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Cognition and behavior are emergent properties of brain systems that seek to

maximize complex and adaptive behaviors while minimizing energy utilization.

Different species reconcile this trade-off in different ways, but in humans the out-

come is biased towards complex behaviors and hence relatively high energy use.

However, even in energy-intensive brains, numerous parsimonious processes

operate to optimize energy use. We review how this balance manifests in both

homeostatic processes and task-associated cognition. We also consider the

perturbations and disruptions of metabolism in neurocognitive diseases.
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Glucose is the primary fuel for cognition

Cognition arises from neural dynamics in large-scale brain systems and their context-dependent

neuromodulation. Glucose is the primary source of energy for these processes, and provides

the majority of the energy 'currency' – adenosine triphosphate (ATP;see Glossary) – to fuel

neurotransmission, neurotransmitter biosynthesis, and recycling, manage oxidative stress, and

maintain resting potentials (Box 1)[ 1,2]. To maintain brain health, the supply of glucose needs

to be both reliable and scalable (i.e., efficiently up- or downregulated). Even brief disruptions of

neural glucose can lead to cognitive dysfunction, seizures, neuronal death, loss of consciousness,

coma, and death [1]. A significant proportion of the energy budget of the brain is spent onmain-

taining neural integrity and related homeostatic processes [2,3]. Neural processes that support

cognition interface with these baseline homeostatic processes to shift energy utilization from

restorative to proactive and responsive.

Here, we review the metabolic costs of cognition – that is, how glucose metabolism sustains

brain functions, including core homeostasis, memory consolidation, repair, and the execution

of specific cognitive tasks. We review the metabolic cost of neural homeostasis, the additional

costs of task-associated cognitive processes, and the numerous strategies to optimize energy

utilization. We highlight the consequences of metabolic failure in neurodegenerative disorders,

and finish by surveying frontier developments inmeasuring andmodeling neural–metabolic coupling

in health and disease.

Core metabolic costs of neural activity

The capacity of the human brain to adaptively predict, process, and act on complex information

comes with a considerable energy burden. Although it accounts for only 2% of body weight,

the human brain accounts for 20% of its resti ng metabolism, more than tenfold the amount

expected based on its weight [4]. This requirement is even greater at the peak of early childhood

neurodevelopment when it uses up to half of the basal nutritional requirements of the body [5]to

support the synaptic and glial remodeling that enables growth and learning.

All brain regions are metabolically active, but there is substantial temporal and regional variability

at the tissue and systems level. The regional variability in resting cerebral glucose metabolism is

partly attributable to neuroanatomy and cytoarchitecture. Neurophysiological studies demon-

strate significant heterogeneity of resting metabolism between gray and white matter. Gray
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Box 1. Supply of glucose to support the energy demands of the brain

'Metabolism' refers to all the chemical reactions that provide the body with energy. Catabolic metabolism breaks downmolecules into simpler ones, releasing the energy

stored in the molecule. Anabolic metabolism combines simple molecules to generate more complex ones. Almost all the energy required by the brain is provided by

glucose. Glucose is primarily metabolized in an oxidative catabolic reaction known as cellular respiration to produce 30–32 molecules of ATP, the energy 'currency'

of the body. Cellular respiration comprises four reactions: glycolysis, the formation of acetyl-CoA, the tricarboxylic acid (TCA or Krebs) cycle, and the electron transport

chain (ETC) reactions. Glycolysis, the TCA cycle, and the ETC provide almost all the ATP required for cellular activities [1,81]. Neurons rely upon oxidative catabolism of

glucose for ATP generation, particularly in the cell soma [119]. Disruption of the supply of either glucose or oxygen can be catastrophic, leading to decline in function,

cognition, and consciousness [1].

If glucose is not immediately required for ATP production, it can be stored in astrocytes as glycogen, ready to be resynthesized to glucose via glycogenolysis when

required. However, the energy stores in the brain are extremely small in comparison to its high metabolic requirements; thus, a continuous and reliable supply of glucose

is necessary to maintain neural function and cognition. Glucose enters the brain via the endothelial cells of the blood–brain barrier, primarily via the facilitative transporter

GLUT1 [76] (Figure I). Once in the brain, extracellular glucose is rapidly taken up by astrocytes, neurons, and glia. Glucose can travel from the capillary to the neuron

either via direct diffusion from the extracellular space or by being transported (via GLUT1) through the astrocytic end-feet that surround the capillary walls to the adjacent

neuron [81]. GLUT3 is the major transporter in neurons, and has a higher af finity and transport capacity for glucose than GLUT1, thereby providing neurons with

preferential access to available glucose in the brain [76].

Seventy percent of the energy demands of gray matter are associated with neuronal signaling (comprising synaptic transmission 49%, action potentials 9%, glutamate/

GABA recycling 4%, presynaptic calcium activity 8%), and the remainder is dedicated to non-signaling activities (maintenance of resting potentials 20% and housekeeping

needs 11%) [2]. In white matter, 18% of total ATP consumption is dedicated to signaling (comprising neuronal signaling 13%, glial calcium activity 3%, action potentials in

nerves 1%), and 82% to non-signaling (resting potentials 58%, housekeeping 24%) needs [2].
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Figure I. Supply of glucose to the brain across the blood–brain barrier. (A) Cellular components of the blood–brain barrier. The blood–brain barrier is formed by

the capillary endothelial cells, basal lamina membrane, and astrocytic end-feet. Figure adapted, with permission, from [120]. (B) Movement of glucose across the blood–

brain barrier. Under normal physiological conditions, the concentration of glucosemolecules (white spheres) is higher in the blood (4–6mM) than in the brain extracellular

fluid (1–2 mM). The high energy demands of the brain increase the transfer of glucose into the brain across the facilitative glucose transporters (GLUTs) and sodium-

dependent glucose transporters (SDGTs). GLUT1 (green) is the most abundant glucose transporter, and is present on red blood cells, endothelial cells, astrocytes,

neurons, and microglia. GLUT3 (dark blue) is the most abundant glucose transporter on neurons, and GLUT5 (light purple) is the most abundant glucose transporter

on microglia. Figure adapted, with permission, from [76].

matter comprises the cell bodies, local axons, dendrites, and synapses that form the functional

circuits of the brain, whereas white matter mainly comprises myelinated axons that support the

long-range anatomical connections that scaffold these circuits into functional networks [ 6].

Approximately 70% of the metabolic costs of t he gray matter are concerned with neuronal
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signaling, contrasting with 18% in white matter ( Box 1 and Figure 1A) [2,7]. In rodent gray

matter, the postsynaptic effects of glutamate and the ensuing action potentials consume much

of the energy (34% and 47%, respectively), whereas the resting potential consumes 13% and

glutamate recycling uses only 3% [8].
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TrendsTrends inin CognitiveCognitive SciencesSciences 

Figure 1. Regional variability in the metabolic costs of signaling. (A) Energy budgets for gray and white matter (top) plus

hub and non-hub regions (bottom) derived from physiological recordings and models [2,3]. Signaling types include synaptic

transmission (ST), maintenance of the resting potential (RP), housekeeping (HK), action potential (AP) and AP in the nerve

(APnerve), postsynaptic calcium (PC) and astrocytic calcium (AC), glutamate recycling (Glu), and neuronal signaling (NS). Gray

matter spends the largest proportion of the energy budget on synaptic transmission, whereas white matter spends the largest

amount of energy on maintaining the resting potential. Within gray matter, hubs spend a larger proportion of their budget on

synaptic transmission than do non-hub regions. (B). Regional variability in cerebral metabolic rate of glucose utilization (CMRGLC,

in units of mg/100 ml/minute) derived from 75 healthy individuals [67,68]. (C) (Top) Schematic representation of brain networks.

Each region is represented as a node (sphere) and connections between them are edges. Subnetworks or modules are

represented by shaded areas. The gray, blue, and red dots within each of the networks are nodes, the lines inside the networks

are within-network edges, and the lines crossing networks are between-network edges. The red node depicts a provincial hub

(that strongly connects nodes within the same network), and the blue nodes depict connector hubs (that connect nodes

between different networks). Connector hubs have important and often long-range connections running through them, and

connect nodes between different networks to form a rich club network. (Bottom) Consistent with evidence from physiology, hub

regions have higher metabolic rates of glucose (measured as standardized uptake value ratio, SUVr) than non-hub regions.

Furthermore, connector hubs have higher levels of glucose metabolism than provincial hubs. Data derived from [23].

Because the brain does not store substantial energy, regional variation in glucose concentration

is limited [9]. Instead, glucose is supplied adaptively by the vasculature as needed, and its use in

individual brain cells is controlled by intricate feedback and feedforward mechanisms [10]. More

metabolically active regions have more capillaries and a higher cell density than less metabolically ac-

tive regions [11–13], a characteristic that contributes to regional variability in the BOLD (blood oxygen

level-dependent) signal captured in functional neuroimaging data (Box 2)[ 1,14,15]. The metabolic

needs of brain networks also change across the daily cycle, and regional cerebral blood flow

(rCBF) increases frommorning to evening and decreases after a night of sleep, particularly in the hip-

pocampus, amygdala, thalamus, and occipital and sensorimotor cortices [16].

The regional variability in baseline glucose metabolism reflects the presence of multiple

functional systems or subsystems that show ongoing coherent activity regardless of

immediate cognitive demands [17]. These functional networks possess coherent BOLD

signal fluctuations [4] whose amplitudes are associated with concurrent glucose metabolism

[18,19]. Notably, functional networks that are m ore active during cognitively demanding

tasks such as attention, working memory, and decision-making also have higher energy

costs at rest than sensorimotor networks. The interactions among these networks are highly

Glossary

Adenosine triphosphate (ATP): the

nucleotide that is the source of energy

at the cellular level. Energy can be both

stored and used in the form of ATP

molecules. The brain consumes the

highest proportion of ATP in the body.

[18F]fluorodeoxyglucose (FDG)-

positron emission tomography

(PET): [18F]-fluorodeoxyglucose (FDG) is

a radioactively labeled glucose analog

that enters the metabolic pathway in the

same way as glucose. It becomes

trapped at the synapse at the

phosphorylation stage of the glucose

metabolic pathway, and emits a positron

which is detected by the PET camera.

Positron emission is used to infer where

in the brain the FDG is trapped.

Functional connectivity: correlation or

coherence between neurophysiological

time-series from different regions of the

brain. It is often seen as an indirect proxy

for information transfer between these

regions. A functional network approach

considers the correlations between

these regions as forming an integrated

system rather than considering each

region in isolation.

Functional system or subsystem: a

set of regions that show coherent

functional activity both during task and at

rest. May also be referred to as a

functional network or module. Canonical

functional systems include the dorsal

attention network, the frontoparietal

network, the salience network, and the

default mode network, among others.

Glucodynamics: time-varying glucose

metabolism, or how glucose moves

throughout the body and/or brain.

Hodgkin–Huxley model: a

mathematical model of how action

potentials are generated and propagated

across membranes. The model

attributes the change in conductance

during the action potential to opening of

sodium (Na+) and potassium (K+)

channels on the neuronal membrane.

Hubs: derived from topological models

of brain network organization, hubs are

brain regions that show high structural

interconnectedness ('degree') with other

brain regions. A 'provincial' hub shows

high interconnectedness with regions

within its functional module; a 'connector'

hub shows high interconnectedness with

many different modules. Hubs are

classically defined using structural

connectivity, but strongly overlap with

hubs in functional networks and show

baseline high metabolic activity.
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coordinated [20]by hub regions that are strongly anatomically and functionally connected,

particularly to other hub regions [20,21]( Box 3). The 'hubness' – the degree of interconnectivity

with other regions – is associated with higher glucose cost [ 22], and central 'connector'

hubs show higher rates of metabolism than pro vincial hubs which connect primarily within

regions of the same subnetwork [23]( Figure 1C). Hub regions tend to have higher neuronal

and synaptic densities and firing rates [24], and spend more energy on synaptic transmission

and action potentials than non-hub regions (72% versus 68%; Figure 1B) [3]. This ongoing

metabolic activity forms the baseline energy expenditure of the brain, and provides a founda-

tion for understanding how cognitive tasks reshape energy use and how the higher metabolic

cost of hubs contributes to vulnerability to neurodegenerative processes, leading to cognitive

impairment.

Insulin: the anabolic hormone that is

primarily produced by the pancreas and

controls blood glucose homeostasis

and prevents hypoglycemia. Insulin

sensitivity refers to how sensitive the

body is to the effects of insulin. Low

insulin sensitivity, known as insulin

resistance, occurswhen the body fails to

respond normally to insulin and requires

higher levels of insulin to maintain blood

glucose homeostasis. Insulin resistance

results in increased blood glucose levels.

Metabolic connectivity: coherence in

the time course of glucose metabolism

between brain regions, sometimes

measured using functional PET (fPET).

This contrasts with metabolic covariance,

which measures covariation in metabolic

rates of glucose across subjects.

Metabolic connectivity is analogous to

functional connectivity as measured using

fMRI or electroencephalography (EEG),

Metabolic connectivity mapping

(MCM): an analytical technique that is

applied to simultaneously acquired

BOLD-fMRI and [18F]FDG-PET images.

Under the assumption that FDG uptake

primarily reflects postsynaptic activity,

colocalization of BOLD and FDG signals

is used to estimate the directionality of

fMRI-derived measures of connectivity.

Metabolic cost: the amount of energy

used to perform a specific task or maintain

physiological functions. For example, the

amount of glucose metabolism needed to

sustain a brain function or perform a

specific cognitive task. This cost is often

measured asmetabolic rates of glucose or

in calories or joules expended relative to

the function or task.

Node: in graph theory, the brain regions

that form a network. Nodes may be

categorized as hubs or non-hub regions

depending on their level of

interconnectedness.

Predictive coding: atheoryofbrain

function that proposes that the brain

actively generates an internal model of

the world that it uses to predict incoming

sensory input rather than passively

responding to it. This internal model is

represented across multiple timescales

and levels of the cortical hierarchy and is

updated based on the differences, or

prediction errors, between expected and

actual sensory data. Much of cognitive

function is concerned with minimizing

these prediction errors, thus yielding a

parsimonious model of the world.

Rich club: a network organization

where the hub regions tend to be more

densely interconnected with each other

than with non-hub regions.
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Metabolic costs of goal-directed cognition

Engaging in active cognitive and sensory processes increases cerebral blood flow (CBF), glucose

metabolism, and ATP production in task-relevant regions [25,26]. Early [18F]fluorodeoxyglucose

(FDG)-positron emission tomography (PET) studies in humans demonstrated robust

increases in the cerebral metabolic rate of glucose (CMRGLC) in visual regions during the pre-

sentation of visual checkerboard stimuli [27]. These observations extended to somatosensory

activity [28], memory [29], language [30], and tasks engaging complex cognitive processes

[31]. Gamma oscillations, which are associated with information transfer within local cortical

circuits, are also associated with higher glucose metabolism [32]. Notably, the increase in met-

abolic activity in task-relevant regions is associated with a relative decrease in the default mode

regions – a regional exchange of metabolic demand that is reversed following task completion

[4].

Box 2. In vivo measurement of the metabolic costs of cognition

Glucose use increases linearly with spike frequency [121], and the total energy cost for synaptic transmission by excitatory

neurons is estimated to be 1.58 × 109 ATP/s at a firing rate of 1 Hz [2]. Microanalysis measurements in animals show metabolic

flux and spike frequencies that are detectable at a sub-second scale[122]. In humans, changes in glucose signals are detectable

at the scale of seconds using in vivo imaging. Human macroscale functional neuroimagingmethods capitalize on the tight spatial

and temporal coupling of neuronal signaling and oxidative metabolism of glucose to measure neuronal activity during cognition.

Deoxyglucose (2-deoxy-D-glucose, DG) is a glucose analog that is transported from the blood to the neural tissue by the

same carrier system as glucose, and is metabolized exactly as glucose until the stage of phosphorylation during glycolysis

(Figure I) [123]. While glucose continues along the glycolytic pathway, metabolism of DG ceases at this point in the path-

way and it is effectively trapped in the tissue. By labeling DG with a radioligand, DG imaging relies upon the fact that DG

remains trapped within the cell for the duration of measurement [123]. [14C]-DG autoradiography [123] and the more com-

mon [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) [124] therefore provide a measure of the cerebral

metabolic rate of glucose utilization (CMRGLC) in the initial stages of glycolysis, but cannot provide insight into subsequent

processes in the glucose metabolic pathway, including the later stages of glycolysis and oxidative metabolism [1,123,124].

Metabolic processes can also be inferred using magnetic resonance spectroscopy (MRS). Later processes in the glucose

metabolic pathway can bemeasured using [13C]-glucose (or [13C]-lactate or [13C]-acetate) MRS [1,125]. Metabolic processes

beyond glucose, such as fatty acid and amino acid metabolism, can be studied with deuterium metabolic MRS [126].

The exact mechanisms underlying the blood oxygenation-level dependent (BOLD) fMRI response are not fully understood

(e.g., [14]). Increased neural activity results in an increase in cerebral blood flow (CBF), the cerebral metabolic rate of oxygen

metabolism (CMRO2), and ATP production from glucose oxidation [25,27,28]. The increase in CBF (and CMRGLC)exceeds

the increase in CMRO2, and the uncoupling of CBF and CMRO2 forms the basis of the BOLD response [127]. Our under-

standing of how the BOLD response is linked to glucose metabolism is constrained by our limited understanding of the link

between CMRO2 and CBF [14], and the link between neuronal activity and glucose metabolism (astrocyte–neuron lactate

shuttle [128] versus the neuron–astrocyte lactate shuttle [15]). Thus, although the exact mechanism linking CMRO2 and

CMRGLC to the BOLD response is not fully understood, it is clear that neural activity requires glucose [1], glucose requires

oxygen in order to be metabolized, and CMRO2 is the relevant metabolic rate that initiates the change in CBF to alter blood

and tissue oxygenation [14], indirectly leading to the BOLD-fMRI response.
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Simultaneous PET and magnetic

resonance (PET/MR): arelatively

recent technological advance that allows

simultaneous measurement of multiple

dimensions of neuronal activity such as

glucose uptake and hemodynamic

response, cerebral perfusion, and

neurotransmitter release.

Sparse coding: sparse codes

represent and transmit information

through the bursty activity of a small

proportion of neurons in a population.

Sparse coding is a metabolically efficient

computational principle.
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Figure I. Simplified glucose metabolic pathway and its relationship to neurovascular elements. One molecule

of glucose (Glc) enters the cell via theGLUT transporter and undergoes cellular respiration to generate adenosine triphosphate

(ATP), the source of energy at the cellular level. This results in an increase in the metabolic rates of glucose (CMRGLC)and

oxygen (CMRO2), increased cerebral blood flow (CBF), a decrease in the oxygen extraction fraction (OEF)), and an increase

in the blood oxygenation level dependent (BOLD response. The full process of cellular respiration of glucose to generate

ATP involves four sets of reactions: glycolysis, the formation of acetyl-CoA the tricarboxylic acid (TCA or Krebs) cycle, and

the electron transport chain (ETC). Fluorodeoxyglucose (FDG) and deoxyglucose (DG) enter the glucose metabolic pathway

in the same way as glucose and become trapped at the glucose phosphorylation stage. As such, DG/FDG imaging

provides insight into the earliest processes of neural glucose metabolism, and not later stages ([1,14,15,129] for details).

Abbreviations: Fru-6P, fructose-6-phosphate; Gal-3P, galactose-3-phosphate; Glc-6P, glucose-6-phosphate; LDG, lactate

dehydrogenase reaction; MAS, malate–aspartate shuttle; PPP, pentose phosphate shunt pathway; Pyr, pyruvate,

Recent studies using simultaneous PET and magnetic resonance (PET/MR) imaging con-

firmed that the increase in glucose metabolism within task-relevant regions is associated with

an increase in CBF and the BOLD signal, as well as with an increase in functional connectivity

(e.g., [33–36]). For example, CMRGLC increases in the visual cortex upon eye-opening. This local

increase in CMRGLC determines the level of functional connectivity between the visual cortex,

other regions within the visual hierarchy, and transmodal regions such as the salience network,

hence enabling crosstalk between unimodal networks [33]. Although the observed metabolic

and functional association was relatively widespread, it was predominantly confined to task-

relevant regions and did not extend globally. A recent simultaneous PET/MR study using

BOLD-fMRI and high temporal resolution [18F]FDG-fPET (Box 3) found that, during checkerboard

stimulation, BOLD changes in the visual cortex were associated with [18F]FDG signal in the visual

cortex tissue as well as in the central cerebral draining vein [35]. In other words, the task-related

BOLD signal in the visual cortex was associated with glucose signals from both vascular and neu-

ral tissues, a finding compatible with the vascular and indirect nature of the BOLD signal. Finally,

performing a cognitively demanding task results in further increases in CBF and the BOLD re-

sponse across convergent cortical regions. Once initiated by task engagement at the easy

level, the coupling between neurovascular and metabolic responses is further modulated by

higher cognitive demands, but the changes imposed by more difficult task challenges comprise

subtle modulations of relationships within the same cortical regions [37].

The metabolic costs of cognition increase with increasing difficulty not only within a domain but

also differ across domains (Figure 2). However, this difference largely reflects the depth and

extent of the functional networks that are recruited for their execution: relatively simple unimodal
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tasks (such as visual perception and visuospat ial processing) are less costly than complex

multidomain tasks (such as social cognition and emotion). Moreover, complex cognitive

processes do not simply have a higher metabolic cost in speci fic cortical regions. They also

draw upon neuromodulatory processes that enable context-dependent and flexible adaption

[38]. There is a three-way spatial convergence between the energy costs of signaling in specific

cortical regions, the complexity of the cognitive tasks those regions support, and the upregulation

of slow-acting neuromodulator signaling. In particular, energy-consuming signaling is enriched in

frontoparietal network regions (Figure 2A). These regions, in turn, exhibit an upregulation of

signaling at G protein-coupled receptors and support more complex cognitive functions such

as reading, memory, and emotional processes (Figure 2B) [20]. Consequently, signaling

pathways in these evolutionarily expanded regions have up to 67% higher energy costs than

phylogenetically preserved sensorimotor regions [13].

Trends in Cognitive Sciences

Although these observations regarding energy utilization are convergent, an important caveat is

that engagement in explicit goal-directed behavior and cognition is associated with only a

relatively small increase (~5%) in glucose consumption [4]. This is consistent with evidence

from neurophysiology that the majority of the energy budget of the brain is spent in maintaining

core homeostatic processes plus neural activities that are not tied to immediate task demands

such as memory consolidation [2,3,23]. Theoretical arguments suggest that background fluctu-

ations in the postsynaptic potential are 'tuned' to maximize synaptic signaling per quantum of

ATP utilized [39]. Intriguingly, analysis of physiological data using information theoretic techniques

suggests the two processes (homeostatic and task-related) are not independent, but instead set

in a dynamic balance such that rapid and adaptive increases in local computation can be

achieved with a relatively modest increase in energy consumption [39]. Put differently, very sparse

neural activity with fewer metabolic demands than are observed in vivowould be associated with

a sluggish and inefficient task-initiated start-up. The dynamic balance underlying this 'metabolic

spiking homeostasis' [40,41] reconciles the apparent contradiction between the substantial met-

abolic load of global brain function versus the relatively modest additional burden of specific goal-

directed activity.

Neural activity unfolds on a complex structural backbone, namely the human connectome [42].

The connectome is organized around a rich club of highly interconnected hub regions whose

dense inputs are accommodated by a unique local cytoarchitecture and capacity for greater

local metabolism [24]. The high metabolic cost and dense external connectivity of hub regions

support their ability to 'catalyze' the engagement of different functional networks [43]and

hence switch flexibly between sedentary and goal-directed behaviors [3,23].

Functional and metabolic networks also show a complex association that changes with goal-

directed cognition. A recent simultaneous PET/MR study used metabolic connectivity

mapping (MCM) [44] to examine the dynamics of this func tional-metabolic coupling when

initiating goal-directed cognition [37]. MCM allows inference of the direction of BOLD-derived

functional connectivity between any two brain regions (Box 3). In this study, engaging in a

complex cognitive task led to increased glucosemetabolism, which was associatedwith stronger

functional connectivity. At rest, the association between glucose metabolism and functional

connectivity was confined to a functional system (the dorsal attention network). By contrast,

during a task, the FDG/BOLD association increased between functional systems (dorsal attention

and visual networks). A strong association between glucose metabolism and BOLD-derived

functional networks was activated by the initial switch from resting to the easy levels of the

task. There was only a minor additional change in this coupling when ramping up to more difficult

task, indicating that the largest reorganization of metabolic and functional networks occurred with

546 Trends in Cognitive Sciences, June 2025, Vol. 29, No. 6



the initial engagement. This is consistent with evidence that interactions between functional

networks, particularly at hub regions [3], might be the most energy-costly when switching from

segregated network activity at rest to integrative activity during goal-directed behavior [23,45].

Trends in Cognitive Sciences

Mechanisms to minimize metabolic costs

Thus far we have emphasized the considerable metabolic needs of brain function relative to other

organs. However, the brain nonetheless runs continuously on only ~17 watts of power [45,46].

By comparison, a large high-performance computing cluster uses up to six orders of magnitude

more power, operating at ~2 megawatts. From this perspective, our brains are remarkably en-

ergy-efficient relative to their computational depth and agility. As with all organ systems, this par-

simony is achieved through numerous adaptive mechanisms.

The need to minimize energy use impacts on all facets of brain function, starting with communi-

cation by 'sparse spikes' to offset the energy-intensive process of long-range communication,

which is up to 35-fold more energy-intensive than computation in local circuits [46]. Neural inter-

actions occur through the human connectome, which itself possesses a parsimonious organiza-

tion. Most connections are local, while long, energy-intensive connections between connector

hubs are sparse [47]( Box 3). Hubs are classically defined using structural (anatomical) connectiv-

ity, but structural hubs strongly overlap with hubs in functional networks and show baseline high

metabolic activity [48]. The common topological overlay of structural and functional networks with

metabolic hotspots helps to confine energy-intensive communication processes to a relatively

sparse spatial rich club [48].

Coding principles also play a role. In the visual system, the decluttering of natural scenes into a

minimally redundant sparse code is a canonical example of neural parsimony [49]. Across

perceptual systems, the principle of predictive coding circumvents the energy costs that

would be necessary to continually process and respond to the full depth of ongoing stimuli,

thus allowing important neural resources to be deployed only for the far sparser prediction

mismatches [50]. An additional policy of minimizing prediction errors extends this principle to

adaptive behavior [51] and to constraining and hence normalizing social interactions [52].

Because physically interacting with the environment consumes metabolic resources in skeletal

muscles, we spend more time (and hence expend more cerebral resources) when planning for

effortful behaviors [53]. This is another demonstration of the trade-off between cortical energy

use versus cognitive complexity and behavioral investment.

More broadly, evolution occurs in an optimization landscape that seeks to minimize energy

consumption while maximizing computation and survival, leading to vastly different solu-

tions across species [54]. The energy-costly human brain pre-empts and controls its envi-

ronment, using sophisticated, hierarchical inference [ 55]. Other species, such as reptiles,

are biased towards smaller and less energy-int ensive brains that execute more stereotypical

behavioral repertoires [56]. In both birds and primates, behavioral innovation is correlated

positively with the relative size of association areas in the brain [ 57]. Notably, there is a re-

markable allometric scaling (positive linear rel ationship) between the energy costs of signal-

ing and brain expansion from mice through rats, cats, sheep, goats, and baboons to

humans [13].

These considerations suggest that shared evolutionary constraints operate across diverse

species on the balance between energy utilization and functional optimization [54]. However,

to date much of this work rests largely upon modeling studies. These, in turn, motivate new

experimental investigations to test and refine our understanding of this intriguing area.
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Hormonal regulation of the metabolic needs of cognition

While the brain operates with remarkable energy efficiency, this balance depends on precise

metabolic regulation, particularly the availability of glucose. The brain plays an important

bidirectional role in regulating neural and systemic glucose metabolism, which, if impaired,

contributes to the development of cognitive impairment and neurological disease. Whole-body

(systemic) levels of glucose in the bloodstream are controlled by the hormone insulin [1]. Insulin

signaling in the hypothalamus controls hepatic glucose production [58]. In turn, the reliable

systemic supply of glucose to the brain is necessary for the integrity and adaptive function of brain

systems [59]. Beyond this well-characterized homeostatic circuit, insulin receptors are present

throughout the brain (primarily in neurons and astrocytes [60,61]), the vagus nerve, sympathetic

nerves, and peripheral organs (liver, muscles, pancreas). These distributed systems work together

to regulate body insulin signaling and, therefore, systemic and cerebral glucose metabolism[61].

Glucose transport across the blood–brain barrier into interstitial fluids and brain tissue is largely

insulin-independent. Neurons absorb glucose mainly through insulin-independent (GLUT1 and

GLUT3) receptors rather than the insulin-dependent (GLUT4) receptors that are prevalent in

peripheral tissue [62]. However, insulin itself crosses the brain to influence intracellular glucose

metabolism [60,63] and other molecular pathways important to neural function [64]. Insulin also

regulates circulating levels of glucose in the bloodstream by modulating hepatic glucose produc-

tion. That is, insulin indirectly affects brain metabolism by regulating the amount of glucose

available in the blood, which can influence cognitive performance, particularly hippocampus-

mediated processes [65], under conditions of extreme (hypo- or hyper-) glycemia [60]. Further-

more, via second messenger signaling, insulin modulates the expression of genes involved in

cerebral glucose metabolism, neurotransmission, and the biosynthesis of neural cholesterol

[63]. Neural cholesterol biosynthesis is necessary for the synthesis and maintenance of myelin

and the plasma membrane of neurons and glial cells [ 66]. Increasing peripheral insulin levels

tips the balance of neural gene expression away from glucose uptake and metabolism towards

the cholesterol biosynthesis pathway, enhancing the synthesis of plasma membranes and

synaptic remodeling [63]. In sum, peripheral insulin plays an important regulatory role in the

metabolic costs of cognition by mediating the systemic supply of glucose in the bloodstream

[60]andin fluencing the expression of genes that regulate glucose metabolism, myelin forma-

tion, and the synthesis of neuronal and glial cell plasma membranes [63]. While peripheral

insulin levels are likely to affect most cognitive processes [ 67], evidence to date suggests

that hippocampus-dependent processes are particularly susceptible [65,68].

Disturbances in the adequate supply or metabolism of cerebral glucose can lead to cognitive

dysfunction. Disruption of glucose homeostasis occurs in insulin resistance, where insulin has a

reduced influence on target tissues. Insulin resistance in the central nervous system is associated

with cortical atrophy, cognitive decline, and a pattern of neural pathology similar to Alzheimer's

disease [69]. The prefrontal cortex, fusiform gyrus, hippocampus, striatum, insula, and hypothal-

amus are particularly susceptible to the deleterious effects of insulin resistance [70]. Normative

variability in insulin resistance is associated with poorer working memory and altered coupling

between cerebral glucose metabolism and CBF, even in younger people [67,68].

Increased blood glucose (hyperglycemia) is associatedwith poormemory and executive function,

greater amyloid burden, brain atrophy, and reduced cortical thickness, even in the absence

of clinically significant metabolic syndrome [71]. Similarly, hypoglycemia is associated with

decreased attention, working memory, and cognitive flexibility [72], reduced gray matter volume

[73], as well as cortical atrophy [74] and neuronal death [75]. Thus, maintaining the balance of

blood glucose homeostasis is critical for cogn itive and neural health. The expression of the
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primary glucose transporter that facilitates transport of glucose across the blood–brain barrier

(GLUT 1, Box 1) is downregulated in hyperglycemia and upregulated in hypoglycemia [76].

Autoregulation of GLUT1 at the blood–brain barrier helps to maintain the supply of glucose

needed to support neural function and prevent neuropil damage [ 76]. However, in chronic

hyper- and hypo-glycemic conditions, these regulatory functions may decline, leading to neuro-

degenerative disease.
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Box 3. Network neuroscience and metabolic connectivity

Brain connectivity can bemeasured across structural and functional dimensions. Structural connectivity refers to the physical

connections between brain regions. Across macro- and microscopic scales, the full composite of structural connectivity of

the brain is known as the connectome [20,42]. The connectome comprises short connections that form regional clusters

and sparse, long-range connections that form a 'high-cost, high-capacity backbone' for global communication [48]. As such,

even thoughmost nodes of a network are predominantly connected to neighboring regions, there are only a few intermediate

steps between one node and all the other nodes of the entire network. Much of the metabolic load is concentrated in

structural hubs (e.g., precuneus, anterior and posterior cingulate cortices, and medial temporal lobe) which have enriched

connectivity with other regions [21]. This is an energetically efficient topology which balances the wiring costs (building and

maintaining neuronal circuitry) and metabolic costs while maximizing information transfer [3,6,47].

Functional connectivity is defined as the coherence of neurophysiological signals between distant brain regions, whichmay

or may not be associated with underlying physical connections between the regions. At a macroscale level, the functional

connectivity of the brain is most commonly measured with BOLD-fMRI (see Box 2 in the main text) and electroencepha-

lography (EEG). Increasing recognition of the importance of glucosemetabolism in healthy cognitive function and psycho-/

neuropathology has renewed interest in examining metabolic connectivity using [18F]FDG-PET. Some of the first

network analyses of human neuroimaging datawere conductedwith [18F]FDG-PET [130]. Until recently the [18F]FDG-PET ap-

proach was limited to acquiring a single image per subject, and indexed the cumulative FDG uptake between FDG admin-

istration and the scan (hereafter referred to as 'traditional PET'; refer to [100] for discussion of the terms 'static' and

'dynamic' which vary between disciplines). Studies using traditional PET approaches have found that metabolic networks

showmoderate overlap with networks obtained using BOLD-fMRI (e.g., [131]) and predict unique aspects of cognition com-

pared with fMRI [101,102]. However, unlike BOLD-fMRI and EEG, which provide time courses of hemodynamics and elec-

trophysiology, respectively, traditional [18F]FDG-PET does not provide a time course of glucose uptake that can be correlated

to estimate a functional connectivity matrix. The recently developed 'functional' [18F]FDG-PET ([18F]FDG-fPET) ap-

proach [132] provides a time course of glucose uptake with sub-minute resolution [37,100,133]. Simultaneously acquired

BOLD-fMRI and [18F]FDG-fPET data suggest that metabolic networks show similarities with functional (BOLD-fMRI) net-

works, particularly in networks that encompass frontoparietal and default mode regions [100,101]. However, there are clear

differences between metabolic and functional BOLD-fMRI networks – largely in temporo-occipital regions [100] – indicating

that metabolic networks show both unique and complementary information to functional BOLD-fMRI networks.

Role of glucose metabolism in neurodegenerative diseases of aging

The parsimonious metabolic work of the brain is also perturbed during healthy aging, which is

associated with incremental declines in cerebral glucose metabolism, particularly in frontal and

temporal regions [77]. These subtle metabolic changes are associated with changing executive

function and episodic memory [78–80]. Most age-related neurodegenerative diseases are

characterized by hypometabolism of glucose at rest and during cognition, including in Alzheimer's,

Huntington's, and Parkinson's diseases, frontotemporal lobar degeneration (FTLD), and dementia

with Lewy bodies [81]. A putative pathogenic mechanism of impaired cerebral glucosemetabolism

has been proposed for several other conditions that affect cognition, including schizophrenia [82],

mood disorders [83], and epilepsy [84]. Importantly, cognitive abnormalities in age-related neuro-

degenerative diseases are not simply attributable to a reduction in the energy required to support

neuronal function. Instead, disrupted cerebral glucose metabolism may be both a trigger and a

catalyst for the progression of diseases in a destructive neurodegenerative cycle [81].

Declining neural energy use frequently precedes clinical diagnosis in many age-related neurode-

generative diseases, including familial Alzheimer's disease [85], Huntington's disease [86],

carriers of FTLD gene mutations [87], and the earliest stages of prodromal sporadic Alzheimer's

disease [88], Parkinson's disease [89], and dementia with Lewy bodies [90]. These conditions are
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associated with insulin resistance and glucose intolerance [81], as well as with disrupted GLUT

activity at the blood–brain barrier [76]. With further age-related neurodegenerative disease pro-

gression, glucose metabolic dysfunction is associated with numerous downstream pathologies

that reinforce the destructive neurodegenerative cascade and associated loss of cognitive fidelity.

Impaired glucosemetabolism leads to a deterioration of gamma oscillations, and likely impacts on

information transfer in local cortical networks and, hence, cognitive function [ 32]. Coupling

between glucose metabolism and functional connectivity patterns, such as increased network

segregation, is attenuated in mild cognitive impairment (MCI) and Alzheimer's disease [91,92].

This suggests that glucose hypometabolism is associated with loss of information transfer

between networks. Such nuanced changes in metabolic–functional coupling could serve as a

biomarker in neurodegeneration.
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Figure 2. The link between cognitive

networks and neuromodular

activity. The cortical distribution of

neuromodulators is enriched in regions

with higher energetic costs of signaling

that support complex cognition. (A) The

distribution of regions with lower

(top) and higher (bottom) energy costs

of signaling across the six canonical

functional brain networks. Regions

with reduced energy costs occur

predominantly in sensorimotor networks

(75% in visual, somatomotor, and dorsal

attention networks). By contrast, regions

with higher energy costs are primarily

situated within frontoparietal networks

(78% in salience/ventral attention and

control networks [13]. (B) A high density

of slow-acting neuromodulator activity

shows spatial overlap with high regional

energy costs, which in turn map across

different cognitive domains. Energy costs

and neuromodulatory activity colinearly

increase from simple sensory processing

to higher cognitive functions. Figure

adapted, with permission, from [13].

Abbreviations: Autobio., autobiographical;

cog, cognition; Decl., declarative.

Chronic disruption of cerebral glucose metabolism can trigger neuroin flammation and the

accumulation of toxic proteins in age-related neurodegenerative diseases [32,93,94]. Metabolic

and immune responses are tightly linked across the body, and there are causal links between

inflammatory responses and metabolic disorders [94]. The hallmark of intracranial inflammation is

the activation of microglia, the macrophage-like cells that mount an immune response to toxic

proteins such as amyloid and tau [95]. Inactive microglia rely upon oxidative phosphorylation for

ATP production (Box 1), but when activated they switch towards aerobic glycolysis for ATP

generation [95,96]. This metabolic switch to microglial activation is impaired in Alzheimer's

disease, leading to inefficient clearance of protein and the accumulation of protein aggregates

[96]. Moreover, early amyloid accumulation interferes with the suppression of responses to irrelevant

stimuli, leading to sustained, task-irrelevant neural activity that triggers the accumulation of tau [97].
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In sum, cerebral energy disruption is multifactorial in cause and consequence, and triggers

numerous pathological cascades that converge onto destructive positive feedback loops.

Chronic disturbance of glucose supply/metabolism and insulin resistance threaten the integrity

of the neurons that support cognition and also trigger neurotoxic protein accumulation and path-

ological inflammatory responses. The most vulnerable cognitive processes may be the complex

executive functions that have greater metabolic costs and recruit energy-costly hub regions [98].

The central role that glucose metabolism plays in these events, eith er as a primary cause or

significant contributor, has led to acknowledgment that effective diagnosis and treatment lie

with the glucose metabolic pathway [32,61,69,81,93].

New frontiers in understanding neural–metabolic coupling

Multimodal neuroimaging recognizes that a comprehensive understanding of metabolism, cogni-

tion, and brain function can only be achieved by measuring the multiple dimensions of neuronal

activity (Box 4). Neural-metabolic coupling can now be studied at multiple spatial and temporal

scales. Metabolic networks can be derived from common metabolism across participants or

time-resolved PET time-series and their topology compared with BOLD-derived functional

connectivity networks [99–102]( Box 3). This in turn can facilitate insights into how disturbances

of glucose metabolism impact on the efficiency of information transfer across scales from micro-

circuits to large-scale networks [103].

Recent research in multiorgan analysis has highlighted the key role that metabolism plays in

mediating health in a 'whole-body network' [ 104]. In a large-scale multiorgan analysis of

brain age and mortality using blood an d other biomarkers, a recent study [ 105]showed

that metabolic age strongly influenced brain age, and a 1 year increase in whole-body met-

abolic age is associated with a ~23 day increase in brain age and a 24 day increase in gray

matter age. Whole-body metabolic and pulmonary aging showed the largest effect on gray

matter aging. Further, neuropsychiatric disorders shared a substantial and largely overlapping

imprint of poor body health [106]. Together, these studies illustrate the central role that whole-

body metabolism plays in mediating gray ma tter aging in health and neuropsychiatric

disorders.

Box 4. New multimodal imaging platforms to study the metabolic costs of cognition

Recent developments in macroscale imaging of glucose metabolism using variants of [ 18F]FDG-PET have enabled

new research into the relationship between glucose metabol ism, brain function, and systemic health. The functional

architecture that supports cognition is multidimensional , and includes electrophysiological (action potentials, field

potentials), molecular (glucose, neurotransmitter), and hemodynamic components. Technologies such as simultaneous

PET/MR enable concurrent imaging of multiple dimensions of brain function to achieve a more complete picture than is

possible using a single modality. Simultaneous PET/MR technology has already been widely used to study the relationship

between cerebral glucose metabolism and functional activity and connectivity measured using BOLD-fMRI [23,37,44], as

well as glucodynamics – which measures the timeseries of glucose uptake during rest or in response to a task

[34,35,100,101,132]. Trimodal systems which add electroencephalography (EEG/PET/MR) [134]andultrahigh field

MR-PET at 7T [135] are under development.

Next-generation PET scanners enable more direct assays of interorgan molecular and metabolic connectivity than

population studies that use proxy biomarkers. By using continuous bed motion (CBM) acquisitions, it is possible to

examine correlations between FDG uptake across organs in a standard-length PET/CT camera. In healthy adults [104],

within-subject metabolic connectivity methods [100,136] were applied with CBM to examine whole-body metabolic

connectivity. Metabolic effects were strongest between the liver and brain, and the strongest associations were between

the liver and temporal, occipital, and parietal regions. These results underscore the influence of hepatic health on brain

function. The field will continue to welcome advances in interorgan metabolic mapping in the coming years with the

increasing availability of whole-body PET cameras which provide FOV encompassing most of the torso [Siemens Quadra,

106 cm field of view (FOV)] and whole-body PET cameras which encompass the full body (EXPLORER camera with a 194

cm FOV). These cameras can acquire the timeseries of glucose metabolism across the major body organs, thus providing

a within-subject interorgan metabolic connectome.
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Models of multiscale neural dynamics range from spiking neurons to circuits, and can provide

unique insights into the computational principles of neural activity [107], but they almost invariably

focus on neural dynamics without considering their energy consumption. The existence of mutual

links between cognition andmetabolismmotivates the development of hybrid models that couple

neurons to their metabolic resources [108]. These models allow activity-dependent consumption

of oxygen, ATP, and potassium, which in turn alter the membrane dynamics that underlie neuro-

nal firing [109].

Such an objective can be accomplished at the le vel of single neurons by taking the classic

Hodgkin–Huxley model [110] of membrane conductance and making the activity of potas-

sium and sodium pumps dependent on the concentration of oxygen and ATP in the immediate

neighborhood of the neuron [111]. By modeling metabolic energy consumption during

seizures, this approach has shown how hypoxia [ 112] or extracellular potassium [113]can

induce and spread seizures by compromising the homeostatic restoration of membrane

potentials.

Larger in silico cortical circuits with metabolic const raints can be constructed from these

single-neuron models by simulating populations of interacting excitatory and inhibitory cells,

each with their own metabolic coupling. Such a hybrid population model has been used to

study burst suppression, an electrocortical pattern seen in hypoxia and deep anesthesia in

which high-voltage activity alternates with isoelectric quiescence [114]. The interplay of fast

neuronal dynamics and slow metabolism leads to pathological bursting followed by epochs

of suppression – the defining features of burst suppression [115]. Crucially, a slight disruption

in the homeostatic exchange of potassium and oxygen perturbs the balance of excitation and

inhibition in these populations, triggering bur sts of excitation in a pathological feedforward

cycle of runaway neural activit y followed by oxygen depletion and consequently neuronal

quiescence [115].

The success of these models in epilepsy and burst suppression can be seen as low-hanging

fruit for early models of neuronal-metabolic coupling targeting conditions with clear pathological

neuronal or metabolic activity. However, the core role of the excitatory–inhibitory balance that

these models capture is also a central feature of healthy, adaptive brain function [ 116,117].

Bringing such models into the frame of cognition and constraining them with multimodal imaging

data promises to be a fruitful line of future research to elucidate the diverse strategies for energy

optimization and regulation that underlie brain health. Testing these models at the whole-brain

level will require that we move from contrast-based fMRI towards quantitative methods such as

calibrated fMRI, quantitative BOLD imaging, and MR-based estimates of oxygen extraction

[118] (see Outstanding questions).

Concluding remarks

Task-directed cognitive processes arise from and reshape the background 'resting state' mosaic

of reflection, consolidation, and future prospecting. Likewise, the additional metabolic load of

task-directed cognitive processes largely reshapes the ongoing homeostatic work of repair,

consolidation, and regeneration that comprise the metabolic burden of the brain. For simple

processes such as sensory processing and motor execution, the additional metabolic imposts

are minor. Executive tasks, particularly processes such as reading and working memory, bring

an additional burden according to howmuchmultimodal integration, long-range communication,

synaptic plasticity, and neuromodulation they require. From this perspective, the cognitive costs

of specific cognitive processes largely reflect the specific combination of these resources over

and above domain-specific needs.

Outstanding questions
How will whole-body PET, the next

frontier in molecular imaging, transform

molecular and metabolic connectivity

studies? Improvements in sensitivity

and signal detection have the potential

to dramatically reduce radiation dose

exposure and scan time. This offers

new opportunities including the use of

dual tracer studies (e.g., FDG with am-

yloid tracer) and repeated measures of

the same individual.

What are the novel clinical perspectives

that derive from understanding neuronal-

metabolic coupling? For example, is

there a role for new metabolic agents in

preventing or treating dementia?

How does the upregulation of

neuromodulator activity in evolutionarily

expanded regions facilitate complex

cognition? Could this foster new

pharmacological therapies for the

management of cognitive disorders?

How will the introduction of neuronal-

metabolic coupling into biophysical

models of neuronal activity improve

our understanding and treatment of

pathological states such as epilepsy

and burst suppression?
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