe that Intelligent learning reflects Holism philosophy in particular,
in multi-level interactions. It appears that intelligent learning is a multi-level
representation of events and transfer elements of knowledge between different
levels. We also believe that attempts to significantly improve the rate of learning
in the classical setting using only more elaborate mathematical techniques are
somewhat akin to Baron Munchausen’s feat of pulling himself from a swamp10:
for a significant improvement in learning process, Student needs additional (priv-
ileged) information in the same way the real-life Baron would have needed at
least a solid foothold for getting out of his predicament.

Holistic Description and Culture. Generally speaking, Student and Teacher
can have different sets of functions in Space X∗. In Section 5.3, we presented
holistic descriptions of digits 5 and 8 as privileged information for training data
reflecting impression of Prof. of Russian Poetry Natalia Pavlovitch. To trans-
form her linguistic representation of privileged information into formal code,
Prof. Pavlovitch suggested features for the transformation. One can see that
transformation of privileged information from human language into code is very
individual. Two different Students can obtain different functions as a result of
transfer of the same knowledge given by Teacher. Therefore, in real life, Teacher
has to elevate Student on the level of culture where Student can appropriately
understand the privileged information.
9 One can generalize the knowledge transfer method for multiple levels of privileged

information, say, for two levels using quadruples (x, x∗, x∗∗, y).
10 Baron Munchausen, the fictional character known for his tall tales, once pulled him-

self (and his horse) out of a swamp by his hair.
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Quadratic Kernel. In the method of knowledge transfer, the special role
belongs to the quadratic kernel (x1, x2)2. Formally, only two kernels are amenable
for simple methods of finding fundamental elements of knowledge (and therefore
for knowledge representation): the linear kernel (x1, x2) and the quadratic kernel
(x1, x2)2.

Indeed, if linear kernel is used, one constructs the separating hyperplane in
the space of privileged information X∗

y = (w∗, x∗) + b∗,

where vector of coefficients w∗ also belongs to the space X∗, so there is only
one fundamental element of knowledge – the vector w∗. In this situation, the
problem of constructing the regression function y = φ(x) from data

(x1, (w∗, x∗
1)), ..., (x�, (w∗, x∗

� )) (38)

has, generally speaking, the same level of complexity as the standard problem
of pattern recognition in space X using data (36). Therefore, one should not
expect performance improvement when transferring the knowledge using (38).

With quadratic kernel, one obtains 1 ≤ m ≤ d fundamental elements of
knowledge in d-dimensional space X∗. In this situation, according to the methods
described above, one defines the knowledge in space X∗ as a linear combination of
m frames. That is, one splits the desired function into m (simplified) fragments
(a linear combination of which defines the decision rule) and then estimates
each of m functions φk(x) separately, using training sets of size �. The idea
is that, in order to estimate well a fragment of the knowledge, one can use a
set of functions with a smaller capacity than is needed to estimate the entire
function y = f(x), x ∈ X. Here privileged information can improve accuracy of
estimation of the desired function.

To our knowledge, there exists only one nonlinear kernel (the quadratic ker-
nel) that leads to an exact solution of the problem of finding the fundamental
elements of knowledge. For all other nonlinear kernels, the problems of finding
the fundamental elements require difficult (heuristic) computational procedures.

Some Philosophical Interpretations. Classical German philosophy had for-
mulated the following general idea (Hegel,1820):

What is reasonable11 is real and what is real is reasonable.

If we interpret the word “reasonable” as “has a good mathematical justification”
and word “real” as “is realized by Nature” we can reformulate this idea as follows:

Models that have a good mathematical justification are realized by the
Nature and models that are realized by the Nature have a good mathe-
matical justification.

11 Some translations from German use “rational” instead of “reasonable”.



30 V. Vapnik and R. Izmailov

From this point of view, the existence of only one kernel (the quadratic poly-
nomial (xi, xj)2) that allows one to find the exact solution of the knowledge
representation problem means that there exists only one good level of structural
complexity for privileged information that can be used by Intelligent Teacher:
not too simple (such as based on linear kernel (x1, x2)), but not too complex
(such as based on kernels (x1, x2)s, s > 2). This claim, however, is not based on
a proof, it is rather based on belief in classical German philosophy.

7 Conclusions

In this paper, we tried to understand mechanisms of human learning that go
beyond brute force methods of function estimation. In order to accomplish this,
we introduced the concept of Intelligent Teacher who generates privileged infor-
mation during training session. We described two mechanisms that can be used
to accelerate the learning process.

1. The mechanism to control Student’s concept of similarity between training
examples.

2. The mechanism to transfer knowledge from the space of privileged informa-
tion to the desired decision rule.

It is quite possible that there exist more mechanisms in Teacher-Student inter-
actions and thus it is important to find them 12 .

The idea of privileged information can be generalized to any statistical infer-
ence problem creating non-symmetric (two spaces) approach in statistics.

Teacher-Student interaction constitutes one of the key factors of intelligent
behavior and it can be viewed as a basic element in understanding intelligence
(in both machines and humans).

Acknowledgments. We thank Professor Cherkassky, Professor Gammerman, and
Professor Vovk for their helpful comments on this paper.

12 In [23], we discuss the idea of replacing the SVM method with the so-called V -matrix
method of conditional probability estimation. As was shown in Section 6.5, privileged
information also can be used for estimation of the conditional probability function.
However, for estimation of this function, Intelligent Teacher can also include in the
privileged information his evaluation of the probability p(xi) that event xi belongs
to class y = 1 given his guess

ai ≤ p(xi) ≤ bi,

where 0 ≤ ai < bi ≤ 1 are some values. For example, in the problem of classification
of a biopsy image xi, the pathologist can give his assessment of cancer probabil-
ity (hopefully non-trivial (ai > 0, bi < 1)). Footnote 10 in [23] shows how such
information can be used for evaluation of conditional probability function.
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