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The neuroimmune connectome in health 

and disease

Michael A. Wheeler1,2,3 ✉ & Francisco J. Quintana1,2,3 ✉

The nervous and immune systems have complementary roles in the adaptation of 

organisms to environmental changes. However, the mechanisms that mediate cross- 

talk between the nervous and immune systems, called neuroimmune interactions, are 

poorly understood. In this Review, we summarize advances in the understanding of 

neuroimmune communication, with a principal focus on the central nervous system 

(CNS): its response to immune signals and the immunological consequences of CNS 

activity. We highlight these themes primarily as they relate to neurological diseases, 

the control of immunity, and the regulation of complex behaviours. We also consider 

the importance and challenges linked to the study of the neuroimmune connectome, 

which is de�ned as the totality of neuroimmune interactions in the body, because this 

provides a conceptual framework to identify mechanisms of disease pathogenesis and 

therapeutic approaches. Finally, we discuss how the latest techniques can advance 

our understanding of the neuroimmune connectome, and highlight the outstanding 

questions in the �eld.

Adaptation to environmental changes is essential for survival, and 

requires the coordinated activity of the nervous and immune sys-

tems. However, early studies1,2 suggested that immune activity 

was limited in the CNS3, and that the nervous and immune systems 

operated independently. These ideas have since been abandoned, 

and we now know that neuroimmune interactions involving clas-

sic immune pathways4 and neural circuits5–9 participate in devel-

opment and homeostasis, and when dysregulated, drive tissue  

pathology.

It is therefore important to understand the fundamental elements of 

neuroimmune interactions. We define neuroimmune interactions as a 

specialized case of cell–cell communication involving a cell of the nerv-

ous system and an immune cell, which could be either tissue-resident 

or recruited from circulation. This communication should modify the 

activity of at least one of the cells involved. By this definition, microglia–

neuron and microglia–astrocyte interactions contain the fundamental 

elements of neuroimmune communication. By contrast, although 

the innervation of muscle by brain projection neurons or peripheral 

neurons may trigger cytokine production, it does not meet the defi-

nition of a neuroimmune interaction because it does not involve an  

immune cell.

This operational definition enables us to redefine the neuroim-

mune connectome, which was originally described as “a detailed 

map of connections, interactions, and interdependencies between 

different immune cell–derived molecules…and neural circuits”10, as 

a detailed map of all the interactions between cells of the nervous and 

immune systems throughout the body. With this framework in place, 

we discuss the functions and regulation of the neuroimmune con-

nectome, and the tools to investigate it, alongside open questions in  

the field.

 
Neurodegeneration

Prior to recent advances studying the anatomical sites of neuroim-

mune cross-talk, an understanding of the importance of neuroimmune 

interactions was born out of research on neurological diseases11. For 

example, histopathological studies of multiple sclerosis (MS) dating 

back to the nineteenth century began to show how the CNS responds 

to the peripheral infiltration of immune cells12. Indeed, CNS-resident 

cells undergo profound changes in response to inflammation and neu-

rodegeneration13,14. Furthermore, we now know that the CNS is seeded 

early in development by immune cells15, which have important roles in 

development, homeostasis and pathology16. Thus, the neuroimmune 

connectome has emerged as a complex involving multiple activation 

states and interactions between neurons, glia and immune cells.

T cells and neurodegeneration

The role of microglia and other CNS-resident immune cells in neu-

rodegeneration has been extensively discussed elsewhere16. How-

ever, there is increasing interest in the role in neurodegenerative 

diseases of neuroimmune interactions involving CNS-recruited 

peripheral immune cells, such as T cells, which are classically con-

sidered to be a feature of autoimmune diseases such as MS14,17 (Fig. 1). 

Patients with Alzheimer’s disease display increased T cell reactivity 

to amyloid-β18. Indeed, clonally expanded cytotoxic CD8+ T cells are 

detected in the cerebrospinal fluid (CSF) of patients with Alzheimer’s 

disease19. Moreover, in an experimental tauopathy model, micro-

glia trigger CD8+ T cell-dependent neurotoxicity20. Similarly, CD8+ 

T cells react with α-synuclein in Parkinson’s disease21,22. Interestingly, 

CD8+ T cells reactive with β-synuclein promote grey matter neuro-

degeneration in patients with MS and animal models22, indicating 
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that dysregulated T cell responses promote neurodegeneration in 

multiple neurological diseases. Furthermore, T cells limit the regen-

erative potential of neuronal stem cells and neurons in mice and 

humans in the context of ageing23,24. Given the now-classical reports 

of neuronal major histocompatibility complex I (MHC-I) expression 

in learning-dependent plasticity25 in mice, these findings indicate 

that the stimulus-dependent regulation of MHC-I, co-stimulatory 

molecules and cytokine expression in neurons26 may modulate CD8+ 

T cell-driven pathological neuroimmune interactions in neurodegen-

erative disorders, and even in ageing27,28.

CD4+ T cells have also been implicated in neurodegeneration, for 

example in Lewy body dementia-associated neurodegeneration in 

mice and humans29. CD4+ T helper cells producing interleukin-17 (IL-17; 

TH17 cells) adjoin tyrosine hydroxylase-positive dopaminergic neurons 

in the substantia nigra, a brain region that degenerates in Lewy body 

dementia and Parkinson’s disease. These TH17 cells display signs of 

clonal expansion, express C-X-C motif chemokine receptor 4 (CXCR4) 

and are associated with dopaminergic neuron degeneration. Inter-

estingly, CXCR4+ TH17 cells have also been described to contribute to 

MS pathogenesis30,31. Thus, TH17 cells and the death of dopaminergic 

neurons could be linked to pathogenesis in both Parkinson’s disease 

and MS, and potentially in other disorders as well.

Immune cell control of neurodegeneration

CNS-reactive T cells can also promote tissue repair, as reported in mod-

els of optic nerve injury32. Based on these and other findings, it was pro-

posed that ‘interoceptive T cells’ develop in the thymus with the ability 

to perceive, interpret and act on tissue cues to promote homeostasis 

and repair33. Thus, specific neuroimmune interactions driven by T cells 

could be therapeutically induced to promote tissue repair. Indeed, the 

controlled activation of CNS-reactive T cells is beneficial in certain 

contexts. For example, regulatory T cell (Treg cell) ablation decreased 

pathology34 in preclinical models of Alzheimer’s disease, highlighting 

key differences with CNS autoimmunity where immune checkpoint 

blockade worsens CNS pathology35, probably reflecting the targeting 

of different T cell subsets and also the existence of a broader repertoire 

of activated CNS-reactive T cells in the latter. These findings highlight 

challenges linked to the therapeutic exploitation of interoceptive 

T cells, which could be circumvented by the use of mRNA-engineered 

T cells bearing selected self-reactive T cell receptors (TCRs) to control 

their specificity and phenotype36.

T cell interactions with glial cells such as astrocytes13 also have 

important roles in CNS inflammation and neurodegeneration37,38. This 

is exemplified by the activation of pathogenic astrocyte responses 

by T cell-derived granulocyte–macrophage colony-stimulating fac-

tor (GM-CSF)39 and, conversely, by the activation of cytotoxic CD8+ 

T cells by astrocytes40. Even so, neuroimmune interactions between 

specific T cell and astrocyte subsets can also limit CNS pathology.  

A subset of astrocytes lining CNS borders in mice and humans express 

TNF-related apoptosis-inducing ligand (TRAIL), which induces apop-

tosis in pro-inflammatory T cells as they access the CNS41. Alterna-

tively, IL-10 and other anti-inflammatory molecules produced by 

regulatory T cells suppress disease-promoting glial responses in 

mice42,43. Similar roles in CNS pathology and repair have also been 

described for neuroimmune interactions involving other peripheral 

immune cells, such as B cells44, natural killer (NK) cells41, monocytes45 

and neutrophils46.

Bidirectional neuroimmune interactions involving CNS-resident 

immune cells have also been described. Microglial products can either 

promote or suppress astrocyte pro-inflammatory responses47–50. 

Conversely, astrocyte surface molecules such as EPHB3 (ref. 51) 

and astrocyte production of GM-CSF52,53 or the related cytokine IL-3  

(ref. 54) boost pathogenic microglial responses in experimental auto-

immune encephalomyelitis (EAE) and MS. Of note, IL-3-mediated  

astrocyte–microglia communication is protective in models of Alzhei-

mer’s disease55, indicating that there are context-dependent effects of 

neuroimmune circuits that probably involve other CNS resident cells, 

such as oligodendrocytes and neurons56–61.
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Fig. 1 | Neuroimmune interactions in inflammation and neurodegeneration. Selected neuroimmune interactions and their effects on tissue pathology.  

ACh, acetylcholine; TH, tyrosine hydroxylase; Tr1, type 1 regulatory T cell.



Nature | Vol 638 | 13 February 2025 | 335

Together, these studies implicate multiple immune cell lineages 

in neuroimmune interactions. A significant challenge in the field is 

to understand the totality of the neuroimmune connectome and its 

disease-associated perturbations that promote CNS pathology in 

human diseases and their preclinical models. Future studies should 

leverage the power of single-cell genomics and in situ biology to iden-

tify and map interacting cell subsets and interaction mechanisms, in 

combination with cell-tracing approaches to define the origin of the 

interacting immune cells; for example, immune cells originating from 

the gut41 or skull bone marrow6,7,62.

Neural circuit–immune cell cross-talk

The neuroimmune interactions described above participate in the 

direct and indirect control of neural circuit integrity. However, neuro-

immune interactions also mediate the control of the immune response 

by specific neural circuits, as well as the regulation of neural circuit 

activity by the immune response. Inside-out (from the CNS to the 

peripheral immune system) and outside-in (from peripheral immune 

cells to the CNS) neuroimmune signalling differ in the mechanisms of 

communication involved. Inside-out neuroimmune signalling involves 

signals emanating from the CNS through neural projections that act 

on immune cells either directly, or indirectly through intermediary 

peripheral neurons63. These mechanisms contrast with those used 

by outside-in neuroimmune signalling, which usually involve local 

ligands and receptors interacting in the absence of cellular processes 

that span the body. The architecture of these interactions enables the 

modulation of immunity by CNS-derived signals (Fig. 1).

Inside-out signalling

A classic example of peripheral immune cell modulation by the CNS is 

the sympathetic reflex arc that controls T cell activation during sep-

sis64. In this case, activation of the vagus nerve releases acetylcholine 

onto sympathetic neurons in the coeliac ganglion, the fibres of which 

release noradrenaline onto splenic T cells, which then secrete ace-

tylcholine in the spleen to limit endotoxin-induced inflammation in 

mice and humans65,66. Similar mechanisms control B cells in mice, in 

which B cell follicle formation and plasma cell maturation are reported 

to be regulated in an acetylcholine-dependent manner by splenic 

nerve activity driven by the central amygdala or the paraventricular 

nucleus of the hypothalamus67. Beyond autonomic neurons, sensory 

neurons cross-talk with NK cells and neutrophils in mouse inguinal 

lymph nodes68. Nociceptor-derived calcitonin gene-related peptide 

(CGRP) boosts skin dendritic cell antigen presentation through IL-1β 

production69. Related studies have uncovered important links between 

sensory neuron peptides, innate lymphoid cells and T cells70–73.

Finally, an elegant study has identified central circuits in the brain 

that control monocyte, lymphocyte and neutrophil circulation and 

homing after acute stress in mice74, with similar findings in humans75. 

Hypothalamic paraventricular nucleus neurons mediated these effects 

in mice through glucocorticoid receptor signalling acting on CD4+ 

T cells, CD19+ B cells and inflammatory monocytes to induce bone mar-

row homing, and motor cortex activity on muscle induced C-X-C motif 

chemokine ligand 1 (CXCL1) production, which drove neutrophil egress 

from the bone marrow and into tissues74. Interestingly, even short per-

inatal exposure of mice to glucocorticoids can induce long-lasting 

alterations of the hypothalamic–pituitary–adrenal axis that impair 

CD8+ T cell-mediated anti-tumour immunity in adulthood76, identify-

ing a potential mechanism by which the activation of stress-responsive 

circuits early in life can induce persistent perturbations of the neuroim-

mune circuits that control the immune response.

Outside-in signalling

The inside-out and outside-in neuroimmune circuits associated with 

specific environmental stimuli or stressors are intricately related, as 

further illustrated by stress models. A study of the immune response 

linked to psychological stress in mice and humans established that 

monocyte-derived matrix metalloproteinase 8 disrupts the stability 

of the blood–brain barrier (BBB) in the nucleus accumbens, leading 

to social deficits induced by chronic stress77. These changes in social 

behaviour were controlled by IL-6 (refs. 78,79), a cytokine produced 

by brown adipocytes during chronic stress80. Related work has shown 

that IL-13 produced by meningeal type 2 innate lymphoid cells con-

tributes to inhibitory synapse formation during development, which 

is important for normal social behaviour81. Strikingly, these data may 

suggest specificity on both the central circuits involved and their 

upstream immune cell partners.

One of the most exciting findings related to outside-in signalling is 

the ability of the brain to encode and recapitulate previous immune 

experiences. Specifically, it was reported that mouse insular cortex 

neurons are activated by intestinal inflammation; their chemogenetic 

reactivation recalls the intestinal immune responses that initially trig-

gered them82. More recently, neuron activity in the vagal nucleus or 

caudal nucleus of the solitary tract brainstem was shown to attenuate 

multiple types of peripheral inflammation, and silencing it resulted 

in dysregulated inflammatory responses83. Conversely, activity in 

a Dbh+ subpopulation of brainstem neurons in the nucleus of the 

solitary tract and nucleus ambiguus worsened allergic lung inflam-

mation84. These findings indicate that select neural circuits have a 

role not only in the regulation of the immune response, but also in 

immune memory, through unexplored mechanisms. For example, 

recent work identified epigenetic memory programs in astrocytes 

that alter their subsequent response to immune restimulation85, and 

similar mechanisms probably operate in other CNS cells86. Thus, it 

is important to define how memories of peripheral and CNS inflam-

mation, the neuroimmune interactions that modify them, and the 

potential engrams87 that constitute them are connected and linked 

to behaviour.

Together, these studies highlight important roles for the nervous 

system in immune regulation. Although we focused in the CNS, simi-

lar mechanisms operate in the periphery, for example involving the 

enteric88 and sensory89 nervous systems. These and other studies sug-

gest the following common principles: first, central and peripheral 

neurons control immunity; second, immune cells can serve as neural 

surrogates by releasing neurotransmitters; and third, neurons can 

store immune experiences. Nevertheless, there are still some out-

standing questions. For instance, it is not known whether only cer-

tain neurons are capable of storing and retrieving immune memories. 

There is uncertainty over the role of glial cells in encoding memories of 

peripheral immune state changes. Further work is needed to explore 

the full spectrum of immune responses induced by neuropeptides, 

akin to the cytokine dictionaries of the immune system90. Finally, the 

totality of cellular partners in the immune system regulated by neural 

activity remains to be completely defined. Similar questions remain 

about whether all neurons and glia can respond to immune stimuli, 

or whether specialized subsets of cells participate in neuroimmune 

interactions instead.

Behaviour

The neuroimmune connectome has a central role in multiple aspects of 

behaviour, including sickness and depression91,92 (Fig. 2). For example, 

discrete neural circuits express receptors for immune mediators pro-

duced during peripheral inflammatory responses91. Neurons localized 

to limbic areas or circumventricular organs that sense these peripheral 

cues orchestrate complex behavioural responses to sickness. Moreover, 

immune cells adjacent to or inside the brain influence behavioural 

responses during chronic stress, stroke or inflammatory challenges. 

Below, we discuss how behaviour is shaped by peripheral inflammatory 

responses and immune cell recruitment to the CNS.
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Non-sickness behaviours

It has been shown that xanthine produced by CD4+ T cells promotes 

stress-induced anxiety-like behaviour through a mechanism involv-

ing oligodendrocytes93. These findings are consistent with reports 

of increased fear responses linked to dysregulated T cell responses in 

the absence of immune checkpoint molecules such as PD-1 (ref. 94). 

Similarly, activation of CD4+ T cells in maternal immune activation (MIA) 

paradigms induces TH17-dependent social behaviour deficits in the F1 

progeny by disrupting the sensory cortex95. Other studies support a 

role for IL-17 in the control of behaviour, because IL-17 produced by 

meningeal γδ TCR-expressing T cells reportedly boosts fear responses 

through its effects on medial prefrontal cortex neurons96.

Beyond TH17 cells, CX3CR1+ monocytes were linked to MIA-associated 

impairments in motor learning through synaptic pruning, potentially 

through TNF97. Furthermore, monocyte CNS infiltration has been linked 

to increased fear behaviour and altered memory in a myocardial infarc-

tion model98, potentially explaining the reported links between car-

diac activity and affective behaviour99. Similar mechanisms operate 

in human and experimental Langerhans cell histocytosis, in which 

myeloid cell infiltration was linked to increased fear behaviour100, high-

lighting important roles of monocytes in the control of fear-related 

neural circuits.

Besides these outside-in neuroimmune mechanisms mediated by 

immune cells, stress-induced immune cell products in the circula-

tion can directly control behaviour-related neural circuits in limbic 

nuclei101,102. For example, stress-induced BBB breakdown facilitates IL-6 

entry into the nucleus accumbens to induce anhedonic behaviour78. 

Moreover, astrocyte responses driven by NF-κB, which is a transcription 

factor activated by pro-inflammatory cytokines such as IL-6, have been 

shown to promote anhedonic phenotypes in mice103.

Conversely, some immune cell products protect against behav-

ioural deficits. IFNγ and IL-13 derived from meningeal immune cells 

promotes social behaviour by tuning GABAergic interneurons81,104, 

and T cell-derived IL-4 supports learning and memory105. Together, 

these studies illustrate the interplay between peripheral immune acti-

vation and its effects on defined neural circuits mediated by specific 

immune cell products (such as metabolites and cytokines). However, 

most studies analysed individual immune cell products in isolation. 

Based on the immunometabolic regulation of CNS cells106 and immune 

cells107,108, future study is needed on the effects of complex combina-

tions of metabolites and cytokines on behaviour. Indeed, it should also 

be considered that multiple metabolites important for CNS physiology, 

such as lactate109,110, are potent immunomodulators108,111. These findings 

also call for the study of specific immune-responsive neural circuits 

involved in distinct aspects of behaviour.

Sickness behaviours

The relationship between the activation of specific neural circuits 

relevant for sickness behaviours and discrete classes of peripheral 

immune cells has recently been evaluated. For example, allergic sensiti-

zation of the gut induces IgE production by B cells112,113, which, through 
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a mast cell-dependent mechanism, induces antigen avoidance by acti-

vating brain areas linked to interoception and fear-related behaviour, 

including the central amygdala, parabrachial nucleus and nucleus of the 

solitary tract112; the interoceptive pathways underlying these deficits 

remain under active investigation113.

These findings complement studies of the circuits underlying sickness 

behaviour114. Intriguingly, in response to lipopolysaccharide or poly(I:C), 

one study detected activation of the hypothalamic ventromedial preop-

tic area through IL-1β, prostaglandin E2 or C-C motif chemokine ligand 

2 (CCL2). ADCYAP1+ peptidergic neurons in the nucleus of the solitary 

tract and the area postrema are key mediators of sickness behaviour115. 

The reactivation of these neurons recapitulates the behavioural changes 

induced by lipopolysaccharide injection. Similarly, prostaglandin E2 

produced in response to influenza infection signals to glossopharyn-

geal sensory neurons innervating the nasopharynx, transmitting these 

signals to the brainstem116. These studies in mice demonstrate the direct 

sensing of microorganism-triggered immune activity by peripheral 

and central neurons, which, in combination with immune cells acting 

on these neural circuits, influence a variety of complex behaviours.

In summary, immune system activation affects specific brain circuits, 

altering long-term plasticity and behaviour. These findings beg the 

question of how long-lived the neural responses to peripheral immune 

signals are, and how they compare with neural responses driven by 

immune cell CNS infiltration. These responses to peripheral immune 

factors may be influenced by differences in BBB integrity, for example 

between areas that lack a BBB117 to those with induced BBB leakiness 

such as the nucleus accumbens or amygdala78,118. Thus, the activity of a 

neural circuit may locally affect BBB integrity, and the responsiveness 

of the circuit to immune modulation may be modulated by the BBB.

Environmental impact on neuroimmune interactions

Environmental factors such as microorganisms and environmental 

chemicals regulate the activity and interactions of the immune and 

nervous systems (Fig. 3). Dietary factors, including tryptophan and 

short-chain fatty acids, have been shown to tune the responses of both 

CNS and immune cells. However, it is challenging to study the effects 

of environmental factors on the immune and nervous systems because 

multiple factors usually operate in parallel, and the signalling mecha-

nisms triggered by each factor are unknown. A further difficulty is that 

environmental exposures may precede the onset of their pathological 

effects by decades. Thus, a central challenge in neuroimmunology is 

to isolate causal relationships between environmental factors and the 

responses of cells across the CNS and immune system.

Environmental chemicals

The exposome is defined as the totality of the environmental expo-

sures faced by an organism in its lifetime119, including infections and 

the commensal flora120. Multi-omic approaches have identified envi-

ronmental exposures that modulate multiple biological processes 

linked to specific disorders121, for example aryl hydrocarbon receptor 

ligands122,123. To define the mechanisms through which exposures act, 

platforms based on the analysis of environmental chemical libraries 

have been developed124, using a combination of zebrafish and mouse 

preclinical models, machine learning and clinical samples125,126. This 

and similar approaches127 have defined mechanisms and neuroimmune 

interactions that regulate inflammation and are regulated by envi-

ronmental factors, including the SigmaR1–XBP1 axis, which controls 

astrocyte proinflammatory responses126. These platforms will help to 

identify neuroimmune interactions regulated by environmental fac-

tors, an important point given the multifactorial contribution of the 

environment to human disorders121.

Microbiota

The microbiome associated with different tissues, such as the gastro-

intestinal tract and the lung, modulates neuroimmune interactions 

through direct and indirect mechanisms, with important consequences 

for neurodegeneration, behaviour and immunity. Classical studies 

showed that the gut microbiome controls spontaneous T cell CNS auto-

immunity in mice bearing transgenic self-reactive T cells and B cells128.  

Related studies defined the molecular mechanisms, including microbial 

metabolites, that are involved in the microbial control of T cell responses  

in mice129,130. Other immune cell types such as B cells44,131 and NK cells41 

are also modulated by the intestinal microbiome and migrate to the 

CNS, establishing neuroimmune interactions with resident cells. In 

the periphery, microbially regulated interactions between TH17 cells 

and sensory neurons mediated by IL-17–IL-17RA signalling promote the 

regeneration of sensory neurons in mice132, raising some interesting 

possibilities about the existence of similar mechanisms in the CNS. 

Although less studied, the commensal microbiome in other tissues 

besides the gut (notably the lung) has also been shown to control neuro-

immune interactions driven by CD4+ and CD8+ T cells, B cells and myeloid  

cells in the CNS133,134.

Similar studies established key links between the gut microbiome 

and perturbed neuroimmune interactions resulting in long-term behav-

ioural deficits. For instance, gut microbiome perturbations induced by 

MIA135 license TH17 cell-driven behavioural abnormalities in mice off-

spring136. The diet also influences neuroimmune interactions, as exem-

plified by metabolites of dietary tryptophan, which regulate murine 

and human astrocyte–microglia neuroimmune interactions48,137 that 

are also responsive to environmental chemicals125. Similarly, a high-salt 

diet supports intestinal TH17 cells that promote cognitive deficits138, 

and meningeal TH17 cells that act on border-associated macrophages 

to promote behavioural deficits in a hypertension mouse model139. 

These studies highlight the direct and indirect environmental control 

of neuroimmune interactions.

The commensal flora not only regulate CNS neuroimmune inter-

actions directly through BBB-permeable metabolites across spe-

cies48,137,140–142, they also regulate CNS activity indirectly through the 

Environmental
chemicals

Host
microbiome

APC–T cell

NK cell

Astrocyte Microglia

B cell

SCFA
Trp metabolites
AHR

Immune
cell licensing

Microbial
metabolites

Colonization

Cell
migration

Neural
circuits

Fig. 3 | Environmental regulation of the neuroimmune connectome. 
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control of peripheral neurons. In one study using mice, the microbiome 

was linked to the motivation to exercise mediated by the ventral stria-

tum, specifically through the peripheral production of endocannabi-

noids that act on afferent sensory neurons143. Together, these studies 

reveal complex mechanisms by which the microbiota influence neuro-

immune interactions that are relevant for CNS development, homeo-

stasis and pathology. Moreover, these studies also suggest therapeutic 

avenues to target directly or indirectly neuroimmune interactions, 

based on the depletion144 or administration of microbial products or 

their synthetic analogues145, or engineered probiotics for the produc-

tion of therapeutic molecules in vivo108,146.

Sleep

Sleep is recognized as an important environmental factor severely 

affected by modern life patterns; its perturbation affects multi-

ple aspects of physiology147, including neuroimmune interactions. 

Melatonin, a pineal gland hormone involved in the regulation of the 

sleep–wake cycle, modulates CD4+ T cell polarization and tissue inflam-

mation148. Moreover, sleep-induced hypocretin suppresses CSF1 pro-

duction in mice and, consequently, bone marrow monocyte maturation 

and atherosclerosis149, and sleep disruption triggers monocytosis and 

worsens atherosclerosis. Similarly, in animal models of cardiac disease 

and in human patients, peripheral macrophages accumulate in the 

superior cervical ganglia150, inducing sympathetic denervation of the 

pineal gland and sleep disruption, potentially driving a positive feed-

back loop of inflammatory myelopoiesis.

Further links between the immune response and sleep may under-

score these findings. For example, prolonged sleep deprivation induces 

a cytokine storm-like phenotype linked with neutrophil and monocyte 

mobilization and PGD2 signalling in brain endothelium151. Conversely, 

dysregulated CD4+ and CD8+ T cells targeting hypocretin+ hypothalamic 

neurons have been linked to the pathogenesis of human narcolepsy152,153. 

Future studies in this area are likely to identify specific mechanisms 

by which modern lifestyles affect disease-relevant neuroimmune 

interactions, as well as potential interventions to minimize their  

impact.

In summary, environmental factors shape the neuroimmune con-

nectome by influencing the activity of immune and CNS cells. One 

outstanding challenge in the field is to decipher the relative contribu-

tion of each environmental factor in the complex mixture of exposures 

that simultaneously act on humans. Computational approaches, such 

as those used in systems immunology154, may help to decipher the links 

between environmental perturbations and altered neuroimmune inter-

actions. Together, the integration of tools for lineage tracing, spatial 

profiling, environmental perturbations and computational analysis 

might help to reveal the effects of specific environmental factors on 

neuroimmune interactions and the mechanisms involved.

Tools to probe neuroimmune cross-talk

The complexity of cell types and mechanisms that mediate long-term 

and short-lived neuroimmune interactions calls for the development of 

new high-dimensional tools for neuroimmunology research. Consider-

ing the transient nature of some neuroimmune interactions, coupled 

with rapid changes in cellular states, approaches designed to label cell–

cell interactions while simultaneously analysing cell activation states 

and their location in tissues are needed to study neuroimmune interac-

tions and the specific cell subsets that participate in them. Finally, tools 

for the specific manipulation of the chemical and electrical activity of 

defined cell states are needed to delineate the functional properties 

of neuroimmune circuits (Fig. 4). Below, we summarize some recently 

developed technologies for neuroimmune connectome research.

Cell–cell interactions

First, it is important to identify and mechanistically define neuroim-

mune interactions in tissues155. RABID-seq51, a genetically encoded 

interactomic method, deploys cellular barcodes between interacting 

cells using a library of barcoded G-deficient pseudotyped rabies virus156. 
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Fig. 4 | Technologies used to study neuroimmune interactions. Many tools 

exist that have great potential to decipher neuroimmune interactions, but  

each class of technologies possesses unique strengths and weaknesses.  

Actuator technologies provide excellent temporal and spatial resolution but lack 

detailed longitudinal molecular information on the cells targeted (such as the 

transcriptome). Specialized methods to study cell–cell communication enable 

connectome studies linked to molecular data but lack high temporal resolution. 

Visualization strategies enable systematic anatomical mapping but provide  

only a snapshot of cellular dynamics and are limited in the number of read-out 

channels. Technologies to investigate cell states enable specialized molecular 

and temporal analyses but have low spatial resolution. AAV, adeno-associated 

virus.
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RABID-seq and similar approaches157–159 integrate connectomic and 

single-cell transcriptomic data, so specific subsets of interacting cells 

can be unequivocally identified. Similar tools have been developed to 

study connections across neural circuits160, including BRIC-seq and 

MAP-seq, which use barcoded Sindbis virus to detect interactions 

between neurons161,162.

Furthermore, methods for the analysis of peripheral neuroimmune 

interactions are also needed163. One approach is PIC-seq164, which com-

bines flow cytometry and single-cell RNA sequencing (scRNA-seq) to 

define mechanisms of cell–cell communication based on the analy-

sis of the transcriptional program of cell doublets165. An alternative 

approach, LIPSTIC166, is based on the enzymatic labelling of cell inter-

actions in vivo by combining available Cre strains with a Cre-inducible 

LIPSTIC reporter167. These approaches are complemented by in vitro 

methods such as SPEAC-seq50, a forward genetic screening method 

to identify interaction mechanisms in cell pairs cultured in droplets. 

Collectively, these techniques enable the rapid study of neuroimmune 

interactions.

Mapping cell types and states

The development of technologies is accelerating the study of neuroim-

mune connectome-relevant cell subsets. FIND-seq is a microfluidic- 

based approach that enables the in-depth transcriptional, epigenetic 

and genomic interrogation of cell subsets defined by the expression 

of nucleic acid biomarkers168,169. Coupling these and similar analytical 

methods with temporal information would define the timescale and 

dynamics of neuroimmune interactions. For example, Zman-seq170 cou-

ples time-resolved molecular barcoding with single-cell transcriptom-

ics, providing a granular view of neuroimmune interaction dynamics 

when applied to the CNS.

Cost-effective methods for the manipulation and high-resolution 

mapping of cell states in tissues are needed to define the function of 

neuroimmune interactions, the molecular mechanisms they control 

and their physiological consequences. Optimized adeno-associated 

viruses containing new capsids provide possibilities for functional 

genetic perturbation studies in vivo171 targeting cell subsets that par-

ticipate in neuroimmune interactions of interest172–176. These investiga-

tions are supported by new methods for the spatial profiling of RNA, 

some of which capture temporal information. Remarkably, one such 

technique records the electrophysiological properties of excitable 

cells using a barcoded bioelectronic device177. Alternatively, profiling 

actively translated mRNA by RIBOmap178 or infusing spatial barcodes 

into nuclei in intact tissue by Slide-tags179 enable multi-omic single-cell 

spatial analysis to identify specific tissue microenvironments in which 

defined neuroimmune circuits control defined homeostatic or patho-

logical responses.

Reading and actuating cellular activity

Finally, actuator technologies such as optogenetics and chemogenet-

ics enable the control of neuroimmune circuits to study their func-

tion180–182. Red-shifted opsins such as ChRmine or step-function opsins 

highly sensitive to blue light (SOUL) can be used to stimulate deep 

brain nuclei and neurons in peripheral tissues99,183–185, enabling the 

non-invasive control of neuroimmune circuits without optical fibre 

implantation or much tissue heating. Other tools, including bioel-

ectronic implants, can directly link peripheral circuits, such as the 

enteric nervous system, to CNS responses186. These tools may provide 

unprecedented access to central, peripheral and immune circuits to 

define their roles in physiology and disease.

Beyond the control of cellular activity, tools have been developed to 

visualize and record cellular processes. Optical clearing techniques, 

such as CLARITY187, SHIELD188 and iDISCO189, provide unprecedented 

resolution into cellular dynamics in the brain. Recent iterations of 

these tools enabled whole-body clearing, such as with wildDISCO190 or 

HYBRiD191, which can provide insights into neuroimmune interactions 

across the body, and whole-brain vasculature mapping192 to link periph-

eral changes to brain function. Coupled with methods for the alignment 

of whole-brain cellular and anatomical data, these tools may enable 

the dissection of neuroimmune interactions at an organismal scale.

Outlook

The connectome is defined in neurobiology as the network of elements 

and connections in the brain193. Neuroimmunology has made great 

progress in elucidating the nervous and immune mechanisms, cell types 

and circuits that control physiology and pathology. However, it has not 

yet generated an integrated view of the neuroimmune connectome to 

provide a comprehensive understanding of the functional roles and 

mechanisms that mediate interactions between the relatively fragile and 

stationary nervous system and the more resilient and dynamic immune 

system. Basic questions remain unanswered with regard to the neuroim-

mune connectome and its molecular identity, regulation and function.

First, we need to define and analyse the neuroimmune connec-

tome. At present, we define neuroimmune interactions according 

to their functional effects on immunity or the nervous system. How-

ever, neuroimmune interactions exhibit tissue-specific adaptations 

and state-dependent outcomes that may not be easily detected with 

a one-size-fits-all approach. Moreover, neuroimmune interactions 

involving circulating immune cells are highly dynamic and potentially 

short-lived, although they may have long-lasting effects. Thus, new 

tools are needed to record past neuroimmune interactions and their 

location, temporal dynamics and functional consequences.

Second, we need to know how information is captured and stored 

in the neuroimmune connectome to modulate the activity of the 

nervous and immune systems, tissue physiology and even subjective 

conscious experience. Immune cells and neurons are directly and 

indirectly responsive to endogenous and exogenous stimuli, such as 

neurotransmitters, cytokines, environmental chemicals and microbial 

products that may show combinatorial effects compounded by hetero-

geneous cell subsets expressing different repertoires of receptors for 

these stimuli. Thus, analytical and computational methods are needed 

to integrate this complex and heterogeneous network of stimuli and 

receptors, and define the environment-modulated neuroimmune cir-

cuits associated with specific functions.

Finally, a unique characteristic of both the nervous and immune 

systems is their ability to establish retrievable memories, including 

synaptic plasticity or vaccination against pathogens. Indeed, some 

neuroimmune interactions exhibit memory82. We need to know how 

long-lived the effects of neuroimmune interactions really are. Recent 

findings indicate that astrocyte activation by immune stimuli induces 

epigenetic memory programs that alter their subsequent responses to 

stimulation85, resembling findings made on immune194,195 and structural 

cells86; neuroimmune interactions between astrocytes and other cells 

(for example, microglia) are likely to further contribute to and regulate 

this astrocyte memory, as well as epigenetic memory programs in other 

cells of the nervous and immune systems. Defining the durability of neu-

roimmune interaction-driven responses may therefore provide insights 

into tissue physiology, while guiding the development of therapeutics 

to manage inflammation and promote tissue repair and resilience.
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