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Apparent parallels between natural language and antibody sequences 
have led to a surge in deep language models applied to antibody sequences 
for predicting cognate antigen recognition. However, a linguistic formal 
de�nition of antibody language does not exist, and insight into how antibody 
language models capture antibody-speci�c binding features remains largely 
uninterpretable. Here we describe how a linguistic formalization of the 
antibody language, by characterizing its tokens and grammar, could address 
current challenges in antibody language model rule mining.

The use of language as a metaphor for adaptive immune receptors 
reaches back several decades1 (Box 1), most prominently discussed in 
Niels Jerne’s 1984 Nobel lecture2. The immune system relies on highly 
diverse immune receptors (antibodies and T-cell receptors) to fight 
previously unseen infections, whose sequences are generated by 
complex genetic recombination mechanisms3. Immune receptors 
recognize structures called antigens by binding to them4. In the case 
of protein antigens, residues involved in the binding interface (usu-
ally defined as residues within a distance of <5 Å of one another5,6) are 
the paratope and the epitope on the antibody and antigen, respec-
tively. One of the longest-standing problems in immunology is the 
antibody-specificity prediction problem7,8, which aims to determine 
which antibody sequences bind a defined antigen and vice versa9. The 
affinity of the antibody–antigen interaction determines the physiologi-
cal efficacy of an antibody, and studies typically separate binders and 
non-binders based on a selected affinity threshold. Consequently, 
antibody-binding prediction is a specialized case of protein–protein 
interaction prediction with different domain-specific binding motifs 
and amino acid usage5, lack of evolutionary information, and low con-
servation or similarity between antibodies of the same function9–12. It 
has recently been shown that fine-tuning protein language models 
(LMs) with antibody sequence information improves performance 
on various tasks13,14. At the same time, domain-specific antibody LMs 

performed differently to protein LMs depending on specific immu-
nological tasks15.

The language metaphor implies the existence of a rule-based gram-
mar system that can link immune receptor sequence to function, thereby 
enabling the designing and predicting of immune receptor and cognate 
antigen interaction. So far, there does not exist a rigorous linguistic 
formalization of an immune receptor language, as the first evidence 
that antibody specificity is predictable was only recently found with the 
availability of large-scale data5,16, implying the existence of an antibody 
grammar. At the same time, the exclusive use of LMs borrowed from 
the field of natural language processing (NLP) without any grounding 
in domain-specific models is inadequate for mining antibody gram-
mar rules, as the goals of NLP are to generate plausible data rather than 
to discover the principles that underlie that data17,18; deciphering lan-
guage grammar by considering rare, out-of-distribution data remains 
in the realm of linguistic analysis19. Explicit knowledge of biological 
sequence rules would facilitate rational antibody design by building 
information-efficient machine learning tools, enhancing the interpret-
ability of existing tools and thereby guiding the functional labeling of rare 
sequences20. Here we focus our discussion on antibody sequences, but 
most of our points apply to the entirety of adaptive immune receptors21.

We propose a guideline for creating linguistic formalizations of 
the antibody language, given its particular characteristics that make 
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antibody structure13,25–34 and properties13,14,26,28,35–38. Current antibody 
LMs25–32 typically do not use domain-informed tokenization, focusing 
on prediction accuracy rather than interpretability and explainability. 
These models, due to their black-box nature, cannot yet directly aid in 
the discovery of a verifiable rule-based antibody grammar (1 in Fig. 2), 
or even serve as reliable tools for antibody-specificity prediction20. As 
such, they do not fulfill the premise of the antibody language metaphor, 
which promises the ability to decipher the antibody language grammar. 
Furthermore, a challenge to ML models is the accurate prediction of 
out-of-distribution data39, whereas linguistic grammars aim to model 
all possible sequences regardless of statistical frequency40.

We argue that a purpose-driven, linguistic formalization of the 
antibody language is a prerequisite to building interpretable antibody 
LMs that address antibody-specific challenges in machine learning. 
Without a linguistic formalization, it would be largely impossible to 
determine whether the statistical patterns extracted from an LM cor-
respond to actual scientific principles or are merely spurious cor-
relations41,42. Linguistics has aimed to provide symbolic, rule-based 
formalizations of natural language40, in contrast to deep LMs, which are 
based on many-parameter statistical modeling of linguistics data22,43–45. 
A full linguistic formalization of natural languages consists of defining 
the basic units (tokens) of the language, syntactic rules that govern how 
these tokens combine into larger linguistic structures and semantic 
rules that map linguistic structures to meaning. These formalizations 
can provide grounding for natural language LMs, for example, by 
defining linguistically valid tokenization of the input46,47. Without a 
linguistically guided implementation, it is not guaranteed that LMs 
have learned scientifically valid rules24. For example, LMs for English 
can perform many tasks with high accuracy even when their input is 
not segmented into linguistically valid tokens22,46,48. Therefore, LMs 
without grounding in symbolic formalization, even when performing 
with high accuracy, are not guaranteed to operate on scientific princi-
ples and thus are largely unsuitable tools for discovering scientifically 
valid rules.

For antibody sequences, a full linguistic formalization remains 
elusive. Nevertheless, incorporating already known rules of antibody 
binding, such as specific motifs that play an important role in antigen 
recognition and defining the nature of the antibody language grammar 
and tokens at a higher level can further advance the quest of extracting 
a full antibody grammar from more interpretable antibody LMs. For 
example, establishing well-defined properties of antibody tokens could 
help limit the search space for valid sequence or structural motifs that 
could play a biological role in binding. More generally, a conceptual 
description of the antibody language can guide the interpretation of 
the probabilistic patterns extracted from antibody LMs.

A further challenge for applying machine learning tools to anti-
body sequences is the limited amount of available sequence data  
(2 in Fig. 2): there are only of the order of 109 publicly available immune 
receptor sequences49,50 compared with more than 1014 biologically 
possible sequences16,51. Antibody–antigen structural binding data are 
even scarcer at ~104 binding pairs available52. Antibody LMs with built-in 
biological knowledge drawn from a linguistic formalization can allevi-
ate this challenge (3 in Fig. 2), as natural language LMs of low-resource 
natural languages benefit from injecting linguistic information of the 
data first, such as morphological knowledge47,53,54 or cross-linguistic 
data55–57. Both theoretical5,10,58–60 and experimental (for example, cryo-
genic electron microscopy 61, deep mutational scanning10, single-cell 
sequencing62) domain knowledge about antibody sequences is fast 
emerging, which creates a particularly golden opportunity now for 
implementing our proposal.

Finally, antibody-specificity prediction remains particularly 
challenging for machine learning methodologies (3 and 4 in Fig. 2), 
due to the unique properties of antibody sequences as opposed to 
non-immune protein sequences. Sequence similarity does not nec-
essarily correlate with binding similarity: sequences with close edit 

it analogous to natural language and the antibody-specific challenges 
for current ML-based approaches (Fig. 1a). In particular, knowing which 
type of tokens or rules contain information on antibody binding may 
inform more efficient ML architectures by creating an interpretable 
information bottleneck. We further argue that any linguistic formaliza-
tion of biological sequences needs to be custom-built for a particular 
research question to obtain concrete, symbolic rules that explicitly 
target the given problem. We here showcase a possible implementation 
of our proposal on formalizing the antibody language in the context 
of the antibody-specificity prediction problem.

Linguistic formalization can aid with 
antibody-specific challenges in antibody LMs
In recent years, LMs have become the state-of-the-art machine learn-
ing tool for processing linguistic data22,23. In a recent Perspective24, 
we argued in favor of linguistically guided protein LMs to better inte-
grate domain-specific knowledge into LMs and to build interpretable 
LMs that are more likely to learn domain-specific rules24. Given the 
linguistic metaphor for the antibody sequence universe, there has 
been a proliferation of LMs applied to antibody sequences to predict 

BOX 1

Early endeavors in 
immunolinguistics

One of the earliest works connecting linguistics and immunology 
can be traced back to Burnet1, who drew linguistic analogies 
to theorize about the origin of immune receptor variation. He 
compared immune receptors to short strings of letters randomized 
by a computer program1. He speculated that mechanisms might 
be in place to increase the frequency of meaningful combinations 
of stochastically generated letter-like gene fragments during 
development, which has been experimentally supported later130.

A more elaborate version of a linguistic framework was 
provided by Niels Jerne in his 1984 Nobel lecture2. Jerne drew a 
parallel between the open-endedness of language, which refers 
to language’s creative capacity to express any possible semantic 
meaning40,131, and the completeness hypothesis of the antibody 
repertoire, which proposes that every possible foreign antigen can 
be recognized by an antibody sequence in the organism132,133. By 
comparing immune receptor specificity to linguistic meaning and 
highlighting the importance of innate learning skills in language 
acquisition, he alluded to universal combinatorial rules of immunity 
akin to those postulated by Chomsky in language40.

These early insights were further developed by linguists who 
saw in the immune system an example of a system that, despite 
being creative and productive, is also innate and conserved, reliant 
on inborn rules and structures134,135. The semantic dimension of 
immunity was analyzed, in turn, jointly by semioticians (specialists 
in the study of meaning and signs) and immunologists, who 
attempted to frame intercellular immune exchanges in terms of 
symbolic communication and meaning-making136. As an extension 
of these early e�orts, Atlan and Cohen considered the process of 
information processing in the immune system, suggesting that 
immune meaning unfolds in a complex process following receptor 
activation137. Although bearing promise to expand the conceptual 
framework of immunology and provide novel testable hypotheses 
in the field, these early immunolinguistic considerations remained 
largely theoretical, as supporting large-scale data were unavailable 
at that time.
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distance might bind different antigens, while dissimilar sequences 
can bind the same antigens9,10,20,63 (3 in Fig. 2). Furthermore, antibody 
sequences show cross-reactivity: antibody–antigen binding is a 
many-to-many mapping where the same immune receptor may rec-
ognize multiple different antigens, and an antigen can be recognized 
by multiple antibody sequences9–12, creating a complex many-to-many 
recognition network between antibodies and antigens (4 in Fig. 2). Our 
proposed linguistic formalization can provide a unique perspective on 
these particular challenges of antibody-specificity prediction, with 
practical implications for building an antibody LM (Fig. 2).

Formalizing the antibody language for 
antibody-specificity prediction
Here we provide a possible high-level formalization of the antibody 
language. Because linguistic formalizations of natural languages 
are well established, it is helpful first to pinpoint shared properties 
between natural language and antibody sequences to define a lin-
guistic formalization for biological sequences (Fig. 3). We then build 
on these identified properties to provide a formalization targeted to 
antibody-specificity prediction (Fig. 4). This formalization can be a 
starting point for better antibody LM design (Fig. 1).

Shared properties between natural language and 
antibody sequences
Discreteness
Discreteness holds that linguistic sequences are built from a finite 
number of smaller units into a countably infinite number of possible 
combinations with the help of a finite set of rules64: sounds are com-
bined into lexical items, lexical items are combined into phrases and 
phrases are built into sentences.

At every step, language-specific rules determine an infinite num-
ber of possible combinations due to the possibility of recursive rules64.

Similarly, antibody sequences consist of amino acids at the low-
est level, which combine into larger meaningful subunits similar 
to words (Fig. 3a). The existence of these antibody subunits is evi-
dent in the fact that encoding sequences as such subunits improved 
antibody-specificity prediction5,9,65,66 and de novo antibody sequences 
could be designed by combining subunits67,68.

Hierarchical structure
Language is organized in hierarchical structures determined by syn-
tactic rules and commonly represented as trees69. Similarly, antibodies 
have a three-dimensional (3D) structure beyond their linear sequence, 
similar to proteins (Fig. 3b). Protein sequences fold into a primary 
and secondary structure with local structural patterns defined by 
the local amino acid sequence, followed by the 3D conformation of 
longer-distance domains (tertiary and quaternary structure)70,71. The 
order of local folding events can, for instance, be represented in a lattice 
structure, as a tree of folding events72–75. Alternatively, it is also possible 
to encode trees and higher-dimensional structures as strings9,76–79 by 
incorporating angles into the string encoding.

The antibody 3D structure is crucial for determining antibody- 
binding behavior80–83. The folding creates paratopes on the antibody80–83, 
and antibody sequences might bind different antigens determined by 
their folded structure81–83. Of note, the same antibody sequence may 
bind different targets using a different set of paratope residues81–83. 
Consequently, non-paratope parts of antibodies also contribute to the 
specific binding by making the appropriate 3D structure possible80.

Ambiguity
Linguistic sequences can be ambiguous, as they can map to multiple 
meanings. Linguistic ambiguity can be due to tokenization ambiguity, 
where a sequence can be subdivided into different sets of tokens84, 
structural ambiguity, where different structures contribute to 

(1) Linguistics targets

Determine the research question
(antibody-specificity problem)

(3) Linguistics model

2) Linguistics analogs

Identify linguistic properties
shared by antibody sequences

Characterize the language based
on the identified analogs

a b

Linguistically informed preprocessing

Linguistically informed LM

Antibody language
with interpretable

grammar

Rational
biotherapeutics design

Sequence data:  • Natural  • Synthetic
 

?

Fig. 1 | Integration of a linguistic formalization of antibody sequences into 

antibody LMs. a, Linguistic formalization of antibody sequences. We propose 
that a linguistic formalization requires the following steps: (1) determine the 
research question that the linguistic formalization aims to solve, which in our 
case is antibody-specificity prediction, (2) identify natural language properties 
shared by antibody sequences, which we illustrate in Fig. 3, and (3) characterize 
the language based on the identified analogies, which we illustrate in Fig. 4.  
b, Linguistically grounded antibody LM. The obtained linguistic formalization 

informs the input sequence data preprocessing and the design of the language 
model itself. Thus integrating a linguistic formalization of antibody sequences 
into current machine learning techniques can lead to better interpretability while 
maintaining the ability to statistically process large, unstructured data, resulting 
in a linguistically grounded deep antibody LMs. Easily interpretable LMs can aid 
with deciphering the rules of antibody specificity, which is crucial for rational 
and in silico antibody biotherapeutics design.
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different meanings85, or lexical ambiguity, where a token itself might 
have several different meanings. Antibodies similarly show ambiguity 
in their binding behavior as they are cross-reactive7,11,81,86 (Fig. 3c). As 
with language, antibody sequence ambiguity could be due to struc-
tural ambiguity, where each different antibody fold associated with 
the same sequence binds different targets87. However, often the same 
antibody structure can also recognize several different antigens11,81,86, 
where tokenization or lexical ambiguity might become relevant: either 
the same antibody sequence could be re-analyzed as containing dif-
ferent tokens (tokenization ambiguity) or the same token has multiple 
associated functions (lexical ambiguity) (4 in Fig. 2).

Compositionality of meaning
Every linguistic sequence maps to meaning, which is grounded outside 
of language. The meaning of sentences is compositional, as it can be 
derived from the meanings associated with the individual lexical items 
that built it and from the order they combined. Compositionality is 
key to semantic rules that link a linguistic sequence to its meaning: 
by combining the meanings of individual tokens in the sentence in 
the same order they build the linguistic structure, we can derive the 
meaning of the full sequence (Fig. 3d).

Antibody binding is governed by complex physicochemical laws, 
which in principle, makes antibody meaning non-arbitrary. Moreover, 

there is evidence that antibody specificity can also be derived from 
the compositional combination of its subunits, as antibody specific-
ity is predictable from sequence alone10,88,89 and binding motifs are 
shared across different antibody–antigen-binding complexes5,66. 
These works are complemented by first successes in paratope–
epitope prediction5,90–92. As antigen specificity is mainly determined 
by ~5–20 amino acids in the complementarity-determining region 
3 (CDR3), the recognition and classification of billions of different 
antigens is based on a feature space of merely ~5–20 dimensions. The 
low dimensionality implies the presence of strong high-order depend-
encies between amino acids. Consequently, antigen specificity may 
result from the conditional combination of components in the form 
of paratope subsequences (contiguous or gapped k-mers)93, similar 
to natural language, where semantics arise from a combination of 
words according to a given grammar. Indeed, the study by Akbar et al. 
showed that a systematic subdivision of antibodies into interacting 
and non-interacting paratope motifs improved antigen-binding pre-
diction5, and, importantly, these motifs were shared across entirely 
different antibody–antigen-binding complexes, suggesting the exist-
ence of a generalizable, systematic antibody grammar. If antibody 
meaning can be derived compositionally, then identifying these 
compositional rules is the key to solving the antibody-specificity 
prediction problem.

Current challenges for antibody LMs

Application of linguistic formalization

Interpretable

Glass box

Black box 

(1) Di	icult to interpret

Absence of
sequence–function
rules 

Presence of
sequence–function
rules

(2) Lack of large datasets

Best

Worst

Accuracy

Dataset size

Data e	icient

Best

Worst

Accuracy

Dataset size

Functional token

Amino acid­based sequence distance =  3

(3) Similarity versus specificity

Antigen 1
Antigen 2
Antigen 3
Antigen 4

Antigen 2
Antigen 3
Antigen 4

CAREGIVERS CARETAKERS

Token­based distance = 1

CAREGIVERS CARETAKERS

Levels of ambiguity

(4) Cross­reactivity

Antigen 1
Antigen 2
Pekanbaru
Antigen 4

CARICATURAL

CAR IC
AT

URAL

CA
RIC

AT

URAL

(1) Structural
ambiguity

(2) Tokenization
ambiguity

(3) Lexical
ambiguity

IC*U +RA* I + +
CAT

U*L

Hydrophobic Binds FOXP2

FOXP2H2O

Fig. 2 | Linguistic formalization as a solution to current challenges in 

antibody-specificity prediction with LMs. Current antibody LMs are typically 
black-box models trained on inputs that are tokenized on an amino acid basis 
that remain difficult to interpret and face challenges for antibody-specificity 
prediction. A linguistic formalization can address challenges of antibody LMs. 
(1) Difficult to interpret: the formalization can guide the interpretation of these 
models, leading to the extraction of scientifically valid sequence–function rules. 
(2) Lack of large datasets: the lack of antibody data, which in general hinders 
machine learning success, can be alleviated by integrating domain-specific 
knowledge into antibody LMs, as similar approaches have proved to be successful 
for low-resource languages in NLP47,53–57. (3) Similarity versus specificity: amino 
acid-based sequence similarity lacks correlation with antibody specificity9,10,20,63. 

A linguistic formalization that provides functional tokens would allow for 
calculating token-based sequence similarity instead, which could lead to a better 
correlation between sequence similarity and specificity. (4) Cross-reactivity: a 
linguistic formalization recasts cross-reactivity as different types of linguistic 
ambiguity, which can help with a more precise understanding of antibody 
grammar. For example, the sequence 'CARICATURAL' can take up different 
structures (for example, it folds between the segments CAR+IC+AT+URAL 
versus CA+RIC+AT+URAL) (structural ambiguity), the same structure can be 
segmented in different ways, leading to different tokenizations (for example, 
IC*U + RA* versus I + CAT + U*L, where * stands for wild amino acids) (tokenization 
ambiguity), and the same token might match with different meanings (for 
example, it is hydrophobic versus binds the FOXP2 gene) (lexical ambiguity).
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Defining the linguistic model
We recast antibody-specificity prediction as a formalized antibody 
language. Specifically, we define notions of well-formedness and mean-
ing by characterizing antibody grammar and tokens in the context of 
antibody-specificity prediction.

Characterizing antibody grammar
For a natural language, a sequence or structure is well formed if it 
adheres to the language’s syntactic rules, while compositional semantic 
rules map each syntactically well-formed sequence to meaning94. We 
propose that well-formed antibody sequences are equivalent to all 
observable sequences formed by V(D)J recombination that are in-frame 
and without stop codons. We distinguish between sequence-building 
syntactic rules (for example, V(D)J recombination95), which determine 
well-formed sequences on the one hand, and structure-building syntac-
tic rules, which determine antibody folding on the other hand (Fig. 4). 
The meaning of a well-formed antibody sequence is the set of epitopes 
it binds (Fig. 4). Semantic rules map a folded antibody structure to its 
recognized epitopes and binding affinity for those epitopes.

If the input to antibody-specificity prediction is a well-formed 
antibody sequence, deciphering both the structural syntactic rules 
and the compositional semantic rules is necessary to predict antibody 

specificity. If the input is a well-formed antibody structure, then learn-
ing only the semantic rules is needed, and thus syntactic and semantic 
rules could be better teased apart.

Characterizing antibody tokens
Both syntactic and semantic rules operate over sets of discrete tokens. 
Semantic tokens must be items with functional meaning so that they 
can be combined into full sequence meaning, whereas syntactic 
tokens do not need to have functional meaning; they only need to 
facilitate the emergence of syntactic rules (Fig. 4). While in natural 
language, syntactic and semantic rules use the same set of tokens, 
we propose that the antibody language has separate syntactic and 
semantic tokens.

Antibody semantic tokens are discrete units that correspond to 
structural motifs with an identifiable functional meaning (Fig. 4 illus-
trates a few hypothetical examples, where motifs possibly correspond 
to physicochemical properties, shape and content of correspond-
ing antigen epitope). Because the antibody semantic rules map from 
structure to meaning, the semantic tokens must already have structure 
(Fig. 4). As with linguistic lexical items, these motifs could be lexically 
ambiguous with multiple different meanings, and multiple motifs could 
be synonymous by mapping to the same meaning as well.

Linguistic Antibody Linguistic Antibody

Sentence

Predicate/verb phrase

Prepositional phrase

Noun phrase

Lexicon
tokens

I saw an elephant in my pajamas

ba

3D structure

LoopBeta-sheet

Primary
structure

TGKSWRIWKRS

Amino acid T G K

Elephant in pajamasElephantPajamas

=+

Linguistic: semantic units

Antibody: interacting residues

Meaning 1 Meaning 2

+

Meaning 3

+ =

Sequence motif

d

c

I

I

saw

saw

elephant

elephant

in

in

an

an

my pajamas

my pajamas

Linguistic: structural ambiguity Antibody: cross-reactivity

Antigen 1
Antigen 2
Pekanbaru
Antigen 4

Sentence I saw an elephant
in my pajamas

Sequence TGKSWRIWKRS

Motif GKS
T__W

W_RS

Lexical tokens
I saw elephant

an
mypajamasin

Sounds
aI eI

I:ph

Fig. 3 | Shared properties between linguistic and antibody sequences. 
a, Discreteness: sentences are built from finite building blocks (sounds) via 
intermediary units (words, lexical items, tokens) that possess semantic meaning. 
Antibodies similarly are built from a finite set of amino acids and probably also 
possess intermediary units (motifs). b, Structure: linguistic strings possess a 
combinatorial building structure that can be represented as trees. Similarly, 
antibodies have a 3D structure, which results from the folding of subsequences 
into primary structure blocks that can form only a finite set of 3D structures 
according to physical constraints. c, Ambiguity: ambiguity, defined as the  

same sequence mapping to two distinct meanings (for example, the picture on 
the left can be either a rabbit or a duck), is found in both linguistic and antibody 
sequences. Natural language sentences can have multiple meanings, and 
antibody sequences can bind multiple targets (cross-reactivity).  
d, Compositionality: the meaning of a sentence is composed by combining the 
meaning of its lexical items that build it through the order they are combined 
in the sentence. Evidence suggests that antibody meaning can be similarly 
composed of individual motifs with associated meaning10,88,89.
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To identify semantic tokens, there needs to be an exhaustive 
list of relevant lexical meanings to antibody-specificity prediction 
and an analytical mapping between the structural motifs and cor-
responding lexical meaning. Compositional semantic rules map the 
combinations of functional motifs to a combined meaning, resulting 
in the features of a fully recognized epitope (Fig. 4). As the ‘meaning’ 
of antibody motifs is, to a large extent, affected by long-distance 
dependencies5,10,96, the appropriate semantic rules for the antibody 
language must enable the combination of motifs that are distant from 
each other in the sequence. LMs can serve as a particularly powerful 
tool for discovering such rules, as they can find statistically significant 
long-distance dependencies97,98 and calculate word embeddings48 
based on context in natural language.

To integrate binding affinity into the model, each semantically 
meaningful token would map to a probabilistic distribution of differ-
ent meanings. Compositional semantic rules then would be functions 
that combine these semantic tokens to yield a probability that the full 
antibody binds a certain epitope. This probability would be analogous 
to binding affinity. Similar work exists already for capturing probabil-
istic meaning in natural language semantics99, in particular, the use of 
probabilistic approaches to formalize lexical items100 and calculate 
their combinatorial meaning in sentences101–103.

In contrast, syntactic tokens do not need to be meaningful. For 
example, the rules of V(D)J recombination operate on the level of 
nucleotides, which do not have identifiable functional meaning that 
pertains to antibody specificity (Fig. 4). Syntactic tokens are relevant 
for antibody-specificity prediction if the structure needs to be pre-
dicted from sequence; if the structure is already given, then syntactic 
tokens become irrelevant.

Outlook
Our linguistic formalization of the antibody language provides practical 
implications for building interpretable antibody LM design that would 
be useful for scientific discovery in antibody-specificity prediction.

First, the linguistic perspective reveals that semantic rules are the 
key to antibody-specificity prediction. In practical terms, antibody 
LMs should be dedicated to learning only semantic rules for increased 
interpretability. To do so, the input data to LMs should already be 
encoded with structural information so that the LM does not need to 
learn syntactic rules, and the tokens should correspond to meaningful 
semantic tokens. There exist multiple verifiable design solutions for 
processing multi-dimensional structures with LMs. For one, structural 
information can be encoded into a string, either by using a lattice rep-
resentation of the structure9, or by incorporating more fine angles77–79. 
Alternatively, the LM architecture itself could be built so that it directly 
parses higher-dimensional structures, as has been done for linguistic 
trees104,105, although this can become computationally costly for 3D 
representations. Existing studies suggest that encoding the input data 
with structure improves antibody-specificity prediction9,106,107.

Furthermore, finding the correct semantic tokens addresses 
the lack of correlation between sequence similarity and specificity. 
Instead of calculating sequence similarity based on amino acid edit 
distance9,10,20,63, we hold that semantic token-based similarity may be a 
more biologically founded predictor of antibody specificity (3 in Fig. 2).

Finally, cross-reactivity can be analyzed as various types of lin-
guistic ambiguity, where the source of the ambiguity can be structural, 
tokenization or lexical (4 in Fig. 2). By understanding different sources 
of cross-reactivity through the lens of linguistic ambiguity, it becomes 
possible to finely control the type of ambiguity learned by the antibody 
LM by manipulating its input encoding. In the case of structured and 
semantically tokenized input, the only type of ambiguity would be 
lexical. For structured, untokenized input, both tokenization and 
lexical ambiguity are possible. Finally, for sequential inputs, structural 
ambiguities can also arise. Thus by choosing the input type, it becomes 
possible to interpret any extracted pattern as different parts of the 

antibody grammar, thereby making it possible to further decipher the 
full symbolic grammar of antibody-specificity prediction.

Of note, here we have defined the antibody language as the set of 
all well-formed antibodies whose meanings are the set of epitopes they 
recognize combined with the affinity for that recognition. There are 
other possible ways to define the language of antibodies. For instance, 
antibody sequences specific to the same antigen could be defined as 
their own language, where their meaning equals the different epitopes 
on that antigen. There could also be a separate antigen language, where 
each potential epitope is a string in that language. Antibodies with 
a certain range of affinity or developability parameters could also 
define separate languages. Still, our general formalizing guidelines 
remain relevant for all these alternative possibilities for defining the 
antibody language.

Current antibody LMs that receive only sequential input have to 
learn both syntactic and semantic rules to predict antibody specificity 
while for the most part using amino acid-based tokenization, which 
makes the statistical patterns extracted from them more challenging 

Syntactic lexicon

Nucleotide
Amino acids
Motifs

Semantic lexicon

IC*U

RA*

...

Hydrophobic
0.7
Binds P__R
0.4
Binds
concave
epitope 0.9

Sequence-building
syntactic rules

for example, V(D)J
recombination

CARICATURAL
CATGKSMHVVG

Well-formed sequences

Well-formed structures Meaning

Semantic rules

Structural syntactic rules

IC*U RA*+

Bound epitope structures
Binding a�inity

CAR IC
AT

URAL

Interacting areas

IC*U + RA*

(hydrophobic)(pocket)

Binds hydrophobic
pocket  0.63

Fig. 4 | The formalization of the antibody language. In the antibody language 
sequence-building syntactic rules (for example, V(D)J recombination) build 
well-formed sequences from the syntactic lexicon (for example, nucleotides, 
amino acids, motifs), and structural syntactic rules map well-formed sequences 
to well-formed structures. Semantic compositional rules draw from a separate 
semantic lexicon (where each token, such as IC*U and RA*, has different meanings 
with certain probabilities, such as hydrophobic, binds sequence pattern P_R, or 
binds concave epitopes) to map folded antibody structures to meaning, that is 
bound epitopes. To capture binding affinity, the semantic lexicon links already 
folded tokens to their possible meanings together with a probability score for 
that meaning. The semantic rules then calculate a combined probability for 
the combined meaning of these tokens, yielding the binding affinity for a given 
well-formed antibody structure.
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to interpret. In theory, information-efficient black-box ML designs 
with meaningful tokens and constraints reminiscent of syntactic rules 
may well reach as high accuracy as interpretable linguistic models. 
However, we believe that interpretability would be more successful 
in detecting or generating rare events (for instance, rare sequences 
following multiple rules). We thus call for prioritizing the search for 
meaningful structural tokens in antibody sequences that can be used 
for segmenting and encoding the input to antibody LMs.

At the same time, we emphasize that a purely analytical linguistic 
approach alone will not be adequate for finding new antibody-binding 
rules, given the vast space of still unknown antibody data. We believe 
that a linguistic formalization should be applied as grounding for sta-
tistical machine learning models and that both approaches are needed 
together to balance out each others’ drawbacks and to achieve our goals 
of deciphering antibody grammar. Below, we further outline current 
bottlenecks in fully realizing the linguistic approach in terms of data, 
tokens, expressivity and framework.

Data
Structural data as input is necessary for delineating the semantic rules 
of the antibody language without the syntactic rules. On the one hand, 
we are accumulating large immune receptor sequence datasets at 
scale; on the other hand, experimentally solved structures to match 
the sequences remain prohibitively expensive to obtain108. Recent 
leaps in structure prediction, both multiple sequence alignment (MSA) 
based and MSA free, have begun to bridge the sequence–structure 
mismatch108–111. In particular, Fang et al.112 have recently shown that an 
MSA-free structure prediction model dramatically reduced the time 
to model molecules (up to four orders of magnitude lower median 
time reduction) with minimal compromise on prediction accuracy 
across different protein classes (peptide, antibody and nanobody). 
Efficient structure prediction computation may now be combined with 
high-throughput sequencing experiments and information-driven 
docking to design scalable sequence–structure matched data on the 
variant level113. In the meantime, we advocate for supplementing the 
data synthetically, and for using simulation studies to evaluate the 
effectiveness of this approach9,114.

Plastic tokens
The conformational flexibility of CDRs is a hallmark of antibody speci-
ficity115. Our understanding of an antibody molecule as a static entity 
struggles to attribute the breadth of its recognition capacity; thus, the 
view that an antibody molecule exists as an ensemble of different con-
formations has now taken precedence87. This crucial bit of information 
necessitates tokens that take into account the flexibility space (plastic 
token). The plasticity of the tokens could mimic the lexical ambiguity 
of linguistic lexical items and could attribute the (poly)specificity of 
antibodies. However, incorporating flexibility into sequence–structure 
data comes with a substantial computational tax. Well-accepted molec-
ular simulation technology such as molecular dynamics simulations, is 
notoriously computationally costly and the appropriate timescale to 
sufficiently incorporate CDR loop flexibility can be lengthy87. Scalable 
solutions, either through abstraction (accelerated molecular simula-
tion) or machine learning116–121, will be needed for the incorporation 
of flexibility and the discovery of plastic antibody-specific tokens.

Expressivity
A key aspect of linguistic formalization is to describe the precise expres-
sivity of the rules that are expected to govern antibody-binding behav-
ior. It is important that the model should not be either overly powerful 
or not powerful enough. If the model is too weak in expressivity, it 
might be limiting for discovering more complex antibody rules. At 
the same time, a model with unlimited expressivity is not always desir-
able because it might result in rules that generate illegal sequences 
beyond those seen in a dataset, leading to overfitting the data and 

low precision122,123. Knowing precisely the expressivity of these rules 
would help narrow down the search space to only plausible antibody 
rules and avoid overgeneration. It would also help with choosing the 
most appropriate LM architecture for statistically finding these rules, 
as different architectures have different levels of expressivity124,125.

Framework
Current LMs learn the statistical distributions in the datasets and infer, 
admittedly, complex short and long-range interrelationships. With 
the aid of random noise (as in denoising diffusion models), the models 
have expanded on the original boundaries of the training datasets126. 
Arguably the addition of noise can be seen as incorporating evolution 
as a separate component to the model (not to be confused with token 
plasticity). However, the incorporation of random noise expands the 
boundaries uniformly127, whereas the rational design of antibodies 
may demand the ability to conditionally (non-uniformly) expand the 
boundaries, which in turn resembles a directed evolution. Similar to 
(human) languages that continue to evolve128,129, the underlying prin-
ciples for the evolution of antibody language are still to be discovered.

A new architectural paradigm, which accommodates sequence, 
structure, plastic tokens and linguistic evolution, such as the one out-
lined in Fig. 1, might become the centerpiece for the rational design 
of therapeutic antibodies. We foresee that the confluence of different 
branches of science, as seen here (linguistic and immunology), will 
continue to be favored over an isolated single-domain approach. While 
one branch, or the other, lacks the precise definition of the problem 
and the tools to observe beyond each respective horizon, together they 
might take further steps than separately.

In conclusion, a linguistic formalization, which rigorously defines 
biological sequences in terms of a natural language system, provides 
more explicit guidance on how specific LM design choices can affect the 
types of rules latently learned by the LM. Equipped with this finer under-
standing, it becomes possible to better interpret extracted statistical 
patterns from LMs. Although we have here shown only a formalization 
of the antibody language, similar formalizations could prove invaluable 
for other interpretable biological sequence modeling and point to new 
insights into existing biological questions.
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