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Abstract

Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has
been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated
that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental
fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance,
such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been
suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater percep-
tion of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095-1105, 2014)
first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and
that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance.
This theoretical review looks at evidence to support and extend this hypothesis.

Mental fatigue impairs endurance performance, medi-
ated primarily by an increase in perception of effort. The
mechanism by which this occurs, however, is currently
unclear.

We propose that with demanding cognitive activity,
extracellular cerebral adenosine accumulates within
active regions of the brain. We further propose that
adenosine acts in two ways: by increasing perception of
effort during subsequent effortful tasks, and by impairing
motivation, or the willingness to exert effort, likely via
an interaction with dopamine in the anterior cingulate
cortex.

During an endurance test, both perception of effort and
motivation can influence performance. We contend that
any manipulation by which the accumulation of adeno-
sine during mental exertion is reduced would minimise
>4 Kristy Martin the impact of mental fatigue on subsequent endurance
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performance via these mechanisms.
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1 Introduction

Mental fatigue reflects a change in psychobiological
state, caused by prolonged periods of demanding cogni-
tive activity [1]. This change is gradual and cumulative
and has subjective and objective manifestations including
increased resistance against further effort [2], changes in
mood [3] and feelings of ‘tiredness’ and ‘lack of energy’.
It is understood that mental fatigue impairs cognitive per-
formance [4-6]; however, only more recently has it been
demonstrated that aspects of physical performance are also
impaired by mental fatigue [7]. Time to exhaustion during
both high-intensity cycling [1] and a sustained isomet-
ric leg extension [8] were reduced following a mentally
fatiguing task, and average running speed was slower dur-
ing a 5-km treadmill [9] and a 3-km track running time
trial [10]. Other measures of endurance performance are
also impaired with mental fatigue, such as the low inten-
sity component of an intermittent running protocol [11],
and the distance completed during the Yo-Yo Intermittent
Recovery test [12].

The mechanism behind the detrimental effect of mental
fatigue on endurance performance is poorly understood.
Variables traditionally believed to limit endurance perfor-
mance, such as heart rate, lactate accumulation and neuro-
muscular function, are unaffected by mental fatigue [1, 8,
13]. Rather, it has been suggested that the negative impact
of mental fatigue on endurance performance is primarily
mediated by the greater perceived exertion experienced by
mentally fatigued participants [14]. Whilst we acknowl-
edge the contention surrounding the interchangeable use of
perception of effort and perceived exertion within the lit-
erature [15, 16], this review uses the terms synonymously.
In exercise science, perception of effort is defined as the
conscious sensation of how hard, heavy and strenuous a
physical task is [17]. Perception of effort can be quanti-
fied using psychophysical scales [15], most commonly,
the rating of perceived exertion (RPE) scale, a linear scale
ranging from 6 to 20, anchored by the descriptors ‘no exer-
tion at all’ to ‘maximal exertion’ [18]. During a time-to-
exhaustion test the impact of higher perceived exertion
is demonstrated by participants reaching a terminal RPE
more quickly and disengaging from the task earlier [1, 8].
In a time-trial setting, the average power output or speed
produced for the same RPE is lower [9, 10].

One model that highlights the role of perceived exertion
during exercise regulation, and therefore has been used to
explain the impact of mental fatigue on endurance per-
formance, is the psychobiological model [19, 20]. This
model, based on motivational intensity theory [21], pro-
poses that performance throughout a constant-load power
test is primarily determined by the interaction between
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perceived exertion and potential motivation [22]. Poten-
tial motivation is the greatest amount of effort a person
is willing to exert to succeed in a task [23]. During this
type of endurance test, when the effort required by the
test is perceived to exceed potential motivation, or when
perception of effort is so extreme that continuing seems
impossible, the person consciously decides to stop exercis-
ing, or downregulates their level of effort. According to
this model, any factor that influences perceived exertion
and/or potential motivation influences endurance perfor-
mance, even when the physiological capacity to perform
the task is unchanged. It appears the negative impact of
mental fatigue on endurance performance is mediated
by an increase in perceived exertion [14]; however, the
mechanism by which mental fatigue increases perceived
exertion is still unclear. In 2014, Pageaux and colleagues
were the first to propose that prolonged performance of a
demanding cognitive task may increase cerebral adenosine
accumulation and that this accumulation could contribute
to the higher perceived exertion experienced during subse-
quent endurance performance [9, 13, 14, 24]. This theoret-
ical review considers evidence to support and extend this
hypothesis. Figure 1 provides a schematic representation
of the proposed mechanism.

2 A Neurochemical Perspective

Although there are many potential contributors to fatigue
during endurance performance, the neuromodulator adeno-
sine is a promising candidate, particularly with regard to
fatigue arising from mental exertion. Here we define fatigue
as “difficulty in initiation of or sustaining voluntary activi-
ties” [25], which results most commonly in a sporting or
exercise performance context in a reduction in physical
output, observable in self-paced activity, or the cessation
of exercise, when work-rate is dictated externally. Adeno-
sine is known to accumulate within the brain during periods
of wakefulness, before it dissipates with sleep [26, 27]; it
also accumulates during intense physical exercise [28], and
likely during effortful cognitive activity (see Sect. 3). The
role of adenosine in these fatiguing contexts is supported
by the ergogenic effect of the potent adenosine antagonist
caffeine on cognitive [29] and sporting performance [30],
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Fig. 1 Schematic representation of the proposed mechanism
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and in reducing homeostatic sleep drive [31]. Fluctuations
in basal adenosine are also believed to be linked to cerebral
fuel [32], which is further discussed in Sect. 3. Adenosine
acts through its neuromodulatory role, which typically inhib-
its neural activity via inhibition of presynaptic neurotrans-
mitter release [33] (including dopamine [34]) or hyperpo-
larisation postsynaptically [35]. Both actions are thought
to occur through the A receptor, one of the most abundant
receptors in the brain [36]. Adenosine can also stimulate
synaptic activity through the A,, receptor, although this
receptor is much less common than the A, receptor in most
brain regions [32], and may be more involved in immune or
circulatory functions [37].

Adenosine is ubiquitous, thanks largely to the fact that
adenosine triphosphate (ATP) is produced by all cells. Aden-
osine is present in the extracellular space, including the syn-
aptic cleft, due to breakdown of ATP, having been released
directly, or conjointly with exocytosis [36]. Under certain
conditions, where adenosine accumulates in the intracellular
components (as seen in models of energy restriction [38]),
adenosine may also be pumped directly into the extracel-
lular space through specific channels [36]. While extracel-
lular adenosine is rapidly cleared through metabolism or
uptake into surrounding cells, endogenous release appears
to be sufficient to exert its tonic inhibitory influence [39].
Estimates of resting extracellular adenosine vary between
10 and 30 nmol/L and 1 and 2 pmol/L, but can increase
over 20-fold during different forms of stress, such as during
energy restriction [40]. Although much of the research has
focussed on basal levels of adenosine in modulating synaptic
activity, it was recently discovered that following stimulated
release, rapid transients of adenosine exist, lasting for from
a few seconds up to ~30 s. These rapid adenosine tran-
sients are capable of modulating neural activity, including
the inhibition of dopamine release via A, receptors [41].
The clearance rate of these rapid adenosine transients also
appears to be influenced by the local metabolic state [42].
The existence and action of rapid adenosine transients is
important in terms of mental fatigue. For instance, rapid
adenosine transients may account for the fast recovery (over
a few seconds) of performance in a cognitive task when an
individual is interrupted from the task for a brief period.
Traditional understandings of mental fatigue tend to centre
on the relatively slow accumulation of fatigue over minutes
or hours, and so the potential for rapid transients to influence
performance should be kept in mind. A further complication
when considering the role of adenosine in fatigue, particu-
larly fatigue arising from mental exertion, is that adenosine
receptor availability differs between individuals. It has been
observed that individuals upregulate A, receptors differ-
ently after sleep deprivation, and the relative upregulation
of these receptors has been able to distinguish between lev-
els of sleepiness and cognitive performance [43]. Whether

this variability is associated with a genetic predisposition or
trainability remains uncertain at this stage.

One brain region in which the actions of adenosine have
been suggested to be particularly important in the context of
mental fatigue is the anterior cingulate cortex (ACC) [13].
Both the continuous performance test (AX-CPT) [44] and
the Stroop task [45]—cognitive tasks commonly employed
to experimentally induce mental fatigue—are associated
with activity in the ACC. This brain region is involved in
effortful mental processes such as emotional processing and
control [46], self-regulation [47] and performance moni-
toring [44], as well as appearing to be important in effort/
reward processing [48], persevering with a task [49] and per-
ceived exertion during endurance exercise [50]. Thus, with
prolonged performance of a demanding cognitive task, such
as the Stroop task or AX-CPT, an increase in local adenosine
concentration is likely. Localised adenosine levels are also
likely to rise further with the performance of a subsequent
effortful cognitive task, or prolonged endurance test. One
action of adenosine is to modulate the release of a number
of neurotransmitters, including inhibition of the release of
dopamine (see Sect. 5) [34]. Although adenosine may act
across many brain regions, the presence of dopamine recep-
tors in the ACC, and their role in regulating effort-based
decision making [51], seems a further, particularly intuitive,
means by which adenosine could modulate effort-related
fatigue. The remainder of this review focuses on the role of
adenosine, with specific reference to fatigue brought about
by prolonged mental exertion.

3 Adenosine is Increased with Mental
Exertion

Various physiological manipulations can increase extra-
cellular adenosine [32]. Manipulations that cause the
energy requirements of the brain to outstrip its ability to
synthesize ATP, such as hypoglycaemia [52], hypoxia
[53] and electrical stimulation [54], have all been shown
to profoundly increase adenosine release. Brain metabolic
activity increases from baseline with the performance of a
cognitive task [55, 56], and greater activation is associated
with greater task-specific cognitive demand [57]. Increased
activation of the ACC [45] and right superior frontal region
[58] have been observed with performance of an incongruent
versus a congruent version of the Stroop task, with compara-
ble results found within the prefrontal and parietal cortices
for tasks of working memory [57, 59]. While assessment
of adenosine within the human brain, particularly during
cognitive or physical performance, is problematic, studies
of rat brain slices have shown the formation and release of
adenosine with electrical stimulation [53, 60, 61], moder-
ate hypoglycaemia [52] and glycolytic inhibition [62, 63].
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Before continuing, it must be emphasized that a model reli-
ant on adenosine is not the same as one reliant on a limited
physiological resource, despite clearly being related to local-
ized cerebral fuel availability. In fact, we support the cri-
tique of the resource model of self-control [64—66], and wish
to highlight where the hypothesis proposed in the present
review diverges from this model. Mental fatigue research
supports the statements made by the resource model in that
performance of an initial task of self-control will impair per-
formance on subsequent tasks of self-control, and that this
effect can cross domains. We further support the notion that
regular exertion of self-control, whether by taking a mentally
challenging class or by participating regularly in effortful
physical activity, can ‘train’ or improve self-control (see
Sect. 7). As argued by others previously [67-69], we find
the improbability of the resource model to arise from the
belief that a common and depletable resource, namely glu-
cose [70], fuels self-control and that deficits in self-control
are mediated by depletion or a reduction of this fuel source.
A reduction in blood glucose is not consistently observed
with tasks of self-control [69, 71], nor are reports of per-
formance restoration with glucose or carbohydrate supple-
mentation [71-74]. Furthermore, a model based purely on
a depletable physiological resource would not explain the
performance benefits obtained from psychological strate-
gies such as motivational self-talk [75], financial incentives
[76, 77] and deception [78]. While these studies disprove
glucose as the primary mediator of self-control, the idea
that a cerebral fuel source may contribute to impaired physi-
cal performance following mental exertion cannot be disre-
garded completely. Often arguments discounting the role of
brain fuels are based on whole brain metabolism measures
[79], or make the assumption that peripheral blood glucose
concentration accurately reflects cerebral metabolism [71].
A micro-dialysis study in rats assessed the glucose levels
in hippocampal and striatum extracellular fluid (ECF) pre,
during and post a spontaneous alternation task [80]. The
level of glucose in the hippocampal ECF decreased sharply
upon commencement of testing, by as much as 30% below
baseline, and remained decreased for the duration of the
task. At the same time, no decrease in striatal ECF glucose
was observed. During this task, systemic blood glucose con-
centration was also analysed, increasing by up to 123% of
baseline following completion of the task. This study high-
lights that glucose is consumed with mental exertion, but
that this effect is localised in certain active regions of the
brain. Although we propose that mental exertion will cause
localised changes in cerebral fuel stores, which in turn can
contribute to changes in cerebral adenosine concentration,
we contend that it is the effect of adenosine on perception
of effort (see Sects. 4 and 5) and motivation (Sect. 6) rather
than a depletion in fuel that mediates changes in behav-
iour. Performing a prolonged and demanding cognitive task
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would conceivably both increase neuronal activation and
reduce localized cerebral fuel availability; therefore, it is
likely that in this scenario cerebral concentrations of adeno-
sine would also increase.

4 Adenosine Increases Perception of Effort

The accumulation of adenosine with mental exertion is
hypothesized to contribute to the increase in perceived
exertion experienced by mentally fatigued participants [9].
There has, however, been no direct evaluation of the effect of
adenosine on perceived exertion and fatigue during exercise
performance in humans. While we acknowledge that it is not
possible to directly quantify perceived exertion in animals,
manipulations of adenosine agonists and antagonists pro-
foundly affect effort-related choice behaviour and appear to
make animals more sensitive to the work requirements of
a task. In a feeding procedure in which rats could choose
between pressing a lever for a preferred food or consuming
readily available but less preferred lab chow, systemic injec-
tions of an adenosine agonist reduced the number of lever
presses for the preferred food, but did not affect overall food
intake [81]. Intracranial injections of an adenosine agonist
reduced total responses to a task requiring a high level of
effort to obtain a food reward [82], and intracerebroventricu-
lar administration of an adenosine receptor agonist reduced
run time to exhaustion compared to the control condition,
and without a change in any other variable [83].

Aside from periods of demanding mental exertion, aden-
osine is also proposed to accumulate during wakefulness,
most notably in sleep deprivation. Direct measurement of
adenosine in the forebrain of cats supports this hypothesis
with extracellular adenosine progressively increasing dur-
ing wakefulness and decreasing during subsequent recovery
sleep [26]. In human studies, the effects of sleep deprivation
on endurance performance are similar to those observed with
mental fatigue. Without sleep, perceived exertion increases
and endurance performance is worse, with no change in
the peripheral physiological variables reported [84—86]. In
humans, indirect support for the role of adenosine in the
modulation of perceived exertion is found in studies involv-
ing the ingestion of caffeine. Caffeine is very similar in
structure to adenosine and can bind to cell membrane recep-
tors for adenosine, thus blocking their action [87]. Caffeine
easily crosses the blood-brain barrier due to its lipophilic
properties [88] and has been shown to counteract most of
the inhibitory effects of adenosine on neuro-excitability [89],
neurotransmitter release [90] and arousal [26]. The con-
sumption of caffeine has been reported to reduce perceived
exertion and improve endurance performance in both sleep-
deprived [91] and mentally-fatigued participants [24]. Caf-
feine has also been reported to improve alertness and mood
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[92], and combined caffeine and carbohydrate ingestion has
been reported to lessen subjective mental fatigue during pro-
longed mental exertion [93]. In an exercise context, ingestion
of caffeine reduced perceived exertion and increased power
output during high-intensity efforts in cyclists [94], and in
sleep-deprived participants, caffeine reduced perceived exer-
tion and improved time to exhaustion back to baseline levels
[91]. Specific to mental fatigue, cycling time to exhaustion
was longest when mentally-fatigued participants consumed
caffeine, compared to a placebo or control condition (being
mentally-fatigued only) [24]. Compared to the placebo, per-
ceived exertion was reported as lower during the early stages
of the test following caffeine consumption [24].

5 Generation of Perceived Exertion

Despite the obvious importance of perceived exertion in
the regulation of endurance performance, particularly when
mentally fatigued, it is not understood exactly how perceived
exertion is generated. It is currently proposed that perceived
exertion is related to the activity within various regions of
the motor cortex, including the premotor and primary motor
areas [95]. Indeed, the corollary discharge theory postulates
that an efference copy of the central motor command is sent
directly from motor to sensory areas of the brain in order
to assist in the generation of perceptions associated with
motor output [96-99]. With increasing exercise intensity or
muscle fatigue, a greater number of motor units are recruited
and firing frequency increases, as does the number of effer-
ent copies received by sensory regions within the brain [95,
100]. As it is an inhibitory neuromodulator, we consider
that localised accumulation of adenosine creates a scenario
in which a greater stimulatory input is required to produce
a motor output. This stimulatory signal presumably arises
from motivational and other higher brain centres. We con-
tend that it could be the increased stimulatory requirements
that, as may occur with mental exertion, translates into an
increase in perceived exertion. Supporting this proposition,
ingestion of caffeine reduced RPE during submaximal iso-
metric knee extensions, and reduced activity of premotor
and motor areas of the cortex, reflected in the amplitude of
motor-related cortical potential (MRCP) [98]. These changes
in RPE and MRCP occurred without significant change in
muscle activation and force output. The explanation for the
caffeine-induced reduction in MRCP during muscle contrac-
tion was suggested to be increased central nervous system
(CNS) excitability [101, 102], thereby requiring less activity
in premotor and motor areas of the cortex to produce the
same degree of muscle activation after caffeine ingestion.
Considering these findings in another way, the lesser premo-
tor and motor area activity required for the muscle contrac-
tion could also be explained by a caffeine-induced reduction

in inhibition. Studies of transcranial magnetic stimulation
(TMS) and transcranial direct current stimulation (tDCS)
also appear to support this model of perceived exertion. A
study of tDCS, with the anodal electrode placed over the
left motor cortex and cathodal electrode above the shoulder,
improved time to exhaustion during an isometric leg exten-
sion compared to placebo or control [103]. The improvement
in time to exhaustion was paralleled by a reduction in RPE,
and it was proposed that the stimulation reduced the thresh-
old required for the firing of the descending motor drive.
In an opposing manner, but likely via similar mechanisms,
TMS to reduce primary motor cortex excitability increased
perceived exertion during a force-matching, grip force task
[104].

It is proposed that a primary site of this neuromodulation
is the ACC [13]. As mentioned in Sect. 2, this brain region
is involved in both effortful cognitive activities [44—47] and
perception of effort during exercise [50]. A reduction in
task-related brain activity has also been shown in the ACC
following either cognitive or motor skills training in young
adults [105], potentially providing a partial explanation for
the lower perceived exertion reported by experienced com-
pared to less experienced athletes on a particular exercise
task [106]. This may also contribute to the reduced impact
of mental exertion on a subsequent cycling time trial in pro-
fessional cyclists compared to recreational cyclists [107].
Lastly, the ACC has been implicated in cost/reward decision
making relating to the expenditure of effort [48, 108], such
as the downregulation of power output that occurs during
a time trial in a mentally fatigued person [9, 10]. While we
focus on the ACC as the current strongest candidate for the
neuroanatomical basis of the increase in perceived exertion
with mental fatigue, it would be ill-considered to suggest
that other cortical regions are not also involved. For exam-
ple, the insular cortex has been suggested to be associated
with changes in perception of effort during exercise both
under hypnosis [50] and during conscious exercise [109].
When mental exertion is effortful, however, we propose
that adenosine accumulates within the ACC. The inhibitory
influence of adenosine means greater stimulatory input is
needed to produce the required force output, the corollary
discharge is subsequently increased, and perceived exertion
is therefore greater.

6 Adenosine Impairs Motivated Behaviours

With reference to the psychobiological model, we further
contend that the negative effect of adenosine on endurance
performance is twofold, affecting not only a person’s per-
ceived exertion during a challenging task, but also their
motivation. Although a central component of mental fatigue
is described as an “increased resistance to further effort” and
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a “decrease in the level of commitment to the task at hand”
[2], few studies within the mental fatigue and physical per-
formance literature have reported a reduction in self-reported
motivation [76, 110]. Within experimental research, motiva-
tion is extremely difficult to accurately and objectively quan-
tify, and the authors believe that currently no appropriate
self-report measure of motivation is available. Self-reported
motivation data are confounded by both the nature of vol-
untary participation in research and social desirability bias,
whereby it is likely that participants will avoid reporting low
motivation (these being potential limitations of a range of
self-report data). In the case of mental fatigue, when motiva-
tion is experimentally manipulated in the form of a financial
incentive, mentally fatigued participants perform better on
tests of physical endurance than they do when no incentive
is offered [76, 111]. Furthermore, financial incentives do
not have a significant effect on the endurance performance
of participants who are not mentally fatigued, suggesting
that within this participant sample manipulating motivation
was only advantageous when they were mentally fatigued,
and that further benefit beyond baseline cannot be achieved
[76]. Outside of the physical performance literature, increas-
ing task motivation has also restored cognitive performance
following previous mental exertion [77]. Changes in motiva-
tion may also be reflected by changes in the reported RPE.
For example, the presence of an attractive female observer
reduced RPE in males, compared to no observer, or the pres-
ence of a male observer [112]. The authors suggested that,
for the male participants, the motivation to portray physical
competence may have been increased compared to when an
observer of the same sex was present. Similarly, the presence
of a competitive avatar during a cycling time trial increased
power output compared to cycling alone, with no differ-
ence in perceived exertion [113]. Although the reported
‘motivation to perform’ did not differ between conditions,
all participants expressed a wish to ‘beat the competition’
[113]. Similar findings have also been observed in studies of
deception [78, 114, 115]. These studies suggest that changes
in motivation may influence the reported RPE, and further
highlight that the current methods of quantifying motivation
may be limited.

Aside from highlighting the potential flaws in the cur-
rent tools used to quantify motivation, we suggest adeno-
sine could impair motivation due to its ability to inhibit the
release of dopamine [34], as well as its ability to modify the
affinity of dopamine receptor binding [116]. Activation of
adenosine receptors has been linked to inhibition of neuronal
firing [117], inhibition of neurotransmitter release [118] and
decreasing locomotor activity [119]. Adenosine injected into
the brains of rats also changes their behaviour similarly to
mentally fatigued participants, in that they shy away from
tasks that are effortful. Injection of an adenosine agonist
into the nucleus accumbens of rats produces effects similar
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to those observed with dopamine depletion or antagonism
[81]. Dopamine antagonism causes rats to reallocate their
behaviour away from food-reinforced tasks that have high
work requirements towards less effortful types of food seek-
ing [120]. As mentioned in Sect. 2, one brain region where
an interaction between adenosine and dopamine may be par-
ticularly important for mental fatigue is the ACC. Adenosine
[121] and dopamine receptors [122] are both found within
this region, and manipulations of D, receptors have shown
to effect effort-based decision making in rats [51].

7 Could Training Preserve Cerebral Fuel
and Reduce Adenosine Accumulation?

An exception to the consistent reporting of a reduction in
endurance performance with mental fatigue is the unaffected
time trial performance of professional road cyclists follow-
ing 30 min of mental exertion [107]. In this study, profes-
sional and recreational cyclists were exposed to an identical
cognitive task and experimental procedures. During the per-
formance of a subsequent cycling time trial, the recreational
cyclists recorded a lower mean power output and a slower
average speed in the mental exertion condition, whereas
the endurance performance of the professional cyclists was
unchanged [107]. Although the mental fatigue manipula-
tion may seem short, 30 min of performance of the same
cognitive task has also impaired time trial performance in
recreational runners [9]. It is plausible that training-induced
adaptations, which would conserve cerebral fuel availability
(and thereby minimise accumulation of extracellular adeno-
sine), would enable the professional cyclists to tolerate a
greater cognitive load before experiencing the detrimental
effects on endurance performance. In rats, cerebral glyco-
gen supercompensation has been observed following as little
as 4 weeks of endurance training [123]. The human brain
also appears to have capacity for adaptation with an acute
increase in cerebral glycogen stores following a single bout
of insulin-induced moderate hypoglycaemia [124]. Super-
compensation of cerebral glycogen has also been shown in
rainbow trout following 10 days of fasting [125], in mice
following insulin-induced hypoglycaemia [126], as well as
transient forebrain ischaemia [127]. Adenosine could also
be reduced via an increase in the efficiency of neuronal pro-
cessing, with enhanced neural efficiency observed in ath-
letes performing at higher levels, assessed via both electro-
encephalography [128] and functional magnetic resonance
imaging [129]. Increased neuronal efficiency would lead to
greater conservation of cerebral fuel, similar to the preser-
vation of skeletal muscle glycogen observed with changes
in movement economy [130]. Any mechanism by which a
greater supply of cerebral fuel is available is likely to mini-
mize the accumulation of adenosine with mental exertion,
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and training associated with performance mastery appears
to achieve this in a number of ways.

8 Recommendations for Future Research

The aim of this theoretical review was to present evidence
to support and extend the hypothesis, originally proposed
by Pageaux and colleagues in 2014, that adenosine plays
a critical role in the impaired endurance performance of
mentally fatigued persons. We acknowledge that adenosine
may be only one of several factors that contribute to fatigue;
however, in the case of mental fatigue, with other peripheral
physiological variables ruled out, we propose the adenosine
hypothesis as a promising explanation. This review only pro-
poses a hypothesis that is yet to be experimentally tested.
Nevertheless, hypotheses such as these are important as they
often lead to direct testing of theories, explanations and thus
understanding, which will allow the literature in the area to
move forward. To help direct this future research, a small
number of recommendations have been provided below.
Firstly, a major limitation of mental fatigue and physi-
cal performance research is the way in which we quantify
motivation. As discussed in Sect. 6, any time participants
are asked to self-report motivation it is likely that their
response will be biased through the concept of social
desirability [131]. Although voluntary, when a partici-
pant agrees to take part in a research project it is expected
that they will give the task their best effort. In the case of
reporting task motivation, little can be done to evaluate if
the reported value is truthful, whether that be a conscious
or unconscious decision [132]. One method that has been
suggested to reduce or detect the presence of response bias
is to obtain measures of the predictor and criterion vari-
able from different sources [133]. Regarding motivation,
self-report is the only measure available. Perception of
effort on the other hand, as an example of another self-
report measure, can be obtained directly from the partici-
pant, but can also be associated indirectly with perfor-
mance outcomes. For example, an RPE of 11 (light) would
be viewed as questionable at the completion of a maximal
incremental cycling task. Although all self-report data are
susceptible to bias, measurements that can be obtained
from a secondary source, and thus have increased transpar-
ency, are likely to be less prone to falsification. Further-
more, social desirability has previously been reported to
bias reported motivation to undertake work on an online
crowdsourcing service [134], as well as reported goal ori-
entation in young athletes [135]. As currently no other
measure of motivation is available, it is difficult to make
any recommendation other than to consider self-reported
motivation carefully. We suggest that experiments that

manipulate motivation in mentally fatigued participants
[76, 111] are currently the best approach to evaluating the
impact of mental exertion on motivation.

Secondly, it must be considered that mental fatigue
may not only arise from the performance of a prolonged
and demanding cognitive task. Common regions of the
brain appear to be active during mentally effortful tasks,
whether that be a cognitive task such as the Stroop task,
controlling one’s emotions, or maintaining focus during a
long endurance race. By examining effort more globally,
as opposed to simply thinking of mental fatigue as a state
arising from the performance of a demanding cognitive
task, we may uncover further linkages between effortful
tasks and how they are regulated.

Finally, although direct assessment of adenosine con-
centration during prolonged mental and physical exertion
in humans would be ideal, at present we have not devel-
oped the technology to permit such an approach. Pharma-
cological manipulation may serve as one alternate method
by which we can investigate neurochemical changes with
mental fatigue. Substances that inhibit or promote adeno-
sine, as well as inhibit or promote dopamine, may be used
during exercise performance in mentally fatigued and non-
mentally fatigued participants. Manipulations of diet and
feeding prior to, or post, mental exertion may also be used
to determine any potential protective role of increased cer-
ebral fuel availability on the negative effects of mental
fatigue on endurance performance.

9 Conclusion

The findings presented in the current theoretical review
provide a physiological rationale for the impairment of
endurance performance undertaken in a state of mental
fatigue. We propose that extracellular cerebral adenosine
accumulates due to the greater neuronal activity required
by a demanding cognitive task, as well as through a reduc-
tion in local fuel availability. Adenosine then acts in two
ways: increasing perceived exertion during subsequent
endurance exercise, and impairing motivation to expend
effort, most likely in the ACC. While this review focuses
on the role of adenosine, dopamine and glucose/glycogen
in the impact of mental fatigue on endurance performance,
it is likely that other fuel sources, neurotransmitters and
peripheral mechanisms also contribute [136—138]. None-
theless, by narrowing our focus to these particular facets
we are able to present our view on what is a central aspect
of this important and complex psychophysiological phe-
nomenon. For it is not until we understand how mental
fatigue impairs endurance performance that we can best
find ways to combat it.
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