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ASSOCIATION FOR

PSYCHOLOGICAL SCIENCE

One of the most challenging problems for clinicians 
and researchers of psychopathology is to capture the 
large variability in symptom profiles into a parsimoni-
ous, comprehensive, and clinically useful classification 
system. Categorical descriptive schemas, such as the 
American Psychological Association’s Diagnostic and 

Statistical Manual of Mental Disorders (DSM) and the 
World Health Organization’s International Statistical 

Classification of Diseases and Related Health Problems, 
have historically dominated this endeavor. However, 
categorical models of psychopathology and psychiatric 
disorders are increasingly criticized for several reasons, 
such as the use of consensus- rather than evidence-
based categories, arbitrary thresholds to delineate a 

categorical diagnosis, and the large heterogeneity of 
symptoms and processes within categories and their 
limited reliability and substantial comorbidity (Kotov 
et al., 2017).

On the other hand, a quantitative nosology based on 
empirical data analysis is rapidly developing, showing 
that the observed variation in psychopathology can be 
parsimoniously modeled using a limited number of hier-
archically arranged dimensions (Caspi et al., 2014; Kotov 
et al., 2017). For example, analyzing the correlational 
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Abstract
Several labels, such as neuroticism, negative emotionality, and dispositional negativity, indicate a broad dimension 
of psychopathology. However, largely separate, often disorder-specific research lines have developed that focus on 
different cognitive and affective characteristics that are associated with this dimension, such as perseverative cognition 
(worry, rumination), reduced autobiographical memory specificity, compromised fear learning, and enhanced somatic-
symptom reporting. In this article, we present a theoretical perspective within a predictive-processing framework in 
which we trace these phenotypically different characteristics back to a common underlying “better-safe-than-sorry” 
processing strategy. This implies information processing that tends to be low in sensory-perceptual detail, which 
allows threat-related categorical priors to dominate conscious experience and for chronic uncertainty/surprise because 
of a stagnated error-reduction process. This common information-processing strategy has beneficial effects in the short 
term but important costs in the long term. From this perspective, we suggest that the phenomenally distinct cognitive 
and affective psychopathological characteristics mentioned above represent the same basic processing heuristic of the 
brain and are only different in relation to the particular type of information involved (e.g., in working memory, in 
autobiographical memory, in the external and internal world). Clinical implications of this view are discussed.

Keywords
neuroticism, negative emotionality, affectivity, dispositional negativity, fear learning, autobiographical memory, 
somatization, perseverative cognition



2 Van den Bergh et al.

structure among 11 first-order dimensions of psychopa-
thology, Lahey, Krueger, Rathouz, Waldman, and Zald 
(2017) suggested one psychobiological dimension that 
increases the risk for psychopathology and stated that 
“negative emotionality lies at the heart of the general 
factor of psychopathology” (p. 161). Investigations using 
a broader database suggested a large p-factor (Caspi 
et al., 2014; Caspi & Moffitt, 2018) as a dimension that 
indicates the liability for any mental disorder, as well as 
for comorbidity, persistence, and symptom severity with 
disordered thought at the extreme end. Conway et al. 
(2019) recently proposed a dimensional hierarchical 
taxonomy of psychopathology (HiTOP) to guide mental 
health research. Their HiTOP describes a general psy-
chopathology factor at the top and large spectra at the 
level below it that reflect dimensions of individual dif-
ferences as identified in personality research. These 
spectra in turn aggregate syndromes and disorders 
and—further down the hierarchy—more narrow signs, 
symptoms, and components of psychopathological func-
tioning to allow different degrees of specificity when 
describing the pathological state of an individual.

In the current article, we focus on the internalization 
spectrum as described in the HiTOP structure, which 
in personality research corresponds to different traits 
such as neuroticism (Eysenck, 1947; Zinbarg et  al., 
2016), negative emotionality (Eisenberg et  al., 2005), 
negative affectivity (Watson & Clark, 1984), and dispo-
sitional negativity (N/NE; Shackman et  al., 2016a, 
2016b). There are several good reasons to focus on this 
last trait. First, N/NE is associated with less favorable 
conditions and outcomes in almost every domain of 
life, including education, work, relational stability, and 
various indicators of physical health, resulting in sub-
stantial individual and societal burden and excessive 
costs (Cuijpers et  al., 2010; Shackman et  al., 2016b). 
Second, N/NE is also critically involved in causing and 
maintaining psychopathology: N/NE is not only associ-
ated with a large array of disorders such as anxiety, 
mood, and substance-abuse disorders; amount of 
comorbidity; and a less favorable prognosis—it is also 
a powerful predictor for the development of these dis-
orders in longitudinal studies (Hur, Stockbridge, Fox, 
& Shackman, 2019; Shackman et  al., 2016b). Third, 
recent meta-analytic evidence has shown that N/NE can 
be altered with different types of therapy with similar 
moderate effect sizes (e.g., Cohen’s d = 0.50–0.60 for 
cognitive-behavioral, supportive, or mixed therapies; 
Roberts, Luo, et al., 2017). This is interesting because 
targeting a single transdiagnostic dimension such as N/
NE is more efficient than developing separate treat-
ments for a panoply of comorbid categorical disorders. 
At the same time, it suggests that a clear understanding 
of the processes involved in this transdiagnostic trait is 

extremely important for progress in preventing its con-
sequences and improving treatment effects.

The goal of the current article is to use a novel theo-
retical perspective on how the brain processes informa-
tion to suggest a processing heuristic that is at the core 
of N/NE. We call this heuristic a “better-safe-than-sorry” 
(BSTS) processing strategy. The label “BSTS” is not new 
in this context: It has been used occasionally in previ-
ous research to indicate the rationale behind some N/
NE-related mechanisms such as attentional and inter-
pretational bias. However, it has not been understood 
as the central organizing principle at the core of N/NE, 
as is shown by the absence of this concept in several 
important conceptual articles on N/NE (Barlow, Ellard, 
Sauer-Zavala, Bullis & Carl, 2014; Barlow, Sauer-Zavala, 
Carl, Bullis, & Ellard, 2014; Hur et al., 2019; Shackman 
et al., 2016a, 2016b). By taking a predictive-processing 
perspective, we aim to show that BSTS causes a stag-
nated error-reduction process that—depending on the 
specific type of information involved—results in differ-
ent phenomenal characteristics of N/NE that up to now 
have been investigated along largely separate research 
lines. By putting BTST at the core of N/NE and by 
demonstrating how separate phenomena can be under-
stood as representing the same processing heuristic of 
the brain, we aim to contribute to a deeper and more 
parsimonious understanding of N/NE. We also aim to 
show how this way of understanding may improve treat-
ment by suggesting which treatment components are 
critical and why. Before elaborating on this predictive-
processing perspective and its potential implications in 
understanding N/NE, we briefly summarize the current 
views on this trait.

Conceptualizations of N/NE as a 
Dimension of Psychopathology

The nature of N/NE

Resulting from both genetic and environmental factors 
and their interactions, N/NE appears as a broad and 
stable disposition that leads one to appraise situations 
as threatening, to hold negative anticipations about 
oneself and the world, to experience negative mood 
states and emotions, and to show poor emotion regula-
tion (Barlow, Ellard, et al., 2014; McCrae & Costa, 2003; 
Ormel et  al., 2013; Ormel, Riese, & Rosmalen, 2012; 
Watson & Clark, 1984). N/NE is different from a negative 
affective state in response to environmental factors. In 
general, individuals with high trait N/NE show more 
affective instability; that is, they show more moment-to-
moment affective fluctuations, even between feelings of 
different quality (Kuppens, Van Mechelen, Nezlek, 
Dossche, & Timmermans, 2007). Within a constructionist 
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view on emotion (Barrett, 2017), N/NE should be seen 
as a valenced background state reflecting a rather long-
term imbalance between the necessary and actual/
anticipated resources to secure basic needs (e.g., 
growth, survival, reproduction) rather than as a categori-
cal constructed emotion.

N/NE is associated with more vigilance toward 
potentially negative information; behavioral inhibition; 
a greater intolerance for uncertain, ambiguous, and 
uncontrollable situations; and a lower threshold for 
reacting with avoidance and escape responses to threat 
and negative information, including one’s own negative 
emotions (Barlow, Sauer-Zavala, et  al., 2014; Gray & 
McNaughton, 1996). N/NE is also associated with an 
array of behavioral characteristics such as attentional 
(Shackman et  al., 2016a, 2016b) and interpretational 
(Mathews, Ridgeway, Cook, & Yiend, 2007) bias; wor-
rying, ruminating, and catastrophizing (Ehring & 
Watkins, 2008); enhanced symptom reporting (Van den 
Bergh, Witthöft, Petersen, & Brown, 2017); reduced 
autobiographical memory specificity (Walker, Yancu, & 
Skowronski, 2014); and compromised fear-learning 
mechanisms, such as poor safety learning, enhanced 
generalization of threat perception, and poor extinction 
learning (Gazendam, Kamphuis, & Kindt, 2013; Haaker 
et al., 2015). It is likely that several of these character-
istics rely partly on deficits in executive function and 
cognitive control (Hur et al., 2019).

Both animal and human research have shown that N/
NE is associated with altered neural structure and function 
(Depue, 2009; Hariri, 2009; Ormel et al., 2013). Recent 
comprehensive reviews (Hur et al., 2019; Shackman et al., 
2016a, 2016b) document elevated responding to threat 
in several brain areas, such as the amygdala, hippocam-
pus, insula, bed nucleus of the stria terminalis (BNST), 
midcingulate and orbitofrontal cortex, and periaque-
ductal gray. Consistent evidence further suggests that 
the amygdala is a coordinating brain area involved in 
both resting-state and threat-induced responses that are 
associated with elevated N/NE. On the one hand, the 
amygdala receives input from sensory (thalamic), contex-
tual (hippocampal), and evaluative/regulatory (prefrontal/
insular) structures that flows from the ventral areas of 
the amygdala to the central and dorsal/posterior parts 
and to the BNST. On the other hand, the latter struc-
tures (central, BNST) coordinate the behavioral (e.g., 
avoidance, inhibition), physiological (e.g., autonomic, 
neuroendocrine), and cognitive (e.g., hypervigilance, 
attentional bias) responses characterizing negative 
affective states.

Acute stressors alter amygdala functional connectiv-
ity and potentiate amygdala responses to threat (Cousijn 
et al., 2010; Hermans et al., 2017), and these effects are 
stronger in individuals with N/NE (Everaerd, Klumpers, 

van Wingen, Tendolkar, & Fernández, 2015), suggesting 
sensitization of the amygdala. Repeated acute and/or 
chronic stress may also lead to neural changes in other 
brain areas, including the hippocampus and prefrontal 
cortex (McEwen & Gianaros, 2011; McEwen, Nasca, & 
Gray, 2016). These changes might affect larger brain 
networks subserving executive function and cognitive 
control such as the frontoparietal (dorsolateral prefron-
tal cortex, intraparietal sulcus) and cingulo-opercular 
network (midcingulate cortex, anterior insula, frontal 
operculum; Q. Li et al., 2017). Emerging evidence sug-
gests that frontoparietal areas such as the dorsolateral 
prefrontal cortex are less efficient in allocating resources 
to execute function tasks in individuals with N/NE (for 
a review, see Hur et al., 2019).

N/NE and psychopathology

A major scientific challenge remains, however, to par-
simoniously conceptualize N/NE as a general transdi-
agnostic psychobiological dimension to solve the 
multifinality problem (how a transdiagnostic factor 
causes different disorders) and the problem of diver-
gent trajectories (why different individuals with the 
same transdiagnostic factor develop different disorders; 
Nolen-Hoeksema & Watkins, 2011). Nolen-Hoeksema 
and Watkins (2011) suggested solving these problems 
by sorting a large number of separate processes into a 
coherent framework consisting of distal, proximal, and 
moderating (risk) factors. In another attempt at solving 
these problems, Barlow, Ellard, et al. (2014b) described 
a complex of vulnerability factors (triple-vulnerability 
theory) involving (a) a biological (heritable) vulnerabil-
ity factor predisposing emotion-related brain structures 
to hyperexcitability, (b) a (learned) psychological vul-
nerability factor representing “a pervasive sense of 
unpredictability and uncontrollability in relation to life 
events and a perceived inability to cope with negative 
outcomes from such life events” (p. 484), and (c) a 
(learned) factor that determines why an individual 
becomes concerned about a particular type of threat 
and thus develops a particular type of disorder. The 
Research Domain Criteria project also tries to identify 
and integrate dimensional constructs at multiple levels 
of measurement (from genes to self-reports) in different 
domains of functioning (Cuthbert & Insel, 2013). For 
example, Lang and coworkers suggested a dimension of 
psychophysiologic responding in the negative-valence 
system that cuts across DSM-based clinical anxiety diag-
noses representing diminishing defensive reactivity (or 
blunting of the defensive system) with decreasing focal 
fear and increasing negative affectivity, functional inter-
ference, and distress of the patients (Lang, McTeague, & 
Bradley, 2016; McTeague & Lang, 2012).
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These approaches have created coherent conceptual 
schemas that elucidate how general threat sensitivity 
may lead to various psychopathological phenomena 
through the operation of an array of empirically estab-
lished processes. However, in this article we suggest 
that taking a new and more radical functional perspec-
tive may deepen our understanding in a more parsimo-
nious way. From an evolutionary perspective, N/NE as 
a trait can be seen as an adaptive response to repeated 
experiences with threat involving a recalibration of the 
threshold for threat detection and concomitant vigilance 
and hyperarousal. An optimal threshold for threat 
detection depends on two factors: the probability of an 
aversive event and the relative payoffs of the four pos-
sible outcomes of detection (i.e., true and false posi-
tives and negatives; Nettle & Bateson, 2012). Given the 
typically much larger costs of false negatives (missing 
threat) compared with false positives (metabolic expen-
diture), it is adaptive to recalibrate thresholds to lower 
levels when aversive experiences are likely, represent-
ing a BSTS strategy to cope with threat. Because of the 
autocorrelated nature of the person-environment sys-
tem within individuals and across generations, it is not 
surprising that recalibration to lower thresholds has 
been observed in animals and humans, especially after 
repeated (early) adverse experiences, and that it can 
be transferred to subsequent generations (Baker, Cesa, 
Gatz, & Mellins, 1992; Hanson, Hariri, & Williamson, 
2015; Hanson, Nacewicz, et al., 2015; Hariri & Holmes, 
2006; Kendler, Prescott, Myers, & Neale, 2003; McEwen 
et  al., 2016; Nettle & Bateson, 2012). Recalibration 
occurs in both animals and humans, suggesting a per-
vasive change in the way living animals construe and 
behave in the world that is not always captured by 
assessing cognitive operations and/or verbal expressions. 
In addition, it suggests that bias should not be considered 
irrational and dysfunctional but rather quite rational and 
adaptive in view of a person’s history (Gilbert, 1998; 
Nemeroff, 2013).

In line with this functional perspective, the general-
ized unsafety theory of stress (GUTS; Brosschot, Verkuil, 
& Thayer, 2016, 2017, 2018) suggests that the default 
state of organisms is to expect and prepare for threat 
and that only the perception of safety can inhibit this 
default state. Individuals with high trait N/NE would 
be unable to perceive safety, resulting in a chronic state 
of threat, even when none is present. Brosschot and 
colleagues consider different behavioral characteristics 
such as attentional bias, negative interpretation biases, 
perseverative thinking, poor safety learning, and chronic 
stress to represent a strategy of “erring on the safe side.” 
However, whereas GUTS describes why these phenom-
ena should be interpreted this way, it does not explain 
how information is processed representing this strategy 

and how precisely this leads to the behavioral phenom-
ena that can be observed in clinical practice.

Clarifying this “how” in terms of processing heuristics 
in the brain is the purpose of the current article. We 
suggest that interpreting N/NE and associated cognitive, 
affective, and behavioral phenomena within a predictive-
processing perspective elucidates the centrality and 
communality of a BSTS strategy in a way that would 
not be apparent without these new conceptualizations. 
Predictive-processing accounts entail a radical con-
structivism in which the brain is seen as an organ that 
actively constructs a model of reality from noisy input 
using information it already has. Prediction signals from 
models in the brain are matched with sensory input, 
resulting in prediction errors that are fed back to improve 
the adaptivity of these models when making perceptual 
inferences and actively navigating the environment. In 
a broad sense, we suggest that individuals who are 
highly sensitive to threat tend to abort this error-reduction 
process in a premature phase. Although this strategy 
may be rewarded by beneficial effects in the short term 
because it helps individuals to quickly classify informa-
tion about threat and negative valence, it ultimately 
leads to insufficient updating of their model of reality, 
resulting in persistent deviations between expected and 
actual input. We suggest that such a stagnated error-
reduction process is the core of the psychobiological 
dimension of N/NE and that phenomenally different 
clinical characteristics that are associated with it are at 
a more fundamental level implementations of one and 
the same process. Before elaborating on this point, we 
briefly introduce predictive-processing models (for more 
elaborate introductions, see Barrett & Simmons, 2015; 
Clark, 2013; Friston, 2010, 2013; Friston, FitzGerald, 
Rigoli, Schwartenbeck, & Pezzulo, 2017; Hohwy, 2012, 
2013; Seth, 2013; Stephan et al., 2016; Van den Bergh 
et al., 2017; Wiese & Metzinger, 2017).

A Predictive-Processing Model

Rooted in theories of inference and control in biological 
systems, new conceptualizations of the brain have 
emerged in computational neuroscience, the implica-
tions of which are currently being explored in a grow-
ing number of areas (Barrett, 2017; Stephan et  al., 
2016). Conceiving of the brain as “an ever-active hier-
archical prediction machine” (Clark, 2015, p. 3) striving 
to minimize prediction error has important implications 
for a functional interpretation of perception, attention, 
emotion, thought, language, and action and more 
widely for our understanding of mind, experience, and 
agency, leading several authors to qualify this perspec-
tive as a paradigm shift (Barrett, 2017; Clark, 2013; 
Hohwy, 2013; Lupyan & Clark, 2015).
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Predictive processing, perception,  

and action

According to the predictive-processing framework, a 
basic task of the brain is to construct an adaptive model 
of the (external and internal) world, although its only 
source of information to do so is the spatial and tem-
poral patterning of its own neural activity. Models are 
considered adaptive when they allow one to quickly 
and efficiently infer the sources of stimulation (percep-
tion) as well as to predict future states and conse-
quences of actions (planning and action). To achieve 
this goal, the brain uses information not only from neu-
ral activity that is triggered by peripheral input (sense 
organs and receptors in the peripheral body) but also 
from neural activity generated by the brain itself, reflect-
ing previous experiences and “built-in” information that 
act as predictions. The theory of predictive coding or 
processing specifies how the brain makes sense of the 
stimulation it receives given certain expectations using 
principles akin to Bayesian inference.

Input from the (external or internal) world leads to 
two counterflowing streams of neural activation across 
several hierarchical levels of the brain: Stimulation by 
peripheral input (“likelihood”) interacts with activations 
generated by the brain (“generative model”) that act as 
probabilistic predictions of the input (“prior beliefs”) 
within a specific context—that is, they estimate a likeli-
hood of what the new input will be given previous 
experience. It should be noted, however, that prior 
beliefs are implicit assumptions of the brain that in most 
cases are not accessible to consciousness. Thus, they 
can be quite different from conscious beliefs. The dis-
crepancy between predicted and actual inputs across 
multiple hierarchical levels—from low-level sensory 
input to high-level abstractions—results in prediction 
errors that are propagated throughout the system in a 
process of error minimization. The brain will eventually 
settle on/infer a posterior model that represents the 
most likely model of the stimulation. For example, if 
one is waiting for Jeff in a crowded street, the brain 
generates neural patterns acting as prior beliefs that 
will facilitate spotting Jeff in the crowd (example from 
Pezzulo, Maisto, Barca, & Van den Bergh, 2019, p. 3).

The system realizes error minimization in three ways: 
by adapting the prior beliefs to accommodate the actual 
input (belief update), by actively operating on the 
world and generating input that fits the prior beliefs 
(“active inference”), and by changing how the brain 
samples (or attends to) sensory input (Barrett & 
Simmons, 2015). Active inference acknowledges that 
perception does not passively wait for sensory input but 
depends on action (e.g., active sampling) to produce 
input. For example, waiting for Jeff may prompt the  

person to move toward a location that provides a better 
overview of the passing crowd and/or increases the  
scanning rate, generating more detailed information to 
help spot him (Pezzulo et al., 2019). In a broader sense, 
however, it refers to any kind of perceptual, somatovi-
sceral, and behavioral (goal-directed) responses to pro-
duce input that is consistent with the expectations 
specified in the generative model to minimize predic-
tion error. Active inference therefore involves “policy 
selection” to reach epistemic and/or pragmatic goals 
(Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 
2016). This process of error minimization eventually 
settles on posterior beliefs that best account for the 
prediction errors and that reflect the combined influ-
ence of priors and the actual input. Conscious experi-
ence is thought to correspond to the posterior beliefs 
that are the most likely explanation of what is happen-
ing in the world (Hohwy, 2012).

An interesting consequence of this perspective is that 
it integrates perception, action, and physiological regu-
lation within the same theoretical account (for a hierar-
chical predictive coding model describing how multiple 
neurovisceral interactions regulate heart rate variability 
in interactions with physiological and psychological 
demands, see R. Smith, Thayer, Khalsa, & Lane, 2017).

Precision and precision control

Priors, prediction errors, and posterior beliefs are con-
ceived of as probability distributions that represent sta-
tistical regularities in neural activity with a mean and 
a variance. The inverse of the variance of these distri-
butions is its precision. Highly precise priors and pre-
diction errors reflect a neural pattern that has a high 
probability of being associated with a particular input. 
The opposite is true for low precise priors and predic-
tion errors. For example, if Jeff is unusually tall, both 
priors and prediction errors representing Jeff’s height 
are highly precise, resulting in a quick and reliable 
recognition of Jeff. The relative impact of the distribu-
tions representing prior beliefs (i.e., predictions) versus 
the distributions representing the input (i.e., the likeli-
hood of what is present) on the posterior beliefs (i.e., 
what the system concludes is present) will be deter-
mined by the precision of the distributions. For example, 
when it is dark, there is a high probability of recognizing 
Jeff in any tall person, reflecting a strong effect of the 
prior on the eventual perception. Conversely, on a 
sunny day it is less likely to take any tall person for Jeff, 
and this likelihood is even further reduced if one is not 
waiting for Jeff.

Because the brain cannot know whether any residual 
prediction error represents random information or is 
amenable to further minimization, it must learn the 
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conditions under which particular models are likely to 
be adaptive. This is accomplished by developing context-
dependent expectations about the precision of its 
inputs, which in turn determine how much weight is 
given to the prediction errors in the process (“precision 
optimization”; Hohwy, 2012). The implication is that 
contextual cues may have an important impact on the 
eventual posterior model that corresponds to conscious 
experience. In the case of Jeff, the perceptual informa-
tion related to Jeff’s height is highly precise, and the 
brain will learn to consider height to be a highly precise 
prior for recognizing Jeff. In a more general way, preci-
sion control is extremely important in creating adaptive 
models of the stimulation that reaches the brain (Parr 
& Friston, 2018). Figure 1 illustrates how the relative 
precision of priors and prediction errors (likelihood) 
affects the eventual posterior model.

Major advances have been made in relating these 
predictive-processing concepts to a neuroanatomical 
architecture and in operationalizing them in formal 
computational ways (see Friston, Rosch, Parr, Price, 
& Bowman, 2018; Parr & Friston, 2018; J. A. Roberts, 
Friston, & Breakspear, 2017).

Some implications

Several implications follow from this way of under-
standing the functionality of the brain. First, conscious 
experience always reflects prior expectations to some 
extent, but the degree to which this happens can vary. 
Prior beliefs with high precision in the context of 
imprecise inputs are likely to have a strong impact on 

the posterior beliefs, whereas the reverse is true when 
high-precision inputs are processed while prior beliefs 
are imprecise. In both cases, however, the same com-
pelling sense of being “real” or “true” is produced. Sec-
ond, the criterion for the brain to settle on particular 
posterior beliefs is not accuracy but adaptiveness or 
usefulness. Although accurate beliefs are mostly adap-
tive, it can be more adaptive to be biased (Lynn & 
Barrett, 2014). This suggests that it might be more fruit-
ful not to consider bias a mistake or “being wrong” that 
should be corrected. Instead, trying to understand its 
usefulness and modifying conditions to make it less 
adaptive might be a more fruitful approach for modify-
ing the information-processing “heuristics.” Third, and 
most importantly, predictive processing does not 
assume a self or an agent that organizes the information-
processing traffic. Instead, the brain is considered to 
self-organize following the principle of free-energy 
minimization, and the sense of self or agency is a prod-
uct of processing heuristics themselves producing per-
ceiver and percept at the same time (Friston, 2010; 
Hume, 1739/2007). It follows that N/NE should not be 
considered to be something that a self “has” or to be 
some force that affects and skews “normal” information 
processing and should be controlled or regulated by a 
superseding self. Rather, we suggest that N/NE should 
be considered inherent to the data-processing heuristics 
themselves (Petersen, von Leupoldt, & Van den Bergh, 
2015). The implication is that different characteristics 
of N/NE should not be seen as separate phenomena 
that are associated with N/NE but as a representation 
of these very data-processing heuristics. In this way, we 

Fig. 1. Integration of prior knowledge and sensory evidence (likelihood) in Bayesian infer-
ence. The top panel shows that if the prior and likelihood have the same precision (i.e., 
inverse variance of the Gaussian distribution), the posterior belief is in between. The middle 
and bottom panels show that a higher-precision prior and likelihood “attract” the poste-
rior, respectively. Note that in all cases the precision of the posterior increases compared 
with the prior. Reproduced from Pezzulo, Maisto, Barca, & Van den Bergh (2019), which 
was published under a Creative Commons Attribution (CC BY) 4.0 International License.
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suggest a more parsimonious interpretation of N/NE 
and its associated phenomena with potentially impor-
tant clinical implications. We expand on this perspec-
tive below.

N/NE in a Predictive-Processing Model

If N/NE is considered an adaptive trait that involves 
recalibrating the threshold for threat detection repre-
senting a BSTS strategy, the question then becomes how 
a BSTS strategy is conceptualized in a predictive-
processing model. Because input to the brain as repre-
sented in neural distributions can in principle be 
categorized in an infinite number of patterns, the sys-
tem must apply a decision rule to settle on a categorical 
posterior model (to solve the “infinity problem”; Chater 
& Vitányi, 2003). The decision rule should ideally be 
set in such a way that not only is important information 
not missed but also details are not too manifold and/
or too specific to impede generalizing and learning 
from prior experience (Petersen et al., 2015; Shepard, 
1987; Rigoli, Pezzulo, Dolan, & Friston, 2017). Threat 
processing by individuals with high trait N/NE can be 
seen as involving a decision rule that has shifted toward 
oversimplifying input. The benefit may be greater speed 
in categorizing input as threat at the expense of the 
level of detail by which the input is processed.

Applying a decision rule that reduces detailed pro-
cessing of the prediction errors while maintaining 
highly precise threat-related priors results in percep-
tions that are more informed by categorical threat-
related priors than by actual input. This process (a form 
of “jumping to conclusions”) has the advantage of 
reducing uncertainty in the short term, but the cost is 
that prediction errors tend to remain imprecise, reduc-
ing the evidence needed to update the prior beliefs and 
enabling high-level (threat-related) priors to further 
dominate one’s conscious experiences. Reduced detail 
in processing information from the inner and outer 
world and poor updating of prior beliefs will also result 
in generative models with a low level of detail that, 
according to computational simulations, increases the 
precision of predictions (Kwisthout, Bekkering, & Van 
Rooij, 2017), leading to chronic conditions of uncertainty/
surprise in the long term (i.e., new unpredicted input 
will always have to be dealt with). This suggests that a 
stagnated error-reduction process is at the core of high 
trait N/NE1 and involves persistent deviations between 
model-based prior expectations and actual evidence, 
which is “the hallmark of a bad model” (Stephan et al., 
2016, p. 6).

It is important to note that from a predictive-coding 
perspective N/NE is not only an affective quality added 
to the error-processing dynamics. Rather, emotional 

valence is considered to emerge from these dynamics 
at work ( Joffily & Coricelli, 2013; Van de Cruys, 2017).2 
For example, unresolved mismatch (“surprise”)3 
between predicted and actual stimulation may charac-
terize feelings of curiosity and interest and generate 
positive feelings of mastery as long as predictive prog-
ress is being made (Van de Cruys, 2017). However, 
when predictive progress stagnates, the persistent devi-
ations between model-based prior expectations and 
evidence may engender unproductive coping behaviors 
(e.g., chronically elevated vigilance) and inappropriate 
physiological activations that characterize N/NE, which 
in turn may further compromise updating of nonadap-
tive prior beliefs (Stephan et al., 2016).

It is currently not clear how this processing strategy 
is implemented in the brain and maps onto amygdala 
overactivation and deficient cortical control that char-
acterizes N/NE as described above. In any case, a 
predictive-processing account goes beyond a focus on 
particular brain structures and considers the process of 
descending predictions, ascending prediction errors, 
and error minimization across hierarchical layers of the 
brain to involved information flow through large-scale 
functional networks (see, e.g., Barrett, 2017; Barrett & 
Simmons, 2015; Park & Friston, 2013). How functional-
ity emerges from the structural architecture of the brain 
still remains to a large extent “a mystery in neurosci-
ence” (Park & Friston, 2013, p. 1). Studies on how N/
NE is implemented in large-scale functional neural net-
works are emerging, but the picture up to now has been 
fragmented because the focus of these studies has been 
on (a) specific aspects of N/NE (e.g., working memory in 
N/NE individuals) and (b) the different brain-connectivity 
analysis methods and metrics used. The results are thus 
rarely consistent (see Dima, Friston, Stephan, & Frangou, 
2015; Gentili et al., 2017; B. J. Li et al., 2018; Ueda et al., 
2018).

In sum, we suggest that high trait N/NE as a general 
vulnerability factor for psychopathology has a BSTS strat-
egy at its core that implies a stagnated error-reduction 
process when processing input. Input is processed with 
low detail, resulting in low-precision prediction errors 
and allowing prior threat-related beliefs to dominate 
the immediate experience. However, in the long term 
it also leads to poor updating of prior beliefs, the main-
tenance of highly precise prior beliefs, and thus chronic 
uncertainty/surprise. We suggest that this pervasive way 
of processing input underlies a wide variety of disparate 
phenomena and that the phenomenal differences result 
from the different content of information rather than 
involving different processes. This is not to say that the 
phenomena we describe below must always show up 
together within one individual. Context and individual 
concerns and experiences can moderate which of the 
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phenomena below will be more pronounced in a par-
ticular case (Barlow, Ellard, et al., 2014; Lahey et al., 
2017; Nolen-Hoeksema & Watkins, 2011).

Exemplars of a General BSTS 
Processing Strategy

Several cognitive biases related to N/NE have been 
extensively documented and occasionally interpreted 
as examples of a BSTS strategy (Cisler & Koster, 2010; 
Forbes, Purkis, & Lipp, 2011; Mathews & MacLeod, 
2005; Williams, Mathews, & MacLeod, 1996). Typical 
examples include attentional bias toward threat detec-
tion and negative emotional information and greater 
difficulty in disengaging from these biases. In addition, 
bias toward negatively interpreting meanings and draw-
ing negatively valenced inferences has been well docu-
mented (Heinrichs & Hofmann, 2001; Mathews et al., 
2007). Negatively biased recall of information is also a 
robust finding, particularly when the information relates 
to the self (Rusting, 1998). Because it is rather obvious 
that attentional and interpretational biases are examples 
of lowering the threshold for threat detection, these cog-
nitive biases will not be reviewed here, although they 
have not yet been conceptualized within a predictive-
processing framework. In the following sections, we 
address other N/NE-related psychological characteris-
tics that are less obvious examples of a BSTS strategy 
and discuss how a predictive-processing perspective 
reveals the BSTS strategy at its core.

Perseverative cognition

Perseverative cognition, or the repetitive, sustained acti-
vation of cognitive representations of past stressful 
events or feared events in the future, refers to a class 
of cognitive activities subsuming depressive rumination 
and anxious worry that is both prospectively and cross-
sectionally associated with anxiety disorders and 
depression (Brosschot, Gerin, & Thayer, 2006; Drost, 
Van der Does, van Hemert, Penninx, & Spinhoven, 
2014). It can therefore be considered a transdiagnostic 
feature of internalizing disorders. Although persevera-
tive cognition does not directly cause depression and 
anxiety, it acts as a mediator between N/NE and these 
disorders, enhancing their probability. Perseverative 
cognition is also associated with increased allostatic 
load on the cardiovascular (blood pressure, heart rate, 
heart rate variability) and endocrine (e.g., cortisol) sys-
tems (Ottaviani et al., 2016). Perseverative cognition is 
part of a broader class of repetitive thinking that 
includes “thinking attentively, repetitively or frequently 
about one’s self and one’s world” (Watkins, 2008, p. 
163), but the maladaptive variant typically has a nega-
tively valent content.

Perseverative cognition is apparently triggered by 
negative affective states, more precisely when such 
states are elicited by the awareness of a difference 
between the current state and a target state ( J. M. Smith 
& Alloy, 2009). For example, depressive rumination can 
be seen as a cognitive elaboration of one’s current sad 
state and its potential negative consequences in attain-
ing a more desired state, as well as an elaboration of 
the reasons for the discrepancy (“why” questions).

Perseverative cognition is characterized by an abstract 
level of construal (Watkins, 2008) that is described as 
forming general, superordinate, and decontextualized 
mental representations that convey the “essential gist 
and meaning” of events and actions, whereas concrete 
low-level construals include contextual, specific, and 
incidental details of events and actions (Watkins, 2008, 
p. 187). It is assumed that abstract construal is selected 
as an emotion-focused coping style because it allows 
cognitive avoidance of a thorough experience of nega-
tive affective states. This results in a short-term benefit 
(avoiding intense negative affect) but also a long-term 
problem because more adaptive processing of negative 
affect and active problem solving is impeded ( J. M. Smith 
& Alloy, 2009). The overall effect is prolonged stress and 
negative affect, which promotes a vicious cycle with 
perseverative cognition as the motor that keeps it going.

The idea that perseverative cognition is a recurrent 
attempt to reduce discrepancies between actual and 
desired goals is central to control theory (Martin & 
Tesser, 1989, 1996) and in an extensive elaboration of 
it by Watkins (2008). Because both control theory and 
predictive processing are rooted in theories of inference 
and control in biological systems, it is not surprising that 
there are striking similarities with the current predictive-
processing account of N/NE: The option to select a 
short-term benefit by avoiding more elaborate process-
ing of negative content at the expense of a larger prob-
lem in the long term represents a BSTS strategy that is 
characterized by a stagnated error-reduction process. 
Rather than processing specific and contextualized 
events and actions that are rich in specific and concrete 
evidence (prediction errors) and to accommodate 
higher-order mental representations accordingly (error 
minimization), abstract construals that largely reflect 
prior assumptions about the individual in interaction 
with the world dominate mental activity, compromising 
adaptiveness of the mental models of oneself and the 
world in the long term and leading to chronic uncer-
tainty. As noted by Watkins (2008, p. 192), this strategy 
is particularly disadvantageous in conditions of novelty, 
unfamiliarity, difficulty, or stress, that is, conditions that 
are typically threatening for individuals with high trait 
N/NE.

Although both ways of interpreting perseverative 
cognition are quite similar, the benefit of understanding 
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perseverative cognition within a predictive-coding per-
spective is that it reveals identical mechanisms that 
underlie both perseverative cognition and N/NE. This 
suggests that perseverative cognition is not just a sepa-
rate phenomenon that is associated with N/NE. Rather, 
perseverative cognition is at the cognitive level a very 
instance of the same processing style that constitutes 
N/NE. Put differently, it is N/NE at work when dealing 
with discrepancies between actual and desired goals. 
In this way, a predictive-processing account is more 
parsimonious.

Reduced autobiographical memory 

specificity

Reduced autobiographical memory specificity is typi-
cally assessed with the autobiographical memory test 
(Raes, Hermans, Williams, & Eelen, 2007; Williams & 
Broadbent, 1986), in which individuals are given an 
emotional cue word and are asked to recall specific 
autobiographical memories in relation to that cue word. 
A specific memory refers to a particular event that 
lasted less than a day, whereas an overgeneral memory 
is more generic and typically includes a class of events 
(categoric memories) or an extended period of time 
(extended memories; Griffith et al., 2009). The difficulty 
in retrieving specific personal memories of a past event 
is found in a broad range of psychopathological disor-
ders, most notably in depression and posttraumatic 
stress disorder but also in acute stress disorder and 
somatic symptom disorder (Barry, Chiu, Raes, Ricarte, 
& Lau, 2018; Walentynowicz, Raes, Van Diest, & Van 
den Bergh, 2017). Reduced autobiographical memory 
specificity is also a marker of an unfavorable course of 
psychopathology that affects the severity of symptoms, 
illness duration, and treatment success (Sumner, Griffith, 
& Mineka, 2010); in a community sample, it predicted 
a gradual increase in depressive symptoms over the 
course of 18 months (Van Daele, Griffith, Van den 
Bergh, & Hermans, 2014).

Reduced autobiographical memory specificity is 
associated with impaired executive function (e.g., defi-
cits in inhibitory control, updating and maintaining 
information in working memory, verbal fluency) and 
with avoidance of negative affect (Barry et al., 2018; 
Sumner et al., 2014). Several areas of the brain involved 
in processing emotional salience and self-relevance as 
well as in executive control, emotion regulation, and 
memory have been associated with reduced autobio-
graphical memory specificity, and these effects may be 
due in part to abnormalities, chronic or otherwise, in 
cortisol. The activation patterns in brain areas are not 
systematically replicated across diagnostic groups with 
the same behavioral effects, suggesting that reduced 

autobiographical memory specificity may result from a 
number of different neurocognitive mechanisms (Barry 
et  al., 2018). A large-scale neural-network analysis 
might extend and further clarify how reduced autobio-
graphical memory specificity is implemented in the 
brain.

One of the important factors that is assumed to 
account for reduced autobiographical memory specific-
ity is capture and rumination (CaR-FA-X model; Williams 
et  al., 2007), which implies that memory retrieval is 
“captured” at a general level, thereby blocking the 
retrieval of specific memories, whereas ruminating 
keeps processing of the information at an analytical 
and abstract level (see above). These deficits obviously 
make adaptive processing of negative information less 
likely, leaving one stuck at the level of overgeneral, 
self-related information. The choice of this level of pro-
cessing is assumed to result from functional avoidance 
of episodes of negative affect that might be triggered 
by emotional cues. In the long term, however, this 
strategy is maladaptive because it inhibits emotional 
processing and active problem solving related to the 
sources of the negative affect. An unresolved issue is 
whether this strategy is already in play at the encoding 
phase, resulting in poor specific and detailed memories 
of negatively valent or threatening information in the 
first place (Raes, 2005).

From a predictive-processing perspective, this way of 
processing information in memory is consistent with the 
BSTS strategy described above: Little detailed processing 
of memory input from autobiographical events results in 
low-precision prediction errors, allowing strong prior 
beliefs representing (negatively valent) generalized mem-
ory information to determine the conscious recall of self-
referential events. Consequently, error-minimization 
stagnates at a rather abstract level, leaving generalized 
prior beliefs unchanged and contributing to a vicious 
cycle of negative affect and low autobiographical mem-
ory specificity. Again, it is clear that reduced autobio-
graphical memory specificity, when viewed in this way, 
is not just a phenomenon that is associated with N/NE. 
It is actually the core of N/NE at work when processing 
self-relevant memory information.

Compromised fear learning

Associative fear learning typically involves repeated 
pairing of a (relatively) neutral stimulus with an aver-
sive fear-inducing stimulus (unconditioned stimulus), 
after which the previously neutral but now conditioned 
stimulus (CS) elicits fear by itself. Extinction learning 
implies repeated unreinforced exposures to the CS, 
leading to reduced responding to it. Associative fear 
learning is widely used as a laboratory model for 
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understanding pathological fear (Craske, Hermans, & 
Vervliet, 2018). Although strong conclusions about the 
effect of individual-difference variables are hampered 
by the “noise” induced by different methodologies, 
some evidence suggests specificities in associative fear 
learning that are associated with N/NE and the vulner-
ability to develop and/or suffer from actual pathological 
anxiety (Lonsdorf & Merz, 2017). First, anxiety-prone 
individuals tend to show poor extinction learning, that 
is, a less steep decline of fear responses during extinc-
tion and/or a higher level of remaining fear after extinc-
tion (Shechner, Hong, Britton, Pine, & Fox, 2014). Put 
differently, for an equal amount of expectancy viola-
tions, the CS remains categorized as potentially danger-
ous for a longer period of time. Poor extinction learning 
in the laboratory has been shown to predict the devel-
opment of anxiety symptoms in real-life situations 
(Guthrie & Bryant, 2006).

Second, anxiety-prone individuals show impaired 
safety learning in a differential-learning paradigm that 
involves the presentation of two neutral stimuli, one of 
which is paired with the aversive stimulus (CS+), and 
the other is never paired with it (CS−), turning the 
neutral stimuli into, respectively, a danger cue and 
safety cue. Impaired safety learning, emerging as ele-
vated fear responding to the CS−, has frequently been 
observed in individuals scoring high on trait anxiety 
(Gazendam et al., 2013; Kindt & Soeter, 2014), in indi-
viduals with subclinical levels of anxiety (Arnaudova 
et al., 2013; Chan & Lovibond, 1996; Haddad, Pritchett, 
Lissek, & Lau, 2012), and in individuals with anxiety 
disorders (Grillon & Morgan, 1999; Jovanovic et  al., 
2013; Lissek et al., 2009; Winslow, Noble, & Davis, 2008) 
and depression (Pollak et al., 2008). Other data have 
shown that patients with panic disorder had higher 
danger expectancy when safety stimuli were presented 
(Lenaert, Boddez, Vervliet, Schruers, & Hermans, 2015). 
Poor danger-safety discrimination also predicts the 
return of fear after treatment (Staples-Bradley, Treanor, 
& Craske, 2018). In other words, individuals who are 
vulnerable to or with affective psychopathology show 
reduced discrimination between danger and safety in 
a danger context, illustrating a bias toward categorizing 
a safe cue as dangerous (see also Garcia & Zoellner, 
2017).

Third, overgeneralization of fear has also been 
observed in threat-sensitive individuals. Generalization 
occurs when fear has been learned in response to one 
stimulus and subsequently emerges in response to 
stimuli that are similar but have never been paired with 
the aversive stimulus. Overgeneralization, then, occurs 
when fear responding to generalization stimuli remains 
relatively higher than healthy controls across a decreas-
ing gradient of similarity with the original CS. This 

suggests that threat-sensitive individuals are less sensi-
tive to differences between a new stimulus and danger 
cues, leading to a higher probability of categorizing 
new stimuli as dangerous. Overgeneralization of learned 
fear has been found in several groups with anxiety 
disorders (Lissek et al., 2010, 2014; Lissek & Grillon, 
2012; Lenaert et al., 2014).

Fourth, a general sense of unpredictability and 
uncontrollability contributes to the development of 
neuroticism. This may result from a lack of safety learn-
ing and/or repeated experiences with unpredictable 
and uncontrollable aversive life events and from harsh, 
intrusive, and overcontrolling parenting styles. It is 
associated with alterations in neural function and neu-
roendocrine regulation of the hypothalamic-pituitary-
adrenal axis (see Barlow, Ellard, et al., 2014).

In sum, individuals prone to developing emotional 
disorders are less likely to develop inhibitory fear learn-
ing, as indicated by poor extinction, poor safety learning, 
and overgeneralization, and they experience the world 
as less predictable and controllable. Put simply, they are 
more likely to categorize a safe stimulus as potentially 
dangerous, need more expectancy violations to shift a 
danger cue into a category of safe ones, and—more so 
than less threat-sensitive individuals—tend to categorize 
as dangerous both a safe cue within a dangerous context 
as well as a new cue that resembles a dangerous one.

How do these effects come about according to a 
predictive-processing framework? As suggested above, 
these effects may result from applying a perceptual 
decision rule that has shifted toward oversimplifying 
input (impoverished sampling), allowing highly precise 
threat-related priors to have a stronger impact on the 
eventual categorical danger perception. The obvious 
benefit is a higher likelihood to categorize input as 
threat at the expense of the level of detail by which the 
input is processed. This can be considered an instance 
of ecologically situated perception (Linson & Friston, 
2019). Evidence consistent with this interpretation has 
been found in relation to fear overgeneralization in 
individuals with anxiety. Rather than resulting from 
postperceptual-choice behavior, it reflects errors result-
ing from an altered perception of simple stimulus fea-
tures and causes less discrimination between danger 
and safety cues (Laufer, Israeli, & Paz, 2016; see also 
Struyf, Zaman, Vervliet, & Van Diest, 2015; Zaman, 
Ceulemans, Hermans, & Beckers, 2019). Other evidence 
in support of this interpretation may be found in studies 
linking these learning abnormalities to memory speci-
ficity (see above). Accurate discrimination learning 
relies on sufficiently detailed and specific memory: 
Without detailed memory, experiences will not be rep-
resented in memory as unique, specific events, reducing 
the ability to differentiate danger from safety. Lenaert 
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et al. (2015) showed that individuals with anxiety who 
had low memory specificity also showed poor discrimi-
nation learning in a differential-conditioning paradigm. 
It may also be relevant in this context that animal stud-
ies have shown that stress-related changes in the hip-
pocampal area lead to deficient “pattern separation” 
during memory encoding, making distinct patterns of 
information (e.g., CS+ vs. CS−) less distinguishable in 
memory (Tronel et al., 2012).

The overall picture of these learning abnormalities 
suggests that individuals with high trait N/NE use an 
abstract, general way of construing sensory input, leav-
ing conscious experience and behavior relatively more 
influenced by categorical threat-related priors than by 
actual sensory evidence. Again, this is compatible with 
a BSTS strategy when processing aversive information: 
Stimuli are more likely classified as aversive or danger-
ous at the costs of more errors “on the safe side.” This 
interpretation again suggests that N/NE-related learning 
abnormalities are not just phenomena associated with 
N/NE. They actually are the N/NE-related processing 
heuristics in action during fear learning that lead to 
altered phenomenal learning characteristics.

Symptom perception in individuals 

with somatization and medically 

unexplained symptoms

A pervasive positive relationship has been established 
between trait N/NE and symptom reports unrelated to 
physiological dysfunction, or so-called medically unex-
plained symptoms (MUS; Van den Bergh et al., 2017). 
Such symptoms are highly prevalent throughout the 
health-care system (Haller, Cramer, Lauche, & Dobos, 
2015): They appear in individuals who are not consult-
ing health care providers, such as those with high trait 
N/NE, who tend to have more symptoms in daily life; 
in primary care, in which patients with MUS are char-
acterized by elevated levels of anxiety and depression; 
and in secondary care, in which functional somatic 
disorders (or somatic symptom disorder) are associated 
with elevated psychiatric comorbidity (Henningsen, 
Zipfel, & Herzog, 2007; Wessely, Nimnuan, & Sharpe, 
1999; Witthöft & Hiller, 2010).

A clue to understanding MUS may be found in the 
fact that neurobiological and psychometric evidence 
(Walentynowicz, Witthöft, Raes, Van Diest, & Van den 
Bergh, 2018) suggest that the experience of a symptom 
entails a sensory-perceptual component and an affective-
motivational component that are intuitively integrated 
into one symptom report. Individuals with high trait N/
NE show enhanced affective-motivational responding 
to aversive somatic sensations as well as reduced detail 
in sensory-perceptual processing, blurring a clear 

distinction between an emotional and a somatic state 
(Van den Bergh & Walentynowicz, 2016). This results 
in little precise somatic input (prediction errors), allow-
ing for a large impact of symptom-related categorical 
priors that are constantly activated in these individuals. 
In other words, in individuals with MUS, categorical 
perception of the somatic state is largely determined 
by somatic priors and less or not at all by distinct sen-
sory input (Van den Bergh et al., 2017).

Less detailed sensory-perceptual processing of 
somatic episodes is suggested by a number of recent 
findings:

First, untreated individuals with high rates of MUS 
and patients with somatoform disorders show dimin-
ished correspondence between induced physiologi-
cal dysfunction and self-reported symptoms, 
particularly when in a negative affective context 
(Bogaerts et al., 2005; Van den Bergh et al., 2004).

Second, patients with somatoform disorders do not 
exhibit a peak-end memory bias after an induced 
aversive somatic episode (Walentynowicz et  al., 
2018). The peak-end bias implies that retrospective 
memory of an event is typically determined by the 
experience at the peak and at the end. Its absence 
in retrospective symptom reporting in habitual symp-
tom reporters and in patients with somatic symptom 
disorder indicates that their memory of a symptom 
episode is minimally affected by the sensory-perceptual 
changes during a symptom episode.

Third, when given health-related cue words for auto-
biographical memory retrieval, patients with somatic 
symptom disorder exhibit reduced autobiographical 
memory specificity after controlling for depression 
and rumination (Walentynowicz et  al., 2017). This 
finding suggests that these patients process and 
encode health-related episodes in memory with 
minimal detail.

Fourth, more in-depth analyses of how anxious indi-
viduals with high rates of habitual symptoms process 
and categorize ambiguous interoceptive stimuli 
shows that they more often misclassify interoceptive 
stimuli of low intensities into a high-intensity cate-
gory (Petersen et al., 2015).

Fifth, several impairments in learning to fear pain have 
been observed in patients with somatic symptom dis-
order that are in line with the examples mentioned 
above (see Compromised Fear Learning), such as 
slower acquisition of pain-related fear to specific cues, 
more learning of the fear of pain in response to the 
context, more nondifferential fear generalization, and 
impaired extinction of generalized fear (Meulders, 
Boddez, Blanco, Van Den Houte, & Vlaeyen, 2018; 
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Meulders, Jans, & Vlaeyen, 2015; Meulders, Meulders, 
Stouten, De Bie, & Vlaeyen, 2017). These findings 
consistently suggest less sensitivity to specific sensory-
perceptual evidence and a greater impact of symptom-
related priors in patients with a somatic symptom 
disorder.

Other evidence is compatible with the idea that input 
from somatic and affective states is not very well dis-
tinguished in individuals with MUS, making them highly 
vulnerable to somatic priors when in a negative affec-
tive state. For example, when inducing negative affect 
through picture viewing followed by a symptom ques-
tionnaire that activates symptom-related priors, elevated 
symptom reports are elicited in these individuals, and 
this effect is mediated by the difficulty of identifying 
feelings (Van Den Houte et al., 2017). Moreover, harm-
less cues that have been associated with symptom epi-
sodes in a conditioning paradigm can elicit elevated 
symptoms by themselves. This happens particularly 
when the cues have a negative affective valence and in 
individuals with high trait N/NE and individuals with 
somatic symptom disorder (Devriese et al., 2000; Van 
den Bergh, Stegen, & Van de Woestijne, 1997).

In sum, the above pattern of results converges on 
the interpretation that individuals with high trait N/NE 
are more affected by the aversive affective-motivational 
component of a somatic episode and process sensory-
perceptual information of a somatic episode in a less 
detailed way. This results in fewer precise prediction 
errors and leads to persistently active symptom-related 
priors that produce symptoms that are poorly related 
or unrelated to physiological dysfunction. We suggest 
that this is an instance of a BSTS strategy: Despite little 
sensory evidence, the brain jumps to the conclusion of 
an aversive somatic symptom being present. The benefit 
is a reduction of uncertainty at an early stage of the 
type “better the devil you know than the one you don’t” 
(Van den Bergh et  al., 2017, p. 197). The downside, 
however, is little sensitivity to error correction by means 
of updating the prior expectation, which leads to per-
sistent physical symptoms unrelated to actual physio-
logical dysfunction (Henningsen et  al., 2018). Again, 
MUS are in this respect not a separate phenomenon 
that is associated with high trait N/NE. It actually is the 
N/NE-related processing heuristics at work when pro-
cessing somatic information.

Integration

Using a predictive-processing perspective, we inter-
preted four behavioral phenomena that are substantially 
associated with N/NE as exemplars of a BSTS strategy. 
We chose these phenomena because, unlike classic 
attentional and misinterpretation biases, they are not 

typically considered straightforward examples of such 
a strategy. However, looking at these phenomena from 
a predictive-processing perspective suggests that this 
strategy may also underlie these examples, allowing a 
more parsimonious interpretation of a larger range of 
behavioral facets of N/NE. Indeed, each of these exam-
ples can be reframed as emanating from the same 
deeply embedded processing heuristic that constitutes 
N/NE and produces the conscious experience of the 
person in the world (Petersen et al., 2015). We propose 
that this processing heuristic of individuals with N/NE 
gives more weight (precision weighting) to the affective-
motivational aspects of the input at the expense of 
detailed sensory-perceptual processing.4 Depending on 
the source and focus of threat, this general processing 
strategy finds its expression in different behavioral phe-
notypes: Perseverative cognition emerges in relation to 
information in working memory, reduced autobiograph-
ical memory specificity emerges in relation to informa-
tion in long-term memory, and compromised fear 
learning and somatization emerges in relation to infor-
mation from exteroceptive and interoceptive threats, 
respectively.

The obvious short-term benefit of this strategy goes 
along with long-term costs in the form of a stagnated 
error-reduction process: Little detailed sensory-perceptual 
processing results in low-precision prediction errors, 
which allows precise threat-related priors to dominate 
conscious experience and leads to insufficient error 
minimization when the priors are updated. Conversely, 
active inference (see above) leads perceptual systems to 
sample threat-related information consistent with prior 
expectations. This keeps the system in a chronic state of 
stress produced by expecting and perceiving threat with 
little chance for corrective experiences.5

It is obvious that the term “strategy” should not be 
considered the result of a deliberate decision by a con-
scious self to avoid negative states but a more funda-
mental way of handling information that in some way 
appears threatening. This psychobiological strategy is 
genetically engraved in a substantial part of the popula-
tion (individuals with high trait N/NE) and is epigeneti-
cally turned on in individuals with early and/or chronic 
adverse experiences (McEwen et al., 2016). It implies 
enhanced amygdala function and elevated neurohu-
moral levels (glucocorticoids, noradrenaline) that are 
associated with impaired prefrontal cortex function 
(Phelps, Lempert & Sokol-Hessner, 2014). Eventually, 
this strategy may gradually develop from goal-directed 
to habit-based (e.g., epistemic habit; Friston et  al., 
2016). This pervasive psychobiological strategy should 
be considered adaptive in view of both the biological 
history of our species and the history of individuals 
with early adverse experiences. Repeated unpredictable 
and/or chronic threats may have changed both the 
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structural and functional properties of the brain to pro-
cess threat-relevant information in such a way that it 
promotes the short-term benefit of rapid threat catego-
rization and preparation for action without being out-
weighed by the less dramatic long-term negative “side 
effects.”

Clinical Implications

Considering N/NE to be a transdiagnostic trait variable 
that implies both elevated vulnerability for and a psy-
chobiological dimension underlying internalizing psy-
chopathologies leads to important questions such as 
how malleable the trait is, whether the trait and its 
consequences can be prevented and treated, and 
whether this strategy would be more proficient than 
targeting specific disorders and symptoms. Overall, it 
seems that N/NE is more malleable than generally 
believed and slowly changes over time. In both children 
and adults, significant small to moderate changes in N/
NE have been observed that resulted from cognitive-
behavioral therapy (CBT)-based interventions that tar-
geted N/NE, and changes in N/NE have been shown to 
predict changes in symptoms and functional impairment 
but not vice versa (Barlow, Sauer-Zavala, et al., 2014a; 
Carl, Gallagher, Sauer-Zavala, Bentley, & Barlow, 2014; 
Farchione et al., 2012; Sauer-Zavala, Wilner, & Barlow, 
2017). Recent meta-analytic evidence provides more 
solid evidence suggesting that N/NE can be altered by 
treatment with a moderate effect size (Cohen’s d = 0.50–
0.60). The type of therapy did not matter much, and the 
change reached its maximum effects between 4 and 8 
weeks (Roberts, Luo, et al., 2017).

Although these findings are promising, it remains 
important to know which components are critical and 
why and to design focused intervention protocols to 
further improve treatment effects. The Unified Protocol 
for Transdiagnostic Treatment of Emotional Disorders 
developed by Barlow and coworkers is intended to 
do this (Bullis, Fortune, Farchione, & Barlow, 2014; 
Ehrenreich-May et al., 2017; Ellard, Fairholme, Bois-
seau, Farchione, & Barlow, 2010). Conceiving N/NE as 
characterized by aversive reactions to emotional experi-
ences and attempts to avoid and escape them, the treat-
ment modules focus on extinguishing distress in 
response to strong emotions and the reduction of avoid-
ant emotion-regulation strategies. The latter comes close 
to what would be needed within the current predictive-
processing perspective. Assuming that N/NE reflects a 
stagnated error-reduction process, the goal then is to 
guide individuals to overcome the point at which error 
reduction gets stuck. This implies processing information 
that is associated with aversiveness thoroughly and with 
openness for detailed sensory-perceptual threat-related 

elements. This will enable prediction errors to modify 
threat-related priors and, in the long term, facilitate a 
more complete error-minimization process. Once modi-
fied, functionally more adaptive priors will in turn act 
as predictors for new input, allowing more efficient 
error minimization and explaining away unresolved mis-
matches between predicted and actual input. In other 
words, a more adaptive generative model about the 
world is formed that is characterized by less unresolved 
mismatches between expected and actual input.

However, high-level threat-related priors that are 
innate or learned to fit a survival goal may be quite 
strong and not easily changed. A predictive-processing 
framework considers priors to be forward models, that 
is, “embodied, whole brain representations” (Barrett, 
2017, p. 7) that anticipate upcoming sensory events as 
well as the best action for dealing with the impending 
sensory events (Barrett, 2017; Barsalou, 2008). This 
means that they involve internal activation of encodings 
of actual perceptual, somatovisceral, and motor activity 
that promote prediction-error minimization by initiating 
responses that confirm predictions (active inference). 
These responses can be unpacked into a large array of 
lower-level component predictions that eventually initi-
ate defensive-action programs, including proprioceptive, 
autonomic, and somatovisceral responses associated 
with defensive activation (Van de Cruys, 2017). We sug-
gest that treatment interventions should affect the way 
that threat-relevant information is processed at all levels 
of the “machinery,” including altering defensive-action 
programs that are intrinsically part of the prior expecta-
tions. This emphasizes the necessity to coach individuals 
toward openness to process aversive information by 
including components that help the individual to dis-
engage from defensive-action tendencies.

The above description is consistent with exposure-
based interventions if conceived in a different way. 
Although exposure in CBT relies on an extinction ratio-
nale implying a “belief change” (e.g., that a feared 
stimulus is not coming and/or is not as bad as expected; 
Foa & McLean, 2016), in the current analysis it is not 
so much the information that a feared stimulus is not 
coming that makes the change. If defined as an atten-
tive, open, and nondefensive way of processing threat-
relevant information, it implies changing the fundamental 
attitude that characterizes the existence of high trait N/
NE individuals in the world. In other words, it is a 
fundamental disengagement from defensive-response 
mobilization during processing of the aversive informa-
tion, thereby changing associated psychophysiological 
and motor-response programs. Putting it this way 
reverses the sequence in some way: Defensive-response 
mobilization is not just something that automatically 
stops after one realizes that a dreadful stimulus is not 
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coming. It is the disengagement from defensive-action 
tendencies during processing of the stimulus that makes 
it less dreadful: It means that the weight of the threat-
related prior has been importantly reduced and that 
more weight is given to processing input in an open, 
nondefensive way. More detailed sensory processing 
will then promote updating the prior beliefs. This means 
that information processing is no longer inspired by a 
BSTS strategy but by a wait-and-see rationale. This rea-
soning implies that the threatening aspect and aversive 
impact of any kind of stimulus can possibly be reduced 
by this approach, regardless of whether it is a condi-
tioned or unconditioned source of aversiveness.6

The critical element advanced here—releasing stag-
nated error reduction by helping individuals to disen-
gage from defensive-action tendencies during 
processing of aversive information—involves a funda-
mental change in psychophysiological response set to 
process potentially threatening information. This analy-
sis has two important consequences. First, it suggests 
the prediction that any treatment should include this 
critical element to be effective and that sharpening and 
reinforcing operationalizations of this element will fur-
ther improve treatment effectiveness. Second, it allows 
a common ground to be detected for many treatment 
strategies that aim to change habitual information pro-
cessing of negatively valent information. For example, 
concreteness training (Watkins et  al., 2012) aims at 
changing the abstract processing mode in rumination 
and perseverative cognition and at promoting concrete 
processing of difficult, upsetting events by focusing on 
sensory details, on the specific sequence of events, 
and on possible steps to take after the event. Memory-
specificity training (MEST; Raes, Williams, & Hermans, 
2009) is intended to change reduced autobiographical 
memory specificity by coaching participants to practice 
retrieving specific memories from cue words delivered 
across weekly sessions complemented by homework in 
between. Evidence suggests that MEST can improve 
autobiographical memory performance and subsequently 
reduce depressive symptoms (Hitchcock, Werner-Seidler, 
Blackwell, & Dalgleish, 2017).

In a similar vein, interoceptive-differentiation train-
ing has been developed as a treatment strategy to guide 
patients with MUS to become more sensitive to sensory-
perceptual details of somatic sensations as a way to 
update constantly active symptom-related priors. Initial 
evidence suggests, for example, that heartbeat-perception 
training reduces somatization processes (Schaefer, 
Egloff, Gerlach, & Witthöft, 2014). In some way, the idea 
of making room for more detailed sensory processing 
without defensive-response mobilization is also captured 
by the concepts of “acceptance” and “self-compassion” 
(Forman & Herbert, 2009; Gilbert, 2009) and is consistent 

with a general overarching account of therapeutic change 
in psychotherapy (Lane, Ryan, Nadel, & Greenberg, 
2015).

Finally, psychopharmacological treatment with sero-
tonergic drugs such as selective serotonin-reuptake 
inhibitors (SSRIs) can also reduce behavioral manifesta-
tions of trait N/NE in healthy individuals (Ilieva, 2015). 
This is not surprising given serotonin’s intricate involve-
ment in aversive affective processing and control, which 
is also revealed by manipulations such as tryptophan-
depletion studies in humans (e.g., Ruhé, Mason, & 
Schene, 2007). However, the role of serotonin is com-
plex, as shown by both positive and negative covari-
ances between serotonin and aversion and their 
influence on neural plasticity and learning rates. This 
complexity has led researchers to use computational 
models to understand the regulatory effects of sero-
tonin, suggesting that it is a signal associated with pre-
dictions and prediction errors for future aversive 
outcomes (Dayan & Huys, 2009; Iigaya, Fonseca, 
Murakami, Mainen, & Dayan, 2018). Here serotonin is 
particularly implicated in the coding of loss-related pre-
diction errors, thereby inhibiting overreactions to nega-
tive outcomes and modulating behavioral choice 
selection to handle risk after negative events (Moran 
et al., 2018). Correspondingly, SSRIs are suggested to 
boost behavioral treatments by affecting the learning 
rate and increasing underlying neural plasticity to better 
deal with (potential) loss and aversion (Iigaya et  al., 
2018) or, in other words, by releasing stagnated error 
processing.

Summary and Future Directions

Evidence shows that the variation in psychopathology 
can be parsimoniously modeled using a limited number 
of hierarchically arranged dimensions. N/NE is a dimen-
sional trait that appears as a large general vulnerability 
factor for psychopathology, particularly within the 
internalization spectrum (Conway et  al., 2019). An 
important question is how to conceive of this trait. Any 
mechanistic interpretation should be (a) as parsimoni-
ous as possible and (b) able to explain a large variety 
of phenomenally distinct features of psychopathology. 
For this exercise we turned to a predictive-processing 
perspective that conceives of the brain as an active 
prediction-testing organ that tries to make sense of the 
stimulation it receives. Phenomenal reality emerges 
from two counterflowing streams of information: expec-
tations (predictions or priors) and prediction errors 
(input). Prediction errors are propagated through the 
hierarchical processing architecture of the brain in a 
prediction-error-minimization process to eventually 
settle on a generative model that best explains the 
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input. Both priors and prediction errors should be seen 
as neural distributions with a variance (precision) that 
determines the relative weight in the eventual genera-
tive model.

From this perspective, we describe trait N/NE as 
reflecting a stagnated error-reduction process, which, 
we suggest, results from a generalized BSTS strategy to 
process information that is associated with aversiveness. 
It is characterized by strong threat-related priors 
prompting active inference and low-detail sensory-
perceptual and meaning analyses of the input facilitat-
ing rapid categorization of threat-related stimuli at the 
expense of updating threat-related priors. Although the 
resulting generative model may be adaptive in the short 
term, there is no room to develop a more adaptive 
generative model of the input in the long term. We 
argue that this generalized BSTS strategy underlies dif-
ferent cognitive and affective features and risk factors 
of psychopathology that are typically investigated in 
separate research lines.

In addition to more classic BSTS exemplars such as 
attentional and interpretational biases, these research 
lines include maladaptive perseverative cognition, 
reduced autobiographical memory, compromised fear 
learning, and poor symptom processing in somatiza-
tion. Depending on contextual variables and individual 
concerns, some high trait N/NE individuals will be char-
acterized more or less by these behavioral features. On 
the basis of this analysis, we suggest that a critical ele-
ment in all treatment approaches is some kind of expo-
sure, defined as an attentive, open, and nondefensive 
way of processing threat-relevant information. We also 
suggest that further and more powerful operationaliza-
tions of this critical element when processing specific 
concerns and fears may be a fruitful way to decrease 
trait N/NE and its consequences.

The above account obviously implies major chal-
lenges for research to test and validate. Because predic-
tive processing is a (Bayesian) computational framework, 
it has stimulated interest in (and calls for) computa-
tional psychiatry/psychopathology and psychosomatics 
(Petzschner, 2017; Petzschner, Weber, Gard, & Stephan, 
2017). Thus, one way to validate its claims is to flesh 
out a computational version of the predictive-processing 
model above involving a clear mechanistic description 
of the critical variables and their interactions, to run 
simulations, and to compare the results with evidence 
from real life. We recently started to do this by develop-
ing a computational model that accounts for bodily 
symptoms that maintain a strong, weak, or absent rela-
tionship with bodily input (Pezzulo et al., 2019; Pezzulo, 
Maisto, Barca, & Van den Bergh, 2020). This should also 
be done for other phenomena related to N/NE and 
subsequently tested with real data. Another approach 
is to experimentally test specific predictions made by 

the current account. This may require developing new 
paradigms that manipulate both categorical prior expec-
tations and actual input to investigate the relative 
impact of priors on the eventual perception and sub-
sequent cognitive processing (for examples related to 
interoception and symptom perception, see Petersen, 
Schroijen, Mölders, Zenker, & Van den Bergh, 2014; Van 
Den Houte et al., 2017; Zacharioudakis, Vlemincx, & 
Van den Bergh, 2020). These are only a few examples 
that may provide a way forward, but a huge challenge 
remains ahead. However, as Barrett (2017) states, “At 
the beginning, new paradigms raise more questions 
than they answer” (p. 14).
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Notes

1. In line with the generalized unsafety theory of stress, which 
assumes that expecting threat is actually the default state unless 
safety is perceived to inhibit it, individuals with high trait dis-
positional negativity can be conceived of as being guided by 
stronger prior threat-related beliefs, whereas reduced process-
ing of actual stimuli and context impedes perceiving safety.
2. See Van de Cruys (2017) for an elaborate essay on the con-
ceptualization of affect in a predictive-processing view.
3. Violations of expectations (“surprise”) should not be seen as 
“agent-level surprise” (the way individuals would consciously 
experience it) but as subpersonal neural-processing products.
4. An interesting conflicting view is offered by researchers pro-
moting the affect-as-information model (Lerner, Li, Valdesolo, 
& Kassam, 2015; Schwarz & Clore, 2003). This view asserts that 
negative emotions signaling threat demand attention and pro-
mote vigilant and detailed processing, whereas positive emo-
tions signal safety, which would lead to less detailed, more 
heuristic processing. This view would predict a more detailed 
processing style during negative affect. However, most of this 
research is based on the induction of brief states of sadness 
in unselected individuals. Therefore, we believe this line of 
research is less relevant for more permanent and pervasive 
threat-related information processing.
5. In some ways, the above account resembles the bias toward 
abstract construals, suggested by Watkins (2011) as characteriz-
ing patients with (mainly) internalization disorders. It is a chal-
lenge for future research to analyze the similarities/differences 
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with our account and to determine whether abstract construals 
are an equally parsimonious account for the diversity of dispo-
sitional negativity-related behavioral phenomena.
6. This perspective helps to explain why some terminal individ-
uals may peacefully cope with upcoming death, the ultimate, 
hardwired unconditional aversive stimulus. Paradoxically, this 
tends to occur when there is no longer any hope and death 
becomes inevitable. The message of inevitability may help one 
to disengage from further defensive-action tendencies, thereby 
mitigating the fear of dying.
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