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Abstract

Population counts and longitude and latitude coordinates were estimated for the 50 largest cities

in the United States by computational linguistic techniques and by human participants. The mathe-

matical technique Latent Semantic Analysis applied to newspaper texts produced similarity ratings

between the 50 cities that allowed for a multidimensional scaling (MDS) of these cities. MDS coordi-

nates correlated with the actual longitude and latitude of these cities, showing that cities that are

located together share similar semantic contexts. This finding was replicated using a first-order

co-occurrence algorithm. The computational estimates of geographical location as well as population

were akin to human estimates. These findings show that language encodes geographical information

that language users in turn may use in their understanding of language and the world.

Keywords: Spatial cognition; Geography; Latent semantic analysis; Computational linguistics;

Corpus linguistics; Geographical coordinates; Word frequency; Multidimensional scaling; Semantic

representations

1. Introduction

Humans can acquire geographical knowledge about their environment in various ways

(Montello & Freundschuh, 1995). First, they can acquire spatial information about the envi-

ronment experientially, for example via locomotion and stationary viewing. Second, they

can acquire information through static pictorial representations, such as diagrams, paintings

and photos, provided on a map. Third, they can acquire information via dynamic pictorial

representations, including animations, movies and videos. Finally, they can acquire geo-

graphical knowledge via verbal descriptions. In real life, usually a combination of these four
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sources of information will be used. However, given the limitations of acquiring experiential

information about large geographical expanses and the importance of the written word in

our modern culture, it is plausible to assume that a significant portion of geographical

knowledge is also acquired via the vast amounts of textual information that one has been

exposed to. Several studies have investigated the effect of language on the formation of spa-

tial relations (Ferguson & Hegarty, 1994; Franklin & Tversky, 1990; Perrig & Kintsch,

1985; Taylor & Tversky, 1992a). For instance, Taylor and Tversky (1992a) found evidence

that comprehenders construct spatial maps from verbal descriptions (‘‘Sitting on a shelf

directly to your right…’’) or explicit routes (‘‘Driving from… to…, you pass…’’) equally

well as from actual maps. In general, the research investigating the effect of language on

cognitive maps focuses on ‘‘local’’ environmental distances and perceptual distances

(Baird, 1970; Canter & Tagg, 1975), to which route directions apply. Examples of these

maps are amusement parks (Taylor & Tversky, 1992b), convention centers (Taylor &

Tversky, 1992a), neighborhoods (Tversky, Lee, & Mainwaring, 1999), doll houses (Ehrich

& Koster, 1983), households (Ehrlich & Johnson-Laird, 1982), and research centers

(Freundschuh & Mercer, 1995; Morrow, Greenspan, & Bower, 1987). No studies have

investigated the role of language in ‘‘global’’ geographical knowledge, that is, cases where

locations are typically difficult to estimate by route directions.

There is, however, a considerable amount of research available on how subjective repre-

sentations of geography are formed. Stevens and Coupe (1978) for instance found that par-

ticipants made category errors when judging whether Reno, Nevada, was further west than

San Diego, California. Similar mistakes were made in judging whether Windsor, Ontario,

was further north than Detroit, Michigan. One explanation is that participants group cities

by region (e.g., states and countries) and make judgments on the basis of these categories

(Friedman & Montello, 2006). Another (complementary) explanation is that participants use

a rotation and alignment heuristic (Tversky, 1981, 1997) to map relative positions more ver-

tically or horizontally and more lined up than they really are. Replicating Tversky’s (1981)

finding, Friedman, Kerkman, and Brown (2002) found that participants have a bias to locate

European cities south of their U.S. counterparts even if they have similar latitudes, and

argued for categorical grouping rather than a heuristic. This categorical bias has been

acquired over time (Kerkman, Friedman, Brown, Stea, & Carmichael, 2003).

The consequence of the geographical bias varies depending on where participants live.

Tobler (1970) for instance proposed a proximity hypothesis stating that a participant’s estima-

tion bias should increase with the increasing physical distance from the participant’s home

town. More recently, Friedman et al. (2002) tested this hypothesis by comparing latitude esti-

mates of participants in Alberta, Canada, and Texas. Their findings did not support the prox-

imity hypothesis: Texans had a considerably greater bias in their estimates of Mexican

locations than did the Albertans. Friedman et al.’s (2002) explanations for this bias ranged

from cognitively based beliefs, geopolitically based beliefs, to socioculturally based beliefs.

Akin to the question whether subjective representations of geographical locations could

be acquired via textual information is the question whether subjective representations of

population size could be acquired via textual information. Goldstein and Gigerenzer (1999,

2002) conducted a number of experiments identifying what heuristic participants use in
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estimating the population size of cities. Their experiments defied common belief that perfor-

mance in estimating population size is a product of knowledge. Goldstein and Gigerenzer

(2002) found that U.S. participants were slightly better at estimating the population size of

cities in Germany than cities in their own country when they were given pairs of cities and

were asked to choose which city had a higher population count. They explained these results

by participants using a recognition heuristic. This heuristic is an ignorance-based reasoning

that infers that recognized objects have higher values than objects that are not recognized.

Whether the availability (Tversky & Kahneman, 1974) and familiarity (Griggs & Cox,

1982) heuristics are cognitively very different from the recognition heuristic—Goldstein

and Gigerenzer (2002) argue they are because contrary to the other two a recognition heuris-

tic is an all-or-nothing approach that does not rely on recall—falls outside the scope of this

paper. Goldstein and Gigerenzer (2002) describe the recognition heuristic as follows: An

inaccessible criterion (e.g., population size) is reflected by a mediator variable (e.g., the

frequency a city is mentioned in the news), and the mediator influences the probability

of recognition. The mediator could be static or dynamic pictorial representations (e.g.,

diagrams) or language.

In sum, research on geographical judgments has found that participants are able to locate

cities on a map, but they have geographical belief biases that are a function of where partici-

pants live. How participants have acquired ‘‘global’’ geographical knowledge is not entirely

clear. At least it involves direct environmental experience, static pictorial representations,

and dynamic pictorial representations. But whether participants could have acquired this

knowledge through language remains a research question, because all research that has

investigated the assessment of spatial representation using text has focused on ‘‘local’’ per-

ceptual information and local route descriptions.

Furthermore, studies that investigated participants’ estimates of population size of cities

asked participants to choose the largest member from pairs of cities. Though these results

show a correlation between frequency of mention and actual population, as well as a correla-

tion between frequency of mention and recognition, it is unclear how participant population

estimates (rather than choice) relate to actual scores and to mediator scores (e.g., verbal

descriptions).

The goal of the present paper was to determine to what extent geographical information

can be extracted from a body of texts, even though these texts themselves are not necessarily

spatial descriptions. For example, it could be hypothesized that larger geographical entities

(e.g., cities) are mentioned more often in texts than smaller geographical entities. Thus, one

would expect the frequency of mention for Chicago to be substantially higher than that for,

say, Memphis. Another hypothesis pertains to proximity. It might be expected that the

names of geographical entities that are close in space co-occur more often in texts than the

names of cities that are far apart in geographical distance. Thus, we might expect the word

pair Memphis–Nashville to show a higher co-occurrence rate than the word pair Memphis–

Chicago. These co-occurrences can then be transformed into locations in a two-dimensional

space, where axes represent latitude and longitude.

In the first study reported in this paper, we tested two hypotheses regarding geographical

patterns in large bodies of text. According to the first hypothesis, text co-occurrence scores
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between pairs of cities should correspond to the distance between them: ‘‘cities that are

located together are debated together.’’ According to the second hypothesis, the frequency

with which city names occur in text corpora should correspond to their population sizes:

‘‘cities that are populated more are debated more.’’ To address these two hypotheses, we

used computational linguistic techniques to produce location and population estimates based

on word frequency and word co-occurrences in text corpora.

In the second study, we asked to what extent these text-based representations corre-

sponded to estimates generated by human participants. To address this question, we asked

participants to estimate the location of 50 U.S. cities as well as their population size.

2. Study 1a: Corpus-based geographical estimates

Word frequencies for cities in a particular corpus of texts are easy to compute. However,

determining whether Nashville is more likely to appear in the same document with Memphis

than with Chicago is more difficult to compute, because of a sparsity problem. Memphis and

Nashville may in fact never co-occur in a paragraph of a corpus, although they could have if

the corpus had been large enough. One way to solve this sparsity problem is to not rely on

the co-occurrences of the words per se, but on the co-occurrences of the neighbors of these

words (and the neighbors of those neighbors, as well as their neighbors, etc.). In other

words, the sparsity problem in co-occurrence analyses can be solved by examining whether

the words occur in similar contexts. Computing semantic similarities of higher-order rela-

tionships between words is the strength of the statistical technique behind Latent Semantic

Analysis (Landauer, McNamara, Dennis, & Kintsch, 2007).

Latent semantic analysis (LSA) is a statistical, corpus based technique for representing

world knowledge that estimates semantic similarities on a scale of )1 to 1 between the

latent semantic representation of terms and texts (Landauer et al., 2007). In the current study

the input to LSA was a sample of newspaper articles (e.g., New York Times) segmented

into paragraphs. Mathematical transformations created a large term-document matrix

from the input. For example, if there are m terms in n paragraphs, a matrix of

A ¼ ðfij � GðjÞ � Lði; jÞÞm�n is obtained, in the case of the New York Times corpus used in

this study m = 53,263 and n = 35,299. The value of fij is a function of the integer that repre-

sents the number of times term i appears in document j: L(i; j) is a local weighting of term i

in document j; and G(j) is the global weighting for term j. Such a weighting function is used

to differentially treat terms and documents to reflect knowledge that is beyond the collection

of the documents. As in most LSA studies (Dumais, 2007; Martin & Berry, 2007), we used

natural log as the local weight and log entropy as the global weight in the current analyses.

The large matrix of A has, however, lots of redundant information, for instance because not

every word occurs in every paragraph. Singular Value Decomposition (SVD) reduces this

noise by decomposing the matrix A into three matrices A = URV¢; where U is an m by m

and V is an n by n square matrix, with R being an m by n diagonal matrix with singular val-

ues on the diagonal. By removing dimensions corresponding to smaller singular values and

keeping the dimensions corresponding to larger singular values, the representation of each
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word is reduced as a smaller vector with only 300 dimensions. The new representation for

the words (the reduced U matrix) is no longer orthogonal, but the advantage of this is that

only the most important dimensions that correspond to larger singular values are kept. Each

word now becomes a weighted vector on 300 dimensions, with only the most important

dimensions that correspond to larger singular values being kept (Louwerse, Cai, Hu,

Ventura, & Jeuniaux, 2006). The number of dimensions can be determined ad hoc, but we

followed the trend set by most LSA studies and used 300 factors (Landauer & Dumais,

1997). Each term has now become a vector of dimensions. The semantic relationship

between words can be estimated by taking the cosine between two vectors. What is so

special about LSA is that the semantic relatedness is not (only) determined by the relation

between words but also by the words that accompany a word (Landauer & Dumais, 1997).

Landauer et al. (2007) present an extensive overview of studies showing that semantic

similarity ratings by LSA are akin to human ratings.

In Study 1 we used LSA for geographical location estimates and word frequency for pop-

ulation estimates for 50 cities in the United States.

2.1. Materials

We selected the 50 largest cities of the United States and determined their longitude, lati-

tude, and population by using the Census 2000 data from the U.S. Census Bureau (http://www.

census.gov). These cities, with the corresponding states and Census regions, as well as their

latitude, longitude, and populations, are listed in Table 1.

We used three newspaper corpora for the analyses: the Wall Street Journal (July 1994–

December 1996), the New York Times (July 1994–December 1996) and the Los Angeles

Times (May 1994–August 1996). Because of the large size of these corpora (in some cases

over 500 MB), a random sample was taken and cleaned for tags and white spaces. Para-

graphs with less than 100 words were removed from the corpus to provide LSA with suffi-

cient contextual information. Details of the three corpora are presented in Table 2. Corpora

were comparable in size, number of paragraphs, and news broadcasted coverage (1994–

1996), but they differed in place of publication (New York City for the Wall Street Journal

and the New York Times and Los Angeles for the Los Angeles Times).

2.2. Results and discussion

Results are presented in three separate sections: absolute estimates of geographical loca-

tion, relative estimates of geographical location, and estimates of population size.

2.2.1. Absolute estimate

Latent semantic analysis spaces were created for each of the three corpora and cosine val-

ues were computed for each of the city pairs resulting in a 50 · 50 cosine matrix. This

matrix was next submitted to an MDS analysis using the ALSCAL algorithm (SPSS 15.0.1

MDS procedure). Because cosine values indicate similarities rather than dissimilarities,

distances were created from the data using the Euclidean distance measure. Default criteria
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Table 1

Fifty U.S. cities used in Study 1–3

City State Census Regions Latitude Longitude Population

Albuquerque NM West 35.1172 )106.6246 384,736

Arlington TX South 32.6945 )97.1275 261,721

Atlanta GA South 33.7629 )84.4226 394,017

Austin TX South 30.3059 )97.7505 465,622

Baltimore MD South 39.3008 )76.6106 736,014

Boston MA Northeast 42.3360 )71.0179 574,283

Charlotte NC South 35.1976 )80.8345 395,934

Chicago IL Midwest 41.8371 )87.6850 2,783,726

Cleveland OH Midwest 41.4797 )81.6785 505,616

Colorado Springs CO West 38.8632 )104.7599 281,140

Columbus OH Midwest 39.9889 )82.9874 632,910

Dallas TX South 32.7942 )96.7652 1,006,877

Denver CO West 39.7680 )104.8727 467,610

Detroit MI Midwest 42.3831 )83.1022 1,027,974

El Paso TX South 31.8493 )106.4375 515,342

Fort Worth TX South 32.7539 )97.3362 447,619

Fresno CA West 36.7806 )119.7929 354,202

Honolulu HI West 21.3173 )157.8042 365,272

Houston TX South 29.7687 )95.3867 1,630,553

Indianapolis IN Midwest 39.7764 )86.1462 731,327

Jacksonville FL South 30.3346 )81.6577 635,230

Kansas City KS Midwest 39.1223 )94.5520 584,913

Las Vegas NV West 36.2058 )115.2228 258,295

Long Beach CA West 33.7889 )118.1598 429,433

Los Angeles CA West 34.1121 )118.4112 3,485,398

Louisville KY South 38.2248 )85.7412 269,063

Memphis TN South 35.1056 )90.0070 610,337

Mesa AZ West 33.4177 )111.7403 288,091

Miami FL South 25.7757 )80.2108 358,548

Milwaukee WI Midwest 43.0634 )87.9666 628,088

Minneapolis MN Midwest 44.9619 )93.2668 368,383

Nashville TN South 36.1716 )86.7848 488,374

New Orleans LA South 30.0658 )89.9314 496,938

New York NY Northeast 40.6698 )73.9438 7,322,564

Oakland CA West 37.7715 )122.2246 372,242

Oklahoma City OK South 35.4671 )97.5135 444,719

Omaha NE Midwest 41.2639 )96.0117 335,795

Philadelphia PA Northeast 40.0068 )75.1347 1,585,577

Phoenix AZ West 33.5426 )112.0714 983,403

Portland OR West 45.5383 )122.6565 437,319

Sacramento CA West 38.5669 )121.4674 369,365

San Antonio TX South 29.4577 )98.5054 935,933

San Diego CA West 32.8150 )117.1358 1,110,549

San Francisco CA West 37.7933 )122.5548 723,959

San Jose CA West 37.3040 )121.8498 782,248

Seattle WA West 47.6218 )122.3503 516,259
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were used with an S-stress convergence = .001, minimum stress value = .005, and maxi-

mum iterations 30. That is, the algorithm stopped iterating when the difference between

stress values across iterations was less than the criterion, the stress value itself was less than

the criterion, or when the maximum number of iterations was reached.

Following Borg and Groenen (1997) among others, we chose a low dimensionality in

order to cancel out over- and underestimation errors in the proximities. The fitting of the

data was acceptable with a two-dimensional scaling for all three corpora, as presented

in Table 3. For all three corpora, Young S-stress improvement was less than .001 at six

iterations.

Stimulus coordinates of all 50 cities were compared with the actual longitude and lati-

tude. Consistently in all three corpora coordinates on Dimension 1 correlated with actual

longitude, whereas Dimension 2 of the MDS loading correlated with actual latitude. Corre-

lation coefficients between the corpora are presented in Table 4 and a scatter plot for the

Wall Street Journal results in Figs. 1 and 2.

Although these correlations may help in understanding relations on separate one-dimen-

sional axes, ideally we want to assess the relations between the bidimensional LSA-based

Table 1

(Continued)

City State Census Regions Latitude Longitude Population

Tucson AZ West 32.1958 )110.8917 405,390

Tulsa OK South 36.1278 )95.9164 367,302

Virginia Beach VA South 36.7394 )76.0437 393,069

Washington DC South 38.9051 )77.0162 606,900

Erroneously, Colorado Springs (ranked as the 55th largest city in the United States), Mesa (ranked 54), and

Louisville (ranked 59) were included in the list of 50 largest cities, but San Juan (ranked 33), Pittsburgh (ranked

41), and Toledo (ranked 50) were not.

Table 2

Type, token, and paragraph counts of the three corpora

Wall Street

Journal

New York

Times

Los Angeles

Times

Token count 3,019,335 4,932,193 3,878,005

Type count 37,835 53,263 44,940

Paragraph count 42,738 35,299 30,979

Table 3

Stress and R2 scores for two-dimensional fitting of the 50 · 50 matrices

of each of the three corpora

Stress R
2

Wall Street Journal .321 .621

New York Times .353 .512

Los Angeles Times .344 .522
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scores and the actual bidimensional maps. Friedman and Kohler (2003) and Tobler (1994)

proposed a bidimensional regression method to perform such an analysis. In the case of a

unidimensional regression an estimate is made of the regression of one variable on another

variable using a regression line, whereby each value is shifted by slope (steepness of the

line) and intercept (y value of the line when x equals zero). In a bidimensional regression

each value of the dependent variable and the predicted value of the dependent variable are

presented by a point in space, whereby vectors represent intercept and slope.

Table 4

Correlations between computational estimates and (1) latitude scores and (2)

longitude scores by newspaper corpus

Longitude and

LSA-based Estimate

Latitude and

LSA-based Estimate

Wall Street Journal .607** .322*

New York Times .286* .403**

Los Angeles Times .324* .437**

Note: **p < .01, *p < .05.
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Fig. 1. Scatterplot longitude (X-axis) and MDS coordinates of LSA cosines for Wall Street Journal Corpus

(Y-axis).
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Bidimensional regressions were computed between the coordinates estimated by LSA

and the actual coordinates. All three bidimensional regression analyses showed significant

correlations for the three newspaper corpora between the computational findings and the

actual coordinates (Wall Street Journal: r = .529, p < .01, n = 50; New York Times:

r = .277, p < .05, n = 50; Los Angeles Times: r = .427, p < .01, n = 50). These results show

that the three corpora provide estimates of geographical locations that correspond reliably

with latitude and longitude of 50 largest cities in the United States.

2.2.2. Relative estimate

Earlier, we mentioned Tobler’s (1970) proximity hypothesis stating that a participant’s

estimation bias should increase with the increasing physical distance from the participant’s

home town and Friedman et al.’s (2002) opposite findings that participant’s estimation bias

was highest for the area close to their residency. The current data also allow for testing the

proximity hypothesis, because the newspapers come both from the Southwest and the North-

east Coast. The map of the United States was divided into four Census regions, as defined

by the Census Bureau: West, Midwest, Northeast, and South. Table 1 gives the region the

50 cities belong to.

The prediction would then be that (1)Wall Street Journal and New York Times have simi-

lar estimates but differ from the Los Angeles Times; (2) based on the results in Friedman
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et al. (2002) results, absolute errors for Wall Street Journal and New York Times should be

higher in Midwest and Northeast regions than in West regions, whereas an opposite pattern

is expected to be found for the West region.

Actual coordinates and computational coordinates were normalized by determining the

relative position of the coordinates on a 100-unit scale. Absolute errors were computed by

averaging the absolute values of the signed errors, which in turn were obtained from sub-

tracting the LSA-estimated x- and y-coordinates from the actual x- and y-coordinates. An

anova on the absolute errors revealed a significant interaction between region and corpus

(F(6,138) = 3.12, p < .01, MSE = 517.42, g2p = .119). As Fig. 3 shows, absolute errors

were lowest in the Northwest and Midwest regions for the Los Angeles Times compared to

the Wall Street Journal and New York Times. For the West region however the reverse pat-

tern was found, with highest absolute errors for the Los Angeles Times compared to Wall

Street Journal and New York Times. Furthermore, absolute errors were reliably different

from zero for Wall Street Journal and New York Times but not for the Los Angeles Times in

Midwest regions (t(8) = 9.15, p < .001 and t(8) = 4.54, p < .002 respectively). On the other

hand, absolute errors were reliably different from zero for the Los Angeles Times, but not

for the Wall Street Journal or the New York Times in the West region (t(17) = 5.73,

p < .001). These results contradict the proximity hypothesis, but instead support the Fried-

man et al. (2002) hypothesis. While newspapers overall reliably predict longitude and lati-

tude, they have an estimation bias for those areas in which these newspapers are published.

2.2.3. Population

The final hypothesis tested whether ‘‘cities that are rated more are debated more.’’ That

is, to estimate the population of the cities, the word frequency of each of the cities was com-

puted in each of the three corpora. Word frequencies are presented later in this paper

(Table 9). Correlations between the word frequencies and actual population counts for these

cities were high in all three corpora (Wall Street Journal: r = .847, p < .001, n = 50;

Fig. 3. Absolute errors (difference normalized latitude and MSD loadings from LSA findings) for the three

newspaper corpora by region.
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New York Times: r = .839, p < .001, n = 50; Los Angeles Times: r = .612, p < .001,

n = 50). In sum, both the location hypothesis (in terms of absolute estimate and relative esti-

mate) and the population hypothesis were supported for all three corpora.

2.3. Discussion

The results presented in this study support the ‘‘cities that are located together are

debated together’’ and ‘‘cities that are rated more are debated more’’ hypotheses. The cor-

pus analysis shows that absolute estimates of latitude and longitude correlate with actual

longitude and latitude of the 50 cities, relative estimates show patterns similar to Friedman

et al.’s (2002) findings and frequency of mention correlates with population counts.

It can be argued that what we have called absolute estimates are in fact relative estimates

in the sense that MDS finds dimensions, not concepts like North and South, West and East.

Consequently, the current method cannot distinguish actual locations from ones in which

North and South or West and East were reversed. However, longitude and latitude estimates

presented here approximate absolute locations, whereas distance estimates are relative and

do not, in principle, require knowledge of the absolute locations (Friedman & Montello,

2006), warranting the current terminology. Conversely, in earlier work we compared dis-

tances between cities and LSA values (Louwerse et al., 2006) (relative estimates) but not

their absolute location (absolute estimates).

The current results obtained using LSA in combination with MDS raise a number of

important questions regarding the methods used.

First, in this analysis we used MDS, even though other analyses like Principal Component

Analysis are available. There are a number of reasons for choosing MDS. Borg and Groenen

(1997) pointed out that one advantage of MDS over PCA is that MDS establishes a direct

relationship between the similarity measures and the geometric distance. Furthermore, we

successfully used MDS with LSA cosine matrices in previous studies (Louwerse, 2007;

Louwerse et al., 2006). Besides, a different data reduction method does not affect the analy-

sis. When a PCA was applied on the cosine matrices from the three corpora, correlations

were obtained that were similar to those found using MDS (Table 5).

Second, the argument can be made that there is redundancy in the current analysis. The

word-by-paragraph matrix is reduced to a matrix with 300 dimensions using SVD. These

300 dimensions are then reduced to cosine values between pairs of cities, which are next

placed into a two-dimensional space. The question can therefore be raised whether the

Table 5

Correlations between PCA and longitude and latitude

Latitude—LSA Longitude—LSA

Wall Street Journal .322* .607**

New York Times .437** .324*

Los Angeles Times .442** .320*

Note: **p < .01, *p < .05.
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longitude and latitude dimensions obtained from MDS are not already present in the 300-

dimensional space. To investigate this question, we looked at the 300 dimensions of each

city name in the U matrix, one of the three matrices obtained after SVD from the original

word-paragraph matrix A, as described earlier. The 50 · 300 values were compared with

the actual longitude and latitude values in each of the three corpora. First, the values on the

first three dimensions were compared with longitude and latitude, yielding correlational val-

ues considerably lower than the ones obtained from MDS (Table 7). Next, the correlations

were conducted between each one of the 300 dimensions and the actual longitude and

latitude. The dimensions that had the highest Pearson r values with the actual longitude

and latitude were selected. Clearly, this is an undesirable approach because it cannot be

determined a priori which dimension may best correlate with either one of the geographic

coordinate measurements. Indeed, the highest Pearson r values were found for different

dimensions across the three corpora ruling out that one dimension account for longitude or

latitude1 (Table 6). More importantly, the selected dimensions had Pearson r values that

were at best comparable with the ones obtained using the MDS approach.

A third question regarding the results obtained in Study 1a concerns the correlational

results in the light of word frequency. City names with a higher frequency in the corpus

have more contextual information, which could either make the geographical location more

reliable (more specific information) or less reliable (more noise). Like most linguistic data

(Zipf, 1949), the frequency distribution of city names follows a power law. It does therefore

not suffice to consider performance for n percentiles. Instead, we grouped the cities in three

groups: those with low frequencies (about 70% of the data in each corpus), those with inter-

mediate frequencies (about 20% of the data in each corpus), and those with high frequencies

(about 10% of the data in each corpus). Overall, the results suggest cities that are mentioned

infrequently in the corpus have lower correlations than those mentioned frequently in the

corpus (Table 7).

In sum, evidence for the ‘‘cities that are located together are debated together’’ hypo-

thesis can be obtained through LSA in combination with MDS. Similar results can be found

with other data reduction techniques like PCA. Best results are obtained by using these data

Table 6

Correlations between LSA dimensions and longitude and latitude

Dim. 1 Dim. 2 Dim. 3

Highest r Across

300 Dimensions

Dim. No. (1–300)

With the Highest r

New York Times

Latitude .004 .168 .014 .368** 292

Longitude .091 .242 .160 .413** 111

Wall Street Journal

Latitude .008 .140 .004 .273* 210

Longitude .129 .195 .127 .489** 104

Los Angeles Times

Latitude .049 .033 .103 .291* 197

Longitude .063 .154 .142 .468** 96

Note: **p < .01, *p < .05.
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reduction techniques on the cosines of all city pairings, rather than by considering the city

names in a 300-dimensional space. Moreover, better results are obtained for cities that have

an average to high frequency in the corpus. This further supports the ‘‘cities that are located

together are debated together’’ hypothesis, in the sense that cities that are debated together

more, allow for a more reliable determining of geographical location.

3. Study 1b: More corpus-based geographical estimates

The findings reported in Study 1a might also be explained by two confounding variables

that have not been considered so far.

First, the correlations between longitude and latitude and the semantic information came

from newspaper articles. Although Louwerse et al. (2006) have shown similar results based

on textbook corpora, the argument could be made that newspaper corpora have a specific

format that benefits LSA to produce cosine matches which ultimately correlate with longi-

tude and latitude. That is, newspaper articles tend to start with the city source of the story

immediately followed by the state name. Because LSA picks up on co-occurrences, the

shared state names could explain why, for instance, Memphis, TN and Nashville, TN yield

high cosine values. Evidence for such an explanation would of course not invalidate the cur-

rent results, but would nevertheless weaken the evidence for the hypothesis that cities that

are located together are debated together. Whereas the advantage of using newspaper arti-

cles is that geographical bias can be investigated, the disadvantage is that the newspaper for-

mat might bias results.

Secondly, LSA uses the cosines from higher order vectors, which makes the semantic

analysis latent. That is, LSA may use state names or other semantic information to compute

semantic similarities, but what the exact co-occurrence information is remains hidden in the

300 dimensions from which the cosine values are derived. Whereas the advantage of the

latent higher-order co-occurrence method is that relatively small corpora can be analyzed

with relatively powerful statistical techniques, the disadvantage is that the analysis remains

somewhat opaque.

In short, what is desirable for additional support to the ‘‘cities that are located together

are debated together’’ hypothesis is a transparent semantic analysis on a heterogeneous

corpus.

Table 7

Bidimensional correlations between LSA dimensions and longitude and latitude

as a function of frequency of mention

New York

Times

Wall Street

Journal

Los Angeles

Times

Low frequency .239 (33) .493 (40) .204 (37)

Medium frequency .267 (10) .632 (5) .579 (10)

High frequency .587 (7) .657 (5) .407 (5)

Note: Number of cities between parentheses.
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3.1. Materials

In Study 3 we computed first-order co-occurrences of the 50 cities from Study 1 and 2

using the Web 1T 5-gram corpus (Brants & Franz, 2006). The corpus consists of 1 trillion

word tokens (13,588,391 word types) from 95,119,665,584 sentences. This corpus is about

250,000 times larger than the newspaper corpora used in Study 1, allowing for first-order

co-occurrences rather than higher-order co-occurrences as is the case in LSA.

3.1.1. Absolute estimate

Because some of the 50 cities consist of word pairs (e.g., New York), we only analyzed

the frequency of co-occurrences of the 50 cities within four- and five-grams (window span

of four and five words) and disregarded unigrams, bigrams, and trigram frequencies. The

result, a 50 · 50 matrix of raw frequencies of co-occurrences was supplied to an ALSCAL

algorithm to derive a Multidimensional Scaling (MDS) representation of the stimuli. Values

were standardized on a )1 to 1 scale before the computation of proximities. The fitting of

the data was poor (Stress = .402, R2 = .232). Nevertheless, stimulus coordinates of all 50

cities were compared with the actual longitude and latitude. As in Study 1a, Dimension 1

correlated with actual longitude (r = .36, p = .01, n = 50), whereas Dimension 2 of the

MDS loading correlated with actual latitude (r = .32, p = .02, n = 50). Bidimensional

regressions showed similar results (r = .32, p < .01, n = 50).

These results are comparable, to those obtained using LSA (longitude: r = .32 vs. .29–.61

vs. .32; latitude: .32–.44 vs. .32; bidimensional regression: .28–.52 vs. .32), with one impor-

tant difference, which is the strength of higher-order co-occurrence algorithms over a first-

order co-occurrence algorithms: the corpus used in the current analysis was 250,000 times

larger than the corpora used in the LSA analyses.

These results of this analysis provide additional support for the hypothesis that cities that

are located together are talked about together by demonstrating that the findings in Study 1a

cannot simply be attributed to the newspaper format or the LSA technique used.

4. Study 2: Human geographical estimates

Study 2 was conducted to address four questions. First, are human participants able to

estimate city locations and population sizes? Second, do they show specific biases in their

estimates? Third, how do their estimates compare to the corpus-based estimates? And

fourth, to what extent can human estimates be predicted based on the corpus estimates?

4.1. Method

4.1.1. Participants

Twenty-eight University of Memphis undergraduate students (18 females, 10 males)

participated in this experiment for course credit. All participants were natives of the United

States all living in the city of Memphis or its suburbs.
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4.1.2. Materials

The same 50 cities were used as in Study 1.

4.1.3. Procedure

Participants were asked to mark the location of all 50 cities used in Study 1 on a

sheet of paper. For their convenience, an x-axis and y-axis were provided to mark

meridian (line of longitude) and parallel (line of latitude) with the square through

which the meridian and parallel was drawn representing the United States. No other

information in terms of borders or states was given, though participants were allowed

to draw an outline of the country on paper. After participants marked the location, they

were asked to estimate the population for each city. Participants were told that the aim

of the experiment was not to see whether they would receive a passing grade in geog-

raphy, but to see how well people are able to estimate the relative coordinates and pop-

ulation size.

4.2. Results and discussion

4.2.1. Absolute estimate

All 28 participant-marked sheets were scanned into an electronic format. Software was

written to manually identify each of the 50 points and automatically compute coordinates

for these points. The average coordinates for the participant data correlated significantly

with the actual longitude and latitude of the cities (longitude: r = .806, p < .001, n = 50;

latitude: r = .829, p < .001, n = 50). Moreover, these results correlated with the results

obtained from the newspaper corpora, as presented in Table 8, with significant correlations

for longitude and for latitude.

As in Study 1, we conducted a bidimensional regression analysis to account for coordi-

nates on a two-dimensional plane. Not surprisingly, the bidimensional regression again

showed a significant relation between the coordinates of the 50 U.S. cities drawn by the par-

ticipants and the actual longitude and latitude coordinates (r = .562, p < .001, n = 50),

showing that human participants can reliably determine the location of these cities. Human

bidimensional regressions also correlated with the computational findings, as shown in

Table 8.

Table 8

Correlations between human and computational longitude and latitude estimates (by newspaper corpus)

Human Estimates

(Longitude)

Human Estimates

(Latitude)

Human Estimates

(Bidimensional Regressions)

Wall Street Journal .588** .400** .497**

New York Times .415** .590** .337**

Los Angeles Times .411** .456** .427**

Note: **p < .01.
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4.2.2. Relative estimate

In Study 1 we found evidence for Friedman et al.’s (2002) proximity hypothesis finding

that an estimation bias decrease with the increasing physical distance from the source (i.e.,

participant’s home town or source of newspaper). All participants in Study 2 were residents

of Memphis, Tennessee, or its suburbs. According to the proximity hypothesis participants

should therefore be more accurate in their estimates for these areas in the Midsouth than for

areas elsewhere in the country. Alternatively, according to Friedman et al.’s (2002) findings

and the findings in Study 1, estimates for the areas in the Midsouth are less accurate than

those further away.

As in Study 1 coordinates were normalized on a 100-unit scale and absolute errors were

computed by averaging the absolute values of the signed errors (actual coordinates minus

the estimates). Differences were found between the four regions for latitude

(F(3,46) = 8.80, p < .001, MSE = 114.84, g
2
p = .365). A Scheffé post-hoc analysis

revealed that West and Midwest regions differed from South and Northeast regions, with

only the latter two being reliably different than zero (South: t(19) = 4.05, p < .001; West:

t(17) = 9.35, p < .001). These findings suggest that participants tend to overestimate lati-

tude for the cities in South and West regions, but not for the Midwest and Northeast regions.

Estimate differences between the four regions were also found for longitude

(F(3,46) = 22.478, p < .001, MSE = 95.252, g
2
p = .594). Scheffé post-hoc comparisons

revealed that cities in the West region differed from all other regions (p < .05), but no dif-

ferences were found between these other three regions. Three regions reliably differed from

zero (Midwest: t(8) = 33.53, p < .001; South: t(19) = 3.42, p < .003; West: t(17) = 31.14,

p < .001), with participants underestimating longitude coordinates. The one exception,

which approximated significance, was the Northeast region notably because of the small

number of data points (t(2) = 3.02, p < .09).

As with Friedman et al.’s (2002) results and the results in Study 1, absolute errors for lati-

tude suggest that participants’ belief bias cannot be explained by a proximity hypothesis. On

the contrary, estimation biases seem to be high for the areas close to participants’ residence.

Friedman et al.’s (2002) explained this bias by referring to cognitively based beliefs, geopo-

litically based beliefs, and socioculturally based beliefs. These beliefs may tie in with the

recognition heuristic discussed earlier (Goldstein & Gigerenzer, 2002).

4.2.3. Population

Participants’ population estimates correlated with the actual population estimates accord-

ing to those reported by the Census Bureau (r = .507, p < .01, n = 50) as well as with the

newspaper estimates (Wall Street Journal: r = .667, p < .001, n = 50; New York Times:

r = .685, p < .001, n = 50; Los Angeles Times: r = .687, p < .001, n = 50), suggesting that

participants can give an acceptable estimate of the population size of the 50 cities. Estimates

are presented in Table 9.

4.2.4. Comparison between human and corpus-based estimates

To compare the human-actual and corpus-actual correlation coefficients for latitude and

longitude estimates, we used the method as described in Blalock (1972). Longitude and
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Table 9

Population estimates for the 50 cities

City Population NYT WSJ LAT Estimate Subjects

Albuquerque 384,736 47 17 27 314,607.1

Arlington 261,721 63 22 34 404,428.6

Atlanta 394,017 927 220 164 1,265,357.1

Austin 465,622 73 125 38 896,214.3

Baltimore 736,014 191 105 195 719,821.4

Boston 574,283 1,679 504 237 1,671,214.3

Charlotte 395,934 170 55 42 446,642.9

Chicago 2,783,726 856 658 379 2,569,821.4

Cleveland 505,616 278 92 77 767,535.7

Colorado Springs 281,140 52 12 3 319,714.3

Columbus 632,910 102 57 45 462,714.3

Dallas 1,006,877 515 276 98 1,165,928.6

Denver 467,610 307 148 63 826,678.6

Detroit 1,027,974 317 131 83 1,359,928.6

El Paso 515,342 14 35 12 384,285.7

Fort Worth 447,619 67 46 12 467,857.1

Fresno 354,202 15 6 4 386,259.3

Honolulu 365,272 11 10 25 492,464.3

Houston 1,630,553 353 325 125 1,520,357.1

Indianapolis 731,327 101 38 17 531,428.6

Jacksonville 635,230 69 20 9 538,642.9

Kansas City 584,913 296 121 31 492,642.9

Las Vegas 258,295 209 75 113 1,510,785.7

Long Beach 429,433 46 9 18 417,678.6

Los Angeles 3,485,398 932 366 948 5,940,535.7

Louisville 269,063 43 45 24 517,142.9

Memphis 610,337 62 33 41 945,035.7

Mesa 288,091 34 31 18 269,500

Miami 358,548 488 134 201 1,197,500

Milwaukee 628,088 108 45 25 821,035.7

Minneapolis 368,383 92 137 23 757,321.4

Nashville 488,374 88 33 49 739,178.6

New Orleans 496,938 154 38 106 584,642.9

New York 7,322,564 4,586 2,403 1,844 4,099,107.1

Oakland 372,242 188 34 34 761,851.9

Oklahoma City 444,719 83 18 133 459,464.3

Omaha 335,795 16 23 17 287,357.1

Philadelphia 1,585,577 356 165 123 1,502,500

Phoenix 983,403 303 57 38 1,050,142.9

Portland 437,319 144 46 43 639,142.9

Sacramento 369,365 89 17 24 874,678.6

San Antonio 935,933 127 105 27 797,777.8

San Diego 1,110,549 201 94 185 970,178.6

San Francisco 723,959 458 270 265 1,151,607.1

San Jose 782,248 70 52 23 457,285.7

Seattle 516,259 304 138 116 125,175

M. M. Louwerse, R. A. Zwaan ⁄Cognitive Science 33 (2009) 67



latitude correlations were significantly higher for humans than for the Wall Street Journal,

New York Times, and Los Angeles Times (longitude: z = 1.978, 3.933, 3.720; latitude: 4.118,

3.672, 3.496), respectively. All differences were at the p < .01 level except for the Wall

Street Journal correlations on longitude. For the bidimensional regressions no differences

were found in the correlations between the human estimates and the three corpus estimates

(z = .274, 1.725, .897 respectively). For population, corpus estimates were significantly

higher than human estimates for the Wall Street Journal and the New York Times, though

not for the Los Angeles Times (z = 2.571, 3.097, .773, respectively).

However, these results only concern correlations. In addition to these correlational

results, it would be desirable to know more about the accuracy of the computational and

human data. In order to compute absolute errors, as in the analyses reported earlier, data

needed to be normalized by transforming actual latitude and longitude, the dimension load-

ings of the newspaper corpora, and the human data transformed to a 0–100 scale.

Absolute errors were significantly higher for latitude estimates than longitude estimates

for the three newspapers (Wilcoxon Z = )4.89, p < .001, n = 50), but no such difference

was found in participants. Less absolute errors were found in the newspaper corpora than in

human participants for longitude (Mann–Whitney U = 960, z = )1.99, p = .04), but the

opposite was true for latitude (Mann–Whitney U = 1,193, z = )3.32, p = .001). Results are

presented in Table 10.

Accuracy for population estimates were computed by determining the absolute error of

the participant performance and newspaper city frequencies compared to the actual popula-

tion counts. Because the minimum frequency in the newspaper population data was 2, the

minimum population estimate was 5,000, and the minimum city population 258,295, we

multiplied newspaper frequencies by 1,000. Absolute errors for the three newspapers were

lower than for the human estimates. This difference was significant (Mann–Whitney

U = 922, z = )2.261, p = .02, n = 100) (See Table 10).2

Table 9

(Continued)

City Population NYT WSJ LAT Estimate Subjects

Tucson 405,390 25 14 15 419,178.6

Tulsa 367,302 26 34 8 319,642.9

Virginia Beach 393,069 2 2 10 744,464.3

Washington 606,900 1,563 1,136 2,404 2,354,464.3

Table 10

Mean (and SD) absolute errors newspaper and human estimates

Newspaper Participants

Population 648,636.3 (718,650.4) 923,899.8 (1,120,026)

Longitude 21.88 (8.03) 33.24 (20.77)

Latitude 44.53 (20.65) 30.72 (17.38)
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4.3. Discussion

Study 2 was conducted to address four questions. The first question was to what extent

human participants are able to locate the 50 largest cities in the U.S. cities on a map and

estimate their population size. The results show that human participant estimates for longi-

tude, latitude, and population size all correlated with the actual geographical data.

The second question was whether the human subjects showed specific biases in their esti-

mates. The most consistent estimation biases were found for the West and South regions (in

both latitude and longitude). Though the unequal group sizes increase Type I errors, no evi-

dence was found for the proximity hypothesis that stated that residents would be more accu-

rate in estimates closer to home. On the contrary, evidence was found for the less accurate

estimates close to the residency of participants. Admittedly, the participants of this study

came from a college population that is typically geographically heterogeneous. Nevertheless,

the effects found for relative estimates were in line with Friedman et al.’s (2002) findings.

The third question asked how well the human participants fared in comparison with the

corpora with regard to estimating longitude, latitude, and population. Our results indicate

that the human estimates of longitude and latitude were significantly more highly correlated

with actual locations than were the corpus-based estimates. On the other hand, two of the

corpus-based sets of population estimates yielded higher correlations than did the human

estimates. The overall results show human participants were more accurate in estimating the

latitude of the 50 cities compared to the corpus data. However, for longitude the newspaper

corpus estimates outperformed human estimates. The accuracy for population size was also

higher for newspaper estimates compared to human estimates.

The fourth and final question was to what extent the corpus estimates predicted the

human estimates. The results indicated that 16–35% of the latitude and 17–35% of the longi-

tude variance in human location estimates was predicted by the corpus data and 44–47% of

the variance in population estimates. These results suggest that human geographical esti-

mates might be based in part on spatial information implicitly coded in language.

5. General discussion

Our results show that corpus-based analyses using word frequency and word co-occur-

rences provide estimates of relative geographical distances and population sizes that corre-

spond reliably with population and latitude and longitude of 50 largest cities in the United

States. These relative estimates also correlate with human estimates. Moreover, the corpus-

based estimates exhibited the same estimation biases found in the human estimates. For

humans, estimates were less precise for the region of residence than for other regions. Simi-

larly, the newspaper corpora yielded more precise estimates for the West region by the Wall

Street Journal and New York Times corpora than the Los Angeles Times and reverse patterns

for the eastern regions.

It is far from obvious that computational linguistic techniques can predict geographical

information. First, newspaper corpora do not explicitly discuss geographical information as

M. M. Louwerse, R. A. Zwaan ⁄Cognitive Science 33 (2009) 69



geography textbooks for instance may do. Hence, topic cannot account for the findings in

this study. In fact, there is little that predicts a semantic similarity between cities. For

instance, none of the 50 nearest LSA neighbors of the word Seattle happens to be among the

nearest neighbors of the word Portland, suggesting that the shared semantic contexts

between these two words are limited. Moreover, the geographical meaning of a word is at

best ambiguous. For instance, there may be a semantic relation between the word Washing-

ton on the one hand and Seattle (LSA cos. = .39) and Portland (cos. = .13) on the other, but

there is nothing that would distinguish the state Washington from the city Washington. A

similar problem occurs with words like New York, which has a semantic relation with any-

thing else that is novel, like a new book (cos. = .54), a new house (cos. = .57), a new car

(cos. = .46), as well as with New Mexico (cos. = .52) and New Orleans (cos. = .88). Conse-

quently, it is quite remarkable for even the slightest correlation to emerge between geo-

graphical coordinates and semantic similarity.

The argument could be made that the correlations between the MDS loadings based on

the LSA cosine values and first-order co-occurrence frequencies can be attributed to a small

number of cities that coincidentally have high co-occurrence matches. However, this argu-

ment is not supported by other research (Louwerse et al., 2006). To illustrate this further, 10

random samples of data points were taken from the Wall Street Journal estimates and the

actual latitude and longitude. Bidimensional regressions on average showed a significant

correlation between the sample of newspaper estimates and the actual coordinates (Mean

r = .68, SD = .12).

More research is needed to determine the mechanisms behind the implicit encoding of

geographical information in language and whether comprehenders use these language cues

for their understanding of the geographical world. Goldstein and Gigerenzer (1999, 2002)

argued that textual information fulfills a mediator function, particularly when factual infor-

mation is not readily accessible. Our data suggest that between 16% and 35% of the latitude

and longitude variance in human location estimates and 45% of the variance in population

estimates can be attributed to linguistic coding. Elsewhere (Louwerse, 2008; Louwerse

et al., 2006; Zwaan & Madden, 2005, pp. 227–230) we have argued that language is orga-

nized such that it reflects semantic relations in the physical world. Prelinguistic conceptual

knowledge (e.g., geographical proximity) used when speakers formulate utterances gets

translated in linguistic conceptualizations (collocations) (Levelt, 1989), so that as a function

of language use, geographical information becomes encoded in language. Conversely, in

going from text to mental representation, comprehenders form situation models (Van Dijk

& Kintsch, 1983; Zwaan & Radvansky, 1998), which in ideal cases correspond in essential

ways to the mental representation that the speaker started out with. It is possible that our

participants based their estimates in part on situation models. This would suggest that the

language effect is mediated in part by conceptual representations. However, this account is

clearly speculative.

Our results suggest that a remarkable amount of geographical information can be

extracted from large corpora of newspaper articles texts that did not explicitly discuss

such information. It is this aspect that makes the results relevant for the study of

human spatial cognition, as it suggests that a significant amount of geographical
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information can be acquired incidentally by reading a large number of texts that are

about topics other than geographical distance or population size, because language

encodes geographical information.

Notes

1. It is worth pointing out that the dimensions with the highest correlations for latitude

were consistently higher (200 range) than the highest correlations for longitude (100

range), possibly suggesting a latent clustering of information that correlates with the

geographical location.

2. Even when the newspaper frequencies were not multiplied by 1,000, absolute errors

were still lower for newspaper frequencies than for human estimates (M = 810,893.8,

SD = 1,110,237 vs. M = 923,899.8, SD = 1,120,026). This difference, however, was

not significant (U = 1,115, z = ).931, p = .352, n = 100).
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