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African elephants address one another with 
individually specific name-like calls

Michael A. Pardo    1 , Kurt Fristrup    2, David S. Lolchuragi3, Joyce Poole4, 

Petter Granli4, Cynthia Moss5, Iain Douglas-Hamilton3 & George Wittemyer    1,3

Personal names are a universal feature of human language, yet few analogues 

exist in other species. While dolphins and parrots address conspeci�cs by 

imitating the calls of the addressee, human names are not imitations of 

the sounds typically made by the named individual. Labelling objects or 

individuals without relying on imitation of the sounds made by the referent 

radically expands the expressive power of language. Thus, if non-imitative 

name analogues were found in other species, this could have important 

implications for our understanding of language evolution. Here we present 

evidence that wild African elephants address one another with individually 

speci�c calls, probably without relying on imitation of the receiver. We 

used machine learning to demonstrate that the receiver of a call could be 

predicted from the call’s acoustic structure, regardless of how similar the 

call was to the receiver’s vocalizations. Moreover, elephants di�erentially 

responded to playbacks of calls originally addressed to them relative to calls 

addressed to a di�erent individual. Our �ndings o�er evidence for individual 

addressing of conspeci�cs in elephants. They further suggest that, unlike 

other non-human animals, elephants probably do not rely on imitation of 

the receiver’s calls to address one another.

A hallmark of spoken human language is the use of vocal labels: learned 

sounds that refer to an object or individual (the ‘referent’)1. Many spe-

cies produce functionally referential calls for food and predators2,3, but 

the production of these calls is typically innate4. Learned vocal labels 

expand the expressive scope of communication by making it possible to 

establish labels for new referents. Thus, they increase the sophistication 

of cooperative behaviour and are central to humans’ ability to articulate 

symbolic thought5. Personal names are a type of vocal label that refers to 

another individual. Names must involve vocal learning, as an individual 

cannot be born knowing the names for all its future social affiliates. 

Thus, non-human analogues of personal names are highly relevant 

to understanding the evolution of language and complex cognition.
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Most human words, including names, are arbitrary: they are not 

imitations of sounds typically made by the referent or tied to its physi-

cal properties6. Arbitrariness is crucial to language because it enables 

communication about referents that do not make any imitable sound. 

However, clear evidence for arbitrary names in other species is lacking. 

Bottlenose dolphins (Tursiops truncatus) and orange-fronted parakeets 

(Eupsittula canicularis) address individual conspecifics by imitating the 

receiver’s ‘signature’ call, a sound that is most commonly produced by 

the receiver to broadcast their identity7,8. While considered arbitrary 

when used for self-identification9, it may be argued that copied signa-

ture calls used to address the call’s owner are iconic (non-arbitrary) 

labels since they are an imitation of a sound most often produced by 

the individual to whom the call refers. Non-imitative learned vocal 

labelling may be more cognitively demanding than imitative labelling, 

as it requires individuals to make an abstract connection between a 

sound and referent. Evidence that arbitrary vocal labelling is not unique 

to humans would expand the breadth of models for the evolution of 

language and cognition.

Received: 24 October 2023

Accepted: 22 April 2024

Published online: xx xx xxxx

 Check for updates

Q1 Q2

Q3 Q4

Q5 Q6

1Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA. 2Department of Electronic and Computer 

Engineering, Colorado State University, Fort Collins, CO, USA. 3Save The Elephants, Nairobi, Kenya. 4ElephantVoices, Sandefjord, Norway. 5Amboseli 

Elephant Research Project, Nairobi, Kenya.  e-mail: map385@cornell.edu



Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02420-w

call pairs with same receiver, 179 pairs with different receivers, χ2
1 = 13.0, 

P = 0.0003, partial η2 = 0.063) (Fig. 1 and Extended Data Table 4). This 

indicates that rumbles contain information specific to the individual 

receiver, not merely to the caller or to the type of relationship between 

the caller and receiver (Table 1, hypothesis 1, prediction 2).

Vocal labels more likely in certain contexts  
and age classes
For 87.4% of calls, receiver ID was predicted consistently correctly or 

consistently incorrectly across >95% of random forest iterations. We 

used logistic regression to assess factors influencing the probability 

of correct classification. Contact (n = 138, 42.0% correct) and caregiv-

ing rumbles (n = 62, 46.8% correct) were more likely to be correctly 

classified than greeting rumbles (n = 127, 3.9% correct) (care/contact: 

P = 0.264, odds ratio 6.4; care/greeting: P = 0.014, odds ratio 48.9; 

contact/greeting: P = 0.047, odds ratio 7.6) (Extended Data Table 5). 

Calls from adult females (n = 274, 32.8% correct) were more likely to 

be predicted correctly than calls from juveniles (n = 53, 3.8% correct) 

(χ2
1 = 6.5, P = 0.011, odds ratio 0.067). Calls that occurred later in the 

bout were more likely to be predicted correctly (χ2
1 = 3.8, P = 0.0498, 

odds ratio 2.8), as were calls addressed to receivers with more total 

calls in our dataset (χ2
1 = 7.6, P = 0.006, odds ratio 1.4).

No evidence for imitation of receiver  
in vocal labels
Elephants are not known to produce discrete ‘signature’ calls like dol-

phins and parrots; instead, the caller specificity of elephant rumbles 

is probably a product of voice characteristics12,13. If elephants address 

individual receivers by imitating the receiver’s voice, they should sound 

more like the receiver when addressing her than when addressing other 

individuals. Among the calls for which we had recordings of the receiver 

and recordings of the caller addressing other individuals (n = 236), 

59.7% were divergent from the receiver’s calls; that is, less similar to the 

receiver’s calls than typical for that caller. The random forest’s predic-

tion accuracy was significantly better than baseline expectations for 

both convergent and divergent calls (Table 1, hypothesis 2, prediction 

1) (permutation test; convergent calls: 20.1% correct, permuted models 

Elephants are among the few mammals capable of mimicking 

novel sounds, although the function of this vocal learning ability is 

unknown10,11. The most common elephant call type is the rumble, a har-

monically rich, low-frequency sound that is individually distinct12,13 and 

distinguishable14 and is produced across most behavioural contexts15. 

Contact rumbles are long-distance calls produced when the caller is 

out of sight and more than ~50 m from one or more social affiliates and 

attempting to reinitiate contact. Greeting rumbles are affiliative calls 

produced when one individual approaches another to within touching 

distance15. Caregiving rumbles are affiliative calls produced by an adult 

or adolescent female while suckling, comforting or rousing a calf15.

In this Article, we analysed contact, greeting and caregiving rum-

bles from female–offspring groups of wild African savannah elephants 

(Loxodonta africana) to assess whether they contain individual vocal 

labels. We investigated (1) if elephants address conspecifics using 

receiver-specific vocal labels, (2) if the labels are imitative of the receiv-

er’s calls or arbitrary, (3) if different callers share the same label for 

the same receiver and (4) if playbacks to the assumed receiver elicit 

behavioural responses indicating label recognition (Table 1).

For contact calls, we defined the receiver as the only adult mem-

ber of the family group separated (>50 m) from the caller or the only 

individual who responded to the call by vocalizing or approaching. 

For greeting calls, the receiver was the individual who approached or 

was approached by the caller. For caregiving calls, the receiver was 

the calf being suckled, comforted or roused by the caller. We excluded 

calls with uncertain or multiple recipients. Given the complexity of 

elephant vocalizations, it was not clear what acoustic features were 

optimal for capturing the relevant variation in the calls. Thus, we ran 

models separately for two different sets of features measured on each 

call (spectral and cepstral; Extended Data Fig. 1 and Extended Data 

Table 1). The results reported in the text and figures are for the spectral 

features (see tables for cepstral results, which were similar).

Calls were specific to individual receivers
We ran a random forest16 with sevenfold cross-validation to predict the 

receiver of each rumble as a function of the acoustic features. Call struc-

ture varied with the identity of the targeted receiver (Extended Data 

Figs. 2 and 3) as expected if elephants vocally label other individuals. 

Our model correctly identified the receiver for 27.5% of calls analysed, 

a significantly 
.

m
greater proportion than achieved by models with ran-

domly permuted acoustic features (permutation test, mean ± standard 

deviation (s.d.) accuracy for 10,000 permuted models: 8.0 ± 0.66% 

correct, one-tailed P < 0.0001) (Fig. 1 and Extended Data Table 2). This 

indicated that receivers of calls could be correctly identified from call 

structure statistically significantly better than chance (Table 1, hypoth-

esis 1, prediction 1).

As caller ID and receiver ID were partially aliased in our dataset 

(Supplementary Table 1), the random forest could theoretically use 

acoustic cues to caller ID15 to predict receiver ID, even if the calls did 

not contain any vocal label. To assess this possibility, we compared the 

mean similarity of pairs of calls with the same caller and receiver to the 

mean similarity of pairs of calls with the same caller and different receiv-

ers, using proximity scores derived from the random forest as a metric 

of call similarity17. If the random forest relied entirely on cues to caller ID 

to predict receiver ID, there should be no difference in proximity score 

between ‘same caller/same receiver’ pairs and ‘same caller/different 

receiver’ pairs. To control for the possibility that calls were specific to 

the type of relationship between the caller and receiver rather than to 

individual receivers, we categorized social relationship on the basis of 

relatedness and age (Extended Data Table 3) and only considered pairs 

of calls with the same type of relationship between caller and receiver. 

Calls with the same caller and receiver were significantly more similar 

(higher proximity scores) than calls with the same caller and different 

receivers, even after controlling for social relationship, behavioural 

context and recording date (rank-transformed linear model, n = 1,105 

Q7

Table 1 | Hypotheses and predictions tested in this study and 
whether they were supported

Hypotheses Predictions Supported?

1. Elephants 

vocally label 

individual 

conspecifics

1. Receiver ID can be predicted from call 

structure

2. Calls with same caller and same 

receiver will be more similar than calls 

with same caller and different receivers, 

while controlling for caller–receiver 

relationship type

3. Elephants will respond more strongly 

to playback of call originally addressed to 

them than to playback of call from same 

caller originally addressed to another 

individual

1. Yes

2. Yes

3. Yes

2. Vocal labels 

are arbitrary 

(not imitative of 

receiver’s calls)

1. Receiver can be predicted from call 

structure regardless of whether calls are 

convergent or divergent from receiver’s 

calls relative to other calls by the same 

caller

2. Calls from caller A to receiver B will be 

no more similar to receiver B’s calls than 

calls from caller A to other receivers are 

to receiver B’s calls

1. Yes

2. Yes

3. Different 

callers use same 

label for same 

receiver

1. Calls with different callers and same 

receiver will be more similar than calls 

with different callers and different 

receivers

2. Receiver ID can be predicted from call 

structure independently of caller ID

1. Yes

2. No
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mean ± s.d. accuracy of 7.7 ± 1.3%, n = 95 calls, one-tailed P < 0.0001; 

divergent calls: 32.6% correct, permuted models mean ± s.d. accuracy 

of 17.9 ± 1.6%, n = 141 calls, one-tailed P < 0.0001) (Fig. 2 and Extended 

Data Table 2).

Proximity scores for pairs of calls in which the receiver of one 

call made the other call were marginally higher than for pairs in 

which this was not the case, but this was not statistically significant 

(rank-transformed linear model, n = 943 call pairs where receiver of 

one call made the other call, 1,553 pairs where this was not the case, 

χ2
1 = 3.7, P = 0.056, partial η2 = 0.001) (Fig. 2 and Extended Data Table 6). 

This suggests that calls addressed to a given receiver were no more con-

vergent with the receiver’s calls than with calls from other individuals 

(Table 1, hypothesis 2, prediction 2). Collectively, the evidence suggests 

that vocal labelling in elephants probably does not rely on imitation 

of the receiver’s calls. However, a definitive conclusion about the role 

of imitation will require exhaustively sampling the vocal repertoire 

of each caller.

Mixed evidence for shared labels across callers
In humans and bottlenose dolphins, different callers generally use 

the same label for a given receiver. To determine if elephants do the 

same, we further examined call proximity scores. Calls from differ-

ent callers to the same receiver were significantly more similar than 

calls from different callers to different receivers (Table 1, hypothesis 

3, prediction 1) (rank-transformed linear model, n = 693 call pairs with 

same receiver, 7,522 pairs with different receivers, χ2
1 = 10.7, two-tailed 

P = 0.001, partial η2 = 0.004) (Fig. 3 and Extended Data Table 7). This 

suggests that there was some vocal convergence among different call-

ers addressing the same receiver.

We then ran a random forest structured to predict receiver ID 

from different callers than the model was trained on (n = 437 calls) 

(Table 1, hypothesis 3, prediction 2). This model correctly classified 

1.1% of calls, no better than the corresponding models with randomly 

permuted acoustic features (permutation test, mean ± s.d. accuracy of 

permuted models 1.4 ± 0.33% correct, one-tailed P = 0.896) (Fig. 3 and 

Extended Data Table 2). Therefore, the random forest was not able to 

predict receiver ID independently of caller ID, suggesting convergence 

across callers was weak.

Playback confirms receiver recognition of vocal 
labels
To determine if elephants perceive and respond to the vocal labels 

in calls addressed to them (Table 1, hypothesis 1, prediction 3), we 

compared reactions of 17 wild elephants to playback of a call that was 

originally addressed to them (test) relative to playback of a call from 

the same caller that was originally addressed to a different individual 

(control). By using test and control stimuli from the same caller, we 

controlled for the possibility of the caller’s relationship to the subject 

influencing the results. To control for the possibility that calls were spe-

cific to the type of relationship between the caller and receiver rather 

than to the individual receiver, we included the type of relationship 

between the caller and the original receiver as a factor in the analysis. 

Further supporting the existence of vocal labels, subjects approached 

the speaker more quickly (Cox regression, χ2 = 6.8, P = 0.009, hazards 

ratio 8.77), vocalized more quickly (Cox regression, χ2 = 7.9, P = 0.005, 

hazards ratio 7.45) and produced more vocalizations (Poisson regres-

sion, χ2 = 6.7, P = 0.009, rate ratio 2.41) in response to test playbacks 

than control playbacks (Fig. 4 and Table 2). In trials where an approach 

or vocalization occurred, the mean ± s.d. latency to the first approach 

or vocalization was 99.7 ± 161.4 s.

Discussion and conclusions
Very few species are known to address conspecifics with vocal labels. 

Our discovery of individual vocal labels in a species that diverged from 

both the primate and cetacean lineages ~90–100 million years 
.

m
ago 

provides an important opportunity to study the convergent evolu-

tion of unusually sophisticated communication18. Moreover, where 

evidence for vocal labels has been found in non-human species, they are 

either clearly imitative7,8 or of unknown structure19–21. Our data suggest 

that elephants may label conspecifics without relying on imitation of 

the receiver’s calls, a phenomenon previously known to occur only in 

human language. If further research supports the absence of receiver 

imitation in elephant vocal labels, then investigating the social context, 

acoustic structure and ontogeny of vocal labels in elephants may shed 

light on why elephants and humans developed non-imitative vocal 

labels in contrast to other species known to vocally label conspecifics. 

Our results also have significant implications for elephant cognition, 

as inventing or learning sounds to address one another suggests the 

capacity for some degree of symbolic thought.

The existence of individual vocal labelling in elephants is sup-

ported by multiple lines of evidence that exclude simpler alternative 

explanations. Receiver ID could be predicted from call structure sig-

nificantly better than chance. Moreover, analysis of random forest 

proximity scores showed that calls from the same caller to the same 

receiver were significantly more similar than calls from the same caller 

to two different receivers who had the same type of relationship with 

the caller. This ruled out the alternative explanations that call structure 

predicted receiver ID because of the correlation between caller ID and 

receiver ID in our dataset or that call structure reflected only the type 

of relationship between caller and receiver and not the individual 

identity of the receiver. We also controlled for behavioural context and 

recording date in the proximity score analysis, ensuring that receiver 

specificity was not an artefact of context-related cues or autocorrela-

tion among calls from the same day. The results did not change when 
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Fig. 1 | Evidence that calls are specific to individual receivers within a caller. 

Left: the classification accuracy of random forest predicting receiver ID from 

acoustic features (red line) was significantly higher than the classification 

accuracies of 10,000 models predicting receiver ID from randomized acoustic 

features (black histogram) (n = 437 calls, permutation test, one-tailed 

P = 0.0000). Cross-validation folds were stratified so that the model was 

trained and tested on the same combinations of caller and receiver; thus, the 

classification accuracy represents the receiver specificity of calls within a caller. 

Right: calls with the same caller and same receiver were significantly more similar 

(higher proximity score) than calls with the same caller and different receivers 

who had the same type of relationship to the caller (n = 1,105 call pairs with same 

receiver, 179 pairs with different receivers, ANOVA on ranks, χ2 = 13.0, d.f. 1, two-

tailed P = 0.0003, partial η2 = 0.063). Boxplot centre lines, medians; box limits, 

25th and 75th quantiles; whiskers, 1.5× interquartile range.
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two individuals that accounted for a disproportionate number of calls 

in the dataset (M6 and M6.99) were excluded, indicating that our results 

were not driven by a few highly influential individuals (Supplementary 

Information). Most importantly, elephants responded more strongly 

to playback of calls addressed to them than to playback of calls from 

the same caller addressed to a different receiver, indicating that the 

calls contained receiver-specific information that was salient to the 

elephants. The difference in response to test and control trials was 

often pronounced. For example, subject R26 vocalized eight times and 

approached the speaker in response to the test playback but vocalized 

only once and did not approach the speaker in response to the control 

playback. Only one subject exhibited an unambiguously stronger 

response to the control playback than to the test playback. These 

results are particularly notable in that we could not be certain that all 

playback stimuli contained vocal labels.

The social behaviour and ecology of elephants create an environ-

ment in which individual vocal labelling may be particularly advanta-

geous. Elephants maintain lifelong differentiated social bonds with 

many individuals, and due to their fission–fusion social dynamics 

are often separated from their closely bonded social partners22,23. In 

contact calls, where the caller and receiver are separated, vocal labels 

probably allow elephants to attract the attention of a specific distant 

receiver. In close-distance calls such as greeting and caregiving rum-

bles, vocal labels may help strengthen social bonds, similar to the way in 

which humans experience a positive affective response and increased 

willingness to cooperate when someone remembers their name24.

Our random forest model correctly predicted receiver ID for 

slightly over a quarter of calls (albeit significantly better than random), 

suggesting that vocal labels may not be necessary in all or even most 

contexts. Indeed, both humans and bottlenose dolphins only use indi-

vidual vocal labels (that is, names or imitated signature whistles) in a 

small percentage of utterances25. We found that receiver ID was more 

likely to be correctly predicted for contact and caregiving rumbles 

than for greeting rumbles, which suggests that vocal labels may be 

used more in the former two contexts. Vocally identifying the intended 

receiver seems especially likely to be beneficial in contact calls, where 

the caller and receiver are out of visual and tactile contact. It is some-

what surprising, however, that caregiving rumbles were more likely to 

be correctly classified than greeting rumbles, as both are close-distance 

affiliative calls. Perhaps labels are included in caregiving rumbles to 

help calves learn the labels with which others address them or because 

hearing the label is comforting for calves. Calls made by adult females 

were also more likely to be correctly classified than calls made by 

juveniles. This suggests that adult females may use vocal labels more 

than calves, possibly because the behaviour takes years to develop.

Elephant rumbles are highly complex and simultaneously encode 

multiple messages, including but not limited to caller identity, age, 

sex, emotional state and behavioural context12,15,26,27. The top acoustic 

features for predicting receiver ID were not those that explained the 

most variation in the calls (Supplementary Discussion), suggesting that 

vocal labels account for only a small fraction of the total variation in 

rumbles. This appears to contrast with human names, in which the vocal 

label accounts for most of the acoustic variation in the signal, even 
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Fig. 2 | Evidence that vocal labelling probably did not rely on imitation of the 

receiver’s calls. Random forest predicted receiver ID significantly better than 

models with randomly permuted features both among calls that were identified 

as convergent to receiver’s calls (top left) (n = 95 calls, permutation test, one-

tailed P = 0.0000) and divergent from receiver’s calls (bottom left) (n = 141 calls, 

permutation test, one-tailed P = 0.0000). The red lines represent classification 

accuracy of original random forest model, and the black histograms represent 

the distribution of classification accuracies of null models with randomized 

acoustic features. Right: pairs of calls in which the receiver of one call made the 

other call did not differ significantly in mean proximity score from pairs of calls in 

which the receiver of one call did not make the other call (n = 943 call pairs where 

receiver of one call made the other call, 1,553 pairs where this was not the case, 

ANOVA on ranks, χ2 = 3.7, d.f. 1, P = 0.056, partial η2 = 0.001). Boxplot centre lines, 

medians; box limits, 25th and 75th quantiles; whiskers, 1.5× interquartile range.
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Fig. 3 | Mixed evidence that different callers use similar labels for the same 

receiver. Left: pairs of calls with different callers and the same receiver were 

significantly more similar (higher proximity score) than pairs of calls with 

different callers and different receivers, indicating some convergence among 

callers addressing the same receiver (n = 693 call pairs with same receiver, 

7,522 pairs with different receivers, ANOVA on ranks, χ2 = 10.7, d.f. 1, two-tailed 

P = 0.001, partial η2 = 0.004). Boxplot centre lines, medians; box limits, 25th and 

75th quantiles; whiskers, 1.5× interquartile range. Right: classification accuracy 

(red line) of random forest designed to predict receiver ID from acoustic features 

independently of caller ID (all calls with the same caller and receiver allocated to 

the same cross-validation fold) was not significantly different from classification 

accuracies of models with randomized acoustic features (black histogram), 

indicating that receiver ID could not be predicted independently of caller ID 

(n = 437 calls, permutation test, one-tailed P = 0.896). The fact that elephant calls 

contain multiple messages and are structurally highly complex may account for 

the model’s poor generalization of receiver ID across callers.
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though information such as the identity, age, sex and emotional state 

of the speaker is also encoded in the speaker’s voice characteristics28. 

Whereas human language conveys complex messages via sequential 

encoding of information, elephants may rely more on simultaneous 

encoding, packing more information into a single vocalization than 

humans typically do.

The richness in the information content of elephant vocalizations 

makes it difficult to identify the specific acoustic parameters that 

encode receiver ID, although the variable importance scores from the 

random forest suggest possible candidate features (Supplementary 

Discussion). Unlike dolphin and parrot signature calls20,25,29, elephant 

vocal labels cannot be discerned by visual inspection of the spectro-

gram and are probably encoded by a complex and subtle interaction 

among many acoustic parameters. As a result, we employed machine 

learning in this analysis, but innovative approaches in signal process-

ing may be necessary to isolate the aspects of rumbles encoding vocal 

labels.

We found mixed support for the hypothesis that different callers 

use the same label to address the same receiver. While the random for-

est failed to predict receiver ID independently of caller ID, analysis of 

proximity scores indicated at least some convergence among different 

callers addressing the same receiver. It is possible that all callers within 

a family group use the same label for the same receiver and the poor 

performance of the random forest was due to limitations of our data. 

The dense information content and high variability of rumbles cou-

pled with the small number of calls per receiver in our dataset may 

have prevented the random forest from learning cues to receiver ID 

that generalized across callers. Moreover, as the acoustic features we 

extracted were based on the mel frequency scale, which was inspired by 

human vocal tract models30, it is possible that they provided peripheral 

measures of the principal modes of label encoding. Acoustic features 

more closely tailored to the properties of the elephant vocal tract might 

result in a higher classification accuracy for receiver ID.

Alternatively, it is possible that callers only partially share labels 

for a given receiver. Such a system would greatly increase the number 

of labels that elephants need to understand, although partial overlap 

in the labels addressed to a given receiver could mitigate the difficulty 

of this task. Nonetheless, partial convergence among labels might 

be favoured if it is easier for receivers to learn to respond to multiple 

labels than it is for callers to learn to produce the exact same label for 

each receiver. This seems possible, as modifying the structure of calls 

based on auditory experience (vocal production learning) requires 
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P = 0.009, hazards ratio 8.77) in response to test playbacks than controls. Centre: 

subjects vocalized more quickly in response to test playbacks than controls 

(n = 17 individuals, Cox regression, χ2 = 7.9, d.f. 1, two-tailed P = 0.005, hazards 

ratio 7.45). Right: subjects produced more vocalizations in response to test 

playbacks than controls (n = 17 individuals, Poisson 
.

m
GLM, χ2 = 6.7, d.f. 1, two-tailed 

P = 0.009, hazards ratio 2.41). The shaded areas in the left and centre panels 

represent 95% confidence intervals around survival curves. Boxplot centre line, 

median; box limits, 25th and 75th quantiles; whiskers, 1.5× interquartile range; 

grey boxes, location of outliers; black circles, all individual data points. The 

median and the 25th quantile of the control box are both 0. No corrections were 

done for multiple comparisons as the analyses presented in this figure were three 

distinct models with different response variables.
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more specialized neural circuitry than modifying the context in which 

calls are produced (usage learning)31. Spectacled parrotlets (Forpus 

conspicillatus) and budgerigars (Melopsittacus undulatus) reportedly 

address individual conspecifics with vocal labels that are not shared 

across callers19,20, although this could reflect imperfect imitation of 

the receiver’s calls rather than discrete ‘nicknames’32. Further work to 

identify how vocal labels are encoded in elephant calls is necessary to 

determine to what degree different callers use the same label for the 

same receiver. Isolating the labels for individual elephants will allow 

investigation of questions such as whether elephants understand 

the labels used by third parties or even refer to third parties in their 

absence.

Both African and Asian elephants have a demonstrated capacity 

for vocal mimicry in captivity, but no study has documented a func-

tion of this ability in the wild10,11. Depending on whether callers share 

labels for the same receiver, vocal labelling in elephants could rely 

on either vocal production learning or vocal innovation combined 

with usage learning. However, given the evidence for partial con-

vergence among callers, it seems likely that production learning is 

involved. Dolphins and parrots, which show evidence for individual 

vocal addressing via imitation of the receiver, are adept vocal learn-

ers. Another vocal learner, the Egyptian fruit bat (Rousettus aegyp-

tiacus), produces calls that are specific to individual receivers and 

may be vocal labels as well, although it is currently unknown if the 

bats perceive this information21. Humans, dolphins, parrots, bats and 

elephants all form long-term social bonds and live in groups with a 

high degree of fission–fusion dynamics22,32–35. A mechanism to direct 

communication to individual conspecifics could be especially ben-

eficial for animals that frequently separate and rejoin with bonded 

social partners. This raises the possibility that social selection pres-

sures creating a need to address individual conspecifics may have 

led to multiple independent origins of vocal production learning, a 

precursor for language.

The use of learned arbitrary labels is part of what gives human 

language its uniquely broad range of expression6. Our results sug-

gesting possible use of arbitrary vocal labels in elephants provide an 

opportunity to investigate the selection pressures that may have led 

to the evolution of this rare ability in two divergent lineages. Moreo-

ver, these findings raise intriguing questions about the complexity 

of elephant social cognition, considering the potential relevance of 

symbolic communication to their social decision-making.

Methods
Field recording
We collected audio recordings of wild female–calf groups in Amboseli 

National Park, Kenya in 1986–1990 and 1997–2006 and Samburu and 

Buffalo Springs National Reserves (hereafter, Samburu), Kenya in 

November 2019 to March 2020 and June 2021 to April 2022. Both 

populations have been continuously monitored for decades, and all 

individuals can be individually identified by external ear morphol-

ogy22,36. We recorded calls from a vehicle during daylight hours with 

all-occurrence sampling37 using an Earthworks QTC1 microphone 

(4 Hz to 40 kHz ± 1 dB) with a Nagra IV-SJ reel-to-reel tape recorder or 

an HHB PDR 1000 DAT recorder in Amboseli, and an Earthworks QTC40 

microphone (3 Hz to 40 kHz ± 1 dB) with a Sound Devices MixPre3 or 

MixPre3-II digital recorder in Samburu. Recordings were recorded at 

a 48 kHz sampling rate with 16 bits of amplitude resolution and stored 

at 2 kHz in Amboseli and recorded and stored at 44.1 kHz with 24 or 32 

bits of amplitude resolution in Samburu.

When possible, we recorded for each call the identity of the caller, 

the behavioural context and the identity of the receiver (criteria for 

identifying receiver defined in Main). The caller was identified using 

behavioural and contextual cues, such as an open mouth, flapping ears 

or being the only individual of the right age class in the immediate vicin-

ity (calls made by young calves are audibly shorter and higher pitched 

than adult calls)15. Behavioural observations were recorded by a single 

observer at each field site (M.A.P. in Samburu, J.P. in Amboseli). Since 

the observations at each field site were conducted without accompany-

ing video in most cases, there was no way to calculate inter-observer 

reliability.

Scoring behavioural context
For this study, we only used rumbles produced in the contexts of ‘con-

tact calling’, ‘greeting’ and ‘caregiving’, as these are the contexts in 

which vocal labelling seems most likely to be beneficial15. We did not 

include rumbles from other behavioural contexts as these typically 

either involve multiple simultaneous receivers (for example, ‘let’s go’ 

rumbles) or occur in contexts where vocal labelling is less likely to be 

necessary (for example, ‘begging’, ‘protest’, ‘oestrus’ and ‘musth’ rum-

bles)15. Nonetheless, there was a great deal of variation in the precise 

social context surrounding the production of each call and the age and 

internal state of the callers. As elephant rumbles vary with behavioural 

context, age and the emotional state of the caller12,15,27, this contextual 

Table 2 | Results for type III analyses of deviance on playback experiment models

Response 

variable (model 

type)

Subject ID 

(s.d.)

Treatment 

(d.f. 1)

Relationship of 

caller to original 

receiver (d.f. 4)

Distance (d.f. 1) dBC (d.f. 1) Other adults 

(d.f. 1)

Speaker 

location 

(d.f. 1)

Cumulative 

playback 

exposure (d.f. 1)

Latency to 

approach (Cox)

3.43 χ2 = 6.8,

P = 0.009,

RR 8.77

χ2 = 1.7,

P = 0.80

χ2 = 2.4,

P = 0.12,

RR 0.79

χ2 = 0.65,

P = 0.42,

RR 1.38

χ2 = 0.41,

P = 0.52,

RR 3.13

χ2 = 0.59,

P = 0.44,

RR 4.62

χ2 = 0.11,

P = 0.73,

RR 0.88

Latency to 

vocalize (Cox)

2.84 χ2 = 7.9,

P = 0.005,

RR 7.45

χ2 = 6.4,

P = 0.17

χ2 = 0.97,

P = 0.32,

RR 0.87

χ2 = 0.02,

P = 0.90,

RR 0.96

χ2 = 0.64,

P = 0.42,

RR 3.25

χ2 = 0.20,

P = 0.66,

RR 2.02

χ2 = 0.10,

P = 0.75,

RR 0.91

Number of 

calls (Poisson)

– χ2 = 6.2,

P = 0.013,

RR 2.41

χ2 = 19.9,

P = 0.0005

χ2 = 0.32,

P = 0.57,

RR 0.98

χ2 = 0.48,

P = 0.49,

RR 1.09

χ2 = 0.72,

P = 0.40,

RR 1.54

χ2 = 0.13,

P = 0.72,

RR 0.84

χ2 = 0.01,

P = 0.91,

RR 0.99

Latency to 

vigilance (Cox)

0.02 χ2 = 3.1,

P = 0.08,

RR 2.07

χ2 = 10.1,

P = 0.038

χ2 = 1.8,

P = 0.18,

RR 0.93

χ2 = 1.9,

P = 0.16,

RR 0.84

χ2 = 5.5,

P = 0.019,

RR 4.24

χ2 = 0.55,

P = 0.46,

RR 0.64

χ2 = 0.02,

P = 0.88,

RR 0.99

Vigilance 

duration after–

before (linear)

9.95 χ2 = 0.06,

P = 0.81,

β = 1.70

χ2 = 2.1,

P = 0.72

χ2 = 4.0,

P = 0.045,

β = −1.98

χ2 = 0.02,

P = 0.89,

β = −0.30

χ2 = 0.43,

P = 0.51,

β = 7.58

χ2 = 0.33,

P = 0.56,

β = 6.68

χ2 = 0.83,

P = 0.36,

β = −1.73

Subject ID was included as a random effect in all models except the Poisson regression for number of calls, because it had variance of 0 for this model. Values in the ‘Subject ID’ column 

represent the square root of the variance explained by that random effect. Significant P values in bold. Latency to vigilance exhibited a non-significant trend towards faster onset of vigilance 

in response to test playbacks. In addition to the d.f., χ2 statistic and two-tailed P value from the analysis of deviance, this table includes the hazard or rate ratios (RR) for the Cox and Poisson 

models and the estimated slope parameters (β) for the linear model. Ratios and slopes are not shown for relationship of caller to original receiver, as this covariate had more than two levels.
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heterogeneity of the recordings probably added substantial noise to 

the data.

Following published methodology15, we defined contact rumbles 

as calls produced by or addressed to an individual who was separated 

from the receiver by >~50 m and apparently attempting to reinitiate 

contact. Our category of ‘greeting’ rumbles encompasses two different 

categories distinguished by Poole15: ‘little-greeting’ and ‘greeting’. Both 

call types are produced when one individual approaches another in an 

affiliative manner, but Poole’s ‘greeting rumbles’ are produced after a 

greater period of separation than ‘little-greeting rumbles’, are more 

likely to involve a face-to-face approach and typically involve greater 

emotive behaviour such as temporal gland streaming and pirouetting 

to stand in parallel15. The context of ‘caregiving’ in our study is primarily 

synonymous with ‘coo rumbles’ described by Poole15, which are rumbles 

produced by adult or adolescent females to a calf when gently touch-

ing or suckling the calf or in an apparent attempt to reassure a calf who 

exhibited distress (for example, being pushed by another elephant, 

being separated from its mother and so on). We also included in this 

category two calls from adult females attempting to rouse a calf who 

was sleeping when the group began to move off.

Scoring certainty of caller ID, behavioural context and 
receiver ID
In Samburu, we recorded the certainty with which we knew caller ID, 

behavioural context and receiver ID as 1 over the number of possible 

alternatives38. For example, in cases where we thought the call was 

plausibly addressed to a single individual but there were two possible 

candidates for who the receiver was, we designated one of the two indi-

viduals as the putative receiver and assigned the certainty of receiver 

ID a value of 0.5. In Amboseli, certainty of caller ID and behavioural 

context were scored as ‘certain’, ‘fairly confident’, ‘educated guess’ or 

‘no idea’. The certainty of receiver ID was not systematically recorded 

in Amboseli, but sometimes the field notes specified that the receiver 

ID was uncertain.

Call selection
For all analyses in this paper, we only used rumbles with the highest pos-

sible certainty for receiver ID (that is, certainty of 1 for Samburu calls, 

no notes indicating uncertain receiver ID for Amboseli calls). We also 

required rumbles to have the first two formants clearly visible in the 

spectrogram with no significant overlap with other calls or loud sounds 

in the same frequency range. This dataset consisted of 469 calls, 101 

unique callers and 117 unique receivers, with 1–36 (median 2) calls per 

caller, 1–40 (median 2) calls per receiver, 1–7 (median 2) receivers per 

caller and 1–7 (median 1) callers per receiver (Supplementary Table 1).

There were 32 calls for which the receiver ID was certain but the 

caller ID was not. We used these calls in the random forest model that 

was used to generate the proximity score matrix and the conditional 

inference forest used to calculate variable importance scores for pre-

dicting receiver ID, as caller ID was irrelevant to these models. However, 

for all other analyses, including the linear mixed models with proximity 

score as a response variable, we only used calls where the caller ID was 

known for certain.

For analyses that examined behavioural context 
.

m
(LMMs, logistic 

regression), we required the certainty of behavioural context to be 1 

in Samburu or ‘certain’ in Amboseli. For analyses that did not explicitly 

include behavioural context, we also included calls with uncertain 

contexts as long as the only possible options were contact, greeting 

or caregiving.

Call segmentation
In Amboseli, we wrote down the elapsed time on the recorder and 

contextual information for each call heard in the field; in Samburu, we 

recorded verbal annotations onto a second channel of the recorder in 

real time using a Martel Stenomask, which isolated the sound of the 

Q10

observer’s voice from the Earthworks microphone38. We manually drew 

a selection box around the spectrogram of each call in Raven Pro 1.5 

(Cornell Lab of Ornithology, Ithaca, NY), with a buffer of approximately 

1 s on either side of the call (Samburu (44.1 kHz sampling rate): Hann 

window, 50% overlap, window 11,878 samples, DFT 16,384 samples; 

Amboseli (2 kHz sampling rate): Hann window, 50% overlap, window 

312 samples, DFT 512 
.

m
samples). This automatically generated a selection 

table in .txt format with the file name and start and end times of each 

selection box, to which we added caller ID, receiver, ID, behavioural 

context and the certainty of each. We performed all further acoustic 

and statistical analyses in R version 4.1.3 (ref. 39).

To determine the precise onset and offset of each call, we low-pass 

filtered the calls (Butterworth filter, order 5, cut-off 490 Hz), downsam-

pled them to 2,000 Hz if not already at that sampling rate, applied a 

high-pass filter (Butterworth filter, order 10, cut-off 30 Hz) and normal-

ized them to 70% of max amplitude and 16 bits of amplitude resolution 

using the packages seewave40 and tuneR41. We then used the function 

segment() in the package soundgen42 to detect the onset and offset of 

each call based on the amplitude envelope. We verified the automati-

cally detected start and end time for each call by visual inspection of 

the amplitude envelope and spectrogram and manually adjusted the 

times when necessary.

Acoustic measurements
We trimmed the original unfiltered sound clips to the automatically 

detected start and end times, low-pass filtered the clips (Butterworth 

filter, order 5, cut-off 800 Hz), downsampled them to 2,000 Hz if not 

already at that sampling rate, applied a high-pass filter (Butterworth 

filter, order 2, cut-off 4 Hz) and finally normalized them to 70% of the 

max amplitude and 16 bits of amplitude resolution. For each call, we 

measured the smoothed Hilbert amplitude envelope (moving average 

window, window length 350 ms, overlap 90%) and two alternative sets 

of features: normalized mel spectrogram and mel-frequency cepstral 

coefficients (MFCCs).

A mel spectrogram is similar to a traditional spectrogram (raster 

plot with time on the x axis, frequency on the y axis, and amplitude indi-

cated by pixel darkness) but with frequency transformed to the loga-

rithmic mel scale30. While the mel scale was designed to approximate 

human hearing sensitivity, most other mammals, including elephants, 

perceive frequency on a similar logarithmic scale43. We calculated a mel 

spectrogram for each call using the audspec() function of the tuneR 

package (26 mel-frequency bands between 0 Hz and 500 Hz, 350 ms 

Hamming window, 90% overlap). We then normalized the mel spectro-

gram by dividing the energy value in each cell of the spectrogram by 

its column sum so that the energies would be a proportion of the total 

energy in each time window, and logit-transformed these proportional 

energies so the values would not be limited between 0 and 1. We also 

calculated delta and delta–delta values for each mel spectral band, 

with delta values being the differences between successive energy 

values in the mel spectral band (that is, the change in energy over 

time within a mel spectral band) and delta–delta values being the dif-

ferences between successive delta values (that is, the acceleration of 

energy over time within a mel spectral band) (Extended Data Fig. 1). We 

saved the vector of energies in each mel spectral band and their corre-

sponding delta and delta–delta values as acoustic contours for further 

processing. While mel spectral bands have not previously been used as 

acoustic features for analysing elephant calls, they describe more of the 

variation in the call than commonly used features such as fundamental 

frequency and formants, while remaining easily interpretable.

We also calculated MFCCs for each call, which are less interpretable 

than mel spectral bands but have been previously used successfully to 

classify elephant vocalizations13,27,44. MFCCs are calculated by applying 

a discrete cosine transform to each time window of a mel spectro-

gram, with the coefficients of the discrete cosine transform being the 

cepstral coefficients45. Each cepstral coefficient can be thought of as 
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representing the degree of modulation of the spectrum at a different 

period, with lower numbered coefficients representing slower periods 

of modulation. Since MFCCs are calculated for each time window of 

the mel spectrogram, the output is a vector of values for each cepstral 

coefficient. We calculated MFCCs using the melfcc() function in the 

tuneR package, with a time window of 350 ms with 90% overlap, 40 

mel-frequency bands between 0 Hz and 500 Hz, and a pre-emphasis 

filter with a cut-off frequency of 10 Hz, and kept the first 12 coefficients 

(12 vectors per call) for further processing. We also calculated delta 

and delta–delta values for the first 12 cepstral coefficient contours.

Extraction of derived features from acoustic contours
We rescaled the acoustic contours by arranging them in a matrix with 

each contour in a separate row, and then subtracting the column 

median from each value and dividing the result by the column mean 

average deviation. We decorrelated the contours with robust principal 

components analysis in the rpca package in R, which separates the data 

into a low-rank matrix of robust principal components without outli-

ers, and a sparse matrix containing the outlier values (λ = 0.00996)46. 

Robust principal component analysis (PCA) has the advantage over 

standard PCA of being more resilient to noisy data. We extracted four 

measurements from the sparse matrix to use for statistical analysis: 

median, robust skewness and two measures of spread: minimum extent 

and equivalent statistical extent. We also calculated the means of the 

first n low-rank principal components required to explain 99.9% of the 

variation (74 for spectral features, 12 for cepstral features).

We used multi-taper spectral estimation47 to derive the frequency 

spectra of the low-rank principal components that explained 99.9% of 

the variation (treating each principal component as if it were a wave-

form) and calculated an F ratio for each point in each spectrum, test-

ing the null hypothesis that the spectral value in question could have 

been derived from a random waveform. We calculated the mean of 

the F ratios at each point across the aligned spectra and selected the 

four largest peaks in the series of mean F ratios. We sorted these peaks 

in order of increasing frequency and calculated the frequency and 

magnitude of each peak.

We calculated the same metrics on spectra that were weighted 

according to the proportion of variation that was explained by the 

principal component from which the spectrum was derived. We mul-

tiplied the F ratios in each of the spectra by the proportion of variation 

in the data explained by the principal component in question, summed 

the weighted F ratios at each point in the aligned spectra and then 

calculated the frequencies and magnitudes of the four largest peaks 

in the summed F ratios, sorted in order of increasing frequency. The 

final acoustic features used in our models are summarized in Extended 

Data Table 1. We ran all subsequent statistical analyses separately for 

the spectral and cepstral acoustic features.

Statistical analysis of acoustic data
Unless otherwise specified, all statistical tests were two-tailed and all 

measurements were taken from distinct samples. The significance  

level was set to 0.05 for all tests. We used partial η2 as a measure of  

effect size for linear models, calculated according to the formula 

partial η

2

=

SSE

C

−SSE

A

SSE

C

, where SSEA is the sum of the variances for all the 

error terms (random effects and residual error) in the full model and 

SSEC is the sum of the variances for all the error terms in the same model 

minus the fixed effect of interest48. For all regression models, we cal-

culated P values for the fixed effects using type III analysis of 

deviance.

Are calls specific to individual receivers (hypothesis 1)? We ran 

a sevenfold cross-validated random forest model in the R package 

ranger49 to predict the identity of the receiver of each call (receiver ID) 

as a function of the acoustic features (Table 1, hypothesis 1, prediction 

1). We stratified the cross-validation folds by caller ID and receiver ID 

to ensure as even a distribution as possible of all caller–receiver dyads 

across all folds. Thus, if calls contain acoustic cues to receiver ID, this 

model was expected to predict receiver ID better than chance regard-

less of whether the label for a given receiver is shared across callers 

(Table 1, hypothesis 1, prediction 1). We only used calls where caller ID 

was known for certain (n = 437 calls). The model used 500 trees, 6 vari-

ables per node, 60% of observations per tree, a minimum node size of 

1 and no maximum tree depth. To increase the stability of the model’s 

classification accuracy, we ran the model 2,000 times and used the 

mean classification accuracy across the 2,000 runs. To determine if 

the model predicted receiver ID better than expected by chance, we 

ran the model 10,000 times with the acoustic features randomly per-

muted and compared the classification accuracy of the original model 

(averaged across 2,000 runs) with the null distribution of classification 

accuracies generated by the 10,000 models with randomized acoustic 

features (one-tailed permutation test).

To disentangle the effects of caller ID and receiver ID on call struc-

ture, we compared the mean pairwise similarities between pairs of calls 

with the same caller and receiver and pairs with the same caller and 

different receivers (same caller pair type). As a metric of call similarity, 

we extracted a proximity score for each pairwise combination of calls 

from a random forest trained to predict receiver ID as a function of the 

acoustic features on the full dataset (469 training observations, 8,000 

trees, other hyperparameters same as above). The proximity score for 

a given pair of calls was the proportion of trees in which both calls were 

classified in the same terminal node, corrected for the size of each node 

and represented the degree of similarity between the two calls in terms 

of the acoustic features most relevant to predicting receiver ID17. If calls 

are specific to individual receivers within a given caller, then pairs of 

calls with the same caller and same receiver should be more similar 

(have higher proximity scores) than pairs of calls with the same caller 

and different receivers (Table 1, hypothesis 1, prediction 2).

Previous work has shown that elephants vary the structure of their 

rumbles when interacting with dominant versus subordinate conspe-

cifics12. To rule out the possibility that calls were specific to the type of 

relationship between caller and receiver rather than to individual receiv-

ers per se, we restricted the analysis of same caller pair type to pairs of 

calls that had the same type of relationship between caller and receiver. 

We defined the caller–receiver relationship using 12 categories based 

on sex, family group membership, relative age and mother–offspring 

relationship, reflecting the fact that dominance in elephants is primar-

ily determined by age50,51 and that mother–calf bonds are the strongest 

social bonds in elephants22,52 (Extended Data Table 2). As calls from dif-

ferent behavioural contexts differ in acoustic structure15, we categorized 

each pair of calls according to whether the two calls had the same or dif-

ferent behavioural contexts (‘same context’) and included this variable 

as a factor in the analysis. We also included a binary factor indicating 

whether the two calls were recorded on the same date, as exploratory 

analyses indicated that calls recorded on the same date were more similar 

than calls recorded on different dates. We only used calls in this model 

for which the caller ID and behavioural context were known for certain.

The proximity scores were highly skewed to the right, so we 

rank-transformed them and ran a linear mixed model with rank- 

transformed proximity score as the response variable and same caller 

pair type, same context and same date as fixed effects. To account for 

the fact that there were multiple call pairs with the same combination 

of callers and receivers, we included ‘pair ID’ (a unique identifier for 

each caller–receiver–caller–receiver combination) as a random effect. 

We excluded pair IDs with only one observation as it was not possible 

to estimate within-class variability for these pair IDs (final n = 1,284 

call pairs).

Which calls are most likely to contain vocal labels? Vocal labels 

might be more likely to occur in certain behavioural contexts than 

others. Similarly, callers may only use a vocal label in some of the calls 
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within a bout, as it would be redundant to include the same information 

in all the calls. To assess whether behavioural context or position within 

a bout influenced the likelihood of a call containing a vocal label, we 

calculated the proportion of the 2,000 iterations of the random forest 

in which the receiver ID was correctly predicted for each call (probabil-

ity of correct classification). We designated calls that were correctly 

predicted in ≥95% of iterations as ‘correct’ and calls that were correctly 

predicted in ≤5% of iterations as ‘incorrect’ and excluded all calls that 

did not meet this criteria, as well as all calls with uncertain caller ID 

or behavioural context, and receivers that occurred only once after 

applying the previous criteria (n = 327). Then, we ran a mixed-effects 

logistic regression with prediction outcome (1 or 0) as the response, 

receiver ID as a random effect, and behavioural context, caller age class, 

position within the bout and the total number of calls addressed to 

the receiver in question as fixed effects. The latter effect was included 

because receivers with more calls in our dataset were expected to be 

predicted with greater accuracy, as there were more training opportu-

nities for the random forest to learn them. Caller age class was defined 

as juvenile (<10 years old for females, not yet dispersed from natal 

group for males) or adult (>10 years old for females). There were no 

adult male callers in our dataset. We defined a bout as calls produced 

by the same caller within the same sound file with no more than 30 s 

between successive calls.

Are vocal labels based on imitation of the receiver’s calls (hypoth-

esis 2)? To assess whether imitation of the receiver’s calls was necessary 

for vocal labelling, we examined the calls in the dataset for which we had 

at least one recording of the receiver’s calls and at least one recording 

of the caller addressing someone other than the receiver (n = 236 calls). 

For each of these calls, we calculated its mean proximity score to all 

the calls made by the receiver (mean proximity to targeted receiver). 

We also calculated the mean proximity score between the same caller 

and receiver when the caller was addressing other individuals (mean 

proximity when targeting others). Calls in which the mean proxim-

ity to targeted receiver was greater than the mean proximity when 

targeting others were classified as ‘convergent’ (n = 95) and divergent 

otherwise (n = 141). We then examined the proportion of convergent 

and divergent calls that were classified correctly by the random forest 

model with receiver ID and the acoustic features as input variables, 

and cross-validation folds stratified by caller ID and receiver ID. If 

vocal labelling relies on imitation of the receiver’s calls, we expected 

only the convergent calls to be classified correctly more often than by 

the null model, but if imitation is not necessary for vocal labelling, we 

expected both convergent and divergent calls to be classified correctly 

more often than by the null model (Table 1, hypothesis 2, prediction 1).

If elephants imitate the calls of the receiver that they are address-

ing, then callers should sound more like a given conspecific when 

they are addressing her than when they are addressing someone else 

(Table 1, hypothesis 2, prediction 2). To assess whether this was the case, 

we classified each pair of calls into one of two types (hereafter, ‘imita-

tion pair type’): pairs in which the receiver of one call was the caller of 

the other call, and pairs in which this was not the case. We separately 

classified each call pair according to whether the two calls had the same 

relationship between caller and receiver (hereafter, ‘same relation-

ship’). We also created a categorical variable caller dyad ID, which was 

an identifier for each unique combination of callers that composed a 

call pair. We ran a linear mixed model with rank-transformed proximity 

score as the response variable, imitation pair type, same relationship, 

same context and same date as fixed effects, and caller dyad ID and pair 

ID as random effects. By including caller dyad ID as a random effect, we 

assessed the effect of imitation pair type within a given pair of callers, 

that is, whether calls from caller A to receiver B were more similar to the 

receiver B’s calls than calls from caller A addressed to other receivers 

were to receiver B’s calls. We excluded pairs of calls with the same caller 

or receiver, uncertain caller ID or behavioural context for either call, 

that were recorded from different family groups, for which caller dyad 

ID did not occur with both levels of imitation pair type, or for which 

pair ID occurred only once (n = 2,360 call pairs). Pairs of calls from dif-

ferent family groups were excluded because they comprised a small 

percentage of pairs where the receiver of one call was the caller of the 

other, and because it is possible that different families have different 

vocal signatures, which would influence call similarity.

Do different callers use the same label for the same receiver 

(hypothesis 3)? If different callers use similar labels for the same 

receiver, then pairs of calls with different callers and the same receivers 

should be more similar than pairs of calls with different callers and dif-

ferent receivers (Table 1, hypothesis 3, prediction 1). To test whether this 

was the case, we ran another linear mixed model with rank-transformed 

proximity score as the response variable, different caller pair type (dif-

ferent callers/same receiver or different callers/same receiver), same 

relationship and same context as fixed effects, and pair ID as a random 

effect. As before, we excluded calls with uncertain caller ID or behav-

ioural context, pairs of calls recorded from different family groups, and 

levels of pair ID that occurred only once (n = 8,215 call pairs).

To determine if receiver ID could be predicted independently of 

caller ID, which would be possible only if callers use similar labels for 

a given receiver, (Table 1, hypothesis 3, prediction 2), we ran another 

sevenfold cross-validated random forest model to predict receiver ID as 

a function of the acoustic features but partitioned the cross-validation 

folds such that all calls with the same caller and receiver were always 

allocated to the same fold (observations and hyperparameters same 

as first model). We averaged the classification accuracy of the model 

across 2,000 runs and compared this value with the distribution of 

classification accuracies generated by 10,000 iterations of the same 

model with the acoustic features randomly permuted (one-tailed 

permutation test).

Checking model assumptions. For all rank-transformed linear mixed 

models, we checked the assumption of normality by visually examin-

ing histograms of the residuals. We checked the assumption of equal 

variances by visually examining boxplots of all groups. The residuals 

for all models exhibited only minor deviations from normality, with 

the absolute values of skewness and excess kurtosis being less than 1 

for all models. As linear models have been shown to be robust even to 

severe deviations from normality with skewness as high as 2 and excess 

kurtosis as high as 6 (a normal distribution has a skewness of 0 and 

excess kurtosis of 0)53, we deemed the choice of model appropriate. 

Boxplots indicated similar variances across groups.

How are labels encoded in calls? To investigate which acoustic fea-

tures encode receiver ID and caller ID, we extracted variable importance 

scores (Supplementary Table 2) from a conditional inference random 

forest model in the R package ‘party’54 trained on the full dataset to 

predict the response variable in question (receiver ID or caller ID) 

as a function of the acoustic features (469 training observations for 

receiver ID, 437 for caller ID; 1,000 trees; all other hyperparameters 

same as other random forests). We used a conditional inference forest 

because, unlike traditional random forest, it is not biased towards cor-

related variables54. We only calculated variable importance scores for 

the spectral features, as cepstral coefficients are difficult to interpret 

intuitively. To assess the relative importance of the original acoustic 

contours, we weighted the loadings of the acoustic contours on each 

principal component by the variable importance score of the mean 

of the principal component in question and then calculated the sum 

of the absolute values of these weighted loadings for each acoustic 

contour (Supplementary Table 3). Acoustic contours with a higher 

sum of the absolute values of the weighted loadings were deemed 

more important. This weighting process only considered the means 

of low-rank principal components.
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Playback experimental design
To determine if elephants respond more strongly to calls addressed to 

them (Table 1, hypothesis 1, prediction 3), we played back rumbles with 

known adult (>10-year-old) female callers and known receivers to 17 

elephants (15 adult females, one 9-year-old female, one 9–10-year-old 

male) in the Samburu study area. Fourteen subjects received one ‘test’ 

playback of a call that was originally addressed to them and one ‘control’ 

playback of a call from the same caller that was originally addressed to 

another individual. One subject received two sets of test and control 

playbacks from two different callers, one received only a test playback, 

and one received only a control playback (Supplementary Table 4). 

Most stimuli functioned as the test stimulus for one subject and the 

control stimulus for another, but no stimulus was used as the same 

experimental condition for more than one subject. The order of pres-

entation was balanced across subjects, and we waited at least 7 days 

(mean ± s.d., 29.5 ± 27.1 days) between successive playbacks to the 

same subject.

Playback stimuli
Playback stimuli were recorded in Samburu and Buffalo Springs 

between January 2020 and March 2022 from adult female callers. In 

all but two cases, the playback stimuli were contact calls. In one case 

we used a loud greeting call (similar in original amplitude to a typical 

contact call but produced at a much closer distance), and in one case 

we used a call that was produced in a similar context to contact calls 

(caller and receiver >100 m apart and out of sight of each other) but was 

lower in original amplitude than a typical contact call and was part of a 

lengthy antiphonal exchange between two individuals and, therefore, 

was probably a ‘cadenced rumble’15. These non-contact calls were used 

to complete a pair of test and control stimuli because we were unable 

to obtain contact calls to two different receivers from the same caller. 

Three playback stimuli were elicited by another playback, and we 

assumed that the individual whose call was broadcast from the speaker 

was the intended receiver of the call that was produced in response to 

that playback. We identified the receiver of natural calls as the only 

adult member of the family group who was separated from the caller 

during the call or the only individual who responded to the call. In 

one case, there were two adult females separated from the caller, and 

we assumed the receiver was the older of the two females who was in  

the lead and who rejoined the caller first (Extended Data Table 7). We 

note that there was no mechanism to ensure the playback stimulus con-

tained a vocal label, and it is possible not all stimuli were labelled. We 

prepared all playback stimuli in Audacity 3.0.2. Each stimulus consisted 

of a single rumble preceded by one second of background noise with a 

fade-in and followed by 1 s of background noise with a fade-out. In three 

cases, we applied a high-pass (5 Hz cut-off, 6 dB roll-off) or low-pass 

filter (1,000 Hz cut-off, 6 dB roll-off) to remove excessive noise.

Playback system and volume
We played back all stimuli as .wav files (uncompressed audio) from 

an iPhone SE (Apple) attached to a QLXD1 wireless bodypack trans-

mitter (Shure) transmitting to a custom-built loudspeaker (Bag End 

Loudspeakers). The cord connecting the playback device to the wire-

less transmitter had to be replaced three times over the course of the 

experiment, each time changing the output level of the speaker. Thus, 

depending on which cord was in use, we normalized the stimuli to −24, 

−22.5 or −18 dB in Audacity 3.0.2 to ensure a functionally equivalent 

normalization level across all trials.

The speaker’s frequency response was flat from 10 Hz to 500 Hz up 

to a given maximum output level (maximum output 89 dB sound pres-

sure level (SPL) at 10 Hz, 101 dB SPL at 20 Hz and 113 dB SPL at 40 Hz). 

If the signal exceeded the maximum output at a given frequency, the 

speaker automatically reduced the level of the frequencies in question 

to avoid damage. Reported amplitudes for natural contact calls range 

from 94 to 115 dB SPL (extrapolated value at 1 m from source)15,55. We did 

not have access to an SPL meter with a flat frequency response at low 

frequencies, but our playback stimuli ranged from 96.2 to 104.3 dBC 
.

m
at 1 m measured with a Protmex PT6708 sound level meter (Protech 

International Group Co.) or 93.4 to 102.9 dB SPL at 1 m measured with 

the SoundMeter 10.5.8 iPhone application (Faber Acoustical). Mean 

measured volume did not differ between test and control stimuli (dBC: 

t-test, t32.0 = 0.03, P = 0.97; dB SPL: t-test, t32.0 = 0.15, P = 0.88).

Playback trial protocol
We placed the speaker 40.2–59.0 m from the subject (mean 49.1 ± 4.2 m), 

either on the ground in front of a tree or shrub and covered by camou-

flage netting or on the edge of the rear seat of a Toyota double cab 

Landcruiser facing the door with all four doors and windows and both 

roof hatches open. Rerecordings at 50 m revealed no obvious differ-

ence between sounds played with the speaker on the ground or inside 

the vehicle. We conducted playbacks only when the original caller and 

‘alternate receiver’ (the other subject receiving playbacks from the 

same caller) were >180 m from and out of sight of the subject (>270 m 

from the alternate receiver if she had not yet received all her playbacks). 

When the original caller’s location was known (19/34 trials) the speaker 

was placed in approximately the same direction relative to the subject 

as the original caller. In the remaining trials, the caller could not be 

located after searching a ~300 m radius around the subject. Trials were 

redone after at least 7 days if the speaker malfunctioned, the subject 

moved her head out of sight right before the playback started or we 

discovered after the playback that the speaker was not in the correct 

location relative to the subject and the original caller. During each trial, 

we filmed the subject from inside the vehicle for at least 1 min before the 

playback, then played the stimulus once and continued filming for at 

least another 10 min. We also recorded audio with an Earthworks QTC40 

microphone and Sound Devices MixPre3-II recorder. The observers 

were blind to the playback condition (test or control) until all trials were 

complete, and all videos and audio recordings were scored.

Statistical analysis of playback data
From the video and audio recordings of each playback trial, we meas-

ured the subject’s latency to approach the speaker, latency to vocalize, 

number of calls produced within 10 min following the playback, latency 

to vigilance and change in vigilance duration in the minute following 

the playback compared with the minute preceding the playback. Laten-

cies were defined as the time from the start of the playback until the 

behaviour of interest occurred and were censored when the subject 

moved out of sight or at 10 min, whichever came first. Vigilance was 

defined as lifting head above shoulder level, moving head from side 

to side, holding ears away from body without flapping, or lifting trunk 

while sniffing towards speaker56. We ran a separate model for each 

response variable with subject ID as a random effect and treatment 

and the following covariates/factors as fixed effects: caller–original 

receiver relationship (relationship between the caller and the original 

receiver of the call; Extended Data Table 3), distance (distance in metres 

between the speaker and the subject), dBC (amplitude of the playback 

stimulus in dBC at 1 m), other adults (whether other adults were within 

50 m of subject during playback), speaker location (whether speaker 

was on ground or in vehicle) and cumulative playback exposure (cumu-

lative number of playbacks to which subject was exposed at distance 

of 300 m or less, including trials that were redone and playbacks to 

other subjects). We used Cox proportional hazards regression in the 

coxme package57 for the latency variables, a generalized linear model 

with a Poisson error distribution in the lme4 package58 for number of 

calls, and a linear model for change in vigilance duration. We applied 

analysis of deviance with type III sums of squares to each model to 

calculate a two-tailed P value for each fixed effect. For the Poisson 

regression modelling number of calls, the random effect of subject ID 

had a variance of 0, resulting in a near singular fit, so we removed the 

random effect from this model.
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For the Cox regression models, we checked the assumption of 

proportional hazards with a Schoenfeld test, which tests the null 

hypothesis that there is no relationship between the scaled Schoen-

feld residuals and time. This test was non-significant (P > 0.05) for all 

models, indicating no violation of the proportional hazards assump-

tion. For the Poisson regression model, we checked for overdispersion 

using the AER package in R59. The dispersion parameter was estimated 

to be 1.1, which did not differ significantly from the ideal value of 1 

(P = 0.26), indicating that a Poisson distribution was appropriate. For 

the linear regression model used to examine the change in vigilance 

duration before versus after playbacks, visual inspection of the histo-

gram of the residuals indicated that the residuals were approximately 

normally distributed. For treatment, distance, dBC, speaker location 

and cumulative playback exposure, visual inspection of boxplots or 

residual plots indicated approximate homoscedasticity. Relationship 

of caller to original receiver and other adults were heteroscedastic. 

However, regardless of whether these covariates were included, treat-

ment was not significant, so any potential issues with this model had 

no bearing on the conclusions of our study.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Data are available at https://doi.org/10.5061/dryad.hmgqnk9nj.

Code availability
Code is available at https://doi.org/10.5281/zenodo.10576772.
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Extended Data Fig. 1 | Schematic illustrating how spectral acoustic features 

were measured. First, a spectrogram was calculated by applying a Fast Fourier 

Transform to the signal (Hamming window, 700 samples, 90% overlap). Then 

a mel filter bank with 26 overlapping triangular filters between 0-500 Hz was 

applied to each window of the spectrogram to produce a mel spectrogram. The 

mel spectrogram was then normalized by dividing the energy value in each cell 

by the total energy in that time window and these proportional energies were 

logit-transformed so they would not be limited to between 0 and 1. As features for 

the robust principal components analysis, we used the vector of energy in each of 

the 26 mel frequency bands as well as the vectors of delta and delta-delta values 

for each frequency band (representing the change and acceleration in energy 

over time, respectively). In the spectrogram and mel spectrogram in this figure, 

warmer colors indicate higher amplitudes (greater energy).
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Extended Data Fig. 2 | Scatterplots illustrating the separation in 3D space 

between calls from the same caller to different receivers. Axes are the first 

three principal coordinates extracted from the proximity scores of a random 

forest trained to predict receiver ID. Each plot represents a single caller, each 

point is a single call, and receiver IDs are coded by both color and shape. This 

figure only includes calls where caller ID was known for certain, where the call 

was predicted correctly in at least 25% of random forest iterations, and where the 

caller made at least two such calls each to at least two different receivers.
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Extended Data Fig. 3 | Scatterplot illustrating the clustering in 3D space 

of calls from different callers to the same receiver. Axes are the first three 

principal coordinates extracted from the proximity scores of a random forest 

trained to predict receiver ID. Each shape represents a different receiver and each 

color represents a different caller. This figure only includes calls where caller ID 

was known for certain, where the call was predicted correctly in at least 25% of 

random forest iterations, and where the receiver received at least one such call 

each from at least two different callers.
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Extended Data Table 1 | Acoustic features used in the random forest models

All acoustic features were derived from either the sparse matrix or low-rank matrix of a robust principal components analysis performed on multiple acoustic contours of equal length that 

were measured directly from the signal. For the spectral acoustic features, the acoustic contours were the Hilbert amplitude envelope, the vector of energies in each of the 26 bands of 

a mel spectrogram, and the delta and delta-delta values of the mel spectral bands. For the cepstral acoustic features, the acoustic contours were the Hilbert amplitude envelope, first 12 

mel-frequency cepstral coefficients, and the delta and delta-delta values of the first 12 cepstral coefficients. The principal components analysis was performed on a matrix of all the contours 

for each call stacked end-to-end.
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Extended Data Table 2 | Results of random forest models predicting receiver ID as a function of the acoustic features

All random forests had 500 trees, 6 variables per node, 60% of observations per tree, minimum node size = 1, no maximum tree depth, and 7-fold cross-validation. Classification accuracies 

were averaged across 2000 runs of the model to improve stability. To determine if the classification accuracy was higher than expected by chance, the model was run 10,000 times with 

randomly permuted acoustic variables, and the original classification accuracy was compared to the distribution of classification accuracies for these 10,000 permuted models. P-values are 

one-tailed.
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Extended Data Table 3 | Definitions of social relationship categories between caller and receiver

Categories were defined based on sex, age, and mother-offspring status, the most important factors influencing dominance and bond strength within an elephant family group. Females were 

defined as adults if ≥10 years old, and males were defined as adults if independent from their natal group. All non-adults under this definition were classified as juveniles. Six years was chosen 

as the cutoff for different age classes because it is between 1-2x the average inter-birth interval, so a female ≥6 years older than another individual could have been that individual’s allomother.
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Extended Data Table 4 | Results for linear mixed model assessing whether calls are specific to individual receivers or the 
type of relationship between caller and receiver

Each observation was a pair of calls and the response variable was rank-transformed proximity score. Same Caller Pair Type = whether the two calls in a pair had the same caller and receiver 

(reference level) or same caller and different receivers with the same type of relationship to the caller; Same Context = whether the two calls in a pair had the same behavioral context 

(reference level = no); Same Date = whether the two calls in a pair were recorded on the same day; Pair ID = unique combination of callers and receivers (random effect). Pairs of calls recorded 

from different groups and levels of Pair ID that only occurred once were excluded (n = 1105 call pairs with same receiver, 179 with different receivers who had the same type of relationship to 

the caller). P-values are two-tailed.
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Extended Data Table 5 | Results for mixed effects logistic regression modeling the probability of a call being correctly 
classified

Odds ratios, χ2 statistics, degrees of freedom, two-tailed P-values, reported for fixed effects. Standard deviations (square root of the variance explained) reported for the random effect. Odds 

ratios for Context were calculated from the estimated marginal means. χ2 statistics, degrees of freedom, two-tailed P-values were calculated from Type III Analysis of Deviance on the full 

model. Receivers that only occurred once were excluded. Cepstral features model had warning message indicating convergence issues when Caller age class was included. Context: n = 138 

contact rumbles, 127 greeting rumbles, 62 caregiving rumbles. Caller age class: n = 274 calls from adults, 53 juvenile calls from juveniles.
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Extended Data Table 6 | Results for linear mixed model assessing whether calls addressed to a receiver imitate the 
receiver’s calls

Each observation was a pair of calls and the response variable was rank-transformed proximity score. Imitation Pair Type = whether the receiver of one call in a pair was the caller of the other 

call (reference level = yes); Same Relationship = whether the callers of both calls in a pair had the same type of relationship to their respective receivers (reference level = no); Caller Dyad ID 

= unique combination of callers (random effect). Same Context, Same Date, and Pair ID same as in Extended Data Table 4. Pairs of calls recorded from different groups, pairs with the same 

caller or receiver, levels of Caller Dyad ID that only occurred with one level of Imitation Pair Type, and levels of Pair ID that only occurred once were excluded (n = 943 call pairs where receiver 

of one call was the caller of the other, 1553 where this was not the case). P-values are two-tailed.
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Extended Data Table 7 | Results for linear mixed model assessing whether different callers use similar labels for same 
receiver

Each observation was a pair of calls and the response variable was rank-transformed proximity score. Different Caller Pair Type = whether the two calls in a pair had different callers and the 

same receiver (reference level) or different callers and different receivers; Same Relationship, Same Context, Same Date, and Pair ID same as in Extended Data Tables 4 and 6. Pairs of calls 

recorded from different groups and levels of Pair ID that only occurred once were excluded (n = 693 call pairs with same receiver, 7522 with different receivers). P-values are two-tailed.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used to collect data in this study.

Data analysis Rough segmentation of calls was performed in Raven Pro 1.5 (Cornell Lab of Ornithology, Ithaca, NY, USA). All other acoustic and statistical 

analyses were performed in R version 4.1.3. The following R packages were used: 

AER: testing overdispersion of Poisson GLM 

car: type III ANOVA 

caret: data partitioning for machine learning 

coxme: mixed-effects Cox regression 

data.table: data wrangling 

dplyr: data wrangling 

emmeans: post-hoc comparisons 

ggplot2: plotting 

gridExtra: combining plots 

lme4: mixed effects models 

lubridate: handling dates in R 

moments: skewness and kurtosis 

multitaper: multi-taper spectral estimation (for deriving some acoustic features) 

patchwork: combining plots 

party: conditional inference random forest (for variable importance scores) 

ranger: fast random forest 

robustbase: calculating robust skewness 



2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

rsvd: robust principal components 

Rraven: importing Raven Pro selection tables into R 

rsvd: robust principal components analysis (for derived acoustic features) 

runner: control running operations 

scatterplot3d: 3D plotting 

seewave: acoustic analysis 

soundgen: acoustic analysis 

stringr: string manipulation 

survival: cox regression 

survminer: plotting survival curves 

tuneR: acoustic analysis 

viridis: more color palettes (for spectrogram) 

 

We did not create any new software or R packages for this study. All of our code is available on Zenodo at this link: doi:10.5281/

zenodo.10576772 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data are available on Dryad at the following link: doi:10.5061/dryad.hmgqnk9nj
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confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in 

study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.  

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has 
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Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why 

they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables 

(for example, race or ethnicity should not be used as a proxy for socioeconomic status).  

Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the 

researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or 

administrative data, social media data, etc.) 

Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 

information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 

how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We investigated the hypothesis that elephants address individual members of their family group with name-like calls. We recorded 

contact and greeting calls from wild African elephants in Samburu & Buffalo Springs National Reserves, northern Kenya and Amboseli 

National Park, southern Kenya, noting when possible the identity of the caller and the identity of the receiver.  

 

We measured a suite of acoustic features on each call (n=469 calls) and used a random forest model to show that calls could be 

assigned to individual receivers based on acoustic structure with greater than chance accuracy. To determine if elephants rely on 

imitation of the receiver's calls to address receiver, we examined random forest classification accuracies separately for calls that 

were more similar to the receiver's calls than typical for that caller (convergent calls, n=95) and calls that were less similar to the 

receiver's calls than typical for that caller (divergent calls, n=141). We found that calls could be assigned to receiver ID with greater 

than chance accuracy regardless of whether they were convergent with or divergent from the receiver's calls. We calculated pairwise 

proximity scores between each call in the dataset and ran an ANOVA which showed that call pairs with the same caller and same 

receiver were more similar on average than call pairs with the same caller and different receivers who had the same type of 

relationship with the caller. We ran a logistic regression to assess the factors influencing the probability that the random forest would 

correctly predict the receiver for a call. We found that the receiver was more likely to be correctly predicted for contact rumbles and 

caregiving rumbles than for greeting rumbles and more likely to be correctly predicted for adult callers than for juvenile callers. This 

suggests that contact and caregiving rumbles may be more likely to contain a vocal label than greeting rumbles and adults may be 

more likely than juveniles to use vocal labels. 

 

To determine if elephants imitated the calls of the receiver they were addressing, we ran another ANOVA to test if call pairs in which 

the receiver of one call produced the other call had higher proximity scores than call pairs in which this was not the case. There was 

no significant difference, indicating no evidence for imiation. To determine if different callers use the same label to address a given 

receiver (i.e., if calls could be assigned to receiver ID independent of caller ID), we ran a second random forest with the training and 

test sets partitioned so the model was trained and tested on different callers. This random forest failed to assign calls to receiver ID 

any better than chance, suggesting that different callers do not use the same label for the same receiver. However, an ANOVA 

showed that call pairs with different callers and the same receiver were more similar (had higher proximity scores) on average than 

call pairs with different callers and different receivers, suggesting that different callers do use similar labels for the same receiver. 

 

Finally, we conducted a playback experiment to determine if elephants perceive and respond to putative labels in their calls. We 

played 17 elephants a recording of a call that was originally addressed to them (test) and a recording of a call from the same caller 

that was originally addressed to someone else (control). One subject received two different sets of test and control playbacks, one 

subject received just 1 test playback (no control) and one subject received just one control playback (no test). All other subjects 

received exactly one test playback and one control playback each. Subjects approached the speaker more quickly, vocalized more 

quickly, and produced more vocalizations in response to test playbacks than controls, further supporting the hypothesis that calls are 

specific to individual receivers.

Research sample Subjects were wild African savannah elephants (Loxodonta africana) from two Kenyan populations: Samburu & Buffalo Springs 

(northern Kenya) and Amboseli (southern Kenya). Acoustic analyses were conducted on 371 rumbles from 52 adult females, 16 

juvenile females, 2 females recorded as both juveniles and adults (cutoff for adulthood was 10 years of age), and 14 juvenile males in 

Samburu, as well as 98 rumbles from 13 adult females, 3 juvenile females, and 1 juvenile male in Amboseli. Playbacks were 

conducted to 17 individuals in Samburu (15 adult females, 1 adolescent female, and 1 adolescent male).

Sampling strategy Calls were recorded using all-occurrence sampling. There was no predetermined sample size as we attempted to record as many calls 

as possible. Subjects for playbacks were chosen based on which individuals we were able to record a test stimulus and control 

stimulus for. We did not predetermine the sample size for playbacks and instead did as many playbacks as we were able to given 

what recordings were available.

Data collection Calls were recorded during daylight hours from a vehicle using a handheld Earthworks microphone. Callers and receivers were 

identified using behavioral cues, and elephants were identified individually using naturally-occurring marks on the ears and other 

distinct physical features. Playbacks were conducted from 50 meters away from a loudspeaker placed on the ground or in a 

Landcruiser with all the doors and windows open. Data in Samburu (recordings and playbacks) were collected by MP and DL. Data in 

Amboseli (recordings) were collected by JP and PG.

Timing and spatial scale Calls were recorded in Samburu in Nov 2019-Mar 2020 and Jun 2021-Apr 2022. Calls were recorded in Amboseli in 1986-1990 and 

1997-2006. Playbacks were conducted from Oct 2021 to Apr 2022. Playbacks to the same subject were spaced apart by at least 7 

days which previous studies on elephants have suggested as a rule of thumb to minimize the risk of habituation. Samburu and Buffalo 

Springs National Reserves cover an area of about 296 km2 and Amboseli covers an area of about 392 km2.

Data exclusions We only analyzed rumbles that were produced in the contexts of contact calling , greeting, and caregiving. We also only included calls 

with minimal overlapping sounds, a high enough signal-to-noise ratio for the first two formants to be clearly visible in the 

spectrogram. Finally, we only included calls where the identity of the receiver was known for certain and for which there was only 

one receiver. For analyses involving caller ID or behavioral context, we also made sure that the identity of the caller/behavioral 

context was known for certain.

Reproducibility Due to the logistical constraints of conducting this type of experiment in the field and the time constraints of available funding, we 

did not attempt to replicate the experiment.

Randomization For the playback experiment, we attempted to conduct both a test playback and control playback to each individual (within-subjects 

design), only failing to do so for 2/17 subjects. The order of presentation of test and control playbacks was balanced across subjects. 
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Subjects were randomly assigned to receive the test or control playback first, with the constraint that 50% of subjects should receive 

the test first and 50% should receiver the control first.

Blinding The experimenters were blind to the condition of each playback trial until after all playback trials had been conducted and all videos 

of those trials were scored. The same observer (MP) conducted the playback trials and scored the videos.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions The habitat of both field sites is a mixture of open grassland, bushy shrubs, and patches of woodland and permanent swamp. Both 

sites are semi-arid, receiving an average of about 350 mm of rain per year with peaks in November and April. Fieldwork was 

conducted in both wet and dry seasons. Average annual temperature is about 21.6 degrees Celsius in Amboseli and 24.5 degrees 

Celsius in Samburu.

Location Samburu & Buffalo Springs: (0.61 N, 37.5 E), 800-1230 m above sea level 

Amboseli National Park: (2.7 S, 37.3 E), 1100-1200 m above sea level.

Access & import/export Permits were obtained from the Wildlife Research & Training Institute (WRTI) of Kenya and the National Commission for Science, 

Technology, and Innovation (NACOSTI) of Kenya, in consultation with local county governments (Samburu, Isiolo, and Kajiado 

counties). Permit numbers: NACOSTI/P/19/2735, WRTI-0061-06-21, NACOSTI/P/21/14091.

Disturbance Elephants were not physically handled as part of this study. They may have been temporarily and slightly disturbed by playback 

stimuli. To minimize potential disturbance, we only played back a single call in any given trial and waited a minimum of 7 days 

between playbacks to the same subjects. Subjects did not always exhibit any response to playbacks, and when they did, they 

returned to baseline behavior in <10 min. The elephants in Samburu and Amboseli are habituated to research vehicles so it is unlikely 

that they were disturbed in any substantial way by our presence. To avoid damage to vegetation, we only drove off road when 

absolutely necessary to access the elephants and returned to an existing road as soon as possible.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals This study did not involve laboratory animals.

Wild animals This study involved wild African savannah elephants (Loxodonta africana). No elephants were captured or handled as part of this 

study. We used audio recordings from 65 adult females, 19 juvenile females, and 15 juvenile males, as well as 2 females who were 

considered juveniles (<10 yo) in earlier recordings and adults (>10 yo) in later recordings. Playbacks were conducted to 17 individuals 

in Samburu (15 adult females, 1 adolescent female, and 1 adolescent male).

Reporting on sex We focused on female-calf groups for this study because females and calves are much more vocal than adult males in elephants. As 

most of the elephants (and all the adults) in our study were female, these results may only be applicable to females. We did not 

conduct a sex-based analysis because we did not have sufficient data from males to consider them separately from females.

Field-collected samples This study did not involve samples collected from the field (only audio and video recordings)

Ethics oversight This study was approved by the Institutional Animal Care and Use Committee of Colorado State University (protocol #19-9229A)
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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