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In the standard herding model, privately informed individuals sequentially see prior actions and
then act. An identical action herd eventually starts and public beliefs tend to “cascade sets” where social
learning stops. What behaviour is socially efficient when actions ignore informational externalities? We
characterize the outcome that maximizes the discounted sum of utilities. Our four key findings are: (1)
cascade sets shrink but do not vanish, and herding should occur but less readily as greater weight is attached
to posterity. (2) An optimal mechanism rewards individuals mimicked by their successor. (3) Cascades
cannot start after period one under a signal log-concavity condition. (4) Given this condition, efficient
behaviour is contrarian, leaning against the myopically more popular actions in every period. We make
two technical contributions: as value functions with learning are not smooth, we use monotone comparative
statics under uncertainty to deduce optimal dynamic behaviour. We also adapt dynamic pivot mechanisms
to Bayesian learning.
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1. INTRODUCTION

“What we have here is failure to communicate.”—Cool Hand Luke (1967)

In the benchmark ideal, markets fully aggregate dispersed information. When this does not
happen, economics can be subtle and surprising. For instance, the possible collapse of trade
with asymmetric information in Akerlof (1970) made sense of warranties and paved the way
to the no-trade theorems in finance. In the last quarter century, the most cited new example of
the failure of information communication has been informational herding. Here, the problem

The editor in charge of this paper was Dimitri Vayanos.
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arises when privately informed and like-minded individuals sequentially act, after seeing prior
actions. When action menus are finite—like investing or not investing—different private signals
are pooled into the same action, and as a result, the learning process eventually breaks down
in a striking way: the public history of past actions overwhelms all later private signals and a
herd on some action starts.1 In the herding model, everyone Bayes-updates the public belief —
the posterior given the public history—with their endowed private signal. If private signals are
boundedly strong, then strong enough public beliefs overwhelm them. Bikhchandani, Hirshleifer,
and Welch (BHW) called this a cascade, and it guarantees a herd. In a cascade, actions reflect
no new private signals, and so the public belief is no longer updated, in a failure of information
aggregation.

This article optimally resolves the failure to communicate in informational herding: we
formulate and solve the welfare problem for this paradigm. To do so, we set up the experimentation
exercise by an infinite-lived planner who devises individual choice rules, i.e., how to map private
signals to observable actions. We also introduce a pivotal transfer scheme that decentralizes
our solution. This is the first solution of the social planner’s problem for the herding problem,
amidst a vast literature on this topic. Our solution radically generalizes Banerjee’s original 1992
conjectured solution.

This article then derives long-run and short-run characterization results of the planner’s
solution. We first show that the cascade set of public beliefs shrinks as the planner places higher
weight on the welfare of future individuals. For our second major finding, we assert that the social
planner should reduce the mimicry chance at the margin: Specifically, we show that individuals
should act in this contrarian way: the more likely is a state, the more individuals should lean
against the actions optimal in that state. This is optimal whenever the private signals obey an
intuitive and often met condition that we describe below in posterior monotonicity (PM). This
result offers clear behavioural predictions that apply in every period.

Our article makes four distinct novel contributions to dynamic information economics.

1. Optimal dynamic information design. Proposition 1 derives a new index rule for the
social planner’s dynamic experimentation model. Individuals should take the action with the
highest social value—namely, the weighted average of the individual’s private value of the action
and the informational gain to society. Since social values remain linear in private beliefs, the
planner’s payoff frontier is also piecewise linear in this private type. So, the planner recommends
each action for an interval of private beliefs. But, his desire to signal information entails current
sacrifices. An agent might optimally take myopically dominated actions, or take actions in a
myopically suboptimal order (Appendix G.1), such as the low action for high beliefs and the high
action for low beliefs!

We then practically decentralize this behavioural rule with a pivotal transfer scheme that
affects the slope and intercept of the agent’s private value function. Proposition 3 devises a
Vickrey–Clarke–Groves mechanism that punishes mimickers and rewards anyone mimicked. This
one-stage look-ahead scheme can internalize the informational externality because the successor’s
action is informative of the state. While this socially optimal incentive scheme is new, it is
reminiscent of how academia rewards authors for citations.

2. Cascade sets shrink but do not vanish with patience. The planner’s experimentation
solution has a simple long-run takeout message: although cascade sets shrink, they do not vanish,
so cascading remains socially efficient, only for a smaller set of public beliefs when posterity
matters more (Proposition 2). To see why, note that learning shuts down in a cascade if and

1. Respectively, these are insights of Banerjee (1992) and Bikhchandani et al. (1992) (or BHW), and
Smith and Sørensen (2000) (or SS). Chamley (2004) is an excellent distillation.
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only if the planner’s value function coincides with the myopic value function (Claim 8). But
as the discount factor increases, optionality is more valuable, and the value function naturally
rises. Hence, the static and planner’s value functions coincide for fewer public beliefs, and
the cascade set shrinks (see Figure 3). Finally, the planner’s solution inherits from the original
herding model that public beliefs converge to a cascade limit, and actions converge to a herd.
The probability of a herd on an ex post suboptimal action falls to zero as the discount factor rises
to one.

3. Posterior monotonicity precludes cascades. We next prune problematic updating
behaviour from the herding model. Assume that two Bayesians Ike and Joe share a prior belief
on the high state. Ike acts on the basis of his private belief, and Joe then sees this action choice,
aware of Ike’s Bayes-rationality. Posterior monotonicity asserts:

Prior belief rises → Joe’s posterior belief rises, conditional on a given action by Ike. (PM)

While (PM) is a compelling property, it can fail in a herding model since actions generate
endogenous signals: for at higher prior beliefs, Ike takes any action for less favourable private
signals, and so his action less strongly endorses the high state. For some signal distributions, this
swamps the direct effect of a higher prior public belief.

Proposition 4 establishes that a log-concavity condition (LC) met by standard continuous
signal distributions is equivalent to (PM). (PM) failures play a pivotal role in many applications
of the herding model, as SS showed that delayed cascades (i.e. starting after period one) can arise
only when (PM) fails. In other words, the discrete signal distribution in BHW was not merely
illustrative but forced the delayed cascades. Condition (LC) rules out delayed cascades.

4. Contrarianism. We conclude by exploring how the planner skews action choices at the
margin. In the standard selfish herding model, everyone is indifferent between adjacent actions
at fixed cutoff posterior beliefs. Proposition 5 deduces from (PM) that contrarian behaviour is
efficient—the planner’s cutoff private belief rises in the public belief. This finding arises in every
period, and so is testable, such as done in Çelen and Kariv (2004). So a high action should be
discouraged more as the public belief rises. Intuitively, at a higher public belief, the lower action
is less likely, and so is more of a surprise. Thus, it is informationally more valuable. But when
(PM) fails, the logic fails. At the higher public belief, with fixed cutoff, the posterior actually
falls, which is already the desired effect—the planner needs not add to that.

Related literature. Banerjee (1992) first proposed a remedy for the social learning
externality: conceal early actions. Our planner could choose to imitate concealment by dictating
the resulting signal-to-action maps, but ignoring available information is in general suboptimal
from the planner’s own single-person decision problem perspective.2 Centrally planned social
learning is a topical and important problem, and new optimal mechanisms have recently been
explored in applied settings.3

(a) Actions as signals. Our informational design problem may resemble the problem at
the core of Bayesian persuasion (Kamenica and Gentzkow, 2011): in each period, our planner
precommits to a state-dependent distribution over the actions that carry public signals to successive
agents. In case 2 of the example in Section 2, the Professor partitions his private signals into one of
two messages—one for each action—to maximize his Student’s value. So, a Bayesian persuasion
problem transpires in every period of our model, but where (1) the objective function is the

2. Doyle (2010) explores a planner’s problem in Chamley and Gale’s endogenous-timing herding model.
3. Actions include an unobserved information acquisition decision in Glazer et al. (2015).
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endogenous value function and (2) the distribution over public signal realizations is constrained
by the exogenously given private signal distribution and the number of available private actions.

Dow (1991) first attacked this type of problem, in which an observed action summarizes a
private signal: a consumer observes a price realization, but in the next period can only recall its
partition interval. In the second and final period, another price realization is seen, and a choice
is made. The optimal determination of the first-period coarse price partition is like our planner’s
partition of signals. Like Dow, our planner trades off the present and future, but the horizon is
infinite, and he also struggles with an unknown state of the world.

(b) Socially efficient herding. Our planner’s optimum is also a team equilibrium, where
everyone maximizes the present value of utilities. As with our contrarianism, teams shy
away more from more popular actions in Vives’s (1997) continuum-agent Gaussian setting.4

March and Ziegelmeyer (2020) experimentally find evidence of contrarian behaviour among
altruistic agents.5 Our contrarianism relates to the excessive imitation found in Eyster and Rabin
(2014), but now in the traditional finite action herding setting. It explains why agents in herding
models may efficiently excessively rely on their own signals, without assuming irrationality
(Eyster and Rabin, 2010).

(c) Bayesian experimentation. The bad herding outcome parallels the familiar failure of
complete learning in the two-armed bandit (Rothschild, 1974). Yet, the analogy is puzzling:
Easley and Kiefer (1988) prove that complete learning generically arises in experimentation
problems with finite state and action spaces, but the herding outcome likewise arises in a model
with finite actions and states. This puzzle is resolved by our experimenting planner choosing a
continuously defined signal-to-action map.6

The article opens with a two-period example of our two substantive findings of the planner’s
model: shrinking cascade sets and contrariarism. It then explores in sequence the social planner’s
problem as an experimentation model; the implementation results from our welfare indexes; the
subtleties of dynamic information revelation; the way that cascade sets shrink in patience; the
novel monotone restriction on signals that precludes cascades, and then the contrarianism finding
that exploits this. Many proofs are appendicized.

2. AN ILLUSTRATIVE TWO PERIOD EXAMPLE

Our article proceeds indirectly, using recursion and dynamic programming. But, we first explicitly
solve a simple two-period example that captures both of our main predictions of the planner’s
problem: shrinking cascade sets and contrarianism. Assume that economic theory research fashion
is captured by one of two unobserved states, either low-brow theory L or high-brow theory
H . A Professor and a Student share a prior belief π on state H. Respectively, they observe
conditionally independent draws σP,σS of a private signal, with cdf’s FH (σ )=σ 2 and FL(σ )=
σ , and densities f H (σ )=2σ and f L(σ )=1, as in Figure 1. Since the signal likelihood ratio
f H (σ )/f L(σ )=2σ in favour of state H increases, higher signals σ lead to higher posterior beliefs p
in state H. Also, low σ >0 are arbitrarily powerful indicators of state L, but all σ <1 have bounded
power for H.

4. Vives always employs the normal learning model, ruling out results like ours on the distributional shape’s
importance. On the other hand, that model characterizes the long-run properties of learning by the speed with which the
public precision approaches infinity. Our analysis offers no analogy.

5. In a related setting, Medrano and Vives (2001) describe behaviour that reveals less private information as
“contrarianism.” We find it more natural that contrarian behaviour leans against the public belief.

6. Pastorino and Kehoe (2011) seek monotonicity of the optimal rule in a dynamic setting similar to ours. In their
paper, the experimenter is constrained to choose from a finite set of interval partitions.
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Figure 1

The Selfish Professor (Section 2)

Notes: At left are the private signal densities on [0,1]: The likelihood odds favouring state H rise from 0 to 2 as the signal σ rises. At right
are ∨-shaped myopic (expected) payoffs U(π ) and value V (π ) for the selfish Professor in the public belief π . These apply to the selfish
Student if plotted against continuation belief p. In the cascade set [0,1/3], signals are useless, and the value and expected payoff coincide,
V (π )=U(π ). If π >1/3, information is valuable, and so V (π )= 1

2 (5π−4+1/π )>U(π ).

After seeing his signal, the Professor either starts a low-brow paper l or high-brow paper h. His
Student then learns from his paper choice, and makes his own paper selection. Research pays 1 if
the paper and state match, and −1 otherwise (Figure 1). If the Professor updates to the posterior
belief q in state H, his expected payoff is U(q)≡max(2q−1,1−2q).

We compare two extreme motivations for the Professor: he selfishly only cares about his own
expected payoffs, or he is entirely motivated by his Student’s expected payoffs.

Case 1: The Selfish Professor. Assume the Professor writes paper h when state H is most
likely—i.e., for posterior beliefs q≥1/2. By Bayes rule, this happens when his posterior likelihood
ratio of states H to L exceeds one, or [f H (σ )/f L(σ )][π/(1−π )]≥1. This happens for high private
signals σ above a selfish threshold signal σ̄ (π )≡ (1−π )/(2π ). For any prior belief π <1/3 in
state H, the threshold signal impossibly exceeds one—in this case, the Professor always writes
paper l. This event when the prior belief overwhelms all private signals is called a cascade.
Here, the Professor’s (prior expected) value—or highest expected payoff—is V (π )=U(π ) when
π <1/3. Otherwise, his payoff in state H is ±1 for signals σ ≷ σ̄ (π ), and oppositely so in state
L. All told, the value is therefore:

V (π )=π [1−2FH (σ̄ (π ))]+(1−π )[2FL(σ̄ (π ))−1]= 1

2
(5π−4+1/π ).

This value V (π ) is strictly convex on (1/3,1), as depicted in Figure 1. Since the Professor
profits from his information here, we have V (π )>U(π ) on (1/3,1). Indeed,

V (π )−(1−2π )= (3π−1)2/(2π )>0 and V (π )−(2π−1)= (π−1)2/(2π )>0.

Consider next the Student’s choice. After seeing the Professor’s paper genre l or h, the Student,
respectively updates to the continuation prior belief p=pl(π ) or ph(π ). Provided the Professor
sometimes writes either genre, we have pl(π )<π<ph(π ). The selfish Student likewise writes the
low-brow paper l iff her signal τ <σ̄ (p)= (1−p)/(2p). Similarly, the Student secures an expected
value V (p) from the continuation belief p. Suppose that the Professor is in the cascade set, with
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π≤1/3. Since p=pl(π )≤π , whenever the Professor writes a low-brow paper, the Student copies
him.

Case 2: The Altruistic Professor. Consider next the opposite extreme when the Professor
chooses his paper genre to maximize his Student’s expected value. Since σ̄ (1/3)=1, with a
prior belief at or just below 1/3, the selfish Professor always chooses the low-brow paper, which
sends the student a useless signal. To help the Student, by informing him of high signals, the
altruistic Professor therefore leans against the prevailing prior belief, by choosing a lower altruistic
threshold signal σ̂ <σ̄ (π ). In other words, he writes the high-brow paper more often, yielding
respectively lower continuation beliefs: p̂l(π,σ̂ )<pl(π |σ̄ (π )) and p̂h(π,σ̂ )<ph(π |σ̄ (π )). We can
explicitly compute them:

p̂l(π,σ̂ )= πσ̂ 2

πσ̂ 2+(1−π )σ̂
<π < p̂h(π,σ̂ )= π [1− σ̂ 2]

π [1− σ̂ 2]+(1−π )[1− σ̂ ] , (2.1)

and the action chances are the denominators of (2.1). The Professor chooses σ̂ to maximize the
Student’s expected value. As in the right panel of Figure 1, if p̂l(π )≥1/3, this value is:

E[V (P)|π,σ̂ ]=E[(5P−4+1/P)/2|π,σ̂ ]= 5
2π−2+ 1

2 E[(1/P)|π,σ̂ ], (2.2)

where we have used the fact that E[P|π,σ̂ ]=π , by the law of iterated expectations.
To evaluate the expectation (2.2), we can rule out the case where the continuation beliefs obey

p̂l(π )>1/3 for any prior belief π >1/3.7 Rather, the Professor optimally endows the Student
with the two continuation beliefs p̂l(π )≤1/3< p̂h(π ). Since the Student’s value is V (p)=1−2p
on [0,1/3], and V (p)=5p−4+1/p on [1/3,1], its expectation is E[V (P)|π,σ̂ ]

=[πσ̂ 2+(1−π )σ̂ ](1−2p̂l(π ))+(π [1− σ̂ 2]+(1−π )[1− σ̂ ])(5p̂h(π )−4+1/p̂h(π ))/2.

If we substitute the continuation beliefs (2.1), this expression reduces to

E[V (P)|π,σ̂ ]=V (π )+ (3π−1)
[
1−πσ̂ 2−πσ̂−π]

σ̂

π (1+ σ̂ )
+ π (1−π )σ̂ 2(1− σ̂ )

π (1+ σ̂ )
. (2.3)

Taking logs of the second two terms, the first-order condition in σ̂ then simplifies to

4π2σ̂ 3+2π (5π−1)σ̂ 2+4π (2π−1)σ̂+3π2−4π+1=0. (2.4)

Let us first see what this says about the cascade set. At the highest cascade prior belief π̄ , the
Professor optimally always chooses the low-brow paper. In other words, the altruistic threshold
signal is σ̂ =1. This implies

0=4π̄2+2π̄ (5π̄−1)+4π̄ (2π̄−1)+3π̄2−4π̄+1= (5π̄−1)2.

For an alternative insight here, starting just above the prior belief π̄=1/5, if the Professor almost
always chooses the low-brow paper, the high-brow paper signals σP very close to one, with

7. For if so, by substituting from (2.1), the last term in (2.2) reduces to:

E[(1/P)|π,σ̂ ]=1/π+ (1−π )2

π

1− σ̂
1+ σ̂ .

This expectation is falling in the threshold signal, maximized at σ̂ =0. But for positive low signal thresholds σ̂ >0, the
low-brow genre l conveys a very discouraging message to the Student, resulting in a low continuation belief pl(π )<1/3.
Given this contradiction, the lower continuation belief must lie in the cascade set: pl(π )<1/3. But unless the higher
continuation belief ph(π ) exceeds 1/3, the student always finds himself in the cascade set, and information is worthless.
In this case, he earns payoff U(π ).
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likelihood ratio near 2. Hence, this endows the Student with the continuation belief just above
1/3. This in turn leaves the Student just outside his cascade set. In summary, altruism shrinks the
Professor’s set of cascade beliefs from [0,1/3] to [0,1/5].

Next, one might ask how altruism impacts the Professor’s actions at the margin, as he slowly
grows more confident in state H. Consider the Professor’s posterior odds 2y=2πσ̂/(1−π )≥1/2
for state H, when he is at the knife-edge. Substituting this expression into (2.4), the optimal
posterior odds 2y(π ) on the domain 1/5≤π≤1 obey

4(1−π )2y(π )3+2(5π−1)(1−π )y(π )2+4π (2π−1)y(π )−(3π−1)π=0. (2.5)

We can fortunately factor this cubic to get

[2(1−π )y(π )+3π−1][2(1−π )y(π )2+2πy(π )−π ]=0.

With a cubic derivative with positive lead coefficient, the SOC requires the first or third solution
of the FOC. But the first solution is negative. We thus need the positive solution of the quadratic:

y(π )=
√
π2+2π (1−π )−π

2(1−π )
. (2.6)

This yields the optimal altruistic threshold signal σ̂ (π )= (1−π )y(π )/π falling from 1 to 0 as π
increase from 0.2 to 1. The corresponding threshold posterior belief increases. So, the Professor
leans more against the high action the higher is π , as his indifference posterior odds y(π ) are
higher. We call this property of an optimal solution contrarianism.

Recalling (2.3), the altruistic Professor’s value function is—as plotted in Figure 2—the myopic
payoff U(π ) on [0,1/5] inside the cascade, and on [1/5,1] is:

E[V (P)|π,σ̂ (π )]=V (π )+ 1−π
π

· π (3−2π )−
√

1−(1−π )2

π+
√

1−(1−π )2
.

In this article, we argue that these two basic insights—shrinking cascade sets and
contrarianism—are robust to any infinite horizon model of herding in which the social planner
partially discounts the utility of future decision makers, provided signals obey (PM).

A key dynamic feature of this two period example owes to its non-stationarity: when the
altruistic or selfish Professor is not in a cascade set, the Student lands in a cascade set if he sees
paper l, since its continuation belief is pl(π )<1/3. By contrast, in our stationary infinite horizon
model in Section 3, the cascade set is constant in all periods, and cannot be entered if (PM) obtains
(as holds in this example’s signal).

3. THE FORWARD-LOOKING HERDING MODEL

We start with the standard herding model of Smith and Sørensen (2000) (SS) and show that
its planner’s problem exactly corresponds to a single agent experimentation model. An infinite
sequence of agents (decision-makers) share a common 50–50 prior belief, for simplicity, over
two payoff relevant states ω∈{L,H}. They act in the order n=1,2,....

Agents share a state-dependent utility function uω(a) over actions a∈{1,...,A}. Action 1 is
uniquely best in state L, and action A in H. Payoffs obey increasing differences: uH (1)−uL(1)<
uH (2)−uL(2)< ···<uH (A)−uL(A). Action a has myopic payoff, or expected payoff:

ū(a,r)= (1−r)uL(a)+ruH (a), (3.1)
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Figure 2

The Selfish and Altruistic Professors

Notes: The (solid) expected payoffs for the altruistic Professor exceed the value V (π ) of the selfish Professor, as he profits from the Student’s
signal too. A foretaste of our long run finding, the selfish cascade set is strictly smaller than the altruistic cascade set—[0,0.2]⊂[0,1/3].
At right, we depict our short run finding, contrarianism: as the prior chance of state H increases, the altruistic Professor writes paper l
more often, and the threshold posterior q rises in π .

as a function of the probability r of state H. Since they may be useful for communication, we
allow myopically dominated actions a, where ū(a,r)<supã ū(ã,r) for all r∈[0,1].

The nth agent sees a random private signal σn about the state. We can identify this signal with
the interim belief σn=P(H|σn). The signals are i.i.d. across agents in each stateω=L,H, with cdf
Fω. No signal perfectly reveals the state, so that FH and FL are mutually absolutely continuous
with common support supp(F). Because the signal is the interim belief, the derivative satisfies
dFH/dFL=σ/(1−σ ). This is the “no-introspection property” deduced in our earlier SS paper—
namely, that sampling an individual with signal σ should be just as informative as observing signal
σ . Easily, this implies FH (σ )≤FL(σ ), with strict inequality between the extremes of supp(F).
Signals are unbounded if their support supp(F) contains 0 and 1, and bounded8 if supp(F)⊆ (0,1).
Also, some signals are informative: supp(F) contains signals above and below σ =1/2.

Individuals observe the history of actions but not private signals. Before choosing action an,
the nth agent observes the history of n−1 predecessors’ actions. Conjecturing their strategies,
he can then deduce the updated public belief πn=P(H|a1,...,an−1) in state H. Combining his
private signal σ with public belief π gives the posterior belief map:

r=R(π,σ )≡ πσ

πσ+(1−π )(1−σ )
. (3.2)

This article explores welfare properties of this model: abstractly, the planner may modify how
agents map private signals into actions, after any given history; in Section 6, we show how to
implement this. A choice rule ξ prescribes some action a=ξ (σ ) for every signal σ .9 A strategy
sn for the nth agent assigns a choice rule to each action history of length n−1. The planner’s
preference depends on a discount factor δ∈[0,1) that trades off payoffs earned by present and
future agents. The planner chooses the strategy profile s= (s1,s2,...)∈S to maximize the expected

8. In Section 2, supp(F) contained 0 but not 1. For convenience, we henceforth omit this possibility.
9. If some signals σ have positive probability under F, optimization requires choice rules with a random action.

For simplicity, we refer only to pure rules. Results remain valid for mixed choice rules.
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present value of the utility stream uω(an), namely:

vδ(π )=sup
s∈S

E[(1−δ)
∑∞

n=1δ
n−1uω(an)], (3.3)

where we call vδ the value function. The expectation is both over states ω and over the random
process of private signals. The original herding model is the special case δ=0.

4. DYNAMIC PROGRAMMING SOLUTION

We solve the social optimum (3.3) using dynamic programming. A stationary, or Markovian,
policy assigns a choice rule ξ for every public belief π , our state variable. With rule ξ ,
action a happens with probability ψ(a,ω,ξ )=∫

ξ−1(a)dFω in state ω, and unconditionally
with probabilityψ(a,π,ξ )=πψ(a,H,ξ )+(1−π )ψ(a,L,ξ ) (slightly abusing notation). Action a
results in continuation public belief p(a,π,ξ )=πψ(a,H,ξ )/ψ(a,π,ξ ) when ψ(a,π,ξ )>0. We
call action a, and its continuation belief, active if p(a,π,ξ )>0.

For any policy, starting at belief π , the continuation value of (3.3) is a function vδ(π ).
By dynamic programming, the optimal (average present) value function vδ solves the Bellman
equation:

v(π )= sup
ξ∈	

(Tξ v)(π ), (4.1)

where the policy operator Tξ maps any continuation value v into the current value, namely:

(Tξ v)(π )=∑A
a=1ψ(a,π,ξ )[(1−δ)ū(a,p(a,π,ξ ))+δv(p(a,π,ξ ))]. (4.2)

Since the upper envelope of affine functions is convex, the value function vδ solving (4.1) is
convex, and therefore everywhere has a left and right derivative. Because the optimal strategies
at beliefs 0 and 1, respectively entail taking actions 1 and A, Figure 3 arises:

Lemma 1 (Value Functions) The value vδ is bounded, continuous, and convex in public beliefs
π , with extreme slopes v′δ(0+)≥uH (1)−uL(1) and v′δ(1−)≤uH (A)−uL(A).

We do not solve the Bellman equation (4.1) as formulated, since it optimizes over policies.
Rather, we work in value space. So inspired, recall the multi-armed bandit (Section 6.5 of
Bertsekas, 1987), in which an experimenter each period chooses among finitely many actions,
each providing a random and independent reward. Gittins (1979) solved for the optimal behaviour:
Replace each action by a sure thing reward that subsumes its optionality; each period, one chooses
the action with the highest such Gittins index.

We now argue that the planner’s optimal policy admits an analogous index rule—even though
the actions obviously do not have independent reward distributions: faced with the public belief π
and private posterior r, the agent chooses the action a with the largest welfare index w(a,π,r)—
equal to the social payoff as privately gauged by the agent.

A convex function v has supporting subtangents τ (π,r) at public beliefsπ , defined as functions
of the posterior r∈[0,1], and uniquely defined when v′(π ) exists. We next design welfare indexes
using these subtangents, and thereby implement the planner’s outcome.

Proposition 1 (Optimal behaviour) For any public belief π , an agent with posterior belief r
takes the action a with maximal welfare index

w(a,π,r)= (1−δ)ū(a,r)+δτ (p(a,π,ξ ),r), (4.3)

for some supporting subtangent τ (p,r) to v at public belief p, evaluated at posterior r.
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Figure 3

Myopic payoffs, the value function, and cascade sets for three actions

Notes: Cascades arise when the value function and myopic payoff coincide. Indeed, the value function strictly exceeds the myopic payoff
when signals are valuable and can move beliefs, but coincide inside the cascade set intervals, because social learning stops. As the discount
factor δ rises, the value increases, and the cascade sets therefore shrink. Interior cascade sets eventually vanish: C2(δ̄)=∅ and C2(δ) �=∅

for δ<δ̄<1, while extreme cascade sets shrink but never vanish: C1(δ)⊃C1(δ̄) �=∅ and C3(δ)⊃C3(δ̄) �=∅.

The value function subtangent τ (p,r) at a public belief p admits a useful economic
interpretation: The marginal social benefit of a higher posterior is the slope v′(pa) at the
continuation public belief pa=p(a,π,ξ ). The privately informed agent thus assigns social value
τ (pa,r) to the continuation game after action a where followers act optimally at pa. The welfare
index (4.3) is a linear function of his posterior beliefs over the state of the world because both
myopic payoffs and social incentives are.

Recall that the optimal strategy in the selfish herding model of SS was a simple interval
rule: choose action a if one’s posterior belief r lies in an interval Ia, where {Ia} partitions [0,1].
Actions with empty intervals are not taken. The rule may randomize at the threshold (boundary)
θa between adjacent intervals Ia and Ia+1. Since the welfare index w(a,π,r) in (4.3) is affine in
r, interval rules remain socially optimal.10

Corollary 1 (Interval rules) An interval rule {Ia} is optimal at any public belief π .

In the socially planned herding model, the communication value of actions can swamp myopic
payoff considerations. Inspired by the search model of Dow (1991), we make two observations
about the planner’s optimal strategy reflecting this insight.11

Lesson 1: Myopically dominated actions may be socially valuable.

Since more actions intuitively facilitates communication, myopically dominated actions might
help. To see this, suppose that action A dominates A−1 by ε in states L and H. We claim that
for small ε>0, action A−1 is optimal with positive probability for some public beliefs and large
δ<1. Intuitively, the static payoff losses can be made small, but the informational gain of an extra
signal has boundedly positive value (proof in Section G.1).

Lesson 2: The myopic action order might not be socially optimal.

10. Dow (1991) derived an interval partition, albeit without our Bayesian binary state structure. Meanwhile, when
δ=1, our Proposition 1 more roughly corresponds to the FOC of Dow’s Proposition 2.

11. We generalize Dow’s 1991 Proposition 2, which assumes perfect patience and a simple second-period value
function. His Example 3 shows that a multiplicity of optimal solutions can arise in these problems.
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The natural order entails using higher actions on higher intervals, if both are used. For high
discount factors δ<1, the natural order need not be optimal (shown by example in Section
G.1). But the action ordering is myopically optimal by our increasing differences assumption,
and remains so with not too much concern for posterity. Define the gap �a≡(uH (a)−uL(a))−
(uH (a−1)−uL(a−1)) for actions a≥2. By increasing differences, �a>0 for all a≥2. Next,
define �=�2+···+�A and �=min{�2,...,�A}.

Corollary 2 For any discount factor δ<�/(�+�), the optimal rule obeys the natural action
ordering. With two actions, this holds for δ<1/2.

5. CASCADE SETS: NON-EMPTY BUT SMALLER

For the selfish informational herding model, SS show that for bounded private signals, learning
eventually ceases since the public belief π eventually lands in an absorbing state. The socially
planned herding model has the same long run outcome. Let the action cascade set Ca(δ) be all
public beliefs for which action a is optimal irrespective of the signal σ . In the Appendix, we
piece together the dynamic learning story of how public beliefs almost surely land in a cascade
set: since active learning ceases in Ca(δ), the value and myopic payoff coincide v(π )= ū(a,π ) in
it; naturally, Ca(δ) is a closed interval, as in Figure 3. So the value function is affine on cascade
sets. Conversely, if the signal distribution has convex support and the natural action ordering is
optimal, then the value function is affine only on cascade sets (see Section B). So, the value is
strictly convex iff active learning occurs.

For our first key finding of the article, we argue that the cascade phenomenon is efficient, but
cascades happen too soon. For since the value function weakly increases in the discount factor
(Claim 3), the value function coincides with the constant myopic payoff on weakly smaller cascade
sets. In the perfect patience limit, the planner maximizes for the long run: these sets collapse to
{0},{1}, and incorrect herds no longer occur, as social learning is always correct (since a wrong
point belief a.s. never happens).

Proposition 2 (Cascade Sets Shrink With Altruism, But Never All Vanish) (a) The value
function strictly increases in δ for all public beliefs π outside cascade sets.
(b) Cascade sets for an action are nested, strictly shrinking as δ<1 rises. For large δ<1, any
a /∈{1,A} has an empty cascade set, while limδ→1C1(δ)={0} and limδ→1CA(δ)={1}.
(c) A herd almost surely starts, and the probability it is incorrect vanishes as δ↑1.

The shrinking of the cascade sets happens for a simple reason: since the planner is indifferent
about experimentation at the edge of a cascade set, if he grows more patient, his value of
information rises, and he strictly prefers to experiment; so the cascade set shrinks.

6. OPTIMAL DYNAMIC INFORMATION DESIGN

In a team equilibrium of our multistage game, everyone altruistically seeks to maximize the
planner’s payoff, taking other actions as given (Radner, 1962). We claim that a social optimum
is a team equilibrium for any discount factor δ<1. To see why, suppose that all but one agent
uses a sequentially rational optimal strategy s∗, but that someone has a strictly better reply ξ̂ at a
history in period n. Then the planner can improve his value at that history by fully mimicking this
deviation, i.e., using rule ξ̂ in the first period and then continuing with s∗ as if s∗n had been applied
at stage n with this history (as the team would not have detected the deviation). This contradicts
social optimality of strategy s∗.
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While socially optimal behaviour is a team equilibrium, it need not constitute a Nash
equilibrium. We wish to elicit altruistic behaviour from the selfish agents using a transfer scheme
that only depends on the observed action history. By the index formula (4.3), we ultimately must
award an agent the transfer δτ (π,r)/(1−δ). But, this depends on the unobserved private posterior
belief r, and therefore is infeasible for the planner.

When the planner’s policy prescribes an interval rule that does not swap the myopic interval
order, it suffices to reward an agent just on the basis of his own action. For the planner can move
the selfish agent’s threshold between any two actions up (or down) by taxing (or subsidizing)
the higher action. But transfers based on the agent’s own action can never reverse the myopic
action ordering, and so cannot implement the optimal action ordering. We solve this using a
pivot mechanism—namely, one that rewards agents for their marginal contribution to social
welfare—here, by changing the public belief.

In exchange for taking action a, an individual must be paid the state ω contingent transfer
tω(a|π ) equal to his successor’s incremental value (seen in Figure 4):

tω(a|π )= δ

1−δ (vω(p(a,π,ξ ))−vω(π )), (6.1)

defining the state-contingent values vL(p)≡τ (p,0) and vH (p)≡τ (p,1) at public belief p.
Since the transfers (6.1) depend on the unknown state ω, they are unavailable to the planner.

Fortunately, since future agents’ choices reflect their information, and thereby the state, we can
surmount this hurdle. Let the next agent take the least active action â for his lowest private signals
σ ≤ σ̂ . Because, as initially noted, FL(σ̂ )>FH (σ̂ ) strictly inside supp(F), action â occurs more
often in state L than state H. We can thereby emulate the incentive effect of the state-dependent
transfer (6.1) by an action transfer t(a,a′) that depends just on the current and next actions,
denoted a and a′:

Proposition 3 (Pivot Mechanism) The optimum (3.3) is implemented by a mechanism whose
transfers depend on the public belief, and the actions of an agent and his successor.

Our proof in Section D simply asks whether the next agent takes the lowest active action â or
any other action ¬â. The current agent earns the state ω contingent transfer tω(a|π ) from taking

Figure 4

Value function and optimal transfers

Notes: The subtangent τ (p,r) to the value function at public belief p yields the present value for someone with any posterior belief r
(Proposition 1). Thus, higher posterior beliefs raise this value iff the value function slopes up. At extreme posteriors r=0,1, the tangents
at public beliefs p=pa or p=π yield the state-contingent transfers tL (a|π ) and tH (a|π ) for action a in (6.1), directly proportional to (∝)
the respective indicated axis gaps. Proposition 3 implements these as functions of the successor’s action (which reflects the unobserved
state) and not the state.
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action a if the following two linear equations in two unknowns have a solution:

tω(a|π )=Fω(σ̂ )t(a,â)+[1−Fω(σ̂ )]t(a,¬â) for states ω=H,L. (6.2)

This mechanism12 implements the social best, as everyone earns his marginal contribution.
We next argue that with just two actions and the myopic action order, this pivot mechanism

rewards individuals who are mimicked by successors. In other words, imitation is not only the
best form of flattery, but also is socially optimal:

Corollary 3 (Mimicry is Optimally Rewarded) Assume the myopic action ordering with two
actions. The pivot action transfers obey t(a,a)>t(a,a′) whenever a′ �=a and neither public belief
π nor the continuation belief p(a,π,ξ ) lie in the cascade set C(δ).

7. MONOTONE POSTERIOR BELIEFS

Before turning to our contrarianism result, we must dispense with a surprising Bayesian updating
property—the failure of (PM). Our insight applies across information economics, as the desired
new regularity property. Let Bayesians Ike and Joe share a common (prior) public belief π . Ike
privately observes a conditionally independent private signal σ , and arrives at a private posterior
belief r=R(π,σ ). Ike optimally chooses action a∈{1,2,...,A}when his belief r lies in the known
interval Ia. Seeing his action, Joe infers that r∈Ia, and updates to a continuation public belief13

p(a,π ).

(PM) Fixing any interval rule, any prior public beliefs π ′>π , and any active action a (with
ψ(a,π ),ψ(a,π ′)>0), continuation public beliefs are ranked p(a,π ′)>p(a,π ).

So seeing the same action, a more optimistic prior leads to a more optimistic posterior belief.
This may seem obvious, but it can fail. Joe’s continuation public belief p(a,π ) averages over Ike’s
posteriors R(π,σ )∈Ia. As the prior π increases, Ike chooses action a for lower signals σ . In fact,
for multinomial signals it can fail: suppose Ike takes the high action for realized signal σ3, but
not for σ1 or σ2. A slightly higher π might lead Ike to choose the high action also for σ2. This
leads to a discontinuous drop in Joe’s posterior.

Monotonicity is restored by an appropriate log-concavity assumption, (LC), applied to the log-
likelihood ratio signal transformation 
=�(σ )≡log(σ/(1−σ )). Bayes rule (3.2) is then additive:
�(r)=�(π )+�(σ ). Notice that �(Ia) shifts �(π ) by a fixed interval of 
.

(LC) The private signal distribution is atomless with convex support, and one state-contingent
density for its log-likelihood ratio is strictly log-concave.14

Property (LC) holds for both states, if it ever holds. For if the signal σ=S(
)=e
/(1+e
)
has log likelihood ratio 
=�(σ ), then by the chain rule, the state-ω.contingent density for the
log-likelihood ratio is φω(
)≡ f ω(S(
))S ′(
). So φL and φH share a common support supp(φ).

12. Unlike the dynamic pivot mechanism in Bergemann and Välimäki (2010), each agent acts just once.
13. Let action a have chance ψ(a,π ) and lead to posterior public belief p(a,π ), fixing the agent’s probabilistic map

from posterior beliefs to actions (as π varies). In the interior of Ia, the agent adopts action a for sure, and at any boundary
point r′ of Ia the agent takes action a with fixed chance. Under (LC) stated below, boundary points occur with probability
zero, and the exact mixing strategy becomes irrelevant.

14. Only atomless distributions with convex support can be log-concave, but some of the most familiar probability
distributions have this property (see Marshall and Olkin (1979), Section 18.B.2.d).
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Recalling Section 3, we have (dFH/dFL)(σ )=σ/(1−σ ) and thus φH (
)/φL(
)=e
. Since
logφH = logφL+
, we have φH log-concave iff φL is log-concave.

Proposition 4 (Posterior Monotonicity) Private signals obey (LC) iff (PM) holds.

Intuitively, once Bayes rule is additive, (LC) is equivalent to the monotone likelihood ratio
property of private posterior�(π )+
with respect to π , in turn equivalent to (PM). Log-linearity
might then appear equivalent to posterior constancy, but log-linearity rules out unbounded beliefs,
and the belief bound contributes to push up the posterior.15

The Professor–Student example in Section 2 offers an instructive knife-edge case for condition
(LC). For its likelihood ratio e
= f H (s)/f L(s)=2s, with f L(s)=1, the above formula yields
the log-linear state-L density φL(
)=S ′(
)= (1/2)e
. Consistent with Proposition 4, for any
rule where threshold posterior π2σ̂ /[π2σ̂+(1−π )] is held constant, the continuation beliefs
from (2.1) have pl(π,σ̂ ) constant and ph(π,σ̂ ) rising in π .

We noted above that (PM) fails for multinomial signals. We now give a continuous density
example in which (PM) fails because (LC) fails. Choose b∈ (1/2,1), and define the density
f (σ )=1/(2−2b) on [0,1−b]∪[b,1], and f (σ )=0 otherwise. Let f H (σ )=2σ f (σ ) and f L(σ )=
2(1−σ )f (σ ). Suppose that action 2 is optimal for posterior beliefs over 1/2. Given a public prior
belief π >b, the posterior likelihood ratio after seeing action 2 is therefore:

LR(π )≡ π

1−π
1+b

2 +∫ 1−b
1−π

σ
1−b dσ

1−b
2 +∫ 1−b

1−π
1−σ
1−b dσ

.

When b>(1+2
√

2)/7, we verify that LR(π ) is decreasing on (b,b+ε) for some ε>0.16

A delayed cascade is one that starts after period one because public beliefs transition into a
cascade set. In their “bounded beliefs example,” Smith and Sørensen (2000) found that this arises
iff the map from posterior public belief after an action is not monotone in the prior belief. That
is, landing in a cascade set requires that Condition (LC) fail:

Corollary 4 (No Delayed Cascades) Given (LC), there is no delayed cascade if δ=0.

Cascades arise in Bikhchandani et al. (1992) since they posit multinomial signals, violating
(LC).17 A particularly popular application of the herding model uses binary signals, implying
the failure of (PM).

8. CONTRARIANISM

We have seen that as the weight on posterity increases and δ increases, cascade sets shrink,
and so strictly fewer public beliefs guarantee mimicry (Proposition 2). This captures a long run
form of contrarianism: when people care more about posterity, they insist on more precise social

15. When π rises, the interval of private beliefs that maps to action a must shift down. Where this interval includes
a belief bound, its downward shift either includes more signals at the top or fewer signals at the bottom. This effect creates
the upward movement in the posterior upon observing action a.

16. Straightforward algebra provides LR′(b)= (1+2b−7b2)/(1−b)4, negative when b>(1+2
√

2)/7.
17. Herrera and Hörner (2012) note for the binary action model that is equivalent to two immediate properties:

increasing hazard ratio and increasing failure ratio. They copy arguments from Smith and Sørensen (2000) to prove this
sufficient for ruling out cascades, but incorrectly claim that the property is necessary.
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learning before blindly following the herd. We now formulate and prove a short run contrarianism
that impacts behaviour in every period, and therefore is observably testable—such as using the
methods developed in Çelen and Kariv (2004). We show that at the margin, as public beliefs shift
weight towards the high state, it is socially efficient to lean more away from actions that are
myopically better in that state.

Let θa(π ) be the optimal threshold posterior between actions a and a+1 at the public belief
π . To be precise, behaviour is strictly contrarian if, for any public beliefs π ′>π with the same
optimal action ordering,18 any optimal thresholds θ (π )= (θ1(π ),...,θA−1(π )) for posterior beliefs
are strictly ranked: θa(π ′)>θa(π ) for all actions a=1,...,A−1. In other words, fewer posteriors
result in the higher action when the public belief is higher. Behaviour is contrarian if θ (π ′)≥θ (π ).

Proposition 5 Let signals obey (LC). Behaviour is contrarian if δ∈[0,1). If δ>0 and actions
obey the natural order, then behaviour is strictly contrarian outside cascade sets.

While cascade sets shrink for all signal distributions (Proposition 2), contrarianism requires
(PM). The example in Section 2 typifies this link, and in Appendix G.2, we see that contrarianism
can fail without (PM).

For insight into the role of (PM), assume two active actions a=1,2 respectively optimal for
posteriors in [0,θ ] and [θ,1], as in Figure 5. Seeing action a, we arrive at the continuation public
belief p(a,π,θ ). By Proposition 1, the optimal action a for any posterior r has the maximal welfare
index w(a,π,r). We use this to take an infinitesimal FOC. Given the Bellman operator in (4.2),
slightly shifting posteriors from action 1 into action 2 by reducing the threshold by dr yields a
net payoff gain (dr) times:

w(2,π,r)−w(1,π,r)= (1−δ)[ū(2,r)− ū(1,r)]+δ[τ (p(2,π,θ),r)−τ (p(1,π,θ),r)]. (8.1)

If the public belief π rises to π ′, this adjusts difference (8.1) via the value function tangents.
Now, by (PM), the continuation beliefs rise: p(a,π̂ ,θ )>p(a,π,θ) for a=1,2. We can exploit a

useful property of pairs of tangents to a convex function. Not only do the welfare indexes w(1,p,r)
and w(2,p,r) coincide at the posterior belief threshold r=θ , but more strongly, w(1,p,r) crosses
w(2,p,r) from above at r=θ . In other words, the net gain to taking the higher action grows in
the posterior belief r. The posterior threshold r=θ where w(1,π,θ)=w(2,π,θ) therefore rises,
as desired: θ ′>θ .

Lastly, strict contrarianism arises if δ>0 and the value function is strictly convex. For tangents
in (4.3) have positive weight and strictly shift slope in π outside cascade sets.

9. CONCLUSION

This article makes major technical and four substantive contributions to social learning.
We formulate and solve the planner’s problem for informational herding with a discounted

concern for posterity (Sections 3–4). This has long remained open because it is technically
challenging: we secure long run results by adapting optimal experimentation theory, and derive
short run comparative statics without a derivative or a single-crossing property.

18. We have seen that the optimal action ordering generally depends on the public belief. But the threshold
comparison θ (π )<θ (π ′) is meaningful only when the same action ordering is optimal at π and π ′, and that the set
of active actions is identical. Abusing notion, call A the number of active actions. Fixing one interval rule, we re-label
active actions so that higher actions are taken at higher signals.
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Figure 5

Contrarianism via comoving tangents

Notes: By (PM), when the prior public belief increases from π to π̂ , the continuation public beliefs p1<p2 after actions a=1 and a=2 shift
up to p̂1< p̂2, respectively. Note that the gap between the (red) tangents to the value function at p1 and p2 is less than the analogous gap
between the (blue) tangents at p̂1< p̂2. The gap equals (1−δ)[u(2,θ )−u(1,θ )]/δ, by optimality equation (8.1). So to restore this equality,
the threshold θ shifts higher for π̂ . All told, contrarianism purely reflects how slopes of value function tangents co-move. (See Section F.1.)

Section 5. The social optimality of herds has been questioned since Banerjee (1992): we prove
that they remain socially optimal, but just that cascade sets shrink in the discount factor.

Section 6. We implement our planner’s solution with a simple transfer scheme that rewards
people who are followed. Since our agents need not introspect about others’ preferences or
optimal behaviour, this addresses a problem identified by Gagnon-Bartsch and Rabin (2016),
that individuals might have limited understanding of others’ optimal strategies.

Section 7. We derive a robust and frequently met new log-concavity property (LC) on
signal distributions that notably precludes any delayed cascade in the standard herding model.
Considering the central role of cascades in social learning, their fragility is important.

§8 We prove that, under property (LC), people should act in a contrarian way, leaning
against increasingly popular actions in every period. Unlike the shrinking cascade set result,
this prediction is novel not merely for social learning, but also has no counterpart in the
experimentation or Bayesian persuasion literatures. It is a testable altruistic explanation for
experimental herding work that agents excessively rely on their own signals.

In the popular symmetric two-action binary-signal model, the cascade set consists of two
extreme public belief intervals, strictly shrinking with the discount factor. The efficient plan is
simple: outside the cascade set, always follow the private signal. The constant rule renders it easy
to compute the value function from the Bellman equation. This rule does not and cannot reveal
any signs of contrarianism as we have defined it. But individuals in C(0)\C(δ) should drop their
private inclination to herd, and rather follow their signal.
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A. DYNAMIC PROGRAMMING PROOFS

In this section, we set up the dynamic programming optimization, and then use convex duality to prove that the solution
in Proposition 1 and its properties are as claimed in Section 4.

Value functions: Proof of Lemma 1. As Bayes rule does not identify p(a,π,ξ ) if ψ(a,π,ξ )=0, we impose a weak
refinement: p(a,π,ξ )=R(π,σ ) for some σ ∈supp(F).

We use the Bellman operator T =supξ∈	Tξ from the RHS of (4.1). From (4.1) and (4.2), if v≥v′ then Tv≥Tv′. As is
standard in discounted programs, T is a contraction, and so has a unique fixed point vδ . This fixed point lies in the space
of bounded, continuous, and convex functions. We show convexity. Since T is a contraction operator, it suffices that v
convex implies Tv convex. Let πλ=λπ1+(1−λ)π2, where λ∈ (0,1). Fix an optimal rule ξ mapping signals to actions at
πλ. Using Bayes rule, p(a,π,ξ )=πψ(a,H,ξ )/ψ(a,π,ξ ), we get:

p(a,πλ,ξ )= λψ(a,π1,ξ )

ψ(a,πλ,ξ )
p(a,π1,ξ )+ (1−λ)ψ(a,π2,ξ )

ψ(a,πλ,ξ )
p(a,π2,ξ ). (A.1)

The first (myopic) term in (4.2) at πλ is the convex combination of the terms with π1 and π2, as ū is linear in beliefs. As
v is convex and (A.1) holds, the second (future) term obeys:

ψ(a,πλ,ξ )v(p(a,πλ,ξ ))≤λψ(a,π1,ξ )v(p(a,π1,ξ ))+(1−λ)ψ(a,π2,ξ )v(p(a,π2,ξ )). (A.2)

Summing over actions a=1,...,A in (4.2) yields an upper bound on the Bellman operator:

Tv(πλ)=Tξ v(πλ)≤λTξ v(π1)+(1−λ)Tξ v(π2)≤λTv(π1)+(1−λ)Tv(π2).

Let U(π )=maxa ū(a,π ) denote the myopic maximal expected payoff. The bound on tangent slopes follows because
actions 1 and A are respectively best in states L and H: v(0)=uL(1) and v(1)=uH (A), that the convex function v exceeds
the myopic payoff U, and that ū(1,r) and ū(A,r) give the extreme slopes of U, by supermodularity.

Claim 1 (Iterates) {TnU} monotonely converges to the solution vδ≥U of (4.1).

Proof. Let rule ξ̃ a.s. choose the myopically optimal action, i.e., the maximizer over rules ξ ∈	 of∑A
a=1ψ(a,π,ξ )

[
(1−δ)ū(a,p(a,π,ξ ))+δU(p(a,π,ξ ))

]
. Then p(ξ̃ (σ ),π,ξ̃ )=π a.s., and so the value U(π ). Optimizing

over ξ ∈	, we get TU(π )≥U(π ) for all π . By induction, TnU≥Tn−1U, a monotone sequence converging to a fixed
point vδ≥U. ‖

Claim 2 (Slopes) uH (1)−uL(1)≤v′(0+)≤v′(1−)≤uH (A)−uL(A).

Proof. This follows graphically, as v≥U is convex, with v(0)=U(0) and v(1)=U(1). ‖

Claim 3 (Weak Value Monotonicity) When δ2≥δ1, vδ2 (π )≥vδ1 (π ) for all π .

Proof. Clearly,
∑A

a=1ψ(a,π,ξ )ū(a,p(a,π,ξ ))≤∑A
a=1ψ(a,π,ξ )v(p(a,π,ξ )) for any rule ξ and any function v≥ ũ. If δ

increases, then Tξ ũ pointwise increases too, since more weight is placed on the larger component of the RHS of (4.2).
By (4.1), Tũ is pointwise higher. Iterating this argument, Tnũ is higher. Let n→∞, and appeal to Claim 1. ‖

Welfare index characterization: Proof of Proposition 1. A convex function v is the upper envelope of its
supporting tangent lines. Parameterized by their slope and intercepts, the subtangent space Tv⊂R

2 is compact. Since
ū and τa are affine functions, and since p(a,π,ξ )=∫

ξ−1(a) R(π,σ )dFπ , we can exchange the order of summation and
maximization to rewrite operator (4.2) as

(Tξ v)(π )= max
(τ1,...,τA)∈T A

v

∑A

a=1

∫
ξ−1(a)

[(1−δ)ū(a,R(π,σ ))+δτa(R(π,σ ))]dFπ (σ ). (A.3)
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Exchange the sup in (3.3) with the max in (A.3) to get the planner’s dual problem:19

v(π )= max
(τ1,...,τA)∈T A

v

sup
ξ∈	

∑A

a=1

∫
ξ−1(a)

[(1−δ)ū(a,R(π,σ ))+δτa(R(π,σ ))]dFπ (σ ). (A.4)

The supremum over rules ξ in (A.4) entails allocating private signal σ to the action a where (1−δ)ū(a,R(π,σ ))+
δτa(R(π,σ )) is maximal, and r=R(π,σ ). This yields the index expression (4.3). For a fixed rule ξ , (A.3) implies that τa

is tangent to v at p(a,π,ξ ). ‖
Interval Rules: Proof of Corollary 1. The inner “sup” in optimization (A.4) asks, for every signal, which action

is optimal. In this integral sum, for every signal, one takes the action with the highest index. This optimum is achieved
by an interval rule. ‖

Proof of Lesson 1: Dominated actions may be socially valuable. A simple example suffices. Let A−1 be
a dominated action with uL(A−1)>uL(A)+ε2 and uH (A−1)=uH (A)−ε. Assume bounded signals: supp(F)⊂ (0,1).
Suppose first that A−1 were not available. By Claim 5(b), there is a cascade set [π̄ ,1] for action A, where π̄ <1. Since
v(π )= ū(A,π ) for π ∈[π̄ ,1], and v(π )> ū(A,π ) for π <π̄ , the value function v is not locally linear at π̄ . Now, we make
A−1 available, and check that it can improve this value. At belief π̄ , consider the rule that maps σ ≤1/2 into action
A−1, and σ >1/2 into action A. This induces continuation public beliefs p(A−1,π̄ ,ξ )<π̄ <p(A,π̄ ,ξ ). Since the convex
v is not locally linear at π̄ , the expected continuation value exceeds v(π̄ ) by some η>0. This policy change produces a
myopic loss less than ε, beating the optimal policy when δη> (1−δ)ε, i.e., for small enough ε. ‖

Natural action order if not too patient: Proof of Corollary 2. By Proposition 1, it is optimal to choose the
action with highest welfare index. Since w(a,π,r) is linear in r, the natural order arises if (∂/∂r)w(a,π,r) strictly rises in
a. As v is convex, the slope of any subtangent line τ of v is sandwiched:

uH (1)−uL(1)≤v′(0+)≤ ∂τ
∂r

≤v′(1−)≤uH (A)−uL(A), (A.5)

recalling that the right derivative of a convex function is always uniquely defined. Hence:

∂w(a+1,π,r)

∂r
− ∂w(a,π,r)

∂r
≥ (1−δ)�a+1−δ�.

This is strictly positive when δ<�a+1/(�+�a+1). Finally, �=�2 for A=2. ‖

B. CASCADE SETS: PROOF OF PROPOSITION 2

The proof in this section characterizes stationary beliefs for the dynamic optimization.

Claim 4 (Strict Convexity of Values) On cascade sets, the value function is affine and obeys v(π )=U(π ). Outside of
cascade sets, v(π )>U(π ), and furthermore, if the signal support is convex and actions are naturally ordered, v is strictly
convex.

Proof. At any cascade public belief π ∈[z,z̄]⊂Ca(δ), a.s. taking action a yields some state-contingent expected values
vL and vH . So on [z,z̄], v(r)= (1−r)vL+rvH is affine.

Next, if π is not a cascade belief, by definition it is not optimal to induce one action a.s., whence vδ(π )>U(π ) if
δ∈[0,1). We next argue that it is strictly convex.

For a contradiction, let v be affine around a non-cascade belief π̂ �∈C(δ). Let ξ̂ be an optimal rule mapping signals
σ to actions a. Put H(π )=∑

aψ(a,π,ξ̂ )w(a,π̂ ,p(a,π,ξ̂ )). First, v(π̂ )=H(π̂ ), by (4.1) and Proposition 1. Second, H is
affine because welfare indices are affine, and continuation public beliefs are a martingale (i.e. (A.1)). Third, H(π )≤v(π )
from (A.4), as H employs both a particular rule ξ̂ and particular tangents to v at p(a,π̂ ,ξ̂ ).

Since v is affine, H(π )=v(π ) around π̂ . By (A.4), ξ̂ is optimal for π near π̂ and w(a,π̂ ,r) is an optimal index function
at π . Assume two active actions 1 and 2. As the actions are naturally ordered, p(1,π̂ ,ξ̂ )<p(2,π̂ ,ξ̂ ) and ū(2,r)− ū(1,r) is
strictly increasing. So, the welfare indices w(1,π̂ ,r) and w(2,π̂ ,r) cross once. As the signal support is convex and both
actions are active, the crossing θ uniquely fixes the optimal rule ξ̂ at π̂ . But for public beliefs π �= π̂ near π̂ , the fixed
private signal threshold rule ξ̂ selects different actions for posteriors r near θ as π varies, since (3.2) is increasing in π .
Contradiction. So the convex value function is not affine on any subinterval, and so is strictly convex. ‖

19. As an aside, convex duality offers a computational strategy for solving the dynamic programming problem. In
the iteration, given a value vn, the next value vn+1 is obtained in principle by searching across all the possible rules. But
convex duality suggests an alternative faster way to compute vn+1: the required tangent space is merely the set of all the
left and right derivative lines to vn.
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Claim 5 (Structure of Cascade Sets)
(a) For discount factors δ∈[0,1), we have 0∈C1(δ) and 1∈CA(δ), and C(δ) �= [0,1].
(b) With bounded signals, C1(δ)=[0,π (δ)] and CA(δ)=[π̄ (δ),1] for 0<π (δ)<π̄ (δ)<1.
(c) With unbounded signals, C1(δ)={0}, CA(δ)={1}, and Ca(δ)=∅ for a �=1,A.

Proof of (a). Action 1 is myopically strictly optimal if π=0. Since it always updates to continuation belief π=0, it is
dynamically optimal for any discount factor δ∈[0,1). Ditto for π=1. As signals are valuable in the selfish problem,
∪A

a=1Ca(0) �= [0,1]. ‖
Proof of (b). Action 1 is strictly optimal at belief π=0, and so selfishly optimal for π≤π ′, for some π ′>0. In particular,
ū(1,π )> ū(a,π )+η for all a �=1 for some η>0, and for allπ ∈[0,π ′/2]. No action can reveal a stronger private signal than
any σ ∈supp(F)⊆[σ0,σ1]⊂ (0,1). So any initial belief π is updated to at most p̄(π )=πσ1/[πσ1+(1−π )(1−σ1)]. For
π small enough, p̄(π )∈[0,π ′/2] and p̄(π )−π is arbitrarily small. By continuity, vδ(p̄(π ))−vδ(π ) is less than η(1−δ)/δ
for small enough π . By the Bellman equation (4.1), any a>1 is strictly suboptimal for such small beliefs. ‖
Proof of (c). For unbounded signals, SS deduce Ca(0)=∅ whenever 1<a<A, and C1(0)={0} and CA(0)={1}. Cascade
sets weakly shrink in δ by Claims 3 and 4. ‖

Claim 6 (Cascade Sets Shrink at Interior Edges) For any discount factor δ>0 and action a∈{1,...,A}, if π̌ ∈(0,1) is
an endpoint of the cascade set Ca(0), then π̌ �∈Ca(δ).

Proof. We focus on left endpoints, and so on an action a>1. Let π̌=minCa(0), with least posterior belief ř=
R(π̌ ,minsupp(F))<π̌ , for which (†): ū(a−1,ř)= ū(a,ř). Put

wa−1(r)= (1−δ)ū(a−1,r)+δτ (ř,r) and wa(r)= ū(a,r). (B.1)

As ř<π̌ , we have ř �∈Ca(0). Since Ca(δ)⊆Ca(0) by Claim 3, we have ř �∈Ca(δ). By Claim 4, ū(ř,a)<vδ(ř)=τ (ř,ř).
So (B.1) and (†) imply wa(ř)<wa−1(ř). If π̌ ∈Ca(δ), then wa(ř) is the welfare index at posterior ř, contradicting
Proposition 1. ‖

Claim 7 (Continuations) Continuation beliefs lie in at most one cascade set if δ>0.

Proof. With unbounded signals, absent perfectly revealing signals, continuations never lie in a cascade set. Assume
bounded signals. Let σ =minsupp(F) and σ̄ =maxsupp(F). Assume two continuations p1<p2 for some π lie in distinct
cascade sets, p1∈Ca′ (δ) and p2∈Ca′′ (δ), with Ca′ (δ) below Ca′′ (δ) in [0,1]. Then p1∈Ca′ (0) and p2∈Ca′′ (0), by
Proposition 2(b). Let π ′ ≡maxCa′ (0)≤minCa′′ (0)≡π ′′. Then p1≤π ′. Choose x1,x2 in [σ ,σ̄ ] with R(π,x1)=p1 and
R(π,x2)=p2. As Bayes-updating commutes:

R(p1,σ̄ )=R(R(π,x1),σ̄ )=R(R(π,σ̄ ),x1)≥R(R(π,x2),x1)≥R(p2,σ )≥R(π ′′,σ )≥R(π ′,σ̄ )

and so p1≥π ′. Thus p1=π ′ ≡maxCa′ (0), which contradicts Claim 6. ‖

Claim 8 (Strict Value Monotonicity) The value function strictly increases in δ∈[0,1) outside the cascade sets: If δ2>

δ1, then vδ2 (π )>vδ1 (π ) for all public beliefs π �∈C(δ2).

Proof. Let δ2>δ1, and fix π /∈C(δ2). If π ∈C(δ1), we’re done, since vδ1 (π )=U(π )<vδ2 (π ). If π /∈C(δ1), then the δ1-
optimal rule ξ sometimes induces an action â with continuation p(â,π,ξ ) /∈C(δ1). [The public belief π is the average of
continuations, each cascade set Ca(δ1) is an interval, and at most one cascade set is hit, by Claim 7.] Then,

(1−δ1)ū(a,p(a,π,ξ ))+δ1vδ1 (p(a,π,ξ ))≤ (1−δ2)ū(a,p(a,π,ξ ))+δ2vδ2 (p(a,π,ξ ))

for every action a by Claim 3, with strict inequality for some action â, since δ2>δ1 and vδ2 (p(â,π,ξ ))>vδ1 (p(â,π,ξ )).
By (4.1) and (4.2), the δ1-optimal rule ξ strictly exceeds vδ1 (π ), for the discount factor δ2. Optimizing over δ2-rules, we
have vδ2 (π )>vδ1 (π ). ‖

Claim 9 (Shrinkage) With bounded beliefs, action cascade sets strictly shrink in δ.

Proof. Fix action â and 0<δ1<δ2<1. As Câ(δ)={π |vδ(π )− ū(â,π )=0} is closed by continuity, we prove that if the
cascade set edge π̂≡minCâ(δ1), then π̂ /∈Câ(δ2) if â �=1.

Case 1: Multiple optimizers. Assume that at π̂ , some optimal rule for δ1 uses actions other than â with positive
probability. Then some continuation beliefs fall outside C(δ1) with positive probability. For if not, by Claim 7, all
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continuations lie in the same cascade set; therefore, not playing â incurs a myopic cost with no informational gain. As in
the proof of Claim 6, vδ2 (π̂ )>vδ1 (π̂ )= ū(â,π̂ ), and therefore π̂ �∈C(δ2).

Case 2: A unique optimizer. Assume that the unique optimal rule for δ=δ1 at belief π̂ is almost surely to play
â. Choose a belief sequence πn↑ π̂=minCâ(δ1), so that πn �∈Câ(δ1). For each n, let Tn= (τ n

a ,a=1,...,A) be optimal
tangents in (A.4). For every n, πn �∈Câ(δ1) implies the existence of action ǎn �= â and signal σn∈supp(F):

(1−δ1)ū(ǎn,R(πn,σn))+δ1τ
n
ǎn

(R(πn,σn))≥ (1−δ1)ū(â,R(πn,σn))+δ1τ
n
â (R(πn,σn)).

Since T |A|
v and supp(F) are compact and A is finite, there is a subsequence where Tn has limit T∗= (τ ∗a ), an has limit

ǎ �= â, and σn has limit σ̂ . Write r̂=R(π̂ ,σ̂ ). By the Theorem of the Maximum, T∗ is an optimal subtangent vector for π̂ ,
so that

(1−δ1)ū(ǎ,r̂)+δ1τ
∗
ǎ (r̂)≥ (1−δ1)ū(â,r̂)+δ1τ

∗
â (r̂). (B.2)

Since â is uniquely optimal at π̂ , subtangent τ ∗â must be identical to the myopic function ū(â,·). By Claim 6, π̂
is strictly inside Câ(0)⊃Câ(δ1). So action â is myopically strictly dominant, i.e., ū(â,r̂)> ū(ǎ,r̂). Then, (B.2) implies
τ ∗ǎ (r̂)>τ ∗â (r̂). Hence, (1−δ2)ū(ǎ,r̂)+δ2τ

∗
ǎ (r̂)> (1−δ2)ū(â,r̂)+δ2τ

∗
â (r̂), as δ2>δ1. Optimizing over tangents in (A.4) at

δ2 yields vδ2 (π̂ )> ū(â,π̂ ). So π̂ /∈Câ(δ2). ‖

Claim 10 (The Perfect Patience Limit) Interior cascade sets are empty for large δ<1, while limδ→1 C1(δ)={0} and
limδ→1 CA(δ)={1}.

Proof. Fix a cascade set Ca(δ) �=∅ for action a /∈{1,A}. It suffices to use a simple rule ξ taking action a−1 for σ ∈ Ia−1=
[0,θ ] and otherwise action a, where both actions can happen: 0<F(θ )<1. By continuity of p(a,π,ξ ) in π on the compact
subset Ca(δ)⊂ (0,1), for some ε>0, after the good news σ ∈ Ia, public beliefs rise by p(a,π,ξ )−π≥ε for all π ∈Ca(δ).
Let π ′′ ≡maxCa(δ) and define [π ′,π ′′]≡[π ′′−ε/2,π ′′]∩Ca(δ). Since the convex function vδ(p)≥ ū(a,p) with equality
iff p∈Ca(δ), by Claim 5(a), there exists η>0 so that ψ(a−1,π,ξ )vδ(p(a−1,π,ξ ))+ψ(a,π,ξ )vδ(p(a,π,ξ ))>vδ(π )+η
on [π ′,π ′′].

We claim that the interval [π ′,π ′′] is excised from Ca(δ′) for large enough δ′ ∈ (δ,1). For if vδ′ (π ′)= ū(a,π ′), and
thus in [π ′,π ′′], switching from the cascade rule to ξ yields a continuation Bellman value in (4.1) at least η higher. For
large δ′ ∈ (δ,1), this gain exceeds any first-period loss, proving sub-optimality of the cascade rule at π ′, and so in [π ′,π ′′].
After finitely many iterations, each slicing an ε/2 interval, Ca(δ) vanishes for large δ. By repeating this, for all ε>0,
Ca(δ)∩[ε,1−ε] vanishes for large δ<1 near 1. ‖

C. HERDING VIA BELIEF DYNAMICS: PROOFS

A herd obtains on action a at stage N if everyone henceforth choose action a. We argue in this section that a herd starts—for
if not, beliefs could not converge, violating the martingale convergence theorem. Also, the limit is almost surely never
fully wrong.

Claim 11 (Limit Beliefs) The public belief process 〈πn〉 is a martingale unconditional on the state, converging a.s. to
some limit r.v. π∞. In state H, it a.s. belongs to (0,1].

Public beliefs tend to the cascade set, for if not, limit actions would be informative.

Theorem 6 (Limit Beliefs are Cascade Sets) The limit belief π∞ of the planner’s problem has support in C1(δ)∪···∪
CA(δ), and so is concentrated on the truth for unbounded signals.

Proof. At a non-cascade belief π , at least two actions have positive probability. By Corollary 1, the highest such action
is more likely in state H , and the least in state L. So, the continuation belief differs from π with positive probability. By
the Markov-martingale process characterization in Appendix B of SS, this non-cascade belief π �∈supp(π∞). ‖

Theorem 7 (Efficient Herds) A herd a.s. starts. For unbounded signals, it is on the ex post optimal action, and for
bounded signals, it is incorrect with vanishing chance as δ↑1.

We extend the “Overturning Principle” of SS to show that herds arise. Claim 13 below proves that actions a′ �=a
greatly move public beliefs π near the cascade set Ca(δ)—for such (unexpected) actions yield a first order myopic loss
and second-order information gain. This is the contrapositive of: limit cascade (a.s. occurs by Theorem 6) �⇒ herd.
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Proof of Theorem 7. Fix an optimal policy—a map ϒ from public beliefs to rules, ξ=ϒ(π ). Let ε>0 obey Claim 13.
Define events Ba

n={πn is ε-close to Ca(δ)}, Ca
n={ψ(a,πn,ϒ(πn))<1−ε}, and Dn+1={|πn+1−πn|>ε}. Given Ba

n∩Ca
n ,

Claim 13 (ii) yields P(Dn+1|πn)≥ε/A. Then
∑∞

n=1 P(Dn+1|π1,...,πn)=∞ given Ba
n∩Ca

n infinitely often (i.o.). By the
Conditional Second Borel–Cantelli Lemma,20 a.s. Dn obtains i.o. given Ba

n∩Ca
n i.o. Since 〈πn〉 a.s. converges by Claim 11,

Dn i.o. or Ba
n∩Ca

n i.o. have chance 0.
Let Ea be the event that 〈πn〉 has a limit in Ca(δ), intersected with the probability-one event that Ba

n∩Ca
n occurs

finitely often. By definitions of Ba
n and Dn+1, convergence to Ca(δ) implies that eventually Ea⊂Ba

n \Dn+1. Since Ba
n∩Ca

n
occurs finitely often, eventually Ea⊂Ba

n \(Ca
n ∪Dn+1). By Claim 13(i), Ba

n \Ca
n implies that every a′ �=a leads to Dn+1,

so actions a′ �=a can occur only finitely often. So, action a is eventually taken on Ea. By Claim 11 and Theorem 6, event
∪A

a=1Ea has chance one. So, a herd starts. ‖

Claim 12 (Bad Herds) The incorrect herd chance vanishes as δ↑1, for bounded signals.

Proof. As ((1−πn)/πn) is a convergent, non-negative martingale in state H, by Fatou’s Lemma, E[limn→∞(1−πn)/πn]≤
(1−π0)/π0. Let the boundary of C1(δ) have likelihood ratio M<∞. Then, limn→∞(1−πn)/πn>M with chance at most
1/M. Since M↑∞ as δ↑1 by Proposition 2(b), limn→∞πn∈C1(δ) with a vanishing chance as δ↑1. ‖

We now argue that near cascade sets, some action boundedly moves the beliefs.

Claim 13 (A New Overturning Principle) For δ∈[0,1), let Ca(δ) �=∅ for action a. Then there exists ε>0 and an ε-
neighbourhood K⊃Ca(δ), s.t. ∀π ∈K∩(0,1), either:
(i) ψ(a,π,ϒ(π ))≥1−ε, and |p(a′,π,ϒ(π ))−π |>ε for all active actions a′ �=a; or
(ii) ψ(a,π,ϒ(π ))<1−ε, and ψ(a′,π,ϒ(π ))≥ε/A and |p(a′,π,ϒ(π ))−π |>ε at some a′.

Proof. Choose η>0 so small that ψ(a′,π,ϒ(π ))<1−η for any action a′ �=a and all π within η of action a’s cascade set
Ca(δ). If suchη does not exist, a.s. taking some action a′ is optimal at some π̃ ∈Ca(δ), since the optimal rule correspondence
is u.h.c. This is impossible: always taking a′ incurs a strict myopic loss and no information gain.

Case 1: Bounded signals. By Claim 5(b), for π close enough to 0 or 1, active learning optimally stops. So, we need
only consider π in some closed subinterval I⊂ (0,1). As some signals are informative, minsupp(F)≡σ0<1/2<σ1≡
maxsupp(F). Define S=supp(F)\((2σ0+1)/4,(2σ1+1)/4). Let η1=minπ∈I,σ∈S |R(σ,π )−π |>0, and

η2=min
π∈I

{∣∣∣∣∣ πFH ( 1
2 )

πFH ( 1
2 )+(1−π )FL( 1

2 )
−π

∣∣∣∣∣,
∣∣∣∣∣ π (1−FH ( 1

2 ))

π (1−FH ( 1
2 ))+(1−π )(1−FL( 1

2 ))
−π

∣∣∣∣∣
}
>0.

Choose ε=min{η,η1,η2,FH ((2σ0+1)/4),1−FL((2σ1+1)/4)}.
Item (i): Whenψ(a,π,ϒ(π ))≥1−ε, by Corollary 1, any a′ �=a is only taken for σ ∈S. Since p(a′,π,ϒ(π )) averages

R(σ,π ) over σ to a′, |p(a′,π,ϒ(π ))−π |≥η1≥ε.
Item (ii): Suppose ψ(a,π,ϒ(π ))<1−ε. Any a′ �=a likewise has ψ(a′,π,ϒ(π ))<1−η≤1−ε. Then there exists a′′

with ψ(a′′,π,ϒ(π ))>ε/A which is not taken at σ =1/2. Then |p(a′′,π,ϒ(π ))−π |≥η2≥ε.
Case 2: Unbounded signals. By Lemma 1, v has absolute slope at most κ=max(|uH (1)−uL(1)|,|uH (A)−uL(A))|<

∞. Since action 1 (A) is strictly optimal in state L (H), there exists η3∈ (0,1) such that: for all a �=1, (1−δ)(ū(1,r)−
ū(a,r)>Aδκη3 when r∈[0,η3], and, for all a �=A, (1−δ)(ū(A,r)− ū(a,r)>Aδκη3 when r∈[1−η3,η3]. Let U denote the
maximal possible myopic payoff difference among any pair of actions. Choose ε=min{η,η3/2,(A−1)δκη3/[2Aδκη3+
2(1−δ)U/A]}. WLOG, focus on action 1.

Item (i): Bayes rule gives p(1,π,ϒ(π ))≤π/(1−ε)<η3. Towards a contradiction, suppose active a �=1 has
|p(a,π,ϒ(π ))−π |≤ε, so p(a,π,ϒ(π ))<η3. Now, the planner gains by merging actions a and 1, directing all these
signals to 1. The continuation belief remains in [0,η3], so the future value loss is at mostψ(a,π,ϒ(π ))δ2κη3. The myopic
value gain is at leastψ(a,π,ϒ(π ))(1−δ)(ū(1,p(a,π,ϒ(π ))))− ū(a,π,ϒ(π ))))>ψ(a,π,ϒ(π ))Aδκη3. This contradiction
to optimality of ϒ(π ) proves the desired |p(a,π,ϒ(π ))−π |>ε.

Item (ii): Towards a contradiction, suppose all actions with ψ(a,π,ϒ(π ))>ε/A have |p(a,π,ϒ(π ))−π |≤ε. Then
Ã={a|p(a,π,ϒ(π ))<η3} has chance ψ(Ã,π,ϒ(π ))≥1−ε. The proof of item (i) shows that 1 /∈ Ã. Now another gain is
available: Take 1 where any action in Ã was taken, and take the arbitrary ã∈ Ã where 1 was taken. The future value loss
from pooling Ã is at most δκη3, with chance ψ(Ã,π,ϒ(π ))<1. Since 1 replaces worse actions, there is a myopic gain
of at least Aδκη3 with chance ψ(Ã,π,ϒ(π ))≥1−ε. There is possibly a myopic loss of at most (1−δ)U with chance
ψ(1,π,ϒ(π ))≤ε/A. This sums to an overall gain since (1−ε)Aδκη3−ε(1−δ)U/A>δκη3 by choice of ε. ‖

20. This Lemma is Corollary 5.29 of Breiman (1968): Let event An be measurable w.r.t. (Y1,...,Yn) for a stochastic
process Y1,Y2,.... Then, a.s. {An infinitely often}={∑∞

n=1 P(An+1|Yn,...,Y1)=∞}.
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D. IMPLEMENTATION PROOFS

Pivot mechanism: Proof of Proposition 3. In a cascade on a, t=0 solves (6.1) and (6.2), as selfishness is optimal
(Ca(δ)⊆Ca(0)).

Case 1.π �∈C(δ), and that no active action hits the cascade set. Consider any active action a. Since the next agent
is not in a cascade set, we have FL(σ̂ )>FH (σ̂ ). Then there exists unique transfers t(a,â) and t(a,¬â) solving (6.2), since
the determinant is FL(σ̂ )(1−FH (σ̂ ))−(1−FL(σ̂ ))FH (σ̂ )>0. These transfers deliver the right incentive: The agent with
posterior belief r expects to receive r[FH (σ̂ )t(a,â)+(1−FH (σ̂ ))t(a,¬â)]+(1−r)[FL(σ̂ )t(a,â)+(1−FL(σ̂ ))t(a,¬â)]=
rtH (a|π )+(1−r)tL(a|π ) from action a. Then ū(a,r)+rtH (a|π )+(1−r)tL(a|π ) is an affine transformation of the index
w(a,π,r) in (4.3), where the transformation depends on π and not r. All told, this solves (6.1).

Case 2. π �∈C(δ), and a continuation is in a cascade. If action a sparks a cascade, equations (6.2) might not
be solvable, as FL(σ̂ )=FH (σ̂ ) (i.e. zero or one). But by Claim 7, at most one cascade set, say Ca′ (δ), can possibly
be hit by all actions. So inspired, we devise a non-pivot mechanism: choose a zero transfer for active actions leading
to the cascade set Ca′ (δ). For other active actions a, the transfer pays the difference between continuation values of
a and a′. Since vω(p(a′,π,ξ ))=uω(a′), transfers solve (6.2), where t′ω(a|π )=[δ/(1−δ)](vω(p(a,π,ξ ))−uω(a′)). Also,
ū(a,r)+rt′H (a|π )+(1−r)t′L(a|π ) is again an affine transformation of the index w(a,π,r) in (4.3), independent of r.

We can easily deter agents from taking inactive actions with large negative transfers. ‖
Mimicry with two actions: Proof of Corollary 3. Assume a=1, with p(1,π,ξ ) �∈C(δ). Assume first the case

where p(2,π,ξ ) �∈C(δ). By (6.2),

t(1,1)−t(1,2)= tL(1|π )−tH (1|π )

ψ(1,L,ξ )−ψ(1,H,ξ )
. (D.1)

Since the two actions are taken in the myopic order, ψ(1,L,ξ )>ψ(1,H,ξ ). Thus, the fraction has the sign of the
numerator. The definition of t in (6.1) and vH (p)−vL(p)=τ (p,1)−τ (p,0)=v′(p) imply tL(1|π )−tH (1|π )=[δ/(1−
δ)](v′(π )−v′(p(1,π,ξ ))). By the myopic action ordering, we have p(1,π,ξ )<π . By Claim 4, the value function is
strictly convex and thus v′(π )−v′(p(1,π,ξ ))>0. Thus t(1,1)−t(1,2)>0. When p(2,π,ξ )∈C(δ), the logic is the same,
substituting t in (D.1) by t′. ‖

E. POSTERIOR MONOTONICITY PROOFS

Claim 14 Given (PM), private signals have a continuous cdf, increasing on an interval.

Proof. Assume a non-convex private signal support. Pick any σ1∈co(supp(F))\supp(F). Let σ0 be the upper bound of
supp(F)∩[0,σ1), and σ2 the lower bound of supp(F)∩(σ1,1]. Pick payoffs with Ia=[σ0,σ2] the posterior belief interval
for some action a (Corollary 1). By (3.2), the posterior map R(π,σ ) is continuous and monotone, with R(1/2,σ )≡σ . Fix
π near 1/2 but π <1/2. Then, a positive probabilityψ(a,π )>0 of private signals above σ2 map to a posterior in Ia. Since
(σ1,σ2) is a missing interval in supp(F), no private signals below σ2 map to a, and σ2>σ1, and R(π,σ ) is continuous, the
continuation public belief p(a,π ) (an average of these private signals) exceeds σ1. Similarly, for π ′ near 1/2 and π ′>1/2,
the continuation public belief p(a,π ′) is below σ1. This contradicts (PM).

Assume next, for a contradiction a positive mass of private signals atσ1. As there are no perfectly revealing signals,σ1∈
(0,1). Since some signals are informative, supp(F) is not a single-point. So supp(F) contains [σ1,σ1+η] or [σ1−η,σ1],
for some η>0. In the first case,

σ̂0≡E[σ |σ ∈[σ1,σ1+η]]<E[σ |σ ∈ (σ1,σ1+η]]≡ σ̂2,

since σ1 has positive probability. Assume payoffs so that action b has the posterior interval Ib=[σ1,σ1+η]. Since σ1 maps
to Ib, we have ψ(b,π )>0 if π<1/2 is near 1

2 , and ψ(b,π ′)>0 if π ′>1/2 is near 1
2 . (In both cases, the posterior is near

the private signal σ1.) As the posterior R(π,σ ) is continuous, the continuation public belief p(b,π ) tends to a limit at least
R(1/2,σ̂2), as π approaches 1/2 from below, and at most R(1/2,σ̂0), as π approaches 1/2 from above. Since σ̂0<σ̂2, this
contradicts (PM). If the support is [σ1−η,σ1], the posterior interval [σ1−η,σ1] likewise provides a non-monotonicity at
prior 1/2. ‖

Proof of Proposition 4. The private signal density induces a density g(r|π ) on posterior beliefs r=R(π,σ ) on state
H . As in Section 7, write the signal σ=S(
)=e
/(1+e
) in terms of the log likelihood ratio 
=�(σ )= log(σ/(1−σ )),
with state-ω contingent density φω(
)≡ f ω(S(
))S ′(
). Denote by φ(
|π )=πφH (
)+(1−π )φL(
) the unconditional
density for the log-likelihood ratio 
 of the private signal when the public belief is π .

By Bayes rule, the posterior log-likelihood ratio is ρ≡�(r)=
+�(π ), and thus has density φ(ρ−�(π )|π ). By
changing variable from r to ρ, the continuation public belief in §4 is

p(a,π )=
∫

Ia
rg(r|π )dr∫

Ia
g(r|π )dr

=
∫
�(Ia)S(ρ)φ(ρ−�(π )|π )dρ∫
�(Ia)φ(ρ−�(π )|π )dρ

, (E.1)
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writing p(a,π ) for p(a,π,ξ ). As S ′>0, (PM) ensues if φ is log-supermodular (LSPM).

Step 1 (An Equivalence) The density φL is strictly logconcave iff φ(ρ−�(π )|π ) is strictly log-supermodular in (ρ,π )
wherever ρ−�(π ) is in the support supp(φ).

Proof. Since φH (
)=e
φL(
) (see §7), we have φ(ρ−�(π )|π )= (1−π )(1+eρ )φL(ρ−�(π )), since πe−�(π )≡1−π .
Strict LSPM of φ is equivalent to strict LSPM of φL(ρ−�(π )). As � is strictly increasing, this holds iff φL is strictly
log-concave, as Karlin (1968) shows. ‖

Step 2 (Necessity) φ(ρ−�(π )|π ) strictly LSPM in (ρ,π ) if ρ−�(π )∈supp(φ) ⇒ (PM).

Proof. Fix π ′>π and an active action a (so ψ(a,π ),ψ(a,π ′)>0). Activity implies that�(Ia)−�(π ) and�(Ia)−�(π ′)
overlap supp(φ). Next, ifρ′>ρ, andρ′−�(π )>ρ−�(π ′) are in the convex supp(φ), then so areρ−�(π ) andρ′−�(π ′),
as � increases. As φ(ρ−�(π )|π ) is strictly LSPM in (ρ,π ), φ(ρ−�(π )|π )φ(ρ′−�(π ′)|π ′)>φ(ρ′−�(π )|π )φ(ρ−
�(π ′)|π ′), lest the left side vanishes. So (E.1) strictly increases in π , by Karlin and Rubin (1956). ‖

Step 3 (Sufficiency) Suppose φ(ρ−�(π )|π ) is positive and continuous in ρ on its support, for every π . If (PM) holds,
then φ(ρ−�(π )|π ) is strictly LSPM when ρ−�(π )∈supp(φ).

Proof. If LSPM fails, there is π2>π1 and ρ2>ρ1 with ρ1−�(π1) and ρ2−�(π2) in supp(φ) and (♦): φ(ρ1−
�(π1)|π1)φ(ρ2−�(π2)|π2)<φ(ρ2−�(π1)|π1)φ(ρ1−�(π2)|π2). Define

H(x)≡[logφ(ρ1−�(π2)|π2)−logφ(ρ1−�(π1)|π1)]−[logφ(x−�(π2)|π2)−logφ(x−�(π1)|π1)].

Then, H is continuous on [ρ1,ρ2], with H(ρ1)=0<H(ρ2) by (♦). Let x2=max{x∈[ρ1,ρ2] :H(x)= 1
2 H(ρ2)}, where ρ1<

x2<ρ2. By definition of x2, if x∈(x2,ρ2), then H(x)>H(x2), and so (by rewriting) φ(x−�(π2)|π2)/φ(x2−�(π2)|π2)<
φ(x−�(π1)|π1)/φ(x2−�(π1)|π1). Integrating this over x∈ (x2,ρ2), and using continuity near x2, there exists ε∈ (0,x2−
ρ1) such that ∫ ρ2

x2
φ(x−�(π2)|π2)dx∫ x2

x2−ε φ(x−�(π2)|π2)dx
<

∫ ρ2
x2
φ(x−�(π1)|π1)dx∫ x2

x2−ε φ(x−�(π1)|π1)dx
. (E.2)

Define the cdf Gi on [x2−ε,ρ2] by Gi(x)=∫ x
x2−ε φ(t−�(πi)|πi)dt/

∫ ρ2
x2−ε φ(t−�(πi)|πi)dt. Since G1(x2−ε)=G2(x2−

ε)=0 and G1(ρ2)=G2(ρ2)=1, let x=max{x∈[x2−ε,x2] :G1(x)=G2(x)} and x̄=min{x∈[x2,ρ2] :G1(x)=G2(x)}. Then
G1 strictly stochastically dominates G2 on [x,x̄], by (E.2). If action a is taken for ρ∈[x,x̄], we contradict (PM):

p(a,π2)=
∫ x

x S(ρ1)φ(ρ1−�(π2)|π2)dρ1∫ x
x φ(ρ1−�(π2)|π2)dρ1

<

∫ x
x S(ρ1)φ(ρ1−�(π1)|π1)dρ1∫ x

x φ(ρ1−�(π1)|π1)dρ1

=p(a,π1).

Next assume strict LSPM fails. So equality holds in (♦) for someπ2>π1 andρ2>ρ1, so thatφ(ρ1−�(π1)|π1)φ(ρ2−
�(π2)|π2)=φ(ρ2−�(π1)|π1)φ(ρ1−�(π2)|π2). Now, H(x) �≡0 on [ρ1,ρ2], for otherwise p(a,π2)=p(a,π1) when a is
taken on [x,x̄], a contradiction to (PM). So, we must either have H(x′)<0 or H(x′)>0 for some x′∈(ρ1,ρ2). This
respectively contradicts (the just proved) LSPM on {x′,ρ2}×{π1,π2} or {ρ1,x′}×{π1,π2}. ‖

Step 4 If (PM) holds, then φ(ρ−�(π )|π ) is strictly LSPM when ρ−�(π )∈supp(φ).

Proof. Assuming (PM), we extend Step 3. Let (Xm) be a sequence of mean-0 normal r.v.s with vanishing variance, and
independent of ρ,θ . Let ρm denote the posterior belief for someone who observes ρ+Xm, and let φm(ρm|π ) denote its
conditional density. Since the density ϒm of Xm is log-concave, the pair (ρ,ρm) satisfies the MLRP. In particular, for any
given Xm, posterior ρm is a continuous, increasing function of ρ.

We show that the distribution of ρm inherits property (PM) for all m. Let thus any interval J be given. For any
realization Xm, let Jm(Xm) denote the interval such that ρm∈J iff ρ∈Jm(Xm). The posterior belief given {ρm∈J} is∫∞
−∞p(Jm(x),π )ϒm(x)dx. By (PM), for every x, p(Jm(x),π ) is weakly increasing in π , and strictly so wherever Jm(x)

intersects the support of ρ. The integral thus inherits (PM), as desired.
Since Xm and thus ρm have distributions that satisfy the auxiliary assumptions of Step 3, we can conclude that

φm(ρm−�(π )|π ) is strictly LSPM. Step 1 implies that φm is strictly logconcave. As m tends to infinity, the variance of
Xm vanishes, and in the limit φ is log-concave. If φ is log-linear on any interval, π and J can be chosen so p(J,π ) is
locally constant in π , in contradiction to (PM). ‖
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F. CONTRARIANISM PROOFS

Lemma 2 (Tangents to a Convex Function) Assume consecutive tangents τi<τii<τiii to a value function v at zi<zii<

ziii . Then τii(zi)≥τiii(zi) (respectively, τi(ziii)≤τii(ziii)), with strict inequality unless v is affine on [zii,ziii] (respectively,
on [zi,zii]).

Proof. When v is affine on [zi,zii], subtangents τi and τii can coincide, with τi(ziii)=τii(ziii). Otherwise, τii is steeper than
τi. Thus, τii(ziii)−τii(zii)>τi(ziii)−τi(zii), whence τii(ziii)−τi(ziii)>τii(zii)−τi(zii). Since v is convex, the subtangent τi

lies below v at zii, so that τii(zii)=v(zii)≥τi(zii). So τii(ziii)>τi(ziii). The zi analysis is similar. ‖
By assumption, at public beliefs π <π ′, there exist optima with the same action order. The optimal rules at π and

π ′ therefore also solve the Bellman problem (4.1) with (4.2) when we restrict the choice set to this action order. In
this restricted problem, we explore the comparative statics properties of the constrained Bellman equation for any belief
outside the cascade set C(δ). Define the constrained Bellman function as the right side of (4.2):

B(θ |π )=
∑A

a=1
ψ(a,π,θ )[(1−δ)ū(a,p(a,π,θ ))+δv(p(a,π,θ ))]. (F.1)

Solutions to the constrained problem maxθ∈�(π ) B(θ |π ) define an optimizer set�∗(π ). To prove Proposition 5, it suffices
that �∗(π ) increase in the strong set order.

F.1. Proof of Proposition 5 with two actions

We wish to apply a clever comparative statics result in Quah and Strulovici (2009). Their Theorem 1 delivers our
conclusion provided B(·|π ′) exceeds B(·|π ) in their interval dominance order. A sufficient condition for this order is their
Proposition 2, that there exist an increasing and strictly positive function α(θ ) with Bθ (θ |π ′)≥α(θ )Bθ (θ |π ). Inspired
by (4.3) and (F.1), we derive an expression for Bθ (θ |π ) in terms of the welfare index.

Lemma 3 (FOC) The Bellman function B is differentiable almost everywhere with derivative

Bθ (θ |π )=g(θ,π )(w(1,π,θ )−w(2,π,θ )). (F.2)

Also, B is absolutely continuous, with B(θ ′|π )−B(θ |π )=∫ θ ′
θ

Bθ (θ̃ |π )dθ̃ for θ,θ ′ ∈�(π ).

Proof. From (F.1), the Bellman function is a.e. differentiable in θ . For by assumption (LC), p(a,π,θ ) is strictly monotone
and differentiable, and the convex function v is differentiable a.e. Since ū and τa are affine functions, and since p(a,π,ξ )=∫
ξ−1(a) r(π,σ )dFπ , we can use Proposition 1 to rewrite (4.2) as follows, proving Lemma 3:

B(θ |π )=
∫ θ

0
w(1,π,r)g(r|π )dr+

∫ 1

θ

w(2,π,r)g(r|π )dr. (F.3)

‖
Returning to the proof of Proposition 5, suppose that the thresholds θ ∈�∗(π ) and θ ′ ∈�∗(π ′) are inversely ordered as

θ ′<θ—otherwise, we’re done. Since r(σ,π ) increases in π , the open interval�(π ) rises in π . So [θ ′,θ ]⊂�(π )∩�(π ′).
We first argue that the index difference �(θ̃ ,π )≡w(1,π,θ̃ )−w(2,π,θ̃ ) in (F.2) weakly increases in the public belief π ,
when θ̃ ∈[θ ′,θ ]. By Proposition 4, continuation beliefs rise in public beliefs: p(a,π ′,θ̃ )>p(a,π,θ̃ ) for a=1,2. Using
definition (4.3), Lemma 2 yields the desired,

�(θ̃ ,π ′)−�(θ̃ ,π )=δ{[τ ′1(θ̃ )−τ1(θ̃ )]+[τ2(θ̃ )−τ ′2(θ̃ )]}≥0. (F.4)

Next, α(θ̃ )≡g(θ̃ |π ′)/g(θ̃ |π ) is a positive and non-decreasing function over [θ ′,θ ], since g is log-supermodular, by
Lemma 4. Then Lemma 3 and inequality (F.4) imply:

Bθ (θ̃ |π ′)=g(θ̃ |π ′)�(θ̃ ,π ′)≥g(θ̃ |π ′)�(θ̃ ,π )=α(θ̃ )Bθ (θ̃ |π ), (F.5)

This implies that B obeys the interval dominance order, by Proposition 2 in Quah and Strulovici (2009). By their Theorem 1,
�(π ) rises in the strong set order—contrarianism.

Consider the stronger claim in Proposition 5 that the optimizer set strictly rises. Suppose first that thresholds θ≥θ ′
are respectively optimal at public beliefs π <π ′ . By the already proven strong set order, θ ∈�∗(π ′). By Proposition 1,
w(1,π,θ )−w(2,π,θ )=w(1,π ′,θ )−w(2,π ′,θ )=w(1,π ′,θ ′)−w(2,π ′,θ ′)=0. The first difference vanishes since θ is
optimal at π , the second since θ is optimal at π ′, and the third since θ ′ is optimal at π ′. If θ >θ ′, we contradict the fact
that w(2,π ′,r)−w(1,π ′,r) increases in r, as follows from (4.3). For the natural action order implies that ū(2,r)− ū(1,r)
is strictly increasing, and convexity of v implies that its tangent difference τ ′2(r)−τ ′1(r) is monotone.

Consider the other possibility with θ=θ ′. Now π <π ′ implies p(a,π,θ )<p(a,π ′,θ ), and at least one of
p(1,π ′,θ ),p(2,π,θ ) is outside the cascade set, by Claim 7. Lemma 2 gives the contradiction w(1,π,θ )−w(2,π,θ )>
w(1,π ′,θ )−w(2,π ′,θ ). The inequality is strict because v is strictly convex outside the cascade set, by Claim 4. ‖
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F.2. Proof of Proposition 5 for multiple actions

Recall from the proof of Claim 7 that supp(F)=[σ ,σ̄ ].

Claim 15 Let θ ∈�(π ) obey θ0=r(σ ,π ) and θA=r(σ̄ ,π ). Assume θa=···=θa+j=x for some a≥1 and j≥0 with
a+ j≤A−1, and θa−1<x<θa+j+1. Then the Bellman function B in (F.7) is absolutely continuous in x, and its derivative
in x almost everywhere equals:

Bx(θ |π )≡g(x|π )(w(a,π,x)−w(a+j+1,π,x)). (F.6)

Also, for all π ′′>π ′, there exists a positive and increasing function α(x) such that the Bellman function B(θ |π ) a.e. obeys
Bx(θ |π ′′)≥α(x)Bx(θ |π ′) when θ ∈�(π ′)∩�(π ′′).

The proof of this many action generalization follows closely on Lemma 3, since we take action a for r∈[θa−1,x], and
action a+j+1 for r∈[x,θa+j+1]. So the derivative of the Bellman function B in x is similar to (F.2) which had payoffs
and tangents for actions a=1 and a+j+1=2. Thus, (F.6) follows. The inequality follows similarly from (F.5). ‖

For contrarianism, we must show that �∗(π ′) exceeds �∗(π ) in the strong set order.21

Claim 16 The threshold space �(π ) is a lattice, and B is supermodular for θ ∈�(π ).

Proof. Assume θ ,θ ′ ∈�(π ). Then θ∧θ ′ ∈�(π ) since (θ∧θ ′)a=θa∧θ ′a≤θa+1∧θ ′a+1= (θ∧θ ′)a+1 for every a. Similarly,
θ∨θ ′ ∈�(π ). Next, to show that B is supermodular in θ , let θ ′a>θa. If θ−a increases, both continuation beliefs p(a,π,θ )
and p(a+1,π,θ ) increase. Since p(a,π,θ )<θa<p(a+1,π,θ ), Lemma 2 implies that w(a,π,θa) increases while w(a+
1,π,θa) decreases. So the difference w(a,π,θa)−w(a+1,π,θa) increases in θ−a. Then by (F.6), the Bellman difference
B(θ ′a,θ−a)−B(θa,θ−a) increases in θ−a. Supermodularity can now be decomposed into a summation of differences of
this form. ‖

Fixing the action ordering, the Bellman function (4.2) for a convex continuation value v is:

B(θ |π )=
∑A

a=1
ψ(a,π,θ )[(1−δ)ū(a,p(a,π,θ ))+δv(p(a,π,θ )). (F.7)

We now prove Proposition 5 for finitely many actions. Pick beliefs π <π ′ and assume that θ ∈�∗(π ) and θ ′ ∈�∗(π ′).
If θ≤θ ′, we are done. Assume next that they are inversely ordered θ ′<θ . We verify θ ∈�∗(π ′) and θ ′ ∈�∗(π ). First, both
[θ1,θA−1] and [θ ′1,θ ′A−1] are subsets of �(π )∩�(π ′), since [θ1,θA−1]⊂�(π ) and [θ ′1,θ ′A−1]⊂�(π ′) and [θ1,θA−1] lies
above [θ ′1,θ ′A−1] in the strong set order, and yet �(π ) lies below �(π ′) in the strong set order. Second, let X be the set of
all cut-off rules with cut-off points in �(π )∩�(π ′). By Tian (2014), B(·|π ′) dominates B(·|π ) in the interval dominance
order over X since, by Claim 15, the condition for Proposition 2 in Tian (2014) is satisfied.

Finally, suppose that θ and θ ′ are not ordered. We now need a stronger proof ingredient—specifically, we exploit the
supermodularity of B (Claim 16). Our result follows if:

B(θ |π )−B(θ∧θ ′|π )≥0(>0)�⇒B(θ∨θ ′|π ′)−B(θ ′|π ′)≥0(>0). (F.8)

Let’s see why this suffices. Since θ is optimal at π , the left side is non-negative, and thus θ∨θ ′ is optimal at π ′ by the
weak inequality in (F.8). Conversely, if θ∧θ ′ is not optimal at π , then θ ′ is not optimal at π ′, by the strict inequality
in (F.8).

We split the proof of (F.8) into two parts, since the choice domain�(·) depends on the public belief. Let (θa,...,θA−1)
be the components of θ inside�(π ′), for some a<A. Choose z∈�(π ′) with z<min{θa,θ

′
1}. Let θ̂= (z,...,z,θa,...,θA−1),

where the first a−1 components are z. Then θ̂ ∈�(π )∩�(π ′), since θa−1<z follows from θa−1 /∈�(π ′).
By supermodularity of B(·|π ′), and because θ̂∨θ ′ =θ∨θ ′, we have:

B(θ̂ |π ′)−B(θ̂∧θ ′|π ′)≥ (>0)�⇒B(θ∨θ ′|π ′)−B(θ ′|π ′)≥ (>0). (F.9)

Then (F.8) follows if we also argue:

B(θ |π )−B(θ∧θ ′|π )≥ (>0)�⇒B(θ̂ |π ′)−B(θ̂∧θ ′|π ′)≥ (>0). (F.10)

We now prove (F.10). First, for all θ ′′ ∈[θ̂∧θ ′,θ̂ ], we have θ̂=θ∨θ ′′ and so:

B(θ̂ |π )−B(θ ′′|π )≥B(θ |π )−B(θ∧θ ′′|π )≥0, (F.11)

by supermodularity of B(·|π ) and optimality of θ at π , respectively. When θ ′′ = θ̂∧θ ′ in (F.11), we have B(θ̂ |π )−B(θ̂∧
θ ′|π )≥B(θ |π )−B(θ∧θ ′|π ), since θ≤ θ̂ . Hence, if B(θ |π )−B(θ∧θ ′|π )>0, then B(θ̂ |π )−B(θ̂∧θ ′|π )>0. Finally, the
interval dominance ordering of B(·|π ′) over B(·|π ′) lets us conclude (F.10). ‖

21. Recall that Y ′ dominates Y in the strong set order if y∈Y and y′ ∈Y ′⇒y∨y′ ∈Y ′ and y∧y′ ∈Y .
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Figure G.1

Inverted action ordering (Section G.1)

Notes: The optimal posterior belief threshold θ (π ).

Strict Contrarianism. Pick π ′>π . Let θ ∈�∗(π ) and θ ′∈�∗(π ′). Then behaviour is contrarian, by Proposition 5.
Suppose for a contradiction that it is not strictly so, and thus θ ′k ≤θk for some k. By Proposition 5, θ∨θ ′ is optimal under
π ′. Since θ ′k ≤θk , we have (θ∨θ ′)k =θk . Suppose that aj is the highest active action below ak , and am the least active
action above ak . Then (θ∨θ ′)j−1< (θ∨θ ′)j=···= (θ∨θ ′)k =···= (θ∨θ ′)m−1< (θ∨θ ′)m, since θ and θ ′ have the same
active actions in natural order. Our proof for two actions then carries over to this case, by considering a neighbouring pair
of active actions. ‖

G. TWO EXAMPLES

G.1. Actions need not be taken in the natural order

To illustrate a non-natural action order (Lesson 2 in Section 4), consider signal densities f H (σ )=σ f (σ ) and f L(σ )=
(1−σ )f (σ ) on (0,4/7), where f (σ )=78σ 6/47. Let action a=1,2 have payoff 2a−3 in state H and 3−2a in state L,
representing payoffs ±1 when the action matches/mismatches the state. Choose a high discount factor δ=0.95.

Figure G.1 depicts the numerically calculated private posterior belief threshold θ (π ). For public beliefsπ ∈ (0.3,0.4)⊂
(0,3/7), the optimal action order is reversed: action 1 is taken at high signals σ , and action 2 at low signals σ .

To understand this reversion, consider the alternative of switching the two actions, holding fixed the threshold. This
switch yields the same information, as it maintains the same chances for the two continuation beliefs. From (4.1), it gives
no planner gain when

ψ(2,π,ξ )(2p(2,π,ξ )−1)+ψ(1,π,ξ )(1−2p(1,π,ξ ))

> ψ(1,π,ξ )(2p(1,π,ξ )−1)+ψ(2,π,ξ )(1−2p(2,π,ξ )). (G.1)

Using Bayes rule, p(a,π,ξ )=πψ(a,H,ξ )/ψ(a,π,ξ ), this inequality holds whenψ(1,π,ξ )−ψ(2,π,ξ )>2π (ψ(1,H,ξ )−
ψ(2,H,ξ )). Inequality (G.1) holds at low π , as the example shows, when the reversed order takes action 1 for a relatively
large set of high signals. ‖

Note that in this example, the last agent using his own information may take action 2 and push the public belief into
the cascade set for action 1. Agents optimally herding on action 1 thus need not follow the lead of the last agent who used
private information.

G.2. Contrarianism can fail without posterior monotonicity

We show by an example that (PM) is necessary for contrarianism in Proposition 5 when the convex value function v can
be chosen freely in (F.7). We use a version of the two-period professor–student example with δ=1 in Section 2 to show
the principle. The student has three actions available, while the professor has two actions taken in the natural order. The
student gets no private signal. The professor’s signal is described by the conditional density g(r|π ). By assumption, this
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Figure G.2

Necessity principle (Section G.2)

Notes: The student’s value function for Section G.2.

signal structure violates (PM) for some interval, say [θ̂ ,1]. Thus,

p′ ≡
∫ 1
θ̂

rg(r|π ′)dr∫ 1
θ̂

g(r|π ′)dr
>

∫ 1
θ̂

rg(r|π ′′)dr∫ 1
θ̂

g(r|π ′′)dr
≡p′′.

By this reversal, θ̂ must lie strictly inside the posterior belief supports at π ′,π ′′, so p′′>θ̂ .
Figure G.2 illustrates the convex value function that we construct for the example. First choose an arbitrary θ23∈

(p′′,p′). For any ε>0, the convex function v̂(p|ε) consists of three linear segments 
1,
2,
3(ε). Segments 
1,
2 intersect
at θ̂ , while 
2,
3(ε) intersect at θ23. 
2 is steeper than 
1, and the slope of 
3 is ε>0 higher than 
2. The intersection of
the extended line segments 
1,
3(ε) is denoted θ13(ε).

We will show that when ε>0 is small enough, θ̂ is the unique optimal threshold at belief π ′′, while only the strictly
higher θ13(ε) and θ23 are candidates for optimal thresholds at the lower belief π ′. In either case, contrarianism fails.

Observe that the three kink points θ̂ ,θ13(ε),θ23 describe the only candidates for optimal policies. By construction,
they are the only ones that solve for index indifference—given discount factor δ=1, only the tangents to the value function
matter. It remains to check sub-optimality of a cascade policy, whereby the posterior is the prior. But the interior threshold
θ̂ gives strictly more than v̂(π |0) at π=π ′,π ′′, due to the kink at θ̂ .

Consider belief π ′. The first order condition fails at θ̂ for any ε>0, as the tangent at the upper posterior p′ is 
3. So
the optimal posterior cut-offs are among θ13(ε) and θ23.

Consider π ′′. First, suppose we use the cutoff θ13(ε). As ε↓0, the crossing point θ13(ε) converges to θ̂ , and the
upper continuation belief converges to p′′. In other words, it is eventually below θ23, since p′′<θ23. At that point, the
tangents at the continuation beliefs after π ′′ are 
1 and 
2. These tangents cross at θ̂ , and therefore the FOC fails at
θ13(ε). Second, suppose we use the cutoff θ23. Since θ23∈ (p′′,p′), it is strictly inside the posterior belief support. Thus,
the upper continuation lies in (θ23,1], and the lower one either lies in [0,θ̂ ) or [θ̂ ,θ23). If in [0,θ̂ ), the tangents at the
continuation beliefs are 
1 and 
3(ε). These cross at θ13(ε), and so the FOC fails at θ23. If in [θ̂ ,θ23), the FOC holds.
But as ε↓0, the continuation value approaches v̂(π ′′|0). But as noted before, θ̂ yields a strictly higher continuation value
than v̂(π ′′|0). ‖
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