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Abstract 
Spatial locations can be extracted from language statistics, 
based on the idea that nearby locations are mentioned in 
similar linguistic contexts, akin to Tobler’s first law of 
geography. However, the performance of language-based 
estimates is inferior to human estimates, raising questions 
about whether human spatial representations can actually be 
informed by such (inferior) statistics. We show that 
alternative methods of computing co-occurrence statistics 
improve language-based estimates, illustrating that simple 
linguistic associations may in fact inform spatial 
representations. Most importantly, we show that by 
bootstrapping from grounded city locations, linguistic 
associations can be exploited to accurately estimate the 
locations of unknown cities, as well as human estimates of 
city locations. These results support the hypothesis that (un-
grounded) linguistic associations can be productively 
combined with pre-existing spatial representations to yield 
new grounded representations, shedding light on the issue of 
symbol grounding in cognition. 
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Introduction 
Accounts of meaning acquisition have long contrasted 
symbolic accounts with accounts that emphasize the 
importance of embodiment and perceptual grounding (de 
Vega, Glenberg, & Graesser, 2008). Historically, symbolic 
accounts treated semantics as being localized in an amodal 
system in which linguistic symbols1 played a crucial role, 
whereas embodied accounts denied that the properties of a 
linguistic symbol (e.g. its orthography, length, or the other 
symbols with which it most frequently co-occurs) played 
any role in the symbol’s meaning (Barsalou, 2009). 
Embodied accounts frequently emphasize the role of 
perceptual simulation, i.e., the construction of meaning via 
activation of the same perceptual and motor representations 
involved in first-hand experience. Today, the recognition 
that perceptual simulation plays an important role in 
semantic representation has shifted the focus of the debate 

                                                           
1 In computational models, the linguistic symbols under 

consideration are typically single words, but could also include 
morphemes or grammatical constituents. 

to a better understanding of the role of linguistic symbols in 
semantic representation. In some cases, the same data are 
used by different researchers to advance radically different 
hypotheses. For example, Louwerse and Jeuniaux (2010) 
and Barsalou, Santos, Simmons and Wilson (2008) agree 
that words are activated earlier than perceptual simulations, 
that words and perceptual simulations influence each other 
in the course of processing, and that linguistic associations 
allow some conceptual tasks to be accomplished solely by 
retrieving words and co-occurrence information, but their 
interpretations of these findings differ substantially. 
Louwerse and Jeuniaux (2010) interpret these findings as 
evidence for the Symbol Interdependency Hypothesis, 
which posits that humans rely heavily upon language-based 
statistics and invoke perceptual simulation only when cued 
by the task or by relevant sensorimotor cues (Louwerse & 
Jeuniaux, 2010; Louwerse, 2011). In contrast, Barsalou et 
al. (2008) use these points to argue that only situated 
simulations represent semantic information, but that we can 
use statistics of linguistic forms to achieve adequate 
performance on some laboratory tasks without accessing a 
word’s actual meaning. That is, theories differ over whether 
the “surface” properties of linguistic symbols, such as their 
frequencies and the frequencies of words that they co-occur 
with, actually play a part in semantic representation. 

What do these theories predict for words with spatial 
semantics? Consider a passage containing three familiar 
geographical terms (San Francisco, Berkeley, Oakland) and 
a novel one (Hayward). According to theories in which 
linguistic symbols play no role in semantic representations, 
even an incredibly weak representation for Hayward—say, 
knowing that it is a city, probably one in the San Francisco 
Bay area—is made possible by perceptually simulating 
these terms in the setting of the contents of the passage (e.g., 
envisaging a map of the area). In contrast, theories that 
admit a role for linguistic symbols argue that if  the word 
Hayward is associated with the other linguistic symbols in 
the text, no perceptual simulation may be constructed until 
required by the task at hand (for example, if the reader were 
later asked, “Where is Hayward exactly?”). The burden on 
simulation-only theories is to show that perceptual 
simulation necessarily occurs in any condition in which 
semantic meaning (in this case, locations of place terms) is 
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accessed. The burden on the Symbol Interdependency 
Hypothesis is to show (a) that it is actually possible to infer 
semantic representations (in this case, locations) by 
combining information from language with pre-existing 
grounded representations, and (b) that the human semantic 
system actually does so. The present work offers support for 
claim (a); claim (b) is beyond the scope of this paper (but 
see Louwerse & Benesh, 2012; Louwerse & Connell, 2011).  

Estimates of the locations to which place names refer can 
be made on the basis of information implicit in patterns of 
place name usage in text (Davies, 2013; Louwerse & 
Zwaan, 2009; Louwerse & Benesh, 2012). This is possible 
because place names referring to nearby spatial locations 
tend to co-occur in language (Hecht & Moxley, 2009), 
consistent with Tobler’s first law of geography (Tobler, 
1970). Returning to the Hayward example in the San 
Francisco Bay area, the Symbol Interdependency 
Hypothesis predicts that if readers are asked for the location 
of Hayward after having read the passage containing 
Hayward, San Francisco, Oakland, and Berkeley, they 
should be able to reconstruct its probable location on the fly, 
even if they did not simulate its location when they first 
encountered the term. If so, it must be possible to infer the 
approximate location of Hayward by virtue of the fact that 
Hayward co-occurred with several cities for which the 
reader does have perceptually grounded representations. It 
has never been demonstrated that this is actually possible, 
nor is it self-evident. One concern is that the results of 
Louwerse and Zwaan (2009) suggest that the cognitive 
maps of individuals who relied solely upon language 
statistics would be fairly unreliable. Low accuracy of 
language statistics is not necessarily problematic for the 
Symbol Interdependency Hypothesis, which suggests that 
humans do not rely on language statistics alone, but 
combine it with perceptual information about the locations 
of known places (when necessary). But no mechanism has 
ever been proposed by which this might take place, nor has 
it been demonstrated that doing so would reduce the error in 
location estimates to reasonable levels of accuracy. 

The current study aims to fill this gap.  Study 1 aims to 
replicate Louwerse and Zwaan’s (2009) study estimating 
geographical locations in the United States using newspaper 
articles. In addition, it tries to optimize various parameters 
known to influence the performance of co-occurrence-based 
methods in cognitive science. Study 2 extends Study 1 by 
investigating whether location estimates can be improved 
when the algorithm is given access to grounded information 
(actual locations of some cities) in order to demonstrate how 
an “ungrounded” algorithm with a long history of use in 
cognitive science (i.e., Latent Semantic Analysis) might be 
combined with grounded information to achieve more 
reliable estimates. Finally, Study 3 illustrates how large-
scale co-occurrence frequencies can be combined with 
grounded information to achieve even higher levels of 
accuracy. 

Study 1 
Study 1 aimed to replicate and extend Louwerse and 

Zwaan (2009), who illustrated how language-based statistics 
obtained from Latent Semantic Analysis could estimate U.S. 
city locations across three different corpora with low-to-
moderate bidimensional correlations (r = .53, .28, and .43 
for the Wall Street Journal, New York Times, and Los 
Angeles Times, respectively). Latent Semantic Analysis is a 
commonly used method of estimating the degree to which 
two words are associated in language, the mathematics of 
which are described in detail in Landauer and Dumais 
(1997). The current study investigates several parameters 
that are known to influence the performance of 
computational models of lexical semantics, such as 
document length, amount of data analyzed, and other 
properties of the semantic space (Bullinaria & Levy, 2007; 
Quesada, 2006), to determine whether alternative 
parameterizations than those used by Louwerse and Zwaan 
(2009) result in more accurate location estimates. If so, 
language statistics may encode geographical information 
more robustly than is currently acknowledged. 

Method 
The Los Angeles Times corpus, the New York Times News 
Syndicate corpus, and the Wall Street Journal corpus were 
obtained from the North American News Text Corpus 
(Graff, 1995), and documents not containing at least one of 
the 50 U.S. cities whose locations were estimated by 
Louwerse and Zwaan (2009) were removed from the corpus. 
Location estimates were obtained as in Louwerse & Zwaan 
(2009) by applying a multidimensional scaling (MDS) 
algorithm to a 50 x 50 matrix of text-based similarities 
populated with LSA cosines between city names. The 
matrix was converted to a matrix of dissimilarities with a 
Euclidean transformation (SPSS 20), and the standard MDS 
algorithm included with SPSS 20 (ALSCAL) was applied. 
Results were evaluated by computing differences between 
actual and predicted coordinates via bidimensional 
regression. Affine bidimensional regressions (Friedman & 
Kohler, 2003) were computed with the BiDimRegression 
package in the R software environment.  

 
Document length. We varied minimum document length, 
maximum document length, and both at once. Tails were 
cropped with respect to the absolute deviation around the 
median (Leys et al., 2013).  
 
Corpus size. Investigating precisely how performance 
varies with corpus size can help us understand exactly how 
much text is required to obtain acceptable estimates. 
Nineteen randomly generated subsets were extracted from 
each corpus, nine ranging from 2,000-10,000 documents 
and ten ranging from 10,000-100,000 documents. 
 
Dimensionality. LSA proceeds by computing a low-rank 
approximation of a term-by-document matrix in which rows 
represent terms and columns represent documents. The 
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mathematical rank of the resulting matrix is known as its 
dimensionality. Generally speaking, the lower the rank, the 
coarser the representation of each word. For example, a 
dimensionality of 100 means that each word can be 
represented by a vector of only 100 numbers. Selecting an 
appropriate number of dimensions for the task at hand is an 
important component of an LSA analysis, although it is 
common to select 300, a number that has been empirically 
shown to work well on a wide variety of tasks (Landauer, 
Laham, & Derr, 2004). However, as Davies (2013) notes, 
“the oft-quoted 300 dimensions may well not be the 
optimum number to choose for this kind of LSA 
application… It seems unlikely that the same number of 
domains will be optimal for [geographic estimation]” (p. 
333). There is no well-accepted method for selecting the 
optimum number of dimensions for a particular task other 
than exhaustively testing several choices (Quesada, 2006). 
We computed LSA vectors for varying numbers of 
dimensions from 50 to 300 to determine whether a peak 
existed at a lower dimensionality. 

Results and Discussion 
Due to the great number of possible combinations of 
parameter values, parameters are discussed independently, 
using the default settings (all document lengths, all 
documents, 300 dimensions) as the baseline. 
 
Document length. The effect of imposing a maximum 
document length was inconsistent and did not lead to 
significant increments or decrements in performance. In 
contrast, imposing a minimum document length improved 
performance. LSA's mean performance across corpora 
peaked when documents shorter than 1.8 median deviations 
were excluded from the space (mean r = .66; Figure 1). 
 
Corpus size. LSA cosines performed relatively poorly on 
small corpora (Figure 2). However, results also suggested 
that respectable performance can be achieved on corpora as 
small as twenty thousand documents. 
 
Dimensionality. Average performance revealed a U-shaped 
curve with a peak at 200 dimensions. Building the LSA 
space with a dimensionality of 2 resulted in severely 
suboptimal performance, suggesting that it is necessary to 
first build the space with a higher dimensionality and to 
transform the resulting matrix to a two-dimensional 
approximation via MDS. Each of the three corpora 
exhibited a generally U-shaped curve with downturn in 
performance at 300 dimensions, suggesting that this number 
is suboptimal for this particular task. 
 
Conclusion. Study 1 demonstrated that spatial information 
can be extracted from language statistics more effectively 
than previously reported (Louwerse & Zwaan, 2009).We 
obtained rs of > .6 for all three corpora, vs. previous bests of 
r = .43, r = .28, and r = .53 for the Los Angeles Times, New 
York Times, and Wall Street Journal, respectively. 

However, humans also represent perceptual information that 
could theoretically be combined with linguistic information 
to generate more informed location estimates for unknown 
place names. Study 2 explored a novel way to extend the 
method employed in Study 1 to accomplish this task. 

Study 2 
In previous work (Davies, 2013; Louwerse & Zwaan, 

2009; Louwerse & Benesh, 2012), distances have been 
approximated from language statistics alone. However, the 
Symbol Interdependency Hypothesis predicts that, when 
necessary, individuals integrate language statistics with 
perceptually grounded information (Louwerse & Jeuniaux, 
2010; Louwerse, 2011). One way to amend Study 1 to 
include perceptually grounded information about known 
places is to replace estimated distances for all cities except 
for one—the “unknown place”—with actual distances 
among those known places. In classical MDS, there is no 
way to specify fixed latitudes and longitudes of known 
locations. These deficiencies are addressed with 
PROXSCAL (Busing, Commandeur, and Heiser, 1999), an 
implementation of a common majorization algorithm. 
PROXSCAL permits fixed vectors to be specified for some 
variables, while other variables are permitted to vary freely. 
In Study 2, we exploit this property to perform a replication 
of study 1 that integrates grounded locations. We 
hypothesize that this method will achieve more reliable 
estimates, demonstrating that it is possible to infer more 
accurate spatial representations by combining language 
statistics with grounded representations. 

Method 
Text-based estimates for each city location were obtained 
via the PROXSCAL algorithm. For each run of the 
algorithm, one of the 50 U.S. cities from the previous study 
was treated as an unknown place, while the other 49 were 
treated as known places. A dissimilarity matrix was 
constructed in which cells were populated with actual 
distances between known places. As in Study 1, each row 
and column corresponded to one of the 50 city names. Cells 
for which the row or column corresponded to the unknown 
place were populated with co-occurrence-based similarity 
estimates (LSA cosines) as in the previous study. LSA 
cosines in the row and column corresponding to the 
unknown place were converted to distances by subtracting 
each from 1. The row and column corresponding to the 
unknown place were transformed so as to have a mean and 
standard deviation comparable to the other vectors in the 
matrix (mean = the average mean of the vectors of distances 
among known places; SD = the average SD of the vectors of 
distances among known places). Finally, we applied 
PROXSCAL, specifying that the known places should be 
fixed, and providing their latitudes and longitudes. 

This process was run 50 times for each parameter setting 
(with a different city treated as the “unknown place”) each 
time, yielding a set of 50 estimated city locations, and all 
parameters were investigated independently as before. 
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Results and Discussion 
Performance of the PROXSCAL-based method was higher 
than the ALSCAL-based method (Study 1) across the full 
range of parameter settings (Figures 1 and 2), although 
mean rs  after parameter optimization were similar (Study 1, 
r = .66; Study 2, r = .68)2. Accuracy of PROXSCAL was 
more stable as parameters varied, with mean rs ranging 
from .63-.68 for all choices of minimum document length 
(vs. .24-.66 for Study 1), .63-.65 for corpus sizes ranging 
from 20,000 to 100,000 documents (vs. .46-.61 for Study 1), 
and .58-.68 for all choices of dimensionality of 50 or greater 
(vs. .49-.66 for Study 1). In all, estimates from the 
PROXSCAL-based method that included information about 
the locations of known places were consistently more 
accurate than those in Study 1. 

 
Figure 1: Performance as a function of minimum document 
length, averaged across corpora. Higher values on the x-axis 
correspond to more documents included (e.g., at the far 
right, only documents with lengths 2.6 deviations below the 
median were excluded). 

 
Figure 2: Performance as a function of corpus size, averaged 
across corpora. 

                                                           
2 Reported here are optimal rs (mean) when the same parameter 

settings are used across all three corpora. Higher rs are achieved if 
parameters are fit separately for each individual news corpus.  

Study 3 
 
The mean estimates in Studies 1 and 2 correlated more 

closely with actual locations than the best correlations 
previously reported from language statistics alone. In 
particular, including grounded information made the method 
much less sensitive to the specific parameter settings 
employed. However, it remains uncertain whether estimates 
based on raw co-occurrences can take advantage of 
grounded information in an analogous manner, and whether 
language-based statistics combined with perceptual 
grounding can produce spatial representations that are 
accurate enough to be useful. Study 3 investigates the 
degree of accuracy that can be achieved from by combining 
grounded representations with linguistic associations. 

Method 
We obtained a set of U.S. place—all U.S. cities, towns, 

and Hawaiian census-designated places3 with a population 
of at least 20,000 in 2010—from the 2012 National 
Population Projections of the U.S. Census Bureau. Of these, 
all that shared a name with another U.S. place of population 
greater than 20,000 were omitted, as were all place names 
that also happened to be English words appearing in the 
official Scrabble® dictionary. This yielded a set of 1,283 
U.S. place names that we linked to their geographic 
coordinates in the Geographic Names Information System 
(U.S. Geological Survey, 2012). This constituted the set of 
localized cities. In contrast, the 50 place names from 
Louwerse & Zwaan (2009) were treated as unlocalized 
cities, the locations of which had to be inferred on the basis 
of their co-occurrences with localized cities. 

We identified all 4-grams and 5-grams appearing in the 
Google Web 1T 5-gram corpus in which a localized and an 
unlocalized city co-occurred. Pointwise mutual information 
(PMI) scores (Church & Hanks, 1990) were computed 
between every pair of localized and unlocalized cities as in  
Manning & Schütze (1999) via the standard formula 

)()(
),(log),( 2 yPxP

yxPyxI =  
 

Here, P(x) and P(y) can each be calculated as the frequency 
of x and y (respectively) divided by the total number of 
tokens in the corpus. P(x, y) is computed by dividing the 
number of times that x and y co-occur (in the same n-gram) 
by the total number of tokens in the corpus. PMI essentially 
normalizes the probability with which x and y co-occur by 
their overall frequencies. Thus, even though the terms 
“horse” and “the” co-occur more frequently than “horse” 
and “saddle” do, “horse” and “saddle” may still have a 
higher PMI, because “saddle” is a much less frequent word 
than “the.” To estimate the location of an unlocalized city 
name u, we calculated the city c that was closest to the k 
nearest neighbors of u (that is, the k cities with the highest 
PMIs to u). After excluding outliers that occurred more than 

                                                           
3 Officially, Honolulu is the only incorporated city in Hawaii. 

ALSCAL 
PROXSCAL 

ALSCAL 
PROXSCAL 
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600 miles away from c, we calculated the mean latitude and 
longitude of the remaining neighbors, which served as the 
estimate. Bidimensional regressions were computed 
between the actual locations of the 50 unlocalized cities and 
the coordinates estimated using this method. k was treated 
as a free parameter ranging from 1 to 20.  
 
Results and Discussion 
After bidimensional regression, correlation coefficients 
between actual and estimated locations ranged from .78-.91, 
depending on the value of k used. Mean distance between 
actual and estimated locations was minimized at k = 10. 

 

 
Figure 4. Actual locations of the fifty U.S. cities in the 
unlocalized dataset from Study 3 (black circles) are 
connected with lines to estimated locations of the same 
cities when k = 10 (white circles). 
 
Although these estimates are more accurate than those 
achieved in Study 2, they come with some caveats. First, 
Study 3 used much more linguistic data: an n-gram corpus 
based on roughly a terabyte of text, in contrast to the 
100,000-document corpora used in Studies 1 and 2. In 
addition, a much greater amount of grounded information 
was employed. As such, the improvements of Study 3 
should not be taken as evidence that the method employed is 
necessarily more effective than LSA, but solely as an 
existence proof that if one has grounded representations of a 
large number of cities, it is possible to accurately infer the 
locations of a place u from only linguistic co-occurrences, 
linguistic frequencies, and the locations of cities other than 
u. In our final study, we considered the extent to which 
language-based estimates predict human estimates. 

 Study 4 
Study 1 demonstrated that language-based estimates predict 
the actual locations of cities, while Study 2 and 3 showed 
that the predictive ability of language increases substantially 
when it is combined with grounded information (i.e., when 
the locations of the cities that a word co-occurs with in text 
are known). Study 4 considered whether inclusion of 
grounded information also improves the ability of language 
to predict human estimates of city locations. 
 

Method 
Human estimates of city locations were obtained from 
Louwerse & Zwaan (2009). Participants in this study had 
estimated the location of the 50 unlocalized cities from 
Studies 1-3 on a blank sheet of paper. Affine bidimensional 
regression correlations were computed between each 
participant’s estimates, the best-performing language-based 
estimates from Study 1, and the best-performing 
language/perception-based estimates from Studies 2 and 3.  
 
 Results and Discussion 
Median correlations between participant estimates and 
computational measures are reported in Table 1. For each 
corpus, correlations between human estimates and the 
language/perception-based estimates (Study 2, 3) were 
higher than or equal to the correlations between human 
estimates and the language-based estimates alone. Mean 
correlations exhibited the same pattern. These results 
suggest that human geographical estimates might be based 
in part on information implicitly coded in language and part 
on explicitly grounded spatial information. 

 
Table 1. Median correlations between computational and human 
estimates. All correlations are significant at p < .001. 

Conclusion 
 According to the Symbolic Interdependency Hypothesis, it 
should be possible to infer much of the content of semantic 
representations–e.g., the locations to which place names 
refer–by combining information from language statistics 
with pre-existing grounded representations. In Study 1, we 
demonstrated that information from language statistics alone 
can estimate place names more accurately than had been 
previously recognized. Study 2 illustrated that by combining 
language statistics with pre-existing grounded 
representations, locations to which place names refer can 
indeed be estimated more accurately than from linguistic 
information alone. Study 3 showed that with enough data, 
even extremely simple co-occurrence-based measures can 
be combined with grounded representations to yield 
accurate city locations, showing that it is possible to 
bootstrap spatial semantics from associations. Finally, Study 
4 showed that the computational estimates from Studies 1, 
2, and 3 also predict human judgments of city locations, 
with the grounded language-based estimates having 
correlations greater than or equal to the estimates that relied 
on language statistics alone. Explorations of other methods 

 

Correlation 
language estimate  

(Study 1)  
and human 
estimates 

Correlation 
language/perception 
estimates (Study 2, 

3) and human 
estimates 

LA Times .541*** .574*** 
NY Times .546*** .592*** 
Wall St. J. .569*** .602*** 
Google -- .769*** 
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of quantifying relatedness between places may further refine 
our understanding of the relationship between place name 
co-occurrences and cognitive measures of place relatedness. 
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