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Replicable brain–phenotype associations 
require large-scale neuroimaging data

Shu Liu    1,2 , Abdel Abdellaoui    1,2,3, Karin J. H. Verweij    1,2,3  

& Guido A. van Wingen    1,2,3 

Numerous neuroimaging studies have investigated the neural basis of 

interindividual differences but the replicability of brain–phenotype 

associations remains largely unknown. We used the UK Biobank 

neuroimaging dataset (N = 37,447) to examine associations with six 

variables related to physical and mental health: age, body mass index, 

intelligence, memory, neuroticism and alcohol consumption, and assessed 

the improvement of replicability for brain–phenotype associations with 

increasing sampling sizes. Age may require only 300 individuals to provide 

highly replicable associations but other phenotypes required 1,500 to 

3,900 individuals. The required sample size showed a negative power law 

relation with the estimated effect size. When only comparing the upper and 

lower quarters, the minimally required sample sizes for imaging decreased 

by 15–75%. Our findings demonstrate that large-scale neuroimaging data 

are required for replicable brain–phenotype associations, that this can be 

mitigated by preselection of individuals and that small-scale studies may 

have reported false positive findings.

Neuroimaging studies have aimed to identify the neural basis of indi-

vidual differences in various variables such as physical conditions, 

cognition, mental health and lifestyle behaviours, and have revealed 

structural and functional brain correlates of these phenotypes1–6. How-

ever, the replicability of the reported brain–phenotype associations 

remains unknown. There is growing concern about the replication 

of scientific results7–9. In particular, inadequate statistical power in 

neuroimaging research is thought to lead to high levels of false posi-

tive results10,11 and assessing the replicability has always been a chal-

lenge because of the limited sample sizes12,13. The heterogeneity of 

brain–phenotype associations in the population can lead to incon-

sistent findings, particularly when small sample sizes are used14–17. 

Over the past years, large-scale and high-quality imaging datasets have 

been collected, which make the examination of replicability of brain– 

phenotype associations feasible. For example, UK Biobank started the 

world’s largest multimodal imaging study in 2014 and has released data 

of ~37,000 individuals with both T1 and resting-state fMRI scanning18,19.

A recent study has used data from the Adolescent Brain Cognitive 

Development (ABCD) study (N = 3,928) and UK Biobank (N = 32,572) to 

evaluate the variability of effect sizes of brain-wide associations with 

varying sampling sizes20. The study examined effect size stability, 

false positives, inflation, sign errors, statistical power, false negative 

rates and replication probability at different sample sizes. The results 

showed surprisingly small effect sizes that only reached reasonable sta-

tistical power of ~50% with <40% replication probability at half the full 

sample. However, replicability was assessed across structural and func-

tional imaging modalities, across 41 psychological and demographic 

phenotypes and across the entire brain. The results therefore apply to 

a certain type of neuroimaging study where multiple neuroimaging 

modalities are examined in relation to multiple phenotypes simulta-

neously. In contrast, the conventional neuroimaging study typically 

focuses on exploring the relationship between a single neuroimaging 

modality and a single phenotype, with the goal of identifying brain 

regions or connections that are associated with that phenotype. As a 
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significant associations with brain measures after correction for multi-

ple comparisons. As shown in Extended Data Fig. 1, except for age, the 

largest absolute effect sizes for brain–phenotype associations were 

small (max |rs| < 0.1) and correlations were larger for FC than for CSA 

and CT. These results show that, in general, correlations between brain 

measures and phenotypes are small.

Estimating global replicability
We then estimated the replicability of brain–phenotype associations 

across the brain as measured with ICC at increasing sampling sizes. 

In general, ICC values >0.75 were considered good, while ICC values 

between 0.5 and 0.75 were considered to indicate moderate replica-

bility24. As shown in Fig. 2a, using the largest 25% brain–phenotype 

associations, ICC values for CSA reached 0.75 for age, BMI, numeric 

memory and fluid intelligence, at sample sizes of 700, 3,400, 5,500 

and 10,500 individuals, respectively. Considerably fewer individuals 

were required for these four variables to achieve moderate replicability, 

with required sample size of 300, 1,200, 2,200 and 4,400, respectively. 

However, neuroticism and alcohol consumption did not exhibit good 

replicability, even with the largest sampling sizes of 15,200 and 17,100 

individuals (half the full sample), respectively. Additionally, it required 

almost 13,700 and 14,500 individuals to attain moderate replicability 

of 0.5 for these two variables, respectively.

For CT, at least 300, 1,500, 6,100 and 14,900 individuals were 

needed to reach good ICCs for age, BMI, alcohol consumption and 

fluid intelligence, whereas ICCs for other variables did not reach 0.75 

even including half the full sample (Fig. 2b). Except for birth month, 

all variables achieved moderate ICCs (age, 100; BMI, 600; alcohol 

consumption, 2,400; fluid intelligence, 6,700; neuroticism, 8,600; 

numeric memory, 10,500).

FC generally showed better ICCs than CSA and CT (Fig. 2c). For 

FC, associations with age, BMI, fluid intelligence, numeric memory, 

neuroticism and alcohol consumption required 800, 2,800, 4,500, 

5,200, 6,300 and 9,100 individuals to achieve good ICCs and 300, 1,100, 

1,900, 2,000, 2,900 and 3,500 individuals to reach moderate ICCs.

To assess whether ICCs were dependent on the number of included 

brain measures, we also used thresholds of 10%, 50% and 100%. This 

analysis showed that ICCs were lower when more brain measures were 

included (Supplementary Fig. 3).

In addition to ICC which directly measures the consistency of 

observed effect sizes, the Jaccard index was estimated to measure the 

overlap of significant brain–phenotype associations between two 

subsamples. At the significance threshold of P < 0.05 (uncorrected 

for multiple testing), brain–phenotype associations for age and BMI 

in all three modalities (CSA, CT and FC) generally obtained Jaccard 

indices from 0.4 to 0.6 at half total sample size, indicating that >40% 

of the observed significant brain–phenotype associations were shared 

between the two independent subsamples (Fig. 2d–f). Moreover, the 

significant associations between CSA and numeric memory showed 

~30% overlap at half total sample size (Fig. 2d), whereas the significant 

associations between CT and alcohol consumption maximally reached 

a Jaccard index of 0.28 (Fig. 2e). For all six variables, significant associa-

tion with FC generally showed higher overlap between the independent 

subsamples than the associations with CSA and CT (Fig. 2f).

Comparable results were obtained when estimating the  

Jaccard index at other significance thresholds (P < 0.01, PFDR < 0.05  

or PBonferroni < 0.05) (Supplementary Fig. 4).

Estimating regional replicability
The global replicability indices only measure the correspondence of 

brain-wide associations between two samples, which is not suitable for 

identifying the replicability for specific brain features. We developed 

a regional replicability index to estimate the replication probability 

between independent samples for single brain–phenotype association 

through repeated resampling. In line with the recommendation for 

result, it is unclear which modalities and phenotypes are more or less 

reliable in terms of their replicability.

To better examine the replicability of brain–phenotype asso-

ciations, we used the UK Biobank dataset (N = 37,447) to assess 

relationships of structural and functional brain measures with six 

representative variables for different domains21. For our main analy-

sis, we selected physical variables that were expected to have strong 

associations with brain measures (age and body mass index (BMI)),  

variables assessing cognitive performance (fluid intelligence and 

numeric memory) and variables associated to mental health and life-

style (neuroticism and alcohol consumption). We additionally included 

a variable that was expected to provide a lower bound on brain–phe-

notype associations (birth month)22. To evaluate whether the results 

would generalize to other variables from these phenotype domains, 

we tested brain–phenotype associations for another 23 variables. The 

structural brain measures included cortical surface area (CSA) and 

thickness (CT) based on 66 regions of the Desikan–Killiany (DK) atlas 

and the functional measures were derived from resting-state fMRI 

consisting of 210 functional connectivities (FCs) between different 

networks identified with independent component analysis (ICA). For 

each variable, we assessed the replicability of the pattern of brain–phe-

notype associations across the whole brain (global replicability) and of 

single brain–phenotype association separately (regional replicability). 

We also examined the improvement of replicability with sampling sizes 

from 100 to half the full sample.

Results
Research design
The UK Biobank participants included in our study are predominantly 

of European ancestry and range in age from 44 to 82 years old, with an 

approximately equal number of males and females. Supplementary 

Fig. 1 and Supplementary Table 1 show the distribution of six repre-

sentative variables. The overview of the analytical steps of this study is 

presented in Fig. 1. In short, we randomly selected two non-overlapping 

subsamples from the full sample (total sample size N ranges from 25,231 

to 37,447). We then conducted univariate Spearman’s rank correla-

tion analysis to examine the associations between brain measures and 

various variables in two independent subsamples. Next, we estimated 

the global replicability including intraclass correlation coefficients 

(ICC) and Jaccard index based on brain–phenotype associations from 

two subsamples23. We calculated the ICC for absolute agreement of 

brain–phenotype associations between subsamples for the strongest 

associated brain measures (10%, 25%, 50% or 100%). To calculate the  

Jaccard index, we used different thresholds (P < 0.05, P < 0.01, PFDR < 0.05 

or PBonferroni < 0.05) to select significant brain–phenotype associations 

and estimated the overlap between the subsamples. Here, PFDR and  

PBonferroni represent the P values adjusted for false discovery rate (FDR) 

and Bonferroni correction, respectively. We also proposed a new 

regional replication index to estimate the replication probability  

for single brain–phenotype association across 100 sampling repeti-

tions at a specific sample size. Similarly, four different significance 

thresholds were used to select significant associations (Methods).

Brain–phenotype associations
Before assessing replicability, we first estimated the association 

strength between different brain measures and variables in the  

full sample (Supplementary Tables 2–4). Widespread significant CSA–

phenotype associations were observed for age, BMI, fluid intelligence 

and numeric memory at the thresholds of P < 0.05, P < 0.01, PFDR < 0.05 

or PBonferroni < 0.05 (Supplementary Fig. 2a). For CT, age, BMI and alcohol 

consumption showed more significant brain–phenotype associations 

than the other variables (Supplementary Fig. 2b). For FC, all variables 

except for birth month showed widespread FC–phenotype associa-

tions at different thresholds (Supplementary Fig. 2c). Birth month, 

which was included to estimate the lower bound, did not show any 
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Fig. 1 | Overview of the analytical steps in this study to estimate replicability. 

a, The input data from UK Biobank. b, Randomly selecting two non-overlapping 

subsamples from the total sample. c, Spearman’s rank correlation analysis in 

two independent subsamples. d, Assessing the global replicability. e, Assessing 

the regional replicability. Corrs represents the correlation vector, while BCorrs 

represents the binary vector obtained through binarization of Corrs.
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ICC24, values >0.75 were considered to reflect good regional replicabil-

ity, indicating that individual significant associations can be replicated 

independently with at least 75% probability. At different significance 

thresholds, widespread brain measures could achieve good regional 

replicability for age and BMI at smaller sample sizes than half the full 

sample (Extended Data Fig. 2).

When using the threshold of P < 0.05, significant associations 

between CSA and variables that achieved 75% replication probability 

are shown in Fig. 3 and Supplementary Table 5. For age, significant 

associations with 47 brain regions had regional replicability >0.75. Of 

them, the right precentral gyrus showed the highest regional replica-

bility, requiring the smallest sample size (900 individuals) to achieve  

>75% replication probability (Fig. 3a). For BMI, significant associations 

with 27 regions reached 75% replication probability, with the best  

replicability (left rostral anterior cingulate cortex) requiring 2,700 

individuals to obtain 79% replication probability (Fig. 3b). Only  

8 and 13 regions showed significant associations with fluid intelligence 

and numeric memory with good regional replicability, respectively.  

Of them, the same brain region, superior temporal cortex, was 

observed for intelligence and memory to have highest replicability,  

requiring 9,400 and 6,600 individuals, respectively (Fig. 3c,d).  

In contrast, for neuroticism and alcohol consumption, no regions 

were identified to have replicable associations with CSA, not even at 

the largest sampling sizes.

For CT, 48 and 40 regions had significant associations with age  

and BMI with regional replicability of >0.75 at the significance  

threshold of P < 0.05 (Supplementary Table 6), with the transverse 

temporal gyrus and superior parietal cortex having the highest replica-

bility, requiring 300 and 1,800 individuals to achieve >75% replication 

probability, respectively (Fig. 4a,b). CT of the transverse temporal 

gyrus and superior frontal cortex showed significant associations,  

with fluid intelligence achieving good replication at >13,600  

individuals (Fig. 4c). For neuroticism, >12,000 individuals were 

required to obtain good replication for associations with CT in the 

superior parietal cortex and parahippocampal gyrus (Fig. 4d). In addi-

tion, 11 regions mainly located in frontal cortex and temporal cortex 

showed replicable significant associations with alcohol consumption 

and the best replicable region (left superior frontal cortex) required 

3,500 individuals to obtain 75% replication probability (Fig. 4e).  

No regions were identified for numeric memory to have replicable 

associations with CT.

In general, FC required fewer individuals than CSA or CT to achieve 

good regional replicability (Extended Data Fig. 2 and Supplementary 

Table 7). Among 210 FCs between 21 ICA networks, 139 and 106 FCs 

had significant associations with age and BMI with good replication 

probability, requiring a sample of 500 and 1,500 individuals, respec-

tively (Fig. 5a,b). For cognitive variables, 50 and 34 FCs had replicable 

significant associations with fluid intelligence and numeric memory. 
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Fig. 2 | Improvement of global replicability with increasing sample size. a,d, The ICC (a) and Jaccard index (d) for CSA. b,e, The ICC (b) and Jaccard index (e) for CT. 

c,f, The ICC (c) and Jaccard index (f) for FC. The dotted lines indicate good and moderate replicability levels (0.75 and 0.5).
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The best replicable FC for fluid intelligence and numeric memory 

required at least 3,700 and 2,600 individuals (Fig. 5c,d). In addi-

tion, 31 and 35 FCs showed significant associations with neuroticism  

and alcohol consumption with good replicability, requiring at least 

3,900 and 6,400 individuals, respectively (Fig. 5e,f).

These findings were generally confirmed when using other  

significance thresholds of P < 0.01, PFDR < 0.05 or PBonferroni < 0.05 

(Supplementary Tables 8–10). Paradoxically, stricter significance 

thresholds required larger sample sizes to achieve good replicability 

(Supplementary Fig. 5).

We further examined the relationships between effect sizes and 

replicability. As shown in Extended Data Fig. 1, the largest absolute 

effect sizes for all variables have been derived from the full sample. We 

then calculated the correlations between the largest effect sizes and the 

minimally required sample sizes to achieve good regional replicability 

(Fig. 6). We found a significant negative power law relation between 
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them (the fit line: y = 15.29x−1.82, R2 = 0.993, P = 2.42 × 10−15), confirming 

that stronger brain–phenotype associations can be replicated better. 

Thus, the sample size required for good replicability increases drasti-

cally for weak associations.

To evaluate whether the results for these six representative vari-

ables would generalize to other phenotypes from the same domains, 

we investigated the associations between the brain and 23 additional 

phenotypes derived from UK Biobank (Supplementary Table 11 and 

Supplementary Fig. 6). We again estimated replicability at varying 

sample sizes with a threshold of P < 0.05. In general, these results were 

comparable to those for the six representative variables (Supplemen-

tary Figs. 7–13), indicating that the results in the main analysis generally 

represent the corresponding categories of physical, cognitive, mental 

health and lifestyle measures. Furthermore, we used the estimated 

power law relationship described above to predict the required sample 

sizes for new phenotypes based on effect sizes of brain–phenotype 

associations. We found that the predicted sample sizes closely matched 

the observed required sample sizes for these phenotypes, providing 

further evidence for the power law relation between effect size and the 

required sample size for replicable associations (Extended Data Fig. 3). 

For further information, please refer to the Supplementary Results.

Estimating replicability for group comparisons
The above correlation analyses showed that large samples are required 

to obtain replicable brain–phenotype associations for cognitive, mental  

health and lifestyle variables. We further investigated whether we could 

decrease the required sample sizes by preselection strategies.

First, we used the median phenotype values to split the full sample 

into two groups while matching the sample sizes of the two groups as 

closely as possible (Supplementary Fig. 14). Then, we used two-sample 

t-tests to compare the neuroimaging measures between the two groups 

and estimated the regional replicability for each brain measure at dif-

ferent sampling sizes. When using a significance threshold of P < 0.05 

uncorrected, CSA–phenotype associations showed comparable repli-

cability with the correlation analysis (Supplementary Fig. 15). For CT, 

the minimally required sample size for fluid intelligence to achieve 

good regional replicability dropped from 13,600 to 6,800 but this 

did not change much for the other variables (Supplementary Fig. 16). 

Conversely, for FC, replicable associations with BMI, numeric memory, 

neuroticism and alcohol consumption required more individuals 

(Supplementary Fig. 17). These results indicate that, in general, com-

paring small- and large-scoring individuals through median split with 

two-sample t-tests had little influence on the replicability (Extended 

Data Fig. 4). This was also the case when using other significance thresh-

olds (Supplementary Tables 12–14).

Second, we calculated the quartiles and used the lower and upper 

quarters to select two groups with the smallest and largest 25% scores 

(Supplementary Fig. 18). In this situation, to achieve 75% replication 

probability, the minimally required sample sizes decreased 15–75% 

compared with correlation analysis (Fig. 7 and Supplementary Fig. 19).  

Age, BMI and alcohol consumption showed the best replicability with 

CT, requiring 200, 500 and 2,600 individuals of the pericalcarine 

cortex, superior parietal cortex and superior frontal cortex to reach 

75% replication probability of the t-statistics, respectively, whereas 

fluid intelligence, numeric memory and neuroticism showed better  

replicability with FC, requiring at least 2,400, 1,900 and 2,800  

individuals to achieve good regional replicability (Supplementary 

Figs. 20–22). Similarly, the minimally required sample sizes were also 

found at the other thresholds of P < 0.01, PFDR < 0.05 or PBonferroni < 0.05 

(Supplementary Tables 15–17).

To further evaluate the influence of preselection on replicability, 

we conducted a more extensive analysis for the six representative vari-

ables and selected two groups on the basis of the smallest and largest 

scores at 10%, 20%, 30% and 40%. We then compared the minimum 

required sample size for each preselection criterion (Supplementary 
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Fig. 5 | Improvement of regional replicability with increasing sampling size 

for FC. Left panels show required sample sizes for connections to achieve good 

regional replicability of >0.75. Right panels show the improvement at increasing 

sample size for the best replicable functional connection, requiring minimal 

sample sizes. a–f, Age (a); BMI (b); fluid intelligence (c); numeric memory (d); 

neuroticism (e); alcohol consumption (f).
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Table 18 and Extended Data Fig. 5). Overall, stricter preselection led 

to lower minimum sample sizes. Specifically, we found that selecting 

two groups with scores falling below the lowest and above the highest 

30% generally resulted in considerably lower sample size requirements 

for ensuring good replicability as compared to correlation analysis. 

Moreover, we also compared the minimum sample size necessary for 

additional phenotypes that were derived from different preselection 

methods (Supplementary Table 19 and Extended Data Figs. 6 and 7). 

All these findings provide support for the conclusion that preselec-

tion can effectively reduce the minimum required sample size for 

replicable brain associations. For further information, please refer  

to the Supplementary Results.

Estimating replicability for multivariate methods
To investigate whether we could further reduce the required sample 

sizes for various variables, we used multivariate random forest regres-

sion to select the most important brain measures and estimated the 

replicability of feature selection (Supplementary Fig. 23). Extended 

Data Fig. 8 showed the improvement of replicability with increasing 

sampling size after selecting the top important brain features. Only  

age obtained Jaccard indices >0.6 at its largest sampling size of 

N = 18,000 (half the full sample size for age), which indicated that at 

best 60% of the selected structural and functional features were shared 

between the two independent samples. Other variables showed poor 

replicability after feature selection. Overall, the replicability of brain 

measures after multivariate feature selection was worse than the repli-

cability of selected brain measures after univariate correlation analysis.

We additionally used partial least squares (PLS) regression  

to investigate whether a multivariate brain pattern could improve  

the replicability of brain–phenotype associations (Supplementary 

Fig. 24). We assessed the replicability of multivariate brain–pheno-

type associations by comparing the correlations of the first PLS com-

ponent (PLS1) with variables between the discovery and replication  

sample (Extended Data Fig. 9a–c). Overall, the difference in the 

correlations of PLS1 with variables decreased with increasing sample 

size, indicating that better replicability was achieved at larger sample 

sizes. Additionally, we assessed the replicability of PLS weights derived 

from two independent samples by calculating ICCs at increasing  

sample size (Extended Data Fig. 9d–f and Supplementary Fig. 25). 

These ICCs were comparable to those obtained from the univariate 

correlation analyses, indicating that simple multivariate statistical  

analysis alone cannot substantially improve the replicability of  

brain–phenotype associations.

Discussion
We systematically examined global and regional replicability for brain–

phenotype associations for six phenotypes within different domains: 

physical, cognitive, mental health and lifestyle. Through correlation 

analysis, age started to show good global replicability for CT at a sample 

of 300 individuals, highlighting that replicable associations with brain 

measures do not necessarily require very large sample sizes. Brain–

phenotype associations for the other variables required larger sample 

sizes than age and showed better regional than global replicabilities. 

Specifically, good regional replicability of associations with cognitive 

variables required at least 2,600 individuals and mental health and 

lifestyle variables at least 3,500 individuals. Corresponding numbers 

for global replicability were 4,500 and 6,100 individuals, respectively. 

The required sample size showed a negative power law relation with 

the estimated effect size and can be reduced considerably with 15–75% 

when only the lowest and highest scoring quarters are compared, 

although still requiring about 2,000 individuals. These findings are 

in line with the multimodal and multiphenotype results from ref. 20  

and demonstrate that thousands of individuals are also required for 

good replicability of associations between one brain measure and  

one phenotype, suggesting that significant associations from pre-

vious studies with small samples may not be replicable and hence  

may represent false positive findings.

Physical variables showed better global replicability than the 

variables related to cognition and mental health. Additionally, func-

tional brain measures generally showed better global replicability than 

structural brain measures. Through estimating regional replicability, 

we identified the brain measure with the best replicability for each vari-

able. CT of the transverse temporal gyrus and superior parietal cortex 

were identified to have replicable significant associations with age and 

BMI, respectively, which required at least 300 and 1,800 individuals to 

achieve >75% replication probability. Associations with FC for these two 

variables showed comparable replicability, with minimally required 

sample sizes of 500 and 1,500. In contrast, numeric memory, fluid 

intelligence, alcohol consumption and neuroticism required more than 

2,600, 3,700, 2,600 and 3,900 individuals for replicable associations 

with CT or FC, respectively. Preselection of the first and fourth quarters 

of individuals reduced the required sample size for good replicability 

to generally ~2,000 individuals. However, it should be noted that,  

even though the preselection procedure significantly reduces  

the minimally required sample sizes for imaging, it still relies on  

information from the entire sample to identify individuals in the upper 

and lower quarters.

Small sample sizes have been consistently considered as the 

critical factor for non-reproducibility in neuroimaging research25–28. 

In population-based research, results from smaller sample sizes are 

usually more contingent with a reduced likelihood that a statistically 

significant result reflects a true effect11,29. For example, previous studies 

demonstrated that correlation patterns between cognitive perfor-

mance and structural measures had poor replication in two samples of 

~100 healthy adults13,30. A recent study also reported that large sample 

sizes are required to fully extract predictive information with machine 

learning models based on neuroimaging data31. Two main proposals 

explaining the poor reproducibility at small sample sizes have been put 

forward32. First, studies in small samples may only capture a partial and 
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minor aspect of the true association pattern. Second, the measurement 

of both the phenotypes and brain measures are susceptible to noise and 

thus smaller samples are more likely to produce spurious significant 

results than are large samples33. This is similar to previous candidate–

gene studies where many significant associations between common 

genetic variants and various phenotypes could not be replicated due 

to small sample sizes34,35. Since then, genomic datasets have grown to 

hundreds of thousands and even millions in genome-wide association 

studies (GWAS) to generate robust associations36. Therefore, to ensure 

replicable brain–phenotype associations, we will need to increase brain 

imaging sample sizes to minimize the effects of population sampling 

variability.

Our study found that the strength of the associations heavily 

influenced the replicability. We found a negative power law relation 

between the largest absolute effect sizes derived from the full sample 

and the minimally required sample sizes, indicating that stronger 

brain–phenotype associations can be better replicated. According to 

previous machine learning studies, relatively high prediction accuracy 

could be achieved for age31,37, whereas, until now, predictive accuracies 

for cognitive and behavioural variables and psychiatric diagnoses are 

still low38,39. Besides the reason that physical variables can be measured 

more objectively, the weak associations with cognitive and behavioural 

variables may lower the statistical power, which makes it difficult to 

replicate the significant observations40. Strict multiple comparison 

corrections are commonly used in neuroimaging research to identify 

statistically significant associations, which can reduce false positive 

results. However, stricter thresholds in correlation analysis will lower 

statistical power as well and result in high rates of false negatives41. In 

our study, at stricter thresholds, larger sample sizes were required 

to achieve 75% replication probability while estimating the regional 

replicability of brain–phenotype associations. Therefore, conserva-

tive multiple testing correction with strict thresholds hampered the 

replication of associations.

In addition to correlation analyses, we conducted group com-

parisons with two-sample t-tests. We divided the sample into four 

phenotype quarters and used the first and fourth quarters to select 

two groups with the largest and smallest 25% values and found better 

replicability which generally required about 2,000 individuals. This 

improvement was not observed when comparing the lower with the 

upper half. Because of the negative correlation between effect sizes 

and replicability, this suggests that the effect sizes for comparing 

extreme cases were larger. This may translate to case-control neuro-

imaging studies comparing patients with controls. For example, ref. 42 

examined the replicability for differences between major depression 

and healthy controls in functional brain measures based on rsfMRI 

dataset with 1,434 participants and found that at least 400 subjects 

in each group were required to replicate significant brain differences 

between groups. In addition, an abnormal gradient map in schizo-

phrenia identified in a discovery dataset with 400 patients and 336 

controls was found to be reproducible in the replication dataset with 

279 patients and 262 controls43. Our study warrants further research to 

determine more specific sample size requirements for good replicabil-

ity of case-control differences.

A recent study reported that brain–phenotype associations 

have small effect sizes and reported that thousands of individuals 

are required to ensure reproducibility20. However, the study merged 

different neuroimaging measures, phenotypes and brain regions to 

estimate the overall replication probability. The study therefore does 

not provide estimates for typical neuroimaging studies that aim to 

identify which brain regions are associated with a particular pheno-

type. By developing a measure for regional replicability and selecting  

particular phenotypes, our results demonstrate that 300 individuals  

may be sufficient for small (|r| ~ 0.15) effect sizes and that >2,000  

individuals are only required for very small (|r| < 0.05) effect sizes. 

Furthermore, the results showed that good global replicability  

typically required considerably larger samples than regional rep-

licability, suggesting that the required sample sizes in ref. 20 were 

over estimated. A commentary to the findings of ref. 20 emphasized  

that more data alone do not necessarily lead to better science44. The 

authors proposed that the key to building more robust brain-based 

predictive models is to make thoughtful choices about brain data 

acquisition, behavioural targets of prediction and approaches to  

model building. Authors from another commentary proposed that 

maximizing differences in the measures under investigation can 

improve the reliability of brain–behaviour associations45. This can be 

achieved through various means, such as carefully selecting subjects, 

conducting experimental or causal manipulations or focusing on  

measures that are theoretically motivated. Our study is consistent  

with the suggestions by previous research, which has shown that  

preselecting the sample can reduce the required sample size.

We showed that structural brain measures generally showed 

poorer replicability than functional brain measures. Paradoxically, 

test–retest reliability for functional MRI is lower than for structural 

MRI46–48. This indicates that the additional noise from lower test–retest 

reliability of functional MRI is less important than the higher associa-

tion strength for the replication of brain–phenotype associations. This 

is in line with a previous study which reported that test–retest reliability 

of resting-state FC was not meaningfully correlated with the contribu-

tion of FC to behavioural prediction49.

In machine learning models, feature selection removes redundant 

input features to improve the generalization capability and lowers the 

computation costs. Therefore, robust feature selection is important 

to conduct classification or prediction based on neuroimaging fea-

tures. Here, we used feature selection to determine whether this could 

improve replicability but we only found good replicability for age. 

The multivariate bootstrap-based feature selection showed poorer 

replicability than univariate correlation analysis, which indicated that 

the weak brain–phenotype associations may produce unstable feature 

importance. Therefore, even larger datasets may be required to pro-

duce robust feature selection in machine learning31. It should be noted 

that the comparisons we conducted only pertained to the replicability 

of initial feature selection. For final predictions, additional techniques 
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such as cross-validation can be used to estimate the generalization 

performance of machine learning models.

Although our results demonstrate the importance of large samples  

to identify replicable brain correlates with individual differences, 

small sample neuroimaging-only studies are adequately powered in 

some situa tions. For example, the neuroimaging data of 40 healthy 

adults were sufficient to produce replicable brain parcellation, the 

brainnetome atlas50. Small samples with ~20 individuals could accu-

rately represent the central tendencies of human functional brain 

organization20 and produce predictive network masks that successfully 

generalize across datasets and populations51. Moreover, small samples 

have been widely used to produce robust patterns of brain activation  

to tasks52,53. Thus, small sample neuroimaging studies can provide 

critical information for the development of brain research.

Several limitations of our study should be noted. First, we used the 

UK Biobank to investigate replicability because it is by far the largest  

neuroimaging dataset available. It is a population study and the results 

are therefore likely to generalize to other individuals. However, all 

participants were middle-aged and elderly individuals from the UK 

and there were some selection biases in sociodemographic, physical,  

lifestyle and health-related characteristics54. It therefore remains 

unclear whether the results may also generalize to younger individuals 

and those from other continents and backgrounds. On the basis of our 

results, we are not aware of the existence of any other public datasets 

available that included sufficient individuals to replicate most results. 

Second, we only considered six variables from the UK Biobank for our 

extensive experiments, which were selected to be representative for 

physical, cognitive, mental health and lifestyle domains. However, 

our results from more than 20 additional phenotypes suggest that 

the required sample sizes are comparable within domain and may 

therefore also translate to other variables from these domains but 

other sample sizes may be required for other variables and particularly 

other domains. Third, our study used 210 FC measures, which is coarse 

compared to tens of thousands of connections usually used in FC-based 

predictive modelling work.

In conclusion, we found that the replicability of associations 

between brain measures and variables assessing individual phenotype 

differences depend on sample size as well as the association strength. 

Through correlation analysis, we identified that the required sample 

size to obtain good replicability of brain–phenotype associations is 

2,700 individuals for cognition and 3,900 for mental health and life-

style variables. Moreover, the corresponding required sample sizes 

decreased to ~2,000 individuals when individuals are preselected 

for extreme scores. This study thus demonstrates that thousands of 

individuals are required for good replicability of brain–phenotype 

associations. This suggests that results from previous studies investi-

gating interindividual differences may not be replicable and represent 

false positive findings.

Methods
Participants
This study used participants from UK Biobank, a large-scale bio-

medical database containing indepth genetic and health information 

from about half-a-million individuals from the United Kingdom55. We 

included data from participants that had both structural and functional 

neuroimaging data (released early 2020, N = 37,447, 19,981 females and 

17,466 males, age attending brain scanning ranges: 44–82 years old). 

Aside from brain measures, we used data on the following phenotypes: 

age at MRI scanning time (N = 37,447), body mass index (N = 36,114), 

fluid intelligence (N = 34,534), numeric memory (N = 25,231), neuroti-

cism (N = 30,511), alcohol consumption (N = 34,345) and birth month 

(N = 37,447) (Supplementary Table 1). All participants gave written 

informed consent and the UK Biobank project received ethical approval 

from the National Health Service North West Centre for Research Ethics 

Committee (reference 11/NW/0382).

Imaging processing
We used the structural and functional brain measures derived from 

T1 and resting-state fMRI, respectively, as processed by WIN FMRIB 

on behalf of UK Biobank56. The detailed preprocessing information 

can be found online (https://biobank.ctsu.ox.ac.uk/crystal/crystal/

docs/brain_mri.pdf). In short, a standard Skyra 3 T scanner was used 

for image acquisition. For raw T1 imaging data, the field-of-view (FoV) 

was reduced to minimize the amount of non-brain tissue and gradient 

distortion correction was applied. The reduced-FoV T1 imaging data 

were nonlinearly warped to MNI152 space using FNIRT57. Next, the T1 

images were processed with FreeSurfer to achieve accurate cortical 

modelling. A total of 132 surface structural measures including CSA 

and CT were estimated on the basis of the 66 regions of the DK atlas. 

For resting-state fMRI data, the following preprocessing was applied: 

motion correction, intensity normalization, highpass temporal filter-

ing, EPI unwarping, GDC unwarping and structured artefacts removal. 

In addition, group independent component analysis (group-ICA) was 

applied to decompose the resting-state fMRI data into a specified 

number of networks based on >4,000 participants and the temporal 

correlations of averaged time series between different networks ware 

estimated as the FC. We used the partial correlation matrix on 25 dimen-

sions which produced 210 FCs.

Statistical analyses
The SciPy Stats package58 in Python was used to calculate the Spear-

man’s rank correlation coefficients between brain features and seven 

variables. We controlled for covariates such as sex and scanning sites 

to investigate the brain associations with age. For the other variables, 

we included age as an additional covariate in the analysis. In addition, 

for CT and CSA analysis, we also adjusted for average CT and total CSA, 

respectively. Notably, head motion can significantly impact brain 

functional measures. Therefore, we regressed out head motion to 

effectively remove its effects on our FC measures (Supplementary  

Fig. 26). According to the distribution of the variables (Supplementary  

Fig. 1), we also split the sample into four quarters: Q1, Q2, Q3 and Q4. 

We first used the median values to split the full sample in half and 

applied the SciPy Stats package to conduct two-sample t-test to com-

pare the neuroimaging differences between the two groups. Second,  

we removed the individuals in the middle part and only included Q1  

and Q4 as the two groups. The same covariates as the main corre-

lation analysis were included. Then, we compared the replicability 

of correlation analysis and two-sample t-test. Moreover, we applied 

bootstrap-based random forest regression in the sklearn.ensemble 

module59 of Python to compute impurity-based feature importance, 

which in turn were used to select features with highest importance. 

We also compared the replicability of feature selection with correla-

tion analysis.

Intraclass correlation coefficient
An ICC60 is generally used to measure the accordance of statistic values 

from two independent samples. In this study, ICC has been used to 

measure the replicability of Spearman’s rank correlation coefficients. 

The ICC value ranges from 0 to 1, with large value indicating correla-

tions are more replicable between two samples. The pingouin statistical 

package61 in Python was used to calculate ICC. We selected two-way 

random effects model, in which both the sampling process and subjects 

are considered sources of random effects. The absolute differences 

was used to measure the agreement between the correlations of two 

samples and the correlations of a single sample was considered as the 

basis for measurement. Detailed description of ICC can be found in a 

previous paper24.

Jaccard index
We used the Jaccard index to quantify the level of overlap of signifi-

cantly identified brain measures between two samples. The index 

http://www.nature.com/nathumbehav
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ranged from 0 to 1, with a higher index indicating more overlap  

between two subsamples. We can calculate the Jaccard index by a  

2 × 2 table (Fig. 1d):

Jaccard =

a

a + b + c

.

Moreover, we have corrected for the agreement chance62 using 

a formula

Corrected Jaccard =

Jaccard − E(Jaccard)

1 − E(Jaccard)

,

where the value 1 is the maximum Jaccard index and E ( Jaccard) is the 

expectation values of the Jaccard index calculated by conditional upon 

fixed marginal totals of the 2 × 2 table. As ref. 62 showed, different 

forms of expectation are applied in univariate correlation analysis and 

multivariate feature selection depending on whether the frequency  

distributions are different between two samples in the 2 × 2 table  

(Fig. 1d and Supplementary Fig. 23d).

Sampling and estimating replicability
As shown in Fig. 1, we estimated the global and regional replicability of 

brain–phenotype associations and examined the improvement of 

replicability with increasing sampling size. We randomly selected two 

non-overlapping subsamples (n) from the total sample (N) and then 

put the two subsamples back (Fig. 1b). The sampling procedure will be 

repeated 100 times. The discovery sample (D
i

) and replication sample 

(R
i

) were produced by the ith selection. The size of n ranged from 100 

individuals to half the full sample size. Univariate Spearman’s correla-

tion analysis was then conducted to examine the associations between 

brain measures and each variable in two independent subsamples D
i

 

and R
i

 (Fig. 1c). The correlations across brain measures were then 

transferred to binary vectors by the significance threshold of P < 0.05, 

P < 0.01, P
FDR

 < 0.05 or P
Bonferroni

 < 0.05. Next, we obtained the overlap-

ping vector (V
i

) between binary vectors of D
i

 and R
i

. The global repli-

cability was estimated on the basis of brain-wide correlations (Fig. 1d). 

We selected brain measures with the top 10%, 25%, 50% or 100% largest 

correlations (|r
s

|) in D
i

 and extracted the corresponded correlations of 

these brain measures in R
i

. For selected brain measures, the similarity 

of the correlation coefficients between D
i

 and R
i

 was then calculated 

by ICC. We also calculated the Jaccard index according to binary vectors 

of D
i

 and R
i

. Notably, the ICC model we used measures the degree of 

replicability of true correlation coefficients, rather than absolute ones. 

In the estimation of Jaccard index, correlations that reach significance 

levels in both the discovery and replication samples and have the  

same signs are transferred to a value of one. Finally, the average ICC 

and Jaccard index of 100 random selections were used to measure the 

global replicability at the subsample size n.

To measure the replication probability for each specific brain 

measure across 100 random selections, we proposed a new regional 

replicability index (Fig. 1e). We averaged the overlapping vectors 

(V
1

,V

2

,⋯ ,V

100

), which indicated the probabilities that significant  

associations identified in one subsample can be replicated in another 

independent subsample.

Similar to what we did above for brain–phenotype associations, 

here we also estimated replicability by sampling using two-sample 

t-test (Supplementary Figs. 14 and 18). In addition, we conducted  

multivariate statistical methods including random forest and partial  

least square regression in two independent subsamples (Supple-

mentary Figs. 23 and 24).

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
This research used data from the UK Biobank resource (https://biobank.

ndph.ox.ac.uk/showcase/label.cgi?id=100). Access to UK Biobank 

data requires the submission and approval of a research project by 

the UK Biobank committee. The DK atlas was used to parcellate the 

human cortex into 66 regions for structural brain measures (https://

surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation). Twenty-one 

functional networks were used to estimate functional brain measures 

(https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_

d25_good_nodes.html).

Code availability
Python code on Jupyter notebook used for statistical analyses is avail-

able in GitHub: https://github.com/deeppsych/Replicability-ukbb.
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Extended Data Fig. 1 | The largest absolute effect sizes of brain–phenotype associations for each imaging modality and phenotype. The upper text shows 

the specific brain measures which have the largest absolutes of effect sizes across brain–phenotype associations. Cortical surface area, CSA; Cortical thickness, CT; 

Functional connectivity, FC.
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Extended Data Fig. 2 | The proportion of brain features with regional replicability of larger than 0.75. (a) Cortical surface area (CSA); (b) Cortical thickness (CT); 

(c) Functional connectivity (FC).
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Extended Data Fig. 3 | The relationship between observed and predicted sample sizes for added phenotypes. x axis represents true minimally required sample 

sizes to obtain the replicable brain associations; y axis represents the predicted required sample sizes according to the effect sizes of brain associations with added 

phenotypes.
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Extended Data Fig. 4 | Differences of minimally required sample size to reach 

75% replication probability between two-sample t-test using median splits 

and correlation analysis. Positive values indicate lower minimally required 

sample sizes for the two-sample t-test, whereas negative values indicate higher 

minimally required sample sizes. Cross symbol ‘×’ indicates that the minimally 

required sample sizes are missing for the two-sample t-test or Spearman’s 

correlation analysis, because the regional replicability of all brain measures  

did not reach 0.75 at any sample size. Zero ‘0’ indicates that the minimally 

required sample sizes are the same between two-sample t-test and Spearman’s 

correlation analysis.
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Extended Data Fig. 5 | The minimally required sample sizes with  

preselection procedures at 10%, 20%, 25%, 30%, 40%, and 50% (median) for 

six representative phenotypes, when using a significance threshold of  

p < 0.05 uncorrected. (a) Age; (b) Body mass index (BMI); (c) Fluid intelligence; 

(d) Numeric memory; (e) Neuroticism; (f) Alcohol consumption. Missing 

estimates (dots) could be related to two situations: first, good replicability is not 

obtained even at the largest sampling size; second, the specific preselection is 

not conducted because of the distribution of the variable. Cortical surface area 

(CSA), cortical thickness (CT), and functional connectivity (FC).
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Extended Data Fig. 6 | Decrease proportion of additional phenotypes in 

minimally required sample size to reach good replicability between a 

two-sample t-test (by sample selection) and correlation analysis for added 

phenotypes. (a) Cortical surface area (CSA); (b) Cortical thickness (CT);  

(c) Functional connectivity (FC). Empty bars indicate that the minimal required 

sample sizes are missing for the two-sample t-test or Spearman’s correlation 

analysis, because the regional replicability of all brain measures did not reach 

0.75 at any sample size. Coloured bars indicate that minimally required sample 

size decreased in a two-sample t-test (by sample selection) compared to 

correlation analysis.
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Extended Data Fig. 7 | The minimally required sample sizes with preselection 

procedures at 10%, 20%, 25%, 30%, 40%, and 50% for additional phenotypes. 

Missing estimates (dots) could be related to two factors: first, good replicability 

is not obtained even at the largest sampling size; second, the specific 

preselection is not conducted because of the distribution of the variable. Cortical 

surface area (CSA), cortical thickness (CT), and functional connectivity (FC).
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Extended Data Fig. 8 | Improvement of the replicability of feature selection with increasing sample size at the thresholds ranging from 5% to 25%. (a) shows the 

Jaccard index for cortical surface area (CSA) at different thresholds. (b) shows the Jaccard index for cortical thickness (CT) at different thresholds. (c) shows the Jaccard 

index for functional connectivity (FC) at different thresholds.
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Extended Data Fig. 9 | Improvement of replicability for partial least square 

(PLS) regression analysis with increasing sample size. (a), (b), and (c) show the 

proportion of decreased correlations of PLS1 with the phenotypes for cortical 

surface area (CSA), cortical thickness (CT), and functional connectivity (FC);  

(d), (e), and (f) show the intraclass correlation coefficient (ICCs) of PLS weights. 

The dotted lines indicate good and moderate replicability levels (0.75 and 0.5).
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection No software was employed for data collection.

Data analysis Python 3.7 was utilized for conducting the data analyses. The study employed various packages, including pandas (1.1.3), numpy (1.21.6), 
Scipy (1.7.3), pingouin (0.3.2), sklearn (0.22.1), matplotlib (3.0.3), seaborn (0.11.0), nilearn (0.8.1), and mne (0.19.2). The code for this study 
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This research utilized data from the UK Biobank resource (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100). Access to UK Biobank data requires the 
submission and approval of a research project by the UK Biobank committee. The Desikan-Killiany (DK) atlas was used to parcellate the human cortex into 66 
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regions for structural brain measures (https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation). 21 functional networks was used to estimate functional 
brain measures (https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html). 
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Reporting on sex and gender Our findings don't apply to only one sex or gender. Our study includes 19,989 females and 17,473 males without bias. The 
sex is just used as a covariate. As described by UKBB, it is a mixture of the sex the United Kingdom National Health Service 
had recorded for the participant and self-reported sex.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Our study do not use socially constructed or socially relevant categorization variable. Because the participants are recruited 
in UK, they are predominantly of European ancestry. For details, please see: Bycroft, C. et al (2018). The UK Biobank resource 
with deep phenotyping and genomic data. Nature 562, 203.

Population characteristics The participants range in age from 44 to 82 years old, with an approximately equal number of males and females.

Recruitment Half a million volunteer participants were recruited in Great Britain. The participation rate however was 5.45% and was 
biased towards older, more healthy, and female residents. The UK Biobank sample does reflect nationally representative data 
sources to a significant degree.

Ethics oversight The UK Biobank project has received ethical approval from the National Health Service North West Centre for Research Ethics 
Committee (reference: 11/NW/0382).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Based on the full UK Biobank dataset, participants who had missing important data for analysis were excluded from the study. The details of 
the data exclusions are provided below. Ultimately,we included data from participants that had both structural and functional neuroimaging 
data (released early 2020, N = 37447, 19989 females and 17473 males, age attending brain scanning ranges: 44-82 years old).  Aside from 
brain measures, we incorporated data on several phenotypes in our analysis. They included age at MRI scanning time (N = 37,447), body mass 
index (N = 36,114), fluid intelligence (N = 34,534), numeric memory (N = 25,231), neuroticism (N = 30,511), alcohol consumption (N = 34,345), 
and birth month (N = 37,447). Except data missing, no other methods were used to predetermine sample size.

Data exclusions Participants who did not provide brain scans or only provided T1 or fMRI scans were excluded from the analysis. Furthermore, participants 
without corresponding phenotypes were also excluded. The exclusion of these participants was necessary due to the absence of crucial data 
required for the analysis.

Replication No other cohort with large scale brain imaging data is available for replication at this stage.

Randomization We controlled for covariates such as age, sex, scanning sites, average cortical thickness , total cortical surface area, and head motion. 

Blinding Our study used all available subjects that have completed data for analysis from UK Biobank. There was no equivalent process of 
randomization that comes into this analysis, and there were no experimental groups. Therefore, there is no step equivalent to blinding 
involved.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type resting-state fMRI; structural MRI (cortical thickness and cortical surface area)

Design specifications The experimental design has been done previously and is fully described online: https://biobank.ctsu.ox.ac.uk/crystal/
crystal/docs/brain_mri.pdf

Behavioral performance measures For our main analysis, we selected six representative variables including age, body mass index, fluid intelligence, 
numeric memory, neuroticism and alcohol consumption. In addition, birth month and 23 additional variables were also 
included in our analysis. Please see Supplementary Table 11 and Supplementary Figure 6.

Acquisition
Imaging type(s) T1-weighted MRI, resting-state fMRI

Field strength 3T

Sequence & imaging parameters Open-source MRI data was used in this study. The details of MRI data acquisition for these 2 modalities can be seen in 
Methods or Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 
210–216 (2018).

Area of acquisition Whole brain scans

Diffusion MRI Used Not used

Preprocessing

Preprocessing software The full set of image analysis pipeline scripts are available from https://www.fmrib.ox.ac.uk/ukbiobank/ - at present the 
scripts primarily call tools from FSL and FreeSurfer.

Normalization 1. The external surface of the skull is estimated from the T1, and used to normalise brain tissue volumes for head size; 
2. for resting-state processing, grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative factor.

Normalization template MNI152 template

Noise and artifact removal 1.  Several Quality control (QC ) measures quantitate the discrepancy between the T1 structural image and the standard 
(population average) template image as well as each of the other modalities (for that same subject). All of these 
“discrepancy” QC measures are the unitless “correlation ratio” cost function, that is used by FLIRT to optimise alignments, 
and which is used here to quantify the discrepancy between any two images. 
2. Several other QC measures quantitate signal to noise ratio (SNR) in some of the modalities. For the T1, the tissue-type 
segmentation is used to estimate within-tissue-type noise level (standard deviation), as well as mean intensities for grey and 
white matter. These quantities are used to estimate overall image SNR and also CNR (contrast to noise - white-grey mean 
intensity difference normalised by noise level). From the preprocessed rfMRI (both before and after artefact removal) 
timeseries data, similar measures are calculated, but in this case the “noise” level is the temporal standard deviation. 
For detailed information, please refer to the online document: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
brain_mri.pdf

Volume censoring Please refer to Methods or Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. 
Nature 562, 210–216 (2018).

Statistical modeling & inference

Model type and settings Univarite analysis:  Spearman's rank correlation analysis, two-sample t-test 
Multivariate random forest feature selection 
Partial least regression analysis
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Effect(s) tested This paper detected the replicability of brain-phenotype associations. All effects are correlations or t statistics.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
For structural analysis, we used the Desikan-Killiany Cortical Atlas. 
For functional analysis, the used the activity of 21 functional networks and functional connectivity among 
them. 

Statistic type for inference

(See Eklund et al. 2016)

cluster-wise

Correction FDR, bonferonni

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Partial correlation

Multivariate modeling and predictive analysis Multivariate random forest feature selection; partial least regression analysis.
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