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ABSTRACT

Algorithmic recommendations shape music consumption at scale,

and understanding the role different behavioral aspects play in

how content is consumed, is a central question for music streaming

platforms. Focusing on the notions of familiarity, similarity and

discovery, we identify the need for explicit consideration and op-

timization of such objectives, and establish the need to efficiently

balance them when generating algorithmic recommendations for

users. We posit that while familiarity helps drive short term en-

gagement, jointly optimizing for discovery enables the platform to

influence and shape consumption across suppliers. We propose a

multi-level ordered-weighted averaging based objective balancer

to help maintain a healthy balance with respect to familiarity and

discovery objectives, and conduct a series of offline evaluations and

online AB tests, to demonstrate that despite the presence of strict

trade-offs, we can achieve wins on both satisfaction and discover

centric objectives. Our proposed methods and insights have impli-

cations for the design and deployment of practical approaches for

music recommendations, and our findings demonstrate that they

can lead to substantial improvements on recommendation quality

on one of the world’s largest music streaming platforms.
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1 INTRODUCTION

Designing recommendation products for music streaming platforms

necessitates understanding the diverse needs of users and assisting
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them in discovering and finding the music they want to listen. Rec-

ommender systems rely on their ability to model user’s individual

preferences using data about their past consumption. Specifically,

once a user profile is built, such systems infer or predict relevance

of a specific music track to a given user’s profile. While this affords

great modeling convenience to system designers, and enables devel-

opment of increasingly sophisticated models to estimate relevance

of content to user, it misses out on leveraging other related, and

often more desired aspects and qualities of recommendations, e.g.

familiarity, serendipity and discovery, which make recommenda-

tions good recommendations.

Aspects of Recommendations: Recent research into recommen-

dations is starting to go beyond the notion of predicted relevance

and consider a wider range of "beyond relevance" objectives, includ-

ing qualities such as whether the user is familiar with the content, or

whether the list of recommendations contains novel items, aspects

which may have a significant impact on the overall quality of a

recommender system. Specifically focusing on music streaming, we

observe that users often have their favorite songs and artists they

listen to, and therefore, music consumption is full of user’s consum-

ing the same content repeatedly over time. Such dynamics of repeat

consumption has been studied in various hedonic settings [3, 10],

including repeat web searches [23] and repeat website visits [1].

Prior and direct experiential engagement with specific music con-

tent, via repeat consumption, affords the notion of familiarity to

users, thereby helping adoption of the served recommendations

due to the effects of perceived personalization [12].

However, given the large repositories of music content available

to users, only a fraction of such content is familiar to them, and over-

exposing familiar content creates the issue of "filter-bubbles" [21].

This necessitates a focus on one particular need: music discov-

ery, which we define as the experience of finding and listening to

content that is previously unknown to the user. Discovery allows

users to find fresh content, and driving discovery can help reduce

staleness of recommendations, leading to greater user satisfaction

and engagement, thereby resulting in increased user retention [4],

and continued platform subscription [16]. Taken together, such

notions of relevance, familiarity and discovery provide complimen-

tary views on recommendation quality ś while familiarity provides

users with immediate, short term satisfaction, discoveries enables

the streaming platform to influence and shape long term behavior

on the platform.

Present Work. We identify and advocate for an explicit consider-

ation of three different aspects of recommendations: (i) relevance,

(i.e. estimated similarity), (ii) familiarity, and (iii) discovery, and

study their impact on multiple user behavior metrics. We note that

explicit balancing of such attributes is an understudied problem
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specifically in the music context, and that it is challenging to in-

corporate such aspects in the typical predictive modeling setting.

To address this, we present objective balancing approaches aimed

at establishing a healthy balance of such aspects when surfacing

algorithmic recommendations to users.

We investigate how the above mentioned aspects of recommen-

dations affect user behavior, and conduct large-scale analyses and

multiple live experiments on the music streaming platform Spotify

for investigating such questions. We view user consumption on

Spotify from the lens of the identified recommendation aspects, and

present insights about user’s preferences for familiar music, and the

interplay between similarity, familiarity and discovery. We conduct

a series of live A/B tests on a large user population on two distinct

user-centric recommendation products, to test how the proposed

objective balancing methods fare on key user engagement metrics.

The proposed methods are able to obtain metric improvements on

both user satisfaction and discovery centric objectives, despite the

presence of strict trade-offs. Finally, we view discovery as an enabler

for shifting consumption to non-popular or tail-artists, and present

detailed results on how additionally optimizing for discovery helps

in surfacing less popular artists.

2 RELATEDWORK

Understanding different aspects of recommendations, and the role

different objectives play in shaping recommendations is a long stud-

ied topic in the recommender systems community. Going beyond

traditional notions of relevance and accuracy, recent research has

investigated notions of diversity, serendipity, novelty, and coverage

in designing and evaluating recommender systems [11]. Herlocker

introduced novelty and serendipity (both related to the concept

of discovery) as dimensions for evaluating recommendation qual-

ity [7]. Many researchers have proposed formalisms for defining

and evaluating novelty, serendipity, & diversity.

Another well studied notion is that of re-consumption pattern

of users, including search query re-finding [23], website revista-

tions [1], modeling dynamics of reconsumption [3] and the interplay

between re-consumption and variety in recommendations [22]. Our

work builds on top of existing work on re-consumption and zooms

in on familiarity as an important recommendation aspect. The role

of familiarity and user trust has long been studied in the psychol-

ogy community [12]. More recently, researchers have investigated

item familiarity effects in user-centric evaluations of recommender

systems [9]. Beyond familiarity, music discovery has been shown as

some users’ main motivation to continue platform subscription [16]

and is considered an important need for music listeners [5, 14].

Another line of work has studied the different definitions of

user satisfaction and ways of measuring them, using both qualita-

tive means and implicit feedback signals obtained via logged user

interactions [25]. Recent work has also started investigating the

different trade-offs that exist in recommender domain. Hurley and

Zhang discussed novelty and diversity and their trade-offs with

system accuracy, casting this trade-off as a multi-objective opti-

mization problem [8]. Beyond user goals, recent research has also

investigated user-centric and supplier centric trade-offs in recom-

mendations platforms [17, 19]. Other search and recommendation

applications that need to meet multi-objective requirements include

click shaping [2] and email volume optimisation [6].

Building on top of existing work, we investigate the direct impact

jointly optimizing for familiarity, similarity and discovery has on

key user engagement and supplier exposure metrics.

3 ROLE OF RELEVANCE, FAMILIARITY &
DISCOVERY

Our goal is to understand the nuances in user’s preference towards

familiarity and discovery at a global scale, and study its relationship

with long-time user and platform outcomes. We begin by formally

defining the different aspects of recommendations we consider in

the present work, and describe ways of quantifying each.

3.1 Data context

We study Spotify, an online streaming platform where users can lis-

ten to a vast selection of music from around the world. We consider

listening history of a random sample of over 100 million distinct

users who cumulatively listened to millions of songs around 70

billion times during a one month period. We focus on two surfaces

users use to get sequential recommendations:

Radio creates a collection of songs based on any artist, album,

playlist, or song of user’s choice. Users decide a seed artist,

or track, and the radio service generates a list of tracks for a

given seed.

Autoplay product comprises of the sequential recommenda-

tion scenario where a user reaches the end of an album,

playlist, or selection of tracks. Upon reaching the end of the

playlist, Autoplay automatically play similar songs, so as to

continue user’s streaming session.

3.2 Key Concepts

We define key concepts of similarity, familiarity, and discovery,

which are used throughout the paper.

3.2.1 Similarity. An important aspect of personalization is the

ability to recommend content tailored to users based on knowledge

about their preferences and behavior. Personalized recommenda-

tions rely on making recommendations that are relevant to the

user. We operationalize the notion of relevance based on estimated

similarity between the user and content. A recommendation is iden-

tified as relevant, or similar if it closely resembles user’s interest

profile. We interchangeably use the term relevance for similarity

throughout this text.

Quantifying Similarity. We quantify similarity between a user

and music content by learning their embeddings and computing

cosine similarities between the learnt embeddings. Embeddings are

producted by training word2vec [20] on user-generated playlists,

where the task is to predict the song in the middle of the context

window given the surrounding songs. This naturally causes songs

that frequently co-occur in playlists to have nearby embeddings

in the space. We define a user’s taste profile to be the average

of the song embeddings that they have listened to within certain

time window. Cosine similarity between embeddings of two songs

provides the similarity estimate.

Similarity scores often miss out the relative ordering of tracks,

i.e., often even the best available tracks might have a low similarity
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1 0.33 0.15 -0.38 0.24
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Figure 1: Correlation analysis across different
attributes. Figure 2: Discoveries enable

downstream consumption.
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Figure 3: Impact on supplier distribution: simulating impact
of varying proportions of discovery on supplier distribution.

score. To account for such aspects of relative ordering of tracks, we

estimate a rank score for each track, which is derived from the rank

obtained by each track when they were sorted by their similarities

score. Specifically, we take the cube-root of the inverse of rank to

compute the rank score: 𝛾 (𝑟 ) =
3
√

1

𝛼+𝑟 , where 𝑟 is the rank of track

when ordered based on decreasing order of similarity scores, and 𝛼

is a parameter to control the range of the rank score values. Tracks

ranked higher would have a higher rank score regardless of their

similarity score.

3.2.2 Familiarity. Familiarity refers to the state of having prior

exposure to the content and knowing it well. Familiarity reduces

the uncertainty of expectation through increased understanding

of what has happened in the past, and allows users to accumu-

late trust-relevant knowledge from past interactions [12]. Repeated

prior exposure to certain music content increases familiarity of

users with that content, which in turn may inculcate affinity of the

user towards that content: positive affinity if the user enjoys that

content, and negative affinity if the user dislikes that content. Past

research has also identified familiarity’s role in fostering user trust

in a recommendation system’s competence, and helps adoption [12].

Quantifying Familiarity. Affinities help us quantify familiarity

and approximates how much a user likes and is familiar with a

piece of music content. It’s calculated as a count of plays weighted

with a few assumptions about how and where a user initiated those

plays. For example, if a user plays track A from their library vs

passively hearing track B as part of a long background session, the

user’s affinity from track A is assumed to be higher. The calculation

is slightly down-weighted when a user skips a track. We compute

two forms of affinities: (i) track affinity and (ii) artist affinity.

A user’s affinity for a track is the sum of weights for all user

plays of a track in a given time range. For each play event of a track

being streamed, we compute the affinity weight for that play event

as the product of 2 coefficients (𝑐1, 𝑐2) plus a skip correction 𝑐3,

thus 𝑝𝑖 = 𝑐1𝑐2 + 𝑐3, where 𝑐1 is high for high intent play context;

𝑐2 quantifies the reason this stream was started. Finally, 𝑐3 is the

skip correction term which adds a negative penalty for each time

the track is skipped. The user’s track affinity then becomes: 𝑡𝑘 =

𝜎 (
∑

𝑖 𝑝𝑖 ) where 𝜎 is the sigmoid function, 𝑝𝑖 is the affinity weight

for play event 𝑖 and 𝑡𝑘 is the track affinity for the k-th track.

A user’s affinity for an artist is equal to the product of that user’s

number of track-plays for an artist and the third highest track affin-

ity weight from all tracks the user has listed to by that artist. Let 𝑃

be all the user’s track affinities for a given artist. Let𝑚𝑎𝑥𝑛 (𝑃) return

the n-th largest value. Finally, let 𝑀 = |𝑃 | be the number of tracks

played. The user’s artist affinity is then: 𝑎𝑖 = 𝜎𝑎,𝑏 (𝑀.𝑚𝑎𝑥𝑛 (𝑃))

where 𝜎𝑎,𝑏 = 1/(1 + exp(𝑎 − 𝑥/𝑏)) is the parameterized sigmoid

function which scales the affinities back to 0-1. We intentionally

refrain from disclosing specific parameter values to avoid disclosing

sensitive internal information.

3.2.3 Discovery. Discovery is the experience of finding and lis-

tening to content that is previously unknown to the user. Discovery

enables users to find fresh content, helps in reducing staleness

of recommendations. Facilitating the process of discovery helps

streaming platforms improve user retention [4], platform subscrip-

tion [16] and satisfy important user needs and expectations from

the platform [13]. Moreover, when done right, discovery can prove

to be an enabler for shifting consumption to non-popular or tail-

artists, thereby helping develop healthy and sustainable platforms.

Quantifying discovery. To quantify discovery, we consider past

plays of the user with the artist or track, and identify a track as a

discovery track (or artist) if the user has not streamed this track (or

artist) in the last 6 months. We mandate that to be identified as a

discovery track, the user should not have streamed neither the track

nor the artist in the past 6 months. Further, to better differentiate

between all discovery tracks, we multiply the estimated similarity

between user and the track by the 0/1 discovery indicator, to obtain

the discovery score we use in the paper:

𝑑𝑆 (𝑢, 𝑡) = ✶[𝑑] ∗ 𝜁 (𝑢, 𝑡) (1)

where 𝑑𝑆 is the discovery-score for the user 𝑢 and track 𝑡 , and

𝜁 (𝑢, 𝑡) is the estimated similarity between the user and track.

3.3 Objective Interplay & Need for Discovery

Figure 1 shows the correlation across these attributes, and indicates

that these attributes all carry heterogenous information. We ob-

serve a positive correlation between similarity and both track and

artist familiarity, with artist familiarity having a relatively higher

correlation with similarity than track familiarity. Indeed, a higher

familiarity with an artist would stem from the fact that users have

enjoyed multiple tracks from that artist, thereby it represents a

larger set of user tracks than any specific individual track. Further,

we observe that all of similarity, and track and artist familiarities

are negatively correlated with discovery, which is indeed expected.

Focusing on discovery content, we posit that facilitating interac-

tion on discovery tracks is useful for long term engagement of users,

and also for platform health. We identify two specific advantages of
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explicitly considering discovery as an objective in recommendation

design:

Discoveries enable downstream listens: Discoveries provide a

means for artists to broaden their audience. Often when users dis-

cover a new track or an artist, they save the track and come back

to re-stream the track later on. We call such re-streaming events

as downstreams. Based on our analysis of follow-up streaming on

discovered tracks, we find evidence that "good" discoveries often

lead to downstream listens from the user, as shown in Figure 2. Such

downstream effects are important drivers of creating connections

between a user and an artist.

Discoveries enable shifting consumption to tail-artists: To

better understand the impact of discoveries on the consumption

distribution of artists, we perform a simulation experiment wherein

we intentionally increase the amount of discoveries in user sessions

by ranking discovery tracks from less popular artists higher than

familiar tracks. Specifically, we vary the proportion of discovery

tracks surfaced to users in their sessions from 0% to 60%, and plot

the corresponding exposure distribution of artists across the differ-

ent popularity bins. Figure 3 plots the artist exposure distributions

across the artist popularity spectrum as we increase the amount of

discoveries surfaced. We observe that upon intentionally increas-

ing discoveries, we are able to significantly shift the distribution

towards right, i.e., towards less popular artists.

Taken together, our analysis highlights that trade-offs exists

between these different recommendation aspects, and that there

is value in driving discoveries on the platform. How best can we

balance these aspects is an understudied question. We next present

few specific algorithmic ways of balancing these objectives in a

typical recommendation setting.

4 ALGORITHMIC BALANCING APPROACHES

We posit that recommender systems need to explicitly optimize

for and balance discovery with relevance and familiarity, so as to

provide short term as well as long term happiness to users. In this

section we formulate the problem as a multi-criterion objective

balancing problem, and present fuzzy aggregation function based

aggregators which jointly optimize for multiple criterion.

4.1 Notation

For a given track 𝑥 , we consider multiple criterion (𝑥1, 𝑥2, ..., 𝑥𝑘 )

based on which each candidate track is scored.

Definition 1. We denote by x↗ the vector obtained from 𝑥 by

arranging its components in non-decreasing order, that is, 𝑥↗ = 𝑥𝑃
where 𝑃 is the permutation such that 𝑥𝑃 (1) ≤ 𝑥𝑃 (2) ≤ ... ≤ 𝑥𝑃 (𝑛) .

Similarly, we denote by 𝑥↘ the vector obtained from 𝑥 by arranging

its components in non-increasing order.

Definition 2. Weighting vector : A vector𝑤 = (𝑤1, ...,𝑤𝑛) is called

a weighting vector if𝑤𝑖 ∈ [0, 1] and
∑𝑛
𝑖=1

𝑤𝑖 = 1.

4.2 Objective Balancing Problem Formulation

We cast our problem of balancing between relevance, familiarity and

discovery as an objective balancing problem, wherein the recom-

mender system has to consider a number of different and sometimes

conflicting objectives when scoring candidate items for ranking. We

note that such objective balancing problems are not just applicable

in our current setting, but are often masked by multi-stage rank-

ing setups, which involve post-processing step wherein different

criterions are satisfied by post-processing the final ranking.

Typical recommendation systems follow a two-stage design with

a candidate generation and a ranking. In the ranking stage, the

recommender has a few hundred candidates retrieved from the can-

didate generation, and applies sophisticated large-capacity models

to score the candidates. Different from typical setting, instead of

working with one final score, we have multiple scores and criterions

based on which we wish to score and rank tracks. Consequently, the

final sorting requires consideration of multiple different criterion,

with each candidate getting a score for each criterion, and some

combination of such scores describing the final aggregated score of

each candidate based on which recommendations are served. The

aggregated score is seen as some sort of representative value of the

different scoring criterion for each candidate.

Given a set of 𝑇 candidate tracks, 𝑥1, ..., 𝑥𝑇 , our goal is to score

each of these tracks based on some aggregation function𝐺 (.), such

that𝐺 (.) considers and respects multiple, often conflicting criterion.

Given the function𝐺 (.), the final ranking is obtained by sorting the

candidates tracks based on their final aggregation scores. We next

present three specific instantiations of the aggregation function for

objective balancing, which enables us to balance the different rec-

ommendations aspects when ranking tracks for recommendations.

4.3 Weighted Sum Aggregation

A natural extension to simple average is the weighted average

function, wherein weights 𝑤𝑖 ∈ [0, 1] are associated with each

criterion, which reflects the relative contribution of the 𝑖-th score

to the aggregated value. Given a weighting vector w, the weighted

arithmetic mean is the aggregation function: 𝑀w (x) = 𝑤1𝑥1 +

𝑤2𝑥2+...+𝑤𝑛𝑥𝑛 =

∑𝑛
𝑖=1

𝑤𝑖𝑥𝑖 = < w, x >, where𝑀w is a symmetric,

Lipschitz continuous function, and is strictly increasing if all𝑤𝑖 > 0.

Weighted arithmetic means are good for averaging scores that can

be added together.

While weighted averaging provides a simple and easy way to

aggregate multiple scores, their behavior remains fairly static over

time given specific weight assignments. Also, since the weights are

associated with the specific objectives, the importance of the crite-

rion is fixed regardless of the exact value the criterion might score.

We next present extensions of weighted averaging aggregators

which address such issues.

4.4 OWA balancing

Ordered weighted averaging functions (OWA) are aggregation func-

tions, that associate weights not with a particular criterion, but

rather with its value [24]. They differ to the weighted sum aggre-

gators in that the weights are associated not with the particular

inputs, but with their magnitude. In some applications, all input

criterion are equivalent, and the importance of a criterion is de-

termined by its value. For example, when one wishes to serve rec-

ommendations using several satisfaction criterion (e.g. relevance,

affinity), the largest criterion score is the most important, regardless

of whichever specific one it is. OWA provide us a way to specify

aggregation functions in such scenarios.
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OWA are symmetric aggregation functions that allocate weights

according to the input value, i.e. OWA can emphasize the largest,

the smallest or mid-range inputs. Thus in the OWA aggregation

the weights are not associated with a particular argument but with

the ordered position of the arguments. The form of the aggregation

is very strongly dependent upon the weighting vector used. Given

a weighting vector w, the OWA function is

𝑂𝑊𝐴w (𝑥) = Σ
𝑛
𝑖=1𝑤𝑖𝑥 (𝑖) =< w, 𝑥↘ > (2)

where x↘ is the vector obtained from 𝑥 by arranging its com-

ponents in non-increasing order, that is, 𝑥↘ = 𝑥𝑃 where 𝑃 is the

permutation such that 𝑥𝑃 (𝑛) ≤ 𝑥𝑃 (𝑛−1) ≤ ... ≤ 𝑥𝑃 (1) . If all weights

are equal, OWA becomes the arithmetic mean. To use OWA for

objective balancing, we need to be able to generate the weights to

use with OWA. We next describe the function used to generate the

OWA weights.

4.4.1 Weight Quantifier Function. The process of weight assign-

ment in OWA is of fundamental importance, since it controls how

the different criterion are weighed when scoring candidate tracks.

One popular way to specify suchweights is via linguistic quantifiers,

that are able to express the concept of fuzzy majority: "most", "some",

"at least one", "as many as possible". An example of such quantifiers

is the Regular Increasing Monotone (RIM) quantifiers [15]. These

functions generate OWA weights for any n using:

𝑤𝑖 = 𝑄

(

𝑖

𝑛

)

−𝑄

(

𝑖 − 1

𝑛

)

(3)

where 𝑖 is the index of the i-th largest value among the n criterion,

and𝑄 is the quantifer function that assigns weights to the criterion

ranked i. To identify the quantifier we employ one of the simplest

and the most often used methods for defining a parameterized

subset on the unit interval [24]. Specifically,

𝑄 (𝑝) = 𝑝𝛼 (𝛼 > 0) (4)

Q(p) is represented as a fuzzy set in interval [0, 1]. By changing

the parameter, 𝛼 , one can generate different types of quantifiers

and associated operators between the two extreme cases of the all

and at least one quantifiers. For 𝛼 = 1, Q(p) is proportional to 𝛼 and

therefore it is referred to as the identity quantifier, which is also the

arithmetic mean. As 𝛼 tends to zero, the quantifier Q( p) approaches

its extreme case of at least one, which corresponds to the MAX

operator. As 𝛼 tends to infinity, the quantifier Q( p) approaches its

extreme case of all, which corresponds to the MIN operator.

By choosing appropriate 𝛼 values, we govern the functional

form of the aggregation function, and can vary it to score items

higher when all criterion scores are high (e.g. 𝛼 = 2.5), or score items

which have atleast one criterion score as high (e.g. 𝛼 = 0.1). The

use of a RIM quantifier to guide the aggregation essentially implies

that the more criteria satisfied the better the solution. This condi-

tion seems to be one that is naturally desired in criteria aggregation.

Overall ranking:

To generate the final ranking of tracks, we follow a three step

procedure:

(1) Step 1:UseQ to generate a set of OWAweights,𝑤𝑙 ,𝑤2, ...,𝑤𝑛

(2) Step 2: For each candidate track 𝑥 ∈ 𝑋 , using 𝑥↘ calculate

the overall score using the OWA function

(3) Step 3: Sort the candidate tracks by using the output of the

individual track’s OWA scores

4.5 Hierarchical OWA balancing

We further extend the OWA weighting to multiple levels. Specifi-

cally, for a given set of criterion scores (𝑥1, 𝑥2, ..., 𝑥𝑛) for a track 𝑥 ,

we consider applying OWA function to specific subset of criterions,

and then using the output as an additional intermediate criterion,

and applying OWA function on top of this intermediate criterion.

For example, consider a 2-Level OWA function and set of candidate

tracks, with each track scored using 5 criterion (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5).

We assume the first level OWA is applied to first three criterion

(𝑥1, 𝑥2, 𝑥3), and its output is used as part of the second OWA, with

the remaining criterion, i.e. 𝑥4, 𝑥5. Specifically:

𝑠1 = 𝑂𝑊𝐴(𝑥1, 𝑥2, 𝑥3) (5)

𝑠2 = 𝑂𝑊𝐴(𝑥4, 𝑥5, 𝑠1) (6)

Such splitting of criterion across different OWA functions pro-

vides us with great modeling flexibility, which we can use to com-

bine different user satisfaction attributes using different logic across

many abstractions.

5 EXPERIMENTAL EVALUATION

To understand how different recommendations fare in terms of

engagement and artist exposure metrics, we conduct extensive

offline evaluations on a large scale real world user interaction data

from Spotify and also multiple live AB test.

5.1 Track Sequencing Experiment

We evaluate the different rankers on the task of track re-ranking:

we consider a subset of user sessions, and extract information on

all the tracks users interacted with in those sessions. For each track,

we record the user interaction information, i.e. whether the user

streamed the track (above a particular time threshold) or skipped a

track. Track streams are considered as positive, satisfying interac-

tion, while skips are tagged as negative interactions. We then use

the different ranking techniques to re-rank all interacted tracks,

and estimate six metrics measured at top-5:

(1) Satisfaction metric: average number of tracks which the user

streamed. Higher number indicate more user satisfaction.

(2) Discovery: the proportion of tracks served which were dis-

covery tracks. Higher numbers indicate more discoveries.

(3) Popularity: average popularity of tracks served to users. We

consider normalized global popularity of tracks to compute

this metric. Higher number indicates more popular track.

(4) Skip Rate: the proportion of tracks users skipped by users.

Lower number indicate more user satisfaction.

(5) Similarity: this metric computes the average of similarity

scores across all served tracks. Higher number indicates

higher similarity, i.e. estimated relevance of track to the user.

(6) Familiarity: this metric estimates the average user-track fa-

miliarity of the served tracks. Higher numbers indicate more

familiar tracks, with higher positive track affinity scores.

To avoid revealing sensitive metrics, we introduce a multiplica-

tive factor to the base metrics reported.
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5.2 Methods Compared

We compare a number of different recommendation policies, from

single attribute scoring techniques to objective balancing methods.

Single attribute rankers:

A simple way of ranking tracks is to consider each attribute as a

scoring criterion and rank the tracks based on a decreasing order

of these scores. We consider the following five single score rankers:

(1) Similarity ranker: we compute estimated relevance be-

tween user and track using the learnt user and track em-

beddings from the word2vec model (as described in Section

3.2.1), and compute cosine similarities score, and rank the

candidate tracks based on a decreasing order of the similarity

scores.

(2) Track Familiarity ranker: this ranker considers user’s

affinity towards each candidate tracks, and orders tracks

based on the estimated track affinity scores. Tracks which

the users have historically streamed, and liked are ranked

higher.

(3) Artist Familiarity ranker: this ranker considers user’s

affinity towards the main artist of each candidate track, and

orders tracks based on the estimated artist affinity scores.

Tracks from artists which the users have historically streamed,

and liked are ranked higher.

(4) Discovery ranker: this ranker optimizes for discovery, and

ranks discovery tracks higher than similar or familiar tracks.

Specifically, we order tracks using the discovery scores, which

are the track similarities scores, multiplied by a binary 0/1

indicator identifying discovery tracks.

(5) Rank score ranker: this ranker sorts tracks based on the

rank scores, computed using the rank obtained by the track

when sorted by similarity scores.

Objective Balancing Rankers:

We compare the single attribute ranker by objective balancers,

using the objective balancing techniques presented in Section 4.

Specifically, we compare the following seven rankers:

(1) Weighted Sumrankers: these rankers interpolate the scores

using a weighted sum approach. We consider six variants

of such rankers, comprised of two groups of three rankers

each. We first consider a weighted sum between the similar-

ity and track familiarity attribute, and pick three different

weight profiles for these rankers. The first weight profile (i.e.

Weighted Sum (S+F) - I) gives the lowest weight to similarity,

whileWeighted Sum (S+F) - II gives equal weight to similarity

and familiarity. Finally, Weighted Sum (S+F) - III gives the

most weight to similarity. Similarly, Weighted Sum (F + D)

balance between familiarity and discovery attribute scores.

(2) OWA-SAT (AND): we consider a single OWA function to

score tracks, and use the following criterion scores as part

of the OWA function inputs: (i) similarity score (𝜁 (𝑢, 𝑥)), (ii)

track affinity score (𝑡𝑥 ), (iii) artist affinity score (𝑎𝑥 ), and (iv)

rank score (𝛾𝑥 ). Specifically, each candidate track is scored

by:

𝑠𝑥 = 𝑂𝑊𝐴(𝜁 (𝑢, 𝑥), 𝑡𝑥 , 𝑎𝑥 , 𝛾𝑥 ) (7)

The 𝛼 parameter for this function is obtained via grid search,

and to cater to the AND-ness of the OWA function, we select

𝛼 > 1.

(3) OWA-SAT (OR): similar to above, we consider a single OWA

function to score tracks in a single level OWA function 𝑠𝑥 =

𝑂𝑊𝐴(𝜁 (𝑢, 𝑥), 𝑡𝑥 , 𝑎𝑥 , 𝛾𝑥 ) and in order to use OR-ness of the

OWA function, we select 𝛼 < 1.

(4) OWA-SAT-Discovery (AND):we additionally consider dis-

covery attribute in the single level OWA function, and use

the following criterion scores as part of the OWA function

inputs: (i) similarity score (𝜁 (𝑢, 𝑥)), (ii) track affinity score

(𝑡𝑥 ), (iii) rank score (𝛾𝑥 ), and (iv) discovery score (𝑑𝑆 (𝑢, 𝑥)).

Specifically, each candidate track is scored by:

𝑠𝑥 = 𝑂𝑊𝐴(𝜁 (𝑢, 𝑥), 𝑡𝑥 , 𝛾𝑥 , 𝑑𝑆 (𝑥)) (8)

with 𝛼 selected via grid search with the constraint 𝛼 > 1.

(5) OWA-SAT-Discovery (OR): similar to above, we addition-

ally consider discovery attribute in the single level OWA

function: 𝑠𝑥 = 𝑂𝑊𝐴(𝜁 (𝑢, 𝑥), 𝑡𝑥 , 𝛾𝑥 , 𝑑𝑆 (𝑥)) and select𝛼 via

grid search with the constraint 𝛼 < 1.

(6) Hierarchical OWA (SAT): for this ranker, we employ the

2-level OWA formulation of objective balancing, with the

first level OWA consisting of similarity score, and artist

familiarity, and the second level OWA with track familiarity

and rank score. Specifically:

𝑠1 = 𝑂𝑊𝐴(𝜁 (𝑖, 𝑥), 𝑎𝑥 ) 𝛼 = 0.3 (9)

𝑠2 = 𝑂𝑊𝐴(𝑠1, 𝛾𝑥 , 𝑡𝑥 ) 𝛼 = 3.0 (10)

the specific configuration and parameters were selected us-

ing performance on a separate held-out validation set.

(7) Hierarchical OWA (SAT + Discovery): for this ranker, we

employ the 2-level OWA formulation of objective balancing

and additionally consider the discovery attribute along with

other satisfaction attributes. Specifically:

𝑠1 = 𝑂𝑊𝐴(𝜁 (𝑖, 𝑥), 𝑎𝑥 , 𝑑𝑆 ) 𝛼 = 𝛼1 (11)

𝑠2 = 𝑂𝑊𝐴(𝑠1, 𝑡𝑥 ) 𝛼 = 𝛼2 (12)

with the specific configuration and parameters selected using

performance on a separate held-out validation set.

5.3 Performance across approaches

Table 1 presents the detailed results across the 17 rankers compared

across six different metrics. We first perform sanity checks, and

observe that the single attribute rankers does indeed give best

metrics for their corresponding attributes, with the similarity ranker

obtaining the maximum similarity metric (0.848), and discovery and

track familiarity ranker obtaining the maximum discovery (0.634)

and familiarity metric (0.070) respectively.

Looking at user engagement metrics, we observe that the track

familiarity ranker outperforms all other methods inn terms of sat-

isfaction metric. This suggests and supports the hypothesis that

users indeed like familiar music content. However, as expected,

this ranker tanks the discovery metric severely. Further, it suffers

from popularity bias, and achieves the maximum popularity metric

across all methods compared. We further observe that both the

track and familiarity rankers perform worst on discovery metric,

which is expected since familiarity is conceptually opposite to dis-

covery. However, we observe that artist familiarity ranker performs

worse than track familiarity on discovery metric. Indeed, a famil-

iar artist invalidates a large number of tracks from the discovery
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Ranker Satisfaction Discovery Popularity Skip Rate Similarity Familiarity

Similarity ranker 0.7441 0.232 0.608 0.478 0.848 0.041

Track Familiarity ranker 0.7703 0.160 0.625 0.456 0.808 0.070

Artist Familiarity ranker 0.7542 0.150 0.611 0.467 0.811 0.044

Discovery ranker 0.7402 0.634 0.602 0.482 0.799 0.028

Rank score ranker 0.7422 0.316 0.601 0.487 0.822 0.033

Weighted Sum (S+F) - I 0.744 0.232 0.608 0.478 0.848 0.041

Weighted Sum (S+F) - II 0.754 0.213 0.612 0.470 0.843 0.066

Weighted Sum (S+F) - III 0.770 0.160 0.625 0.456 0.808 0.070

Weighted Sum (F+D) - I 0.740 0.634 0.602 0.482 0.799 0.028

Weighted Sum (F+D) - II 0.744 0.630 0.605 0.481 0.802 0.048

Weighted Sum (F+D) - III 0.770 0.160 0.625 0.456 0.808 0.070

OWA-SAT (AND) 0.7486 0.255 0.606 0.489 0.842 0.055

OWA-SAT (OR) 0.7521 0.273 0.606 0.477 0.833 0.059

OWA-SAT-Discovery (AND) 0.7378 0.568 0.603 0.489 0.822 0.046

OWA-SAT-Discovery (OR) 0.7384 0.620 0.602 0.491 0.807 0.046

Hierarchical OWA (SAT) 0.7626 0.193 0.616 0.464 0.832 0.069

Hierarchical OWA (S + D) 0.7588 0.359 0.613 0.470 0.827 0.069

Table 1: Offline evaluation of the different rankers on track re-ranking task.
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Table 2: Spread of discovery scores for the differ-

ent rankers compared.
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Figure 4: Scatter plot comparing different rankers on sat-

isfaction and discovery metrics.
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Figure 5: Spread of satisfaction metrics, for different levels of discovery tracks.

pool, whereas the impact track affinity has is only valid on one spe-

cific track. The weighted sum rankers give decent trade-offs, with

slight satisfaction metric gains compared with similarity ranker,

and slight discovery gains compared with familiarity rankers.

The OWA-SAT (OR) method gives almost as good a satisfaction

metric win as the best performing weighted sum ranker, and while

also giving a higher uplift in discovery metric. Finally, we observe

that the 2-Level OWA functions both give a significant increase in

satisfaction metric when compared with similarity ranker, with the

2-Level OWA (SAT +Discovery) giving the best trade-off: significant

increase in satisfaction metric, and significant increase in discovery.

5.3.1 Spread of Discovery Scores. We next compare the spread of

discovery scores across different rankers in Table 2. As expected,

we observe that the discovery ranker has the most right-skewed

distribution, which is expected since it is directly optimizing for

discovery. However, we further observe that both the OWA-SAT-

Discovery rankers have enough mass towards the right, indicating

that a significant number of sessions were high discovery sessions

for these rankers. Relating it to the abovementioned results, we note

that such drastic shift towards the right of discovery distribution

is often accompanied by steep drop in user satisfaction metrics, so

these might not be viable solutions.

However, we observe that the 2-Level OWA (SAT + Discovery)

presents a well distributed spread of discovery scores across differ-

ent sessions, which decent number of session having high, medium

and low discovery scores. This highlights that this model is able

to identify sessions wherein boosting discoveries would give gains

in discovery metric without severely hurting satisfaction metrics.

Indeed, a key functionality which OWA functions bring to the table

is their flexibility in assigning weights to different objectives. Only

when there are tracks for which boosting the weight to discovery

attribute make sense, does this model boost those weights.

5.3.2 Satisfaction across different levels of Discoveries. We next

compare how sessions with varying extent of discoveries fare on

user satisfaction. Figure 5 plots satisfaction metric on the x-axis

and the different factor plots represent sessions with 0% discovery

tracks, 25% discovery tracks and 75% discovery tracks. We observe

that as we go from left to right, we see the mean satisfaction in-

dicator reducing, and the spread of satisfaction metric increasing

getting spread towards lower satisfaction values. Sessions with 0%

discovery tracks have satisfaction scores skewed towards right,

with a higher satisfaction mean. Further, interesting enough, not

all sessions with 75% discovery tracks have low satisfaction. This

indicates that there are certain sessions wherein high rates of dis-

coveries are acceptable and satisfying. This hints at user and session

level heterogeneities for discovery acceptability within sessions.

5.4 Trade-off Analysis

To better understand how different rankers situate themselves on

the satisfaction-discovery trade-off, we plot a 2D scatter plot, com-

paring the satisfaction metric on x-axis and discovery metric on

y-axis. Figure 4 presents the results, with circles towards the right

having higher satisfaction, and circles towards the top having higher

discoveries. First, we observe that there exist no ranker which is
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Autoplay Radio
Ranker Satisfaction Skip Rate Discovery Return Rate Satisfaction Skip Rate Unfamiliar Return Rate

Similarity ranker - - - - - - - -

Track Familiarity ranker +13.6% -11.3% -13.9% +7.9% +5.3% -5.95% -8.04% +2.14%
Artist Familiarity ranker +3.5% -2.23% -38.6% +2.02% +2.6% -2.20% -10.22% +0.86%
WeghtdSum Ranker +5.1% -1.54% -25.32% +2.44% +0.79%+ -0.41% -7.47% 0.05%+

OWA-SAT (AND) -1.28%+ +2.02% +0.79% -0.61% -1.28%+ +1.36% +1.23% -1.94%
Hierarchical OWA (SAT) +3.99% -4.8% +1.43% -5.48% +1.38%+ +1.36% +1.01% +0.1%

OWA-SAT-Discovery (AND) -8.75%+ +5.18% +36.19% +1.88% -6.8%+ +6.52% +21.88% -6.7%
Hierarchical OWA (SAT + Discovery) +8.34% -5.08% +2.90% +3.55% +0.55% +1.05% +9.92% +0.05+

Table 3: Online AB test results: performance of rankers relative to similarity control. All results are statistically significant except for those

marked by +.

Figure 6: Left: Distribution of sessions with different amounts of

discoveries across different rankers. Right: Normalized satisfaction

metrics for different sessions with varying degrees of discoveries.

at the top-right, i.e., no ranker gives us higher satisfaction metrics

while also giving higher discovery metric, highlighting the intricate

trade-off that exists between the two goals. Further, the methods

which maximize user satisfaction metric are much lower on the

y-axis, indicating lower discovery metric performance. However,

we can now visually confirm the findings we reported earlier that

the Hierarchical OWA (SAT + Discovery) method is able to give us

better trade-offs, by offering intermediate wins in satisfaction and

at the same time, offering intermediate wins on discovery metrics.

6 LIVE AB TESTS

We next presents insights from the live AB tests we conducted with

the most promising rankers based on offline evaluation.

6.1 Online Experiment Setup

We design and deploy four online randomized experiments, two

each on Radio and Autoplay products:

Test 1: SAT only Experiment: First, we focus only on user satis-

faction attributes, and deploy the following six rankers in produc-

tion, on Radio and Autoplay products: (i) Similarity ranker (which

acts as our Control), (ii) Track Familiarity ranker, (iii) Artist Fa-

miliarity ranker, (iv) Weighted Sum ranker (balancing familiarity

and similarity with equal weightage), (v) OWA-SAT (AND) and (vi)

Hierarchical OWA (SAT). We conduct a 7 day long randomized

experiment wherein users are randomly assigned either to Control

cell or one of the six treatment cells. Each cell was randomly allot-

ted 4 million users, totaling 28 million users, and over 150 million

user-track interactions.

Test 2: SAT + Discovery experiment: For the next online test,

we additionally consider a discovery attribute, which required im-

plementation of a discovery data provider that provided real time

discovery score for each track, for both track and artist discovery.

We deployed the following two additional rankers: (i) OWA-SAT-

Discovery (AND), (ii) Hierarchical OWA (SAT+Discovery). We used

similarity ranker as the control and conducted a 6 day long ran-

domized experiment, across a total of 15 million users.

6.2 Online ranker performance

Table 3 presents the online metric results for the different rankers

deployed in production. We observe a trend similar to the one from

our offline evaluation experiments: familiarity centric rankers in-

crease satisfaction while tanking discoverymetrics.We also observe

that the 7-day return rate increases for all rankers optimizing for

familiarity in Autoplay. Importantly, we observe that the Hierar-

chical OWA (SAT + Discovery) is the only ranker which gives us a

win-win across both metrics, compared to the similarity control. In-

deed, multi-level OWA functions offer more control over balancing,

and are less prescriptive about which attributes get what weights.

Their flexibility in the weight assignment, which happens in real

time upon observing the different scores for each track, allows

them to make more informed, contextualized decisions of boosting

discoveries when its useful.

6.3 Satisfaction ↔ levels of discoveries

Figure 6 (left) presents the extent to which different rankers served

sessions with different proportions of discovery tracks. On one

hand we observe that the track familiarity ranker had almost 60%

sessions with 0 discovery tracks, while on the other hand, the OWA-

SAT-Discovery ranker maintained a steady distribution of sessions

across different discovery proportions. The best performing Hierar-

chical OWA (SAT + Discovery) ranker has a significantly higher

number of sessions with 20% discoveries, thereby prioritizing traces

of discoveries across most of the sessions. Building on top of these

distributions, we next investigate how satisfaction metrics fare for

sessions as we increase the amount of discovery tracks in them.

Figure 6 (right) highlights that as we increase the amount of discov-

eries in a session, satisfaction metrics steadily decrease. However,

interestingly most rankers either maintain or even slightly increase

on satisfaction, when going from 0% discoveries to 10% discoveries.

This promising result hints at the fact that users do expect some

level of discoveries in their sessions, and 10% of discoveries is almost

always preferred over no discoveries.

6.4 User Level Heterogeneity

We next present a user level view on the impact of injecting discov-

eries into sessions in Figure 7. The metrics we considered so far are

aggregate metrics, and hence, not useful to investigate user level

insights. Instead, for each user, we compute the average stream rate
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Figure 7: User level heterogeneity. Per user difference in track completion rates for

discovery and non-discovery tracks.

Figure 8: Impact on Suppliers: stream

share across different popularity per-

centiles, across different rankers.

for discovery and non-discovery tracks, and plot this difference in

track stream rates against the proportion of discovery tracks in

those sessions. Items above 0 (marked as orange) indicate user ses-

sions which preferred non-discovery tracks over discovery tracks,

and hence had a higher track stream rate for non-discovery tracks.

We observe a strong user/session level heterogeneity, and find

a large number of sessions where discovery tracks had a higher

track stream rate than non-discovery tracks, across different levels

of discovery proportions in sessions, and across different rankers.

These results further establish the user/session level characteristics

of discovery receptivity of users, and provides empirical support

to prior work highlighting the presence of strong user-level re-

ceptivity to specific objectives [18]. Further, we observe that the

differences converge to smaller values as session length increases,

which indicates that longer sessions are either generally more suc-

cessful, or that some of these user sessions are laid back sessions,

wherein the user is not in an interactive enough state to skip tracks.

Further investigation is needed to understand this in detail.

6.5 Impact on Suppliers

We hypothesized that discovery can act as an enabler of shifting

consumption towards less popular artists (Section 3.3). We investi-

gate to what extent this is true. In Figure 8, we consider a random

sample of streamed content, and plot the stream share that went

to artists of different popularity buckets. We observe that models

which over-emphasize on discovery, are able to significantly shift

the consumption towards right, i.e. transfer streams to less popular

artists, as is evident by the right-shifted distribution of methods

like OWA-SAT-Discovery (AND). Even rankers which provide a

healthy balance between satisfaction gains and discovery gains are

able to shift stream share towards less popular artists, and decrease

stream share for more popular artists.

Indeed, optimizing for discovery enables platforms to control

consumption patterns, and divert consumption towards less popu-

lar or niche artists, who might otherwise not get exposed enough.

Such departure from relevant, popular and familiar content allow

platforms to broaden the scope of music listening and shift con-

sumption towards the tail and less familiar content.

7 CONCLUSION

Looking at music consumption data, and the presented results, we

found evidence that beyond relevance, familiarity plays a key role in

driving user engagement on music streaming platforms. However,

we additionally highlight that blindly optimizing for familiarity

results in potential long term harms, which are detrimental not only

for user, but also for artists and the overall health of the streaming

platform. Our findings demonstrate the need for efficient balancing

of relevance, familiarity and discovery objectives when serving

recommendations to users, and demonstrates that the proposed

objective balancing methods are able to obtain wins on both aspects

of user satisfaction and discovery metrics, in offline as well as online

live experiments.

Specifically in the context of music streaming, we posit our find-

ings relates to and builds upon insights on how users consume

music. Our work underlines the importance of explicitly consider-

ing and optimizing for familiarity and discovery, and underpins the

improvements in user engagements that are on offer when rightly

done. Further, we highlight that music streaming applications are

essentially multi-stakeholder platforms which connect users and

artists. Such platforms need to maintain a healthy balance between

user satisfaction and artist exposure goals [17, 19]. We advocate for

discovery as another enabling tool which equips system developers

to influence and control consumption patterns on the platform, and

shift them towards less popular, and potentially niche artists.

On the system design perspective, our findings give system de-

signers practical approaches which are easy to extend and deploy in

large scale industrial setting. We contend that the proposed frame-

work is generic enough to work with more sophisticated MLmodels

for various predicted attributes.

Finally, our findings motivate future work on (i) quantifying user

propensities for discovery, (ii) leveraging discovery for targeted

supplier exposure optimization, and (iii) identifying good discovery

candidates by developing personalized discovery models.
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