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4 PERSI DIACONIS AND RONALD GRAHAM 

The same problem arises in card-guessing experiments. The usual ESP experiment uses a 
25-card deck with the 5 symbols 0, +, ff f, 4, * repeated five times each. The deck is shuffled; 
a sender looks at the cards in sequence from the top down, and a subject guesses at each card 
after the sender looks at it. We discuss three types of feedback: 

Case 1—No feedback. If no feedback is provided, then any guessing strategy has five 
correct guesses as its expected value. The distribution of the number of correct guesses depends 
on the guessing strategy. Several writers have shown that the variance is largest when the 
guessing strategy is some permutation of the 25 symbols. This is further discussed at the 
beginning of Section 3. 

Case 2—Complete feedback.—lIf the subject is shown the card guessed each time, then the 
optimal strategy is to guess the most probable remaining type at each stage. The expected 
number under the optimal strategy is 8.65, a result first derived by Read (1962). In Section 2 
we give closed form expressions: for the expected number of correct guesses for the optimal 
and worst case strategies for a deck of arbitrary composition. 

Case 3—Yes or no feedback. The situation becomes complex with partial feedback— 
telling the subject if each guess was correct or not. No simple description of the optimal 
strategy is known. An example in Section 3 shows that the “greedy algorithm” which guesses 
the most probable symbol at each stage is not optimal. The optimal strategy and the expected 
number of correct guesses under the optimal strategy can be determined by numerically 
solving a recurrence relation. For a standard ESP deck the expectation is 6.63 correct guesses. 
In Theorems 5 and 6 we show that the greedy algorithm is optimal for partial feedback 
experiments with no repeated values (that is, for a deck labeled (1, 2, ---, m)). See Thouless 

(1977) for an empirical attempt to solve these problems. A thorough discussion of statistical 
problems in ESP research may be found in Burdick and Kelly (1978), and Diaconis (1978). 

How should feedback experiments be evaluated? Consider a numerical example made 
explicit in Table 1. A deck of 20 cards, 10 labeled “red” and 10 labeled “black,” is well mixed. 
A sender looks at the cards in sequence from top down, and a subject guesses at each card 
after the sender looks at it. After each trial the guesser is told whether the guess was correct or 
not. There were 14 correct guesses. If this experiment is naively evaluated by neglecting the 
availability of feedback information (a widely used approach, see Tart (1977), Chapters 1, 2 
for references), each trial would be regarded as an independent binomial variable with success 
probability % Binomial tables show that P(14 or more correct out of 20) = .058. The choice 
sequence that the guesser actually made is fairly close to the optimal strategy. There were 7 
times that the number of red cards remaining was equal to the number of black cards 
remaining. At these trials, red and black have the same probability of being correct and either 
choice is optimal. The guesses made agree with the optimal strategy on 9 of the 13 remaining 
trials. Perhaps the 14 correct guesses should be compared with 12.30, the expected number of 
correct guesses under the optimal strategy. Neglecting the availability of feedback information 
can lead to crediting a subject using an optimal (or near optimal) strategy with having “talent.” 
On the other hand, demanding that a subject significantly exceed the expected number under 
the optimal strategy can lead to failure to detect a “talented” subject who doesn’t use the 
feedback information. In Section 4 we describe a method of evaluation called skill scoring. 
The skill score compares the number of correct guesses to a base line score calculated from the 
conditional expectation of the ith guess given the feedback information. The statistic is 
particularly simple in the present example. If at the time of the ith guess there are r, red cards 
and b, black cards remaining in the deck, then the probability of the next card being (say) red 

r; iS Da The numbers p,— the probability of the ith guess being correct— are given in the 
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TABLE 1 

Example of Skill Scoring In An Experiment With 10 Red and 10 Black Cards and Feedback to the 

Guessing Subject 

Trial No. Guess Feedback Optimal P. Card 

l B Yes Tie 1/2 B 

2 B No R 9/19 R 

3 B No Tie 1/2 R 

4 B Yes B 9/17 B 

5 R No Tie 1/2 B 

6 B Yes R 7/15 B 

7 R Yes R 8/14 R 

8 B Yes R 6/13 B 

9 R Yes R 7/12 R 

10 R Yes R 6/11 R 

11 R No Tie 1/2 B 

12 R Yes R 5/9 R 

13 B No Tie 1/2 R 

14 R Yes B 3/7 R 

15 B Yes B 4/6 B 

16 B Yes B 3/5 B 

17 B No Tie 1/2 R 

18 B Yes B 2/3 B 

19 R Yes Tie 1/2 R 

20 B Yes B l B 

14 11.049 

Correct 

Column | is trial number, Column 2 is subject’s guess, Column 3 is feedback information, Column 4 is optimal 
guess (tie means either color is optimal), Column 5 is probability that subject’s guess is correct, and Column 
6 is card actually present. 

fifth column of Table 1. If Z, is one or zero as the ith guess is correct or not, then the skill score 
statistic S is defined as S = )'72, {Z, — p;}. For this example S = 14 — 11.049 = 2.95. 

In Theorem 7 we show that for any guessing strategy S/v2n/4 has a limiting standard 
normal distribution. In the example of Table 1, S/ V/5 = 132. Further discussion of 
this example is in Section 4. 

Clearly experiments which combine feedback with sampling with replacement are easier to 
analyze. Our motivation for considering sampling without replacement is twofold. First, 
reanalysis of a previously performed feedback experiment done without replacement may be 
desirable. Second, experiments are often designed without replacement to insure balance 
between treatments for moderate samples. Efron (1971) gives a nice discussion of these issues 
and references to standard literature. 

2. Complete feedback experiments. In this section we consider experiments with a deck 
of n cards containing c, cards labeled i, 1S isr,son =~) c,. We write € = (C1, C2, +++, Cr) 

for the composition vector. A subject tries to guess what card is at each position. The optimal 
strategy for a subject trying to maximize the total number of correct guesses is to guess the 
most probable symbol at each stage. (This is easily proved by backward induction.) Let H = 
H(c) be the number of correct guesses when the optimal strategy is used. We can derive the 
distribution of H when r = 2 by using variants of an argument in Blackwell and Hodges 
(1957). We give the limiting distribution of H here; the exact distribution is derived in the 
course of the proof.
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THEOREM 1. Jf c; and c2 tend to infinity in such a way that co /(c, + c2) > p,O<p<l,p 
~~ \e, then 

l I 
(2.1) E(H) = max(er, 02) +3( = = 1) + of. 

2\|lp—4| 

(2.2) P(H — max(c1, c2) =k) > y(1 -— y)* 

2|p—4| = 0, 1,2, +--+ where y = fork where y l+|p—q| 

If c) = C2 = k (so p = 4), then, as k tends to infinity, 

=e tf 2-1 \ ans v1 4 of! 

(i) 
(2.4) (A - ) so ry <0 

Pp Via x ifxs 

+> 20(x)- 1 if x =0, 

where ®(x) is the standard normal cumulative distribution. 

Results (2.3) and (2.4) are essentially given by Blackwell and Hodges (1957). The results 

show that there is a big difference between balanced decks where c, = c2 and unbalanced 
decks. In the unbalanced situation the optimal strategy does not do much better than the 
strategy which always guesses the type corresponding to max(ci, cz). An intuitive explanation 
is that when c, > c2 the optimal guess will almost always guess type lI. 

When r > 2, we have not actively pursued the problem of finding the distribution of H, but 
we have determined the mean of H. If h(c) = E(A(c)), then elementary considerations show 
that when )'7-1 c, > 0, h satisfies the recursion 

max(c) 
h(c — 8,) + . h(0)=0 aie ) Ghee +o h(O) = 0, 

Ci 

Cy tere + 

where 6, has a one in the ith position and zeros elsewhere, and 0 is the vector of all zeros. 
We will show that h(c) has the following closed form expression: 

THEOREM 2. The solution of the recursion (2.5) is 

_ C1 Cr Cy tree +, max*(i) (2.6) h(c) = max(c) + Yaar (¢') __ ()/ (5 +--+. +i, )| ip tees +i, 

where 

max*(i) = 0 if there is a unique j such that i, = max(i) 
= max(/) otherwise. 

The sum in (2.6) is over the nonnegative orthant of the integer lattice in r dimensions. 

The recursion (2.5) was used by Read (1962) to numerically determine certain values of h. 

We recomputed the following values of h(c) confirming Read’s calculations; h(3, 3, 3) = 
4.78690", h(5, 5, 5, 5, 5) = 8.64675". A direct probabilistic interpretation of the right side of 

(2.6) is given after the proof. 

For a deck containing r different types with each type repeated k times, ¢ = kI, where I is 
a vector of r ones. For large k, weak convergence techniques can be used to bound the right 
side of (2.6):
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THEOREM 3. As k tends to infinity, 

h(ki) =k + 5 M, Vk + 0,(Vk), 

where M, is the expected value of the maximum of r independent standard normal variates. The 

notation o, means the implied constant depends on r. 

The numbers M, are tabled in Teichroew (1956) and Harter (1961). For example, 

r | 2 3 4 5 

M, | 564 863 1.029 1.163 

Of course, Theorem 3 agrees with (2.3) when r = 2. When k =r = 5, the approximation given 
by Theorem 3 is about 9.08 as compared with 8.65 from exact evaluation. 

In the complete feedback problem it is possible for a subject to try to minimize the expect 
number of correct guesses by guessing the least probable symbol on each trial. We call this 
worst case guessing. This can lead to strategies with a strange appearance. For example, with 
n cards labeled {1, 2, ---, m} the worst strategy guesses any card, (say 1) on the first trial and 
thereafter guesses a card known not to be in the deck. This leads to 1/n as the expected number 

of correct guesses. Analysis of worst case guessing is valuable in determining how widely the 
distribution of correct guesses can vary as a function of strategy. The arguments are similar to 
best case guessing and will not be given in detail. Here are some results; 

THEOREM 4. Let d(c) denote the expected number of correct guesses when the worst case 
strategy is used with complete feedback. 

d(é) = min(z) — Yesce (§) oo @ / (‘ te ) —— = 7 
where min*(i) = min(i) (mul(i) — 1), mul(i) is the number of j such that i; = min(i). 

As k tends to infinity, 

d(kl) =k- 5 M.vk + 0, (Vk) 

where M,. was defined in Theorem 3. 
Some numerical values for d are d(3, 3, 3) = 1.48690*, d(5, 5, 5, 5, 5) = 2.29606". When 

r= 2, min(c, ce) — d= h — max(ci, C2) so (2.1) and (2.3) can be used for similar computations 

involving d. 
Theorems 3 and 4 show that with a bounded number r of distinct types the deviation of 

either best or worst case guessing from guessing with no feedback is of order vk compared to 
a lead term of k. This is crucial to results in Section 4 involving the skill scoring statistic. 

PROOFS FOR SECTION 2. 
Proof of Theorem |. To determine the distribution of H we follow Blackwell and Hodges 

(1957) in considering an associated random walk. Without loss of generality suppose c; = ce. 
Following the notation of Chapter 3 of Feller (1968), consider a random path composed of 
lines of slope + 1. The walk moves up if a card of type | is turned up, and down if a card of 
type 2 turns up. The walk begins at (0, 0) and ends at (c; + c2, ci: — cz). The optimal strategy 
is to guess type | if the path is below the line y = c; — c2, guess type 2 if the path is above this 
line, and guess arbitrarily at points where the path touches the line. This is because when the 
path touches y = c; — cz, the number of cards of type 1 remaining equals the number of cards 
of type 2 remaining. Let T be the number of times the random path touches the line y = c; 
— cz. It is not hard to show by induction that for any path the number of correct guesses that 
the optimal strategy makes at time c; + cz equals c; + Z where Z is a binomial random 
variable with parameters 2 and 7. Thus all randomness in the outcome of a run through the 
deck using the optimal strategy can be attributed to the outcome of guesses when the remaining 
numbers of each type were the same.
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T takes values 0, 1, 2, ---, c. and a straightforward variant of the proof of Theorem 4 in 
Section 7 of Feller (1968) shows that 

WT =1) = C2 (cr + 2 t Ci + Ce t=0,1,+*5, 0. 

(2.7) ata —tl cnt C1 

Notice that when c, = cz, T cannot take on the value 0 and (2.7) is equivalent to equation 
(2.3) of Blackwell and Hodges (1957). They argue that T/Vk tends in distribution to the 

absolute value of a standard normal, and this implies (2.4). Passing to the limit in (2.7) when 
c; and cz tend to infinity with c:/(c. + c2) > p0<p< 1, p# % yields that T has a limiting 
geometric distribution with p(T = t) = y(1 — y)'t = 0, 1, 2, ---, y= |p — q|. The limiting 

distribution of H is obtained from the limiting distribution of T by using the fact that, if H 
given 7 = ¢ is binomial with parameters 2 and ¢, then H unconditionally has the distribution 
specified by (2.2). The equation for the mean of H can be derived as a special case of (2.6). 
Thus, when r = 2, max*(i, i2) = 0 unless i; = i2. Then (2.6) becomes 

l C1\ fee Ci + Ce 
(2.8) BH) = maxtor) +53,..($)(4) /( rj ). 

When c = co = k, we have 

1 k\ /(2k\ _, 1f 2 sinexeite(’)/()-13( a k 

Cj 
so (2.3) follows. Taking the limit in (2.8) as — p yields 

C1 + Co 

E(#) = max(c, cz) + ; yet (7' (pqy + o(1) 

l 
= max(c, C2) +- 

Ae 
l l 

= max(c1, C2) + = {| —————- — 1 ] + (1). 
(er) Aer © 

— 7 + o(1) 

Proof of Theorem 2. Let f(¢) = h(c) — max(c). The recursion (2.5) translates into 

a -_ = - i ¢< max(c ) _ _ 
fe) => ~ {f(¢ — 6,) + max(¢ — 6;)} + abo be max(C ) 

Ci 

"Cy bees + 

or 

(Cr+ s+ tor)f(c) = af(€ — 6.) + [¥, a max(e — 6) 

+ max(c) — (c1 + -++ + c-)max(c)]. 

The expression in square brackets is easily seen to equal max*(C) as defined in Theorem 2. 
Now, writing 

_(cit++- +¢,)! 

Ci!---¢,! 
g(c) f(e), 

the recursion becomes 

— _ (C1: t+-++ +c,)!  max*(c) 
(2.9) 8(C) = 1, 8(¢ — 8) + 

-Crl Cp tere +O, 

It is clear from (2.9) that g(c) can be expressed as a sum over the nonnegative orthant 0 #7 
<= c of the function 

_ ip tees +2)! max*(i yy = tt ma®) 
ijl... 7! iy tee +i,
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At each lattice point i the function A(i) must be multiplied by the number of paths from é to 
1, This number is 

((c1 —h) +++. + (c¢- —i,))! 

(cy — i)! eee (Cc; — i)! 

Thus, 

((C1 ~i;) + +++ +(c -i,))! 

(C1 —ii)! «++ (c, —7,)! 

Transforming g back to f and f back to h completes the proof of Theorem 2. 
By considering a multidimensional random walk, taking a step in the direction of the ith 

coordinate when a card of type i is exposed, we can give a direct probabilistic interpretation 
to the max* of Theorem 2 and min* of Theorem 4. Just as when r = 2, the only randomness 
in the number of correct guesses under the optimal strategy comes from lattice points i where 
max*(i) > 0. The number of correct guesses from lattice points where max*(i) = 0 being 
max(c). The probability of a correct guess for a lattice point where max*(i) > 0 is max*(i)/i; 
+ +++ d,, and the sum in (2.6) is just a sum of these probabilities multiplied by the probability 
that the path passes through i. 

8(C) = dooms (i). 

Proof of Theorem 3. We are considering a deck of n = rk cards containing k cards marked 
i, 1 Sisr. Forj= 1, 2, ---, x, let V, be an r-dimensional random vector which counts how 
many of each type have been called before time j. Thus, V; = 0 and V;(i) is the number of 
cards marked i which have appeared before time j. At the jth trial the optimal strategy is to 
choose any value / such that V;(/) = min, V,(i). The probability of a correct guess is then 

k — min, V,(i) 
2.10 

( ) n-it+l Jul, 2, +++ n. 

To work with (2.10) we use weak convergence techniques from Chapter 4 ov Billingsley (1968). 
The first step is to transform the random vectors V,, ---, V, into a random function which 
will be shown to converge to an appropriate Brownian bridge. Let 

-.,/ " Jp_slj7 
A= Veo” tI 

The components of X; have E(X;(i)) = 0, Var(X,(i)) = 1. Form a vector valued continuous 
function ,X; : [0, 1] > R” by connecting the components X,(i) by straight lines as in Billingsley 
((1968) pages 8-15). Thus, »Xjn = X,. It follows from Rosen’s (1967) results for dependent 
vector valued random variables that the r-dimensional analog of Theorem 24.1 of Billinglsey 
(1968) holds. That is, ,X:;—>p Wi where W? is an r-dimensional mean 0 Gaussian process 
with the following covariance; 

- — —s(1—-t 
fors<1t, E(WS() W?(j/)} = ~~ ) when i ¥ 

= s(1 — t) when / = j. 

Thus, each component process W?(i) is a Brownian bridge and, for fixed 1, Cov W? = 
t(1 — t) L where 

_ ol 

Y={ 1 ; r—1 

r—l . I 

This implies that )), W,(i) = 0. Returning to (2.10) and summing yields 

kL : 
ro fkK(r- way min; X;(2) 

n-jt+l r mn-jtl’ 
(2.11) Yin 
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; ; ; log k ; 
The first sum in (2.11) is easily seen to equal k + O, Gir (the notation O, means that the 

implied constant depends on r). We will argue that we may take expectations in (2.11) and 
pass to the limit as k tends to infinity. Then, 

min; X,(i) ‘ E(min W?) 
12 mn J 

2.12) ese me tO A | r-, @ 

Assuming the validity of (2.12) for the moment, we have shown that the expected number of 
correct guesses 1s 

k — M, Vk + 0-(Vk) 

M, ra [= aa 

We now show that M, = — - M, where M, was defined in Theorem 3. To prove this note that 

where 

one way of constructing W? from r independent 1-dimensional Brownian bridges W?”, 

WY? —- W,) forlsisr. It 
l 

W :” is as follows. Let W, =" Si-1 WY and let Wi(i) = \= > 

is easy to check that W% has the correct covariance, t(1 — ty. Now, for fixed ¢ the symmetry 
of mean 0 Gaussian variables implies that 

E{min, W{? } = —E{max, W}?}; E{min; W?(i)} = —E (max; W?(d}. 

Moreover, 

2E{max, W9(i)} = E{Range{ W°(i)}} = 4 j-— E {Range W?} 

=2, j—_ E{max W}?}. 
r—-1 

For fixed ¢ the variables W;{’ are independent Gaussian variables with mean 0 and variance 
1/2 

t 
i(1 — #). It follows that M,= —M, fo{——) dr =— A M, as claimed. 

We now show that the limit step in (2.12) is valid. We will argue in the function space 
D[0, 1]. Note first that ,X:;->p W? implies min; ,,X;,(i) > min; Wi) in D[0, 1]. Next consider 

the continuous functional T.: D[0, 1] > R defined by T.(f) = fe fo dt. Since min; »X;(i) 

oe ; . ; i+ | 
is piecewise constant and equals min, X,(Z) on the interval 2 <t< ae we have that 

i+] 

T(min, »X:() = ¥, .c-yn MING Xin (0) i "di 

l 
~ denzya(i—en min(X,()( log — n- ) 

-y min Xi) o(s min “0 
ens<j=(1—e)n py —J + | (n — jy 

To apply Markov’s inequality we need to bound £(| min X;(i) |). 
_; 1/2 

Q.13)  E|min X= 6 X(1))) S$ (ERD) = rye (2) , 



SEQUENTIAL EXPERIMENTS WITH FEEDBACK 11 

Thus, for any y > 0, 

min,X;,(i) l V r yj? c P <-> — < 
(n—jy |” "Joy Vkr-D 2, (n-jy? (n- VP VK 

where the positive constant c is independent of k and y. Thus, we have shown that the error 

converges to 0 in probability and the continuous mapping theorem yields 

min X;(i) © min W,(i) 
- —pD dt. 

ensjs(l—e)n yj —j + l l — 

ya 

(2.14) > 

To take expectations in (2.14) we must show that the left side is uniformly integrable. Write 
M;, = min; X;(/) and consider 

2.15) e{(z M; )}=2 E| M,||Mj| 
n-itl W(n-it+ l\n-j+1) 

When i ¥ j, E(| Mi||_M,|) < (E(M?) E(M?)})” and 

| \ ns 
(2.16) E(M}) =r E(X1() = poy (1 -+) 2 

Using these bounds in (2.15) shows that 

Ex (> M < ») a J < 00 as 00 = = . n—-i+l k(n — 1) “i Vn—-it+in—j+l " 

This implies uniform integrability and thus shows that 

(2.17) y dt. 
E(M:) ‘© E(min W?) 

ensis(l-e)n yn —[ + l . l — 

To prove (2.12) note that 

{ * E(min W3(i)) A 
; 1-1 

is a convergent integral so the right side of (2.17) approximates this arbitrarily well for e€ 
sufficiently small. Further 

E(M; Ly, (Mi) 
<n yn —jt+ 1 

E(| Mil) 1 fai 
<= —_— 

isen y— ji + p= od <) 
i<en yj n-il 

for some positive c. The last sum is a Reimann sum for 

[Ve 0 l—x 

and so can be made arbitrarily small for small e. The same argument works for 

E(M:i) 
> (l-e)n<1 n-ict l . 

This completes the proof of (2.12) and thus of Theorem 3. 

3. Yes-No feedback. In this section we discuss problems concerning a deck of n cards 
with c, cards of type i, 1 = is r. We again write c for the composition vector C = (C1, +++, Cr). 
On each trial the subject is told if the previous guess was correct or not. We refer to this 
situation as yes-no feedback. The problem is complicated when max(c) > 1, so we first state 
results for a deck of n cards labeled 1, 2, ---, n: We begin with no feedback and complete 

feedback guessing and compare these to yes-no feedback.
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No FEEDBACK. If no feedback is provided, then any guessing strategy has one correct guess 
as its expected value. Several writers have shown that the variance of the number of correct 
guesses is largest when the guessing sequence is a permutation of {1, 2, ---, n} (see J. A. 
Greenwood (1938) and the references cited there). 

COMPLETE FEEDBACK. If the subject is shown the card just guessed each time, then the 
optimal strategy is to guess a card known to remain in the deck. The number of correct guesses 
has the same distribution as a sum of n independent random variables X,, 1 = i < n where 

I 
P(X, = i) = 7 | — P(X, = 0). For large n the number of correct guesses is approximately 

normally distributed with mean log n and standard deviation vlog n. 
If the subject is only given yes-no feedback, then the optimal and worst case strategies are 

described by the following pair of theorems. 

THEOREM 5. For a deck containing n cards labeled {1, 2, --+, n} a guessing strategy which 
maximizes the expected number of correct guesses when yes-no feedback is available is the 
strategy which guesses type | until the guess is correct, then guesses type 2 until the guess is correct 
(or the end of the deck is reached) and so on. If G denotes the number of correct guesses under 
this strategy, then 

I 
(3.1) P(G2kK)=7, k= 1,2, ---,n. 

G)=1 -_ 1+0O (3.2) E( )= tate n°. + nl . 

THEOREM 6. For a deck containing n cards labeled {1, 2, --+,n} a guessing strategy which 
minimizes the expected number of correct guesses when yes-no feedback is available is the strategy 
which guesses type i on the ith trial until a guess is correct and then repeats the correct guess for 
the remaining trials. If g denotes the number of correct guesses under this strategy, then g takes 
values zero and one with probability: 

1 1 
(3.3) Pig=0)=2+0(4)=1- P(g. 

l l 

Theorems 5 and 6 deal with the only type of deck where we can provide a simple description 
of the optimal strategy. In each case the optimal strategy is the “greedy” strategy which guesses 
the most probable (for Theorem 6 the least probable) type. We do not know if the greedy 
strategy is optimal for decks of 2n cards with composition vector (2, 2, ---, 2). We will show 
that the greedy strategy is not optimal for the 9-card deck with composition vector (3, 3, 3). 
We first need some notation. 

Let p = (pi, P2, °++, pr) be a vector with integer components p, = 0. Define 

(3.5) N(c; p) = the number of permutations of c; + --- + c¢, symbols which do not have 
symbol | in the first p; positions, nor symbol 2 in positions p: + 1, ---, pe, 
etc. 

Thus, N(c; 0) = (c: + «+» + c;)!. The numbers N(¢; P) allow computation of the most 

probable type at any stage of an experiment with yes-no feedback. They are closely related to 
rook polynomials described in Chapters 7 and 8 of Riordan (1958) and are discussed further 
in Chung, Diaconis, Graham and Mallows (1980). 

ALGORITHM TO COMPUTE PROBABILITIES WITH YES-NO FEEDBACK. Suppose an experiment
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started with composition vector co and that after the jth guess there have been Y,(i) yes 
answers on type i and p,(i) no answers on type i, | = i= r. The deck now has composition 
vector C = Cy — Y,. We will call ¢ the reduced composition vector. Writing 6; for the vector 

(0 --- | ---0) with a | at position i and 0 elsewhere, the conditional probabilities of a correct 
(or incorrect) guess on type i on the j + Ist trial given Y, and jp, are: 

as =<. aN(E- 6:5 p) 
3.6 P t Y,, Pj) = — (3.6) (yes on type #| ¥,, py) NGB) 

to. a. NG B+ 83) 
3.7 P(no on t Y;; pj) = , (3.7) ( ype i| Yj; py) NG DB) 

forl<isr. 

As implied by (3.6) and (3.7), the function WN satisfies the recursion 

(3.8) N(C; p + 8%) = N(C; p) — crN(C + 8x; P), lskesr 

with N(¢; 0) = (c1 + --- +,)! 

This recursion can be solved in closed form to allow computation of NV: 

Pi)... (Be) (i) t+ +4) 
Ty ty (c1 — i;)!- -*(C, — i)! 

The proof of (3.9) is given in Chung, Diaconis, Graham, and Mallows (1980) along with a 
host of other properties of N(¢; p). 

Let E(c; p) be the expected number of correct guesses under an optimal strategy starting 
from the reduced composition vector c. E(c; p) is well defined since there are only a finite 
number of strategies and one (or more) of them maximizes the expected number of correct 
guesses. It is straightforward to show that E satisfies the recurrence: 

(3.9) NG p) = Yree(-0 ( 

(3.10) E(é; p)N(é; p) = max, {E(C; p + 82)NC p + 82) 

+ E(é — 8p; p)cr N(E — 82; p) + HN(E — 8x; py} 

where N(c; p) was defined in (3.5). We have not been able to solve this recurrence for E(c; 0) 

in closed form even though WN is known through (3.9). The recurrence can be solved 

numerically. For example, Mary Ann Gatto (Gatto (1978)) generated values for all composition 
vectors smaller than (5, 5, 5, 5, 5). Some results are: 

E(3, 3, 3; 0) = 4.26, E(4, 4, 4, 4; 0) = 5.47, E(5, 5, 5, 5, 5; 0) = 6.63. 

The details of computing a number like E(5, 5, 5, 5, 5; 0) are not simple. The computation 

required 15 hours of cpu time on a Honeywell 6070 computer along with clever use of both 
recursions (3.8) and (3.10). 

The optimal strategy at each stage is determined by finding a k which maximizes the right 
side of (3.10). Formula (3.6) implies that the greedy strategy at each stage is determined by 
choosing a k maximizing c,N(c — 5:; p). We now give an example which shows that the 
greedy strategy is not optimal. 

Consider a 9-card deck with 3 each of 3 different types of card. A complete listing of 
N(c; p) and E(c; p) for all (c; p) that arise with this 9-card deck is given in Diaconis and 

Graham (1978). In the situation summarized by (231;003) the optimal strategy is to choose 
type 3 on the next guess. However, type 2 is more probable than type 3 on the next guess. The 
situation summarized by (231;003) could arise under the optimal strategy from starting position 
(333,000) as follows: the first guess is type 1, and this is correct. The next three guesses are type 
3, and all three guesses are wrong. The next guess on type 3 is correct. At this point the 
situation is summarized by (232;003) and the optimal guess is type 3. If this is correct, then the 
situation is summarized by (231;003).
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Even though the greedy strategy is not optimal, computations reported in Diaconis, Gatto, 
and Graham (1980) show that the expected number of correct guesses under the greedy 
strategy is extremely close to the expected number under the optimal strategy for decks with 
composition vector (3, 3, 3) or (5, 5, 5, 5, 5). 

If e(c; p) is the expected number of correct guesses for the worst possible strategy, then 
e(C; p) satisfies a recurrence obtained from replacing max by min in (3.10). We have not 
pursued the problem of numerical computation of e. 

Even though the optimal strategy seems to be extremely complex, we believe that the 
following simple persistence conjecture holds: In any problem with partial feedback, if symbol 
1 is the optimal guess on trial i and a guess of | is answered by “no,” then symbol | is optimal 
on guess i + I. 

PROOFS FOR SECTION 3. 

Proof of Theorem 5. When the given strategy is used, the permutations with k or more 
correct guesses are those in the set A, = {a:7° (1) < 7 (2) < +--+ <a (k)}. Thus, P(G=k} 

l 
= P(w€ Az) = a This proves (3.1) and implies (3.2). 

We now argue that the outlined strategy is optimal. In this problem a strategy S may be 
regarded as a sequence of n functions S = (Si, S2, ---, Sn) where S;: {0, 1}*"'— (1, 2, ---, 

n}. The interpretation is that a point in {0, 1}‘"’ represents a sequence of i — | yes or no 
answers, 0 standing for no and | for yes. The expected value of a strategy is E(S) = 
Yir1E(S2a)s,) where 5, is one or zero as i = j or not. We will say that strategy S dominates 
strategy S’ if E(S) = E(S’). Strategies S and S’ will be called equivalent if E(S) = E(S’). 

We first argue that the given strategy calls the most probable symbol at each stage. This is 
implied by the following monotonicity property of the function N: 

(3.11) p>p,  ifandonlyif M(1;pt+s6.)<N(1;p+t5,). 

This property of N is proved and further discussed in Chung, Diaconis, Graham, and Mallows 
(1980). Inequality (3.11) implies, and is implied by, the following combinatorial fact which 
was first established by Efron (1963). 

(3.12) (EFRON’S LEMMA). Let two decks of n cards be prepared. The first deck labeled (1, 2, 
.-+,n), the second deck labeled (a;, az, +++, An) with a; € {1, 2, ---,n}. Each deck is mixed and 

the cards turned over simultaneously, one pair at a time. The probability of no matches is largest 
if and only if there are no repeated symbols among the a,. That is, if {a,} = {1, 2, +--+, n}. 

We have thus argued that the given strategy calls a most probable symbol at each stage. We 
want to show that any strategy which achieves the maximum number of correct guesses in this 
problem has this property. We note that a maximizing strategy exists since there are only 
finitely many Strategies. 

To begin with we may restrict attention to strategies which do not guess symbols known 
not to be left in the deck since such strategies may be improved uniformly over all permutations 
by modifying them to guess only symbols which have not been definitely eliminated. 

We will argue by backward induction that any strategy can be strictly improved by being 
modified to choose a most probable symbol at each stage. This is clear at trial n since 
modifying a strategy S so that it chooses the most probable symbol on the final guess can only 
increase E(S). Consider a strategy S which chooses the most probable symbol on trials n — k, 
n—k+1,---,n, for fixed k = 0. Consider a history h € {0, 1}""*? for which S,-,-1(h) =a 
where b # a is the most probable guess and strictly more probable than a. By (3.11) we must 
have ps > Pa, i.€., Ps = Pa + 1. No matter what the outcome of the guess S,-,-1(A) = a is, no 

symbol is more probable than b just before trial n — k. Thus, by induction we may assume 
S(h, 0) = S(h, 1) = b (Le., we can modify S to have this property without decreasing E(S)). 

Consider the portion of the “strategy tree” of S following h (see Figure 1). Form the 
strategy S from S by defining S,—,-1(h) = b, Sn—(A, 0) = Sn-x(A, 1) = a and interchanging the 
two parts Jo; and Tio of S which follow (h, 0, 1) and (A, 1, 0) (see Figure 1).
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Fic. 1 

We claim that for each permutation 7 of the deck there is a unique permutation 7 of the 
deck such that the number of hits that S has for z is the same as the number of hits that § has 
for 7. This correspondence is given by switching coordinates n — k — 1 andn—k: 
1.€., 

a(i) = a(n — k) fori=n—k-—1, 

= 7(n—k— 1) fori=n-—k, 

= 7(i) otherwise. 

It is now a simple matter of checking the four cases z(n — k — 1) {3 i. a(n — k) {5 ° to see 

that S has the desired property on 7. For example, if a(n — k — 1) = a, a(n — k) ¥ b (and, of 
course, 7 generates the history h), then z generates the history (A, 1, 0), collects one more hit 
ae the question Sp—-r-1(h) =a) and exits into Tho. However, in S, 7 gets a no at the question 

Sn—r-1(h) = b, a yes at the question Sn_2(h, 0) =a (collecting one hit) and also exits into Tio. 

Thus, 

E(S) = E(S). 

However, by induction if we replace S,_z(h, 0) = a by S%,-2(h, 0) = b, then since b is (still) 

more probable than a, this gives a strict improvement to S. This shows that an optimal strategy 
must also guess the most probable symbol on trial n — k — 1. This completes the induction 
step and the theorem is proved. 

Proof of Theorem 6. Under the given strategy the number g of correct guesses is either zero 
or one. The probability of one correct guess is the probability that two permutations have one 
or more matching coordinates. This probability is well known (Feller 1968, page 100) to be 

8 pe em ey ld -y ta! | 
P(g=1)=1-P(g=0)=1 Th a: l -+0(<), 

This proves (3.3) and (3.4).
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We now show that the strategy given in Theorem 6 achieves the minimum number of 
expected correct guesses. 

Using the notation established in the proof of Theorem 5, a strategy S is a sequence of 
functions S = (S1, S2, +++, Sn), S.:{0, 1}"" > {1, 2, «++, n}. To begin with, it is easily shown 
that the expected value of any strategy can be decreased by modifying it so that 

(3.13) S,(0, «++, 01) =S1(0,++-,00) for i=2,3,---,n 

and so that S never achieves more than | correct guess. 
Restricting attention to strategies which satisfy (3.13) we see that the strategy S is determined 

by the n numbers S;, S2(0), S3(0), «++, Sn(0). The expected value of S is the probability of 
one or more matches of a random permutation 7 to n symbols labeled §$,, S2(0), ---, S,,(0). 
Efron’s Lemma (3.12) shows that this probability is smallest when {5:, 52(0), ---, Sn(0)} = 
{1, 2, ---+,}. This proves Theorem 6. 

4. Evaluation of feedback experiments. The evaluation of feedback experiments is prob- 
lematic because it is impossible to know what use a subject will make of the feedback 
information. In this section we introduce an evaluation approach called skill scoring. The idea 
is to compare the number of correct guesses with a base line rate calculated from the 
conditional expected number of correct guesses given the available information. 

One example of skill scoring in the present setting was given in Table 1. To motivate the 
abstract definitions we are about to present, we review this example. The problem considered 
was card guessing with two types (call them type | and type 2), k of each type (so n = 2k cards 
in all) and complete feedback. We can model this by considering the basic probability space 
to be S,, the set of permutations on {1, 2, ---, 2}, with the uniform probability measure. A 

permutation 7 is chosen at random and the ith trial is declared “type 1” if 7(7) is odd and 
“type 2” if m(7z) is even. On the ith trial the guessing subject is given feedback. 

f=! ith guess is correct, 

=2 ith guess is incorrect. 

This particular feedback function only depends on the current coordinate. Some possible 
variations are: 

(4.1a) Feedback might depend on previous outcomes. This is realistic in card guessing 
experiments with unconscious cuing due to subjects being within sight or earshot of one 
another. If there were few correct guesses in the early stages, more active feedback might be 
made available as the experiment progressed. 

(4.1b) In addition to telling if the previous guess was correct or not, feedback might indicate 
if incorrect guesses were “close.” Fisher (1924), (1928), and (1929) gives some examples of 

measures of closeness. 

(4.1c) Feedback might only be available on some outcomes. For instance, the subject might 
be given feedback after red guesses but no feedback after black guesses. 

We formulate the general situation in terms of S,, the set of permutations of {1, 2, ---, 7} 

= {2,. To model a pack of cards with c, cards labeled i we need the idea of an evaluation 
function. For example, to model red-black card guessing we might consider 

A.(m(i)) = 1 if z(i) is odd 

=2 if (i) is even. 

(4.2a) An evaluation function X is a sequence of functions \ = (Ai, ---, An) where A, (7) = 
A.(m(i)) for 7 © S,. Let the range of \, be denoted by R, = {X,(((i)):7 € Sn}. An evaluation 
‘function is of type r if A,(7) — 1 = m(i)(mod r). Let A, denote the algebra in S,, generated by 
\1, Na, ae) At.
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We will restrict attention to guessing strategies which take values in R,. For each sequence 
of guesses and each history up to time 7, we must define a feedback function f,. For complete 
feedback guessing, f, = A,(7). For yes-no feedback /, = 6,,c¢,, where G, is the ith guess. 

(4.2b) A feedback function f is a sequence of functions f = (fi, «++, fx) where fi:Ri X 
Ro, +++, X Ri X S,— Qn. For each fixed r = (71, r2, +++, 7), we may regard f, as a function 
filri, +++, 75+) from S, into Q,. This function is to be measurable when S, is equipped with 

the algebra A, defined in (4.2a) for any r. We also define the algebra F(r) = of fi(ri;-), a(n, 
ro3°)s oe f(r, oee, riz+)}. - 

This frightening terminology has the following interpretation: that f is measurable means 
that f, only depends on the first i guesses and the values Ai (7), ---, A.(7). A function from S,, 
will be measurable with respect to F(ri, -++, 7) if it only depends on the first i components 
of the permutation through the feedback information given when guesses r,, re, --+, 7, are 

made on trials 1, 2, ---,i. 

(4.2c) A feedback function is adapted if 5,.,, is A(ri, «++, r.) measurable for each ri, 
ro, +*+,%, |S isn. Adaptability means that the feedback includes the information that the 
last guess was correct or not. 

(4.2d) <A guessing strategy g is a sequence of functions g = (g1, go, +--+, gn) where g: is a 
constant and g,:Ri X --+ X R-1 X S, —> R, satisfies g.(ri, +++, M-13-) iS A(ni, +++, M-1) 

measurable. The value of g, will be denoted G,. 

(4.2e) The collection of functions A, f will be called an experiment. 

We define the skill scoring statistic for an experiment by 

(4.3) S = ye {8G,r, ~ E {8e,,,| F(Gi, eee Gi-1)}}. 

The main motivation for considering S is that for a wide variety of experiments S can be 
normed to have an approximate standard normal distribution uniformly in guessing strategies. 
This is made precise 1n: 

THEOREM 7. For an experiment as defined in (4.2e) and any guessing strategy g, the skill 
scoring statistic S defined by (4.3) satisfies 

(4.4) E(S) = 0. 

If the evaluation function is of type r as defined by (4.2a) and the feedback function adapted 
as defined by (4.2c), then as n tends to infinity, 

S 1 {° ; 
<x\>~— e 72) de. 

vr q =| 
n 

(4.5) 
J —- 

r r 

Convergence in (4.5) is uniform in guessing strategies g. 

We now discuss some motivation and properties of S. In the absence of “talent,” the 
distribution of dg,,, given the feedback information is the conditional permutation distribution. 

S will be large when there are more successful guesses than chance predicts. To compute S, 
only the observed guesses G;, Gz, ---, G, need be known, not the entire guessing strategy. 

For definiteness consider the example in Table |—card guessing with complete feedback 
from a deck containing k red and k black cards. As shown in Theorem I, a subject using the 
optimal (or worst case) strategy expects to obtain approximately k + % Vik (or k — % Vk) 
correct guesses. The statistic S compensates for this by subtracting a random correction factor 
with mean value k + % V7k (ork — % Vk). This allows us to see if the subject scored more
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than chance when the strategy has been adjusted for. The conditional expected value in (4.3) 
may be complicated to compute if fis complex. For yes-no partial feedback the conditional 
expectations may be computed using (3.6) and (3.7). 

One penalty that must be paid for the close tracking of 5¢,,, by its expected value is as 
follows: If the feedback information at some stage determines the composition of the remainder 
of the deck, none of the subjects’ guesses from that trial on have an effect on S. This can be 
seen in the last guess in Table | when the feedback information determined that the last 
remaining card was black. Similarly, the possible corrections due to feedback are less 
pronounced at the beginning of the deck and more pronounced toward the end of the deck. 

Theorem 7 holds because the terms in the sum for S are a martingale difference sequence 
with well-behaved variance. The martingale central limit theorem is in force. If there were a 
practical reason for doing so, the result could be extended to scoring functions of the form 

(4.6) S= Yer {W.(Gi, +++, Gis An, «++, Ad) 

— EL Wi(Gi, +++, Gis Ai, +++, ADAG, +++, G-a)} 

where the functions W; could be chosen to give desired weights to correct or incorrect guesses 
depending on previous results. We note that the form and motivation for the statistic S are 
quite similar to the form and motivation for the Mantel-Haenszel statistic as discussed (for 
example) by Tarone and Ware (1977). It should be possible to show that S is locally most 
powerful by arguments similar to those used to show that the Mantel-Haenszel statistic is 
locally most powerful against Lehmann alternatives. 

We now illustrate the hypothesis of Theorem 7 through some examples. 

(4.7) Example of the need of adaptability assumptions. The adaptability assumption (4.2c) 
simply means that the feedback includes the information that the last guess was correct or not. 
To see that there is no hope of a normal limiting result without this assumption, consider an 
experiment with no feedback information, for example, f; = 1. To be specific, suppose there 
are n each of two types, and that the guessing strategy always guesses type |. Then the number 
of correct guesses will always be n, and the conditional probability subtracted off at each stage 
will always equal 2 so that S = 0. This example presents a fundamental problem for the 
widely used normal approximation to classical card guessing experiments without feedback 
(this is discussed by Greville (1941), (1944)). It underscores the need for common sense even 
when Theorem 7 is in force since, if a subject always guesses the same type of card, the 
randomness captured by the limiting normality will be due to the fluctuation of the conditional 
expectations in S. 

The next example shows the need for the assumption of a deck of type r by exhibiting 
several nonnormal limits (depending on the guessing strategy) for a deck labeled {1, 2, ---, 
n}. 

(4.8) Example: Partial feedback guessing for a deck labeled {1, 2, 3, ---,n}. In this problem, 
as discussed in Section 3, a deck of n cards is labeled {1, 2, --+,}. A subject guesses the value 

of each card sequentially and is told if each guess is correct or not. Here A,(7(i)) = 7(i), fi(Gi, 
--, G; (1), +--+, 7) =48,~e,, and S can be represented as 

S = Wir (8600) — rare Yj=1 Seay }- 

To see that the distribution of S depends on the guessing strategy we consider three cases: 

Case 1. Worst case guessing. If the guessing strategy is the worst case strategy established 
in Theorem 6, we will show that the limiting distribution of S converges to a beta distribution 

l I . I I ; 
ons ( + ) to | with an atom at — 5 | — >) . More precisely, 

(4.9) P(S St) — G(t) as n tends to infinity where the distribution function G(t) is defined 

by
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l l G(t) =0 for i<-3(1-3), 

l l l l l 
=- for —-~(1-—4)srs=-(1+5 

e or 5( =) f ;( ): 

1\'7 1 1 =(1-2)" tor E(14d) sre 
e 

= | for ¢>1. 

Case 2. G, = 1. We will show that when G, always guesses 1, the distribution of S 
converges to an exponential distribution on (—%, 1]. More precisely, 

(4.10) P{il-Ssx}—-1l-e™” for OS x<o. 

Note that while the expected values of S agrees with the limiting expected value of 0, 
computation shows that 

l 3 

Var(S) = 2 log n+ o( 2) as n tends to infinity. 

Case 3. Best case guessing. In Theorem 5 the rule for maximizing the expected number of 
hits was shown to be the rule which guesses the most probable card at each stage. When this 
rule is used, we will show that, as n — ©, the statistic S tends to a countable mixture of 

continuous distributions: 

(4.11) P(S St) = Die pi F(t) 

where 

l l 
Pi> a Goo F(t) = P{T[ Lise} 

where Ly, Le, +--+, Li+1 are the lengths of the i + 1 intervals the unit interval is partitioned into 

by dropping / points at random. 

PROOFS FOR SECTION 4. 
Proof of Theorem]. Consider the basic probability space S, with the uniform distribution. 

Let Gi, ---, G, be any sequence of guesses. Let Bo = {¢, Sn}, B= A(Gi, +++, Gai) fori= 
1,2,-++,n—1, B, =2™. Thus, Bo C By C +++ C Bn. Let 

l 
rt a 

Vee (0-3) 
r r 

Because f is adapted, X, is a B, martingale with E(X;) = 0. To prove (4.5), we first show that 
(4.5) holds when f, = A, and G; is the result of best case guessing. Further, and without real 
loss, suppose that n = rk. Let M; denote the minimum of the number of each type seen before 

1: a k — M 
time i, so M; = 0. The probability of a correct guess on the ith trial is p; = so Z, takes 

Y 

(8on,— E{8ea,|Bi-r}} and X,= Yh Z,. 

values 

5 (1 — p.) with probability p, 

J-—- 

=) 

Pm 
} 

with probability | — p,. 

<
,
 

= 

7
]
 

a
N
 
N
T
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According to the martingale central limit theorem (Hall (1977)) the limiting normality will be 
demonstrated if we can show that 

| 
1 si pil — pr) —> 1 in prob. HA l 

r r 

We show that 

l l 
(4.12a) 7 Ye pi ; in prob, 

l., 1. 
(4.12b) 7 vp “3 in prob. 

To demonstrate (4.12a) write 

k-=-M, | 
r - i 

l = 1 h M, = M, — 

P n—-it+l wit r 

Then ~ 
l l log n I M, 
— Dial Pi = — + O| —] -- 
non Pe o( n ) 2 n—-itl 

The inequality (2.13) implies that there is a positive constant c, such that E(|M.|) S 

Cr as Using this and Markov’s inequality it follows that for any e > 0, 

I M, Cr 
Py — diz >ers 

{3 ‘n—-itl ¢} evn 

so that (4.12a) is true. The proof of (4.12b) is similar. Hence, we have shown that (4.7) holds 

when f; = A; and G; is best case guessing. A similar proof works if f; = A; and G; is worst case 
guessing. If now /f, is an arbitrary measurable feedback sequence and G, an arbitrary guessing 
strategy, let p, = E{6c,,| B.}. Recall A, defined in (4.2a). Let p; = E{8é,,| Ai}, pi = 
E {8g,,| Ai-1}. Then p, S p. S p.; and since (4.12a) and (4.12b) hold for p, and p,, they must 
hold for p;. This completes the proof of Theorem 7. 7 

PROOFS FOR EXAMPLE (4.8). 

Proof of (4.11). For worst case guessing S takes values which depend on T, the time of the 
first correct guess. Let N(i, n) denote the number of permutations 7 € S, which do not have 

aj) =)j 1 sj Si. Equation (3.9) implies that N(i, n) = Y}j=0 (4 Jom — j)! and we see 

l [i — 
that P{T =k} = 7 N(k — 1, n — 1) and Pith guess is correct | past) = NGT bab 

N(i— 1, n) 
Thus, S takes values 

l l i_l th ie 
( -) with probability 7 

I n—2 n—-2 l — _ — _ . h oqe _ 

( 2 (na =) with probability n(n = Ip’ 

NGi-1,n-1) ; wa: l 
— k ? — ; — — l 1G Ln) with probability 7 N(i- 1,n- 1),
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Nii- 1,n- 1) ; 4: l 
—_ i th l — N —_— 9 — 5 l IWG= Ln) with probability 7 (n—I1,n-1) 

NGi-l,n-1 ; v4: I 
— V1 “ G— 7 7m) with probability 7 N(n, n). 

| 1\" | 
We now show that 7 Ni, n) = (1 - -| + o(= uniformly in 7. Indeed, 

men (1) Jame ( (C528) (5) 
sso) -(-$) =o) 

Thus, for any k, l|sk<=n, 
i-1 

NGi-ln-l) j\1 n—1 i} 11 2\* 1 
‘a = (-h + O{[-}==--{1--] +O{-], 

din Nii - 1, n) non l o(= 2 5( "| 0 n 

so that S takes values 

1 1 2\* 1 1 1 \" 1 
—~+—(1-“=|] +o0[- ith lity —~{1-———-) +o0(— 5 + 5 ( =) o(- wi probability ( —_ ) o( =| 

l I l l I 
for | <k<=n and S takes the value — 5 (1 — >) + o(- with probability S + o(=) 

. . 1 1 l 
Using these estimates shows that P(S = ¢) — G(t) fort =5 +5 ( -3) . For larger t we 

nssnetealted(1-2)' +0(!)<:}+0(4) 
= ba {22 tog (5) + 0(- )}+o(5) 

“Le (1-eff=-fu—4) +0(()}) 0 
= - +1—- (: + o(- + — Yoasenfo ( -1)" + o(- 

have 

7 

l l 
where we have written f(t) = 5 log a(1 — 5) . This completes the proof of (4.9). 

Proof of (4.10). When the guessing strategy has G; = 1, then S takes values | — (H, — 
Hr), k =0, 1, 2, ---,— 1, where T is uniformly distributed on (0, 1, 2, ---,2— 1} and Ay 

=1+..-- + 1/k. So, 

P{1—S>t} =P{e@r<e} 

= P{elr tn = e"'| Vn= Tsn- fayy(1 + o(-) + o(=)
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1 
_ pect eento(z) e| Vn <T<n- Vn} 4 o(=) 

n 

= piz 1—o(4 <e"|Vn=Tsn-—Vn +o0(+ 
n T}} OO Vn 

—e* as n tends to infinity. 

Proof of (4.11). With best case guessing it was shown in Theorem 5 that the number of 
I 

correct guesses, G, takes value i with probability p, =— l<sisn-— 1. When G=i, 
i! (i—T)! 

| I 
let 7; be the waiting time for the jth correct guess, for | < j < i. The random variables 7 (Th, 

“++, 0,,n— 71, + +++ + T;) are easily shown to have as limiting distribution the distribution 
of the lengths Zi, Le, ---, Li4:1 of the i + | intervals that the unit interval is partitioned into 

by i random points. de Finetti (Feller 1971, page 42) has shown that P{Z; =x, ---, Livi = 
Xiti} = (1 — x1 + +++ +X:41) where + denotes positive part. When G = i, write T = Yoo 7; 
then 

. . i It n—-T It 
P{Sst|G=3i} = Pli- Sin Do Sh ts | 

—_ P{1,L2 eee Li+i = ef} 

by an easy argument. This completes the proof of (4.11). 
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