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Shepard’s universal law of generalization is a remarkable hypothesis about how intelligent organisms should

perceive similarity. In its broadest form, the universal law states that the level of perceived similarity between

a pair of stimuli should decay as a concave function of their distance when embedded in an appropriate

psychological space. While extensively studied, evidence in support of the universal law has relied on

low-dimensional stimuli and small stimulus sets that are very different from their real-world counterparts.

This is largely because pairwise comparisons—as required for similarity judgments—scale quadratically

in the number of stimuli. We provide strong evidence for the universal law in a naturalistic high-dimensional

regime by analyzing an existing data set of 214,200 human similarity judgments and a newly collected data

set of 390,819 human generalization judgments (N= 2,406 U.S. participants) across three sets of natural

images.

Public Significance Statement

Humans constantly form generalizations, whether when trying to identify the color of an object or rea-

soning about which action to take based on past experiences. Understanding how generalizations relate

to underlying psychological representations is a core problem in cognitive science. The universal law of

generalization is a fundamental hypothesis concerning the nature of this relationshipwhich states that the

strength of generalization between two stimuli should decay as a universal exponential function of their

psychological distance.While extensively studied, evidence for the universal law comes from small data

sets and artificial stimuli that are very different from the real world. Our work is the first to provide strong

evidence for the universal law in a high-dimensional naturalistic domain by collecting and analyzing

605,019 human similarity and generalization judgments for natural images.
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Every day, humans interact with complex perceptual objects that

vary in modality, structure, and function. Whether deciding when to

cross a street, recognizing the face of a friend, or trying to determine

whether a novel fruit will taste good, we need to form meaningful

generalizations from past perceptual experiences. This problem of

generalization is arguably one that we share with all intelligent spe-

cies, something that led Roger Shepard to propose a candidate for the

first universal law of psychology (Shepard, 1987). Shepard’s univer-

sal law of generalization—intended to hold for intelligent entities

anywhere in the universe—asserts that the extent to which a property

is generalized from one stimulus to another should decrease as a con-

cave function (usually exponential) of the distance between those

stimuli in psychological space. This idea has been elaborated upon

in Bayesian models of cognition (Tenenbaum & Griffiths, 2001),

and linked to information-theoretic principles such as maximum

entropy (Myung & Shepard, 1996), Kolmogorov complexity

(Chater & Vitányi, 2003), and efficient coding (Sims, 2018).

Implicit in Shepard’s proposal is the idea that it is possible to rep-

resent perceptual stimuli in a psychological space—typically a low-

dimensional representation where the similarity between two stimuli

decreases with their distance. While this idea is controversial (e.g.,

Peer et al., 2021; Tversky, 1977; Tversky & Hutchinson, 1986),

Shepard showed that such spaces can capture the similarity relation-

ships between a variety of simple perceptual stimuli. He proposed a

procedure, known as multidimensional scaling (MDS), for uncover-

ing the structure of mental representations from behavioral data

(Shepard, 1962, 1980; Steyvers, 2006). Given a set of stimuli, the
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procedure begins by constructing a similarity matrix between all

stimulus pairs, for example, by collecting similarity judgments or

confusion probabilities, and then applying an iterative algorithm

that embeds those stimuli in a psychological space (typically

Euclidean) such that similar stimuli are mapped to nearby points.

Having mapped stimuli to points in a psychological space, it

becomes possible to test the universal law. While Shepard’s (non-

metric) MDS method assumes similarity decreases with distance,

it does not specify the form of that function. This follows from the

fact that, unlike metric MDS which seeks an exact mapping between

similarity s and distance d (i.e., 1− s= d ), nonmetric MDS only

imposes the ordinal relations induced by s which, in turn, allows it

to find more flexible linking functions s= f (d ) between similarity

and distance, when d is required to arise from distances in a

Euclidean space (since distances are highly constrained by ordinal

relations up to a scaling factor when the number of points is large;

Shepard, 1966). Indeed, Shepard (1962) demonstrated that this flex-

ibility of nonmetric MDS allows it to recover arbitrary monotonic

linking functions between distance and similarity. By further analyz-

ing the abstract question of how an ideal organism should decide

whether two stimuli shared a given property, Shepard (1987) showed

that this function should be concave.Mathematical analysis of a vari-

ety of different assumptions about the distribution of properties in

psychological space showed that generalization typically decreased

as an exponential function of distance. Shepard then demonstrated

that this theoretical relationship held for a wide array of stimuli

that had been embedded into a psychological space via MDS,

including geometric shapes, phonemes, colors (in both humans

and pigeons), and even Morse code signals.

Despite the success of Shepard’s account, two clear limitations

remain. First, for a set of N stimuli, MDS requires on the order of

N
2 pairwise comparisons to construct a full similarity matrix

which, as the number of stimuli increases, necessitates a large

amount of human data. For example, a set of 100 stimuli would

require on the order of 10,000 similarity judgments, without even

including any repetitions to ensure data quality. This bottleneck

has recently propelled a line of research aimed at finding cheaper

approximations for human similarity matrices (Jha et al., 2023;

Marjieh et al., 2023; Roads & Love, 2021). Second, and in part as

a result of the first limitation, most of the evidence for the universal

law comes from studies that are limited to low-dimensional artificial

stimuli and small stimulus sets (Cheng, 2000; Ghirlanda & Enquist,

2003; Shepard, 1987; Sims, 2018). Even though more recent work

such as that of Sims (2018) has considered somewhat richer stimuli

such as synthesized instrument timbres and vibrotactile patterns,

these were still limited to small data sets on the scale of 10–20 stim-

uli. These limitations make it hard to draw conclusions about the sta-

tus of the universal law of generalization in the high-dimensional

regime of real-world stimuli, especially as fundamental problems

in psychology continue to be reshaped by large-scale behavioral

studies (see, e.g., Awad et al., 2018; Battleday et al., 2020;

Marjieh et al., 2022; Peterson et al., 2021).

To address this gap, we leveraged recent advances in online

recruitment as well as the availability of naturalistic image data

sets to test the universal law of generalization in a high-dimensional

setting. Specifically, we considered a data set of similarity judg-

ments over three sets of images recently collected by Peterson

et al. (2018) where each data set comprised 120 images from a

given natural category, namely, animals, fruits, and vegetables.

This data set consisted of 214,200 human judgments. To account

for the different ways in which similarity scores can be constructed,

we augmented this data set with a newly collected set of generalization

judgments where participants rated how likely it is a certain blank

property (Kemp&Tenenbaum, 2009; Osherson et al., 1990; e.g., hav-

ing an enzyme) generalizes from one stimulus to another. The latter

data set comprises 390,819 generalization judgments from 2,406

online participants. We used these data to directly test the universal

law of generalization in this high-dimensional large-scale regime.

Method

Our approach builds on advances in large-scale online recruitment

and experiment design to exhaustively estimate similarity matrices

over naturalistic stimuli by directly scaling up pairwise judgment

elicitation. For stimuli, we focused on natural images (Figure 1A)

for three reasons, namely, (a) they strike a balance between being

perceptually complex and being intuitive and widespread across cul-

tures, (b) they can be easily embedded within an online study, which

facilitates crowdsourcing, and (c) high-quality sets of natural images

along with accompanying behavioral data are available in the litera-

ture (Jha et al., 2023; Peterson & Griffiths, 2017; Peterson et al.,

2018). As for the paradigm, we used simple pairwise judgment elic-

itation on a Likert scale with two complementary types of human

judgments that are common to the study of representations, namely,

direct similarity judgments that answer the query “How similar are

the animals in the following two images?” (Figure 1B; Peterson et

al., 2018; Shepard, 1980), and generalization judgments that answer

the query “If the animal in Image 1 has enzyme X321, how likely is

it that the animal in Image 2 has it too?” (Figure 1C; Kemp &

Tenenbaum, 2009; Osherson et al., 1990). In the latter case, we

used a fictitious enzyme name so as to prevent participants from

resorting to any technical knowledge. Recent work on similarity

judgments for images has also used an alternative paradigm where

participants judge which of three images is the odd one out

(Hebart et al., 2020). However, we chose to use pairwise similarity

judgments to maximize the correspondence with the paradigm used

by Shepard, and because triplets scale cubically in the number of

stimuli making them even harder to scale (without further assump-

tions about deriving pairwise similarity from triplets).

Stimuli

We used sets of images from three natural categories, following

Peterson et al. (2018). Each set comprised 120 images from one of

the following categories: animals, fruits, and vegetables (see exam-

ples in Figure 1A). In addition, these data sets were supplemented

with full 120× 120 symmetric human similarity matrices sij where

each entry corresponds to an aggregate similarity score between an

image i and an image j in the range 0–1, where a value of 0 indicates

complete dissimilarity, and a value of 1 indicates complete similar-

ity. Each such similarity matrix was constructed using 71,400 human

judgments from a pool of approximately 1,200 U.S. participants

recruited on AmazonMechanical Turk (AMT; Peterson et al., 2018).

Participants

Participants for the generalization tasks were recruited online via

AMT subject to the following criteria to ensure data quality: (a) par-

ticipants must be at least 18 years of age, (b) they must reside in the
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United States, and (c) they must have an approval rate of 95% or

higher on AMT. The recruitment process was performed using the

Dallinger1 platform for experiment hosting, and the experimental

session was programmed using PsyNet, a framework for online

experiment design that is built on top of Dallinger (Harrison et al.,

2020). Overall, N= 2,406 participants completed the studies, and

they were paid $12/hour for their participation. Specifically, the

N= 773 participants in the animals condition had an age range of

21–78 years (M= 38.3, SD= 11.0), the N= 833 participants in

the fruits condition had an age range of 19–70 years (M= 39.3,

SD= 11.0), and theN= 800 participants in the vegetables condition

had an age range of 20–77 years (M= 39.1, SD= 10.9). The sample

size was selected such that each image pair received an average of

nine ratings to match that of the data sets of Peterson et al. (2018).

Procedure

After completing a consent form, participants received the fol-

lowing instructions “In this experiment, we are studying how peo-

ple form generalizations. In each trial of this experiment, you will

be presented with two images of animals/fruits/vegetables. One of

the animals/fruits/vegetables will possess a certain property, and

your task will be to judge based on that information how likely it

is that the second animal/fruit/vegetable has that property. You

will have 11 response options, ranging from 0 (not likely at all)

to 10 (very likely). Choose the one you think is most appropriate.”

Participants then proceeded to the main experiment where they

were presented with image pairs followed by the prompt “If the ani-

mal/fruit/vegetable in the left image has enzyme X132, how likely

is it that the animal/fruit/vegetable in the right image has it too?”

(see schematics in Figure 1C). Overall, 390,819 judgments were

elicited with each participant providing up to 200 judgments.

The procedure in the similarity paradigm of Peterson et al.

(2018) was analogous. Participants rated the similarity between

pairs of images on a Likert scale ranging from 0 (not similar at

all) to 10 (very similar; Figure 1B; see Peterson et al., 2018 for

additional details).

Data Analysis

From Generalization to Similarity

To convert generalization scores into similarity matrices the fol-

lowing preprocessing was applied. First, the responses of individual

participants were z-scored (within participants) to account for differ-

ent usage of the response scale across participants. Then, the

z-scored ratings were averaged across participants to produce a single

score per stimulus pair. The summarized z-scores were then con-

verted into generalization probabilities pij by passing them through

a cumulative normal distribution. Finally, to derive symmetric sim-

ilarity matrices sij we applied Shepard’s similarity formula sij =
������������

pijpji/piipjj
√

(Shepard, 1987).2 In practice, we noticed that a few

of the diagonal probabilities pii were smaller than their off-diagonal

counterparts which resulted in a generalization score that is .1 and

hence a negative entry in the distance (dissimilarity) matrix (Δij=
1− sij), likely due to noise in the similarity estimates. Since these

entries constitute only extremely small fraction of the data (0.8%),

we truncated the diagonal values by setting pii to one, similar to

Peterson et al. (2018).

MDS

Given a dissimilarity matrix Δij, MDS embeddings zwere obtained

using the manifold.MDS method from the scikit-learn Python library

(Pedregosa et al., 2011) with a maximum iteration limit of 10,000

and a convergence tolerance of 10−100. Embeddings were com-

puted in two steps: first metric MDS was applied to get an initial

embedding which was then used to initialize nonmetric MDS. We

chose a d= 4 dimensionality for the embedding space based on an

MDS stress curve analysis (shown in Figure A1; for visualization

purposes only we used d= 2 in the figures below) whereby the

first dimension d for which all stress values across all data sets

dropped below 0.2 was selected (a standard threshold above

which MDS fit is deemed poor; Kruskal, 1964). Finally, to con-

struct generalization gradients we computed Euclidean distance

Figure 1

Example Stimuli and Schematics of the Different Behavioral

Paradigms

A. B.

C.

A
n
im

a
ls

V
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g
e
ta
b
le
s

F
ru
it
s

Note. (A) Example images from three natural categories, namely, animals,

fruits, and vegetables, and schematics of the two elicitation queries used in

the presentwork, namely, (B) direct similarity judgments, and (C) generalization

judgments. Animal examples are adapted from Berkeley Segmentation Dataset

and Benchmark (BSD), “ADatabase of Human Segmented Natural Images and

Its Application to Evaluating Segmentation Algorithms and Measuring

Ecological Statistics,” by D. Martin, C. Fowlkes, D. Tal, and J. Malik,

Proceedings Eighth IEEE International Conference on Computer Vision.

ICCV 2001 (Vol. 2, pp. 416–423), 2001, Copyright 2001 by IEEE. Fruit sam-

ples are adapted fromRedAppleWith Leaf, by PaulNeo, 2013 (https://commons

.wikimedia.org/wiki/File:Red_apple_with_leaf.jpg). In the Public Domain

(CC0); Autumn Red Peach, by Jack Dykinga, U.S. Department of

Agriculture, 2013 (https://en.m.wikipedia.org/wiki/File:Autumn_red_peach

.jpg). In the Public Domain (CC0). Vegetable samples are adapted from

Two-Color Corn, by Rosana Prada, 2007 (https://www.flickr.com/photos/

zanastardust/1303616796). CC BY 2.0; Fresh Arugula Salad, by Pilipphoto

on Adobe Stock (https://stock.adobe.com/images/fresh-arugula-salad/

67887886). Copyright by Adobe Stock Extended License (purchased by

authors). See the online article for the color version of this figure.

1 https://dallinger.readthedocs.io/en/latest/.
2Note that this formula does not change the similarity matrices of Peterson

et al. (2018) since
�����������

sijsji/siisjj
√

=
���

s2ij

√

= sij due to the fact that sij= sji≥ 0

and that sii= sjj= 1.
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between all MDS embedding vectors dij = ‖zi − zj‖2 and com-

bined them with their corresponding similarity scores sij to pro-

duce the two-dimensional set D= {(dij, sij)}. We analyzed the

resulting generalization gradients in two complementary ways,

namely, by directly fitting curve models to the raw set D, and by

fitting them to a binned version of D. The former served as a con-

servative test, and the latter as more balanced one meant to eval-

uate the average curve and to take into account the fact that

different regions of the generalization gradient have different den-

sities (e.g., high similarity pairs are much less common than low

similarity pairs which can overemphasize the tail of the gradient).

The binning was done by dividing the distances {dij} into 100 bins

and then computing the average dij and sijwithin each bin and their

standard errors.

Model Fitting and Evaluation

To test the universal law, we evaluated the extent to which an

exponential function of the form g(x)= ae
−bx + c could account

for the generalization gradients D relative to four other models of

increasing complexity, namely, a simple linear model g(x)= ax +

b, a quadratic model g(x)= ax
2 + bx + c (same complexity as expo-

nential but with the option of being either concave of convex), a

Gaussian model g(x) = ae−bx2 + c (a well-known alternative often

discussed in the literature; Chater & Vitányi, 2003), and a flexible

generalized additive model (GAM), that is, a model of the form

g(x) = a+
∑

i bifi(x) where fi(x) is a basis of cubic splines

(Hastie et al., 2009), as well as the intrinsic interrater variability of

the data. To fit the exponential, linear, quadratic, and Gaussian mod-

els we used the curve_fit least squares optimizer in scipy, and to fit

the GAM we used the LinearGAM method of the pygam package

(Servén &Brummitt, 2018) which by default uses 20 basis functions

and optimizes the model parameters in a cross-validated grid-search

manner. For model evaluation, and to accommodate both for the

possibility of overfitting and to adjust for degrees of freedom, we

performed a split-half bootstrap analysis whereby 100 data splits

were produced by randomly dividing the ratings per image pair in

half and then producing two generalization gradients Dh1 and Dh2

to which the model was fitted yielding two sets of predictions

{s′ij}h1 and {s′ij}h2 . We then computed the following Pearson corre-

lation coefficients between the data–model sets {sij}h1 , {s
′
ij}h1 and

{sij}h2 , {s
′
ij}h2 : rdd data–data correlation, rmm model–model correla-

tion, rdm data–model correlation (there are two splits for each ran-

domized split half, and thus there are two ways to compute this

which we averaged), and rc = rdm/
��������

rddrmm
√

the data–model correla-

tion corrected for attenuation (Jensen, 1998). In addition, we provide

the coefficient of determination (variance explained [VE]) R2 for

each of the fitted models. Finally, since we are specifically interested

in how models perform relative to the exponential model, we boot-

strapped the difference in the coefficient of determination DR2 =
R2
exponential − R2

model on each training half (DR2
train) as well as its cor-

responding test half (DR2
test). This way we can assess both the relative

quality of fit as well as the model’s generalization ability (i.e., penal-

ize complex models that are too flexible and simple models that are

too rigid). We note that in computing all metrics we excluded trivial

self-similarity points (d= 0, s= 1) to prevent artificial inflation of

values.

Transparency and Openness

All data and analysis code considered in the present work, as well as

all necessary code for reproducing the online behavioral experiments,

Figure 2

Similarity Matrices Over the Different Domains of Natural Images and the Two Judgment

Elicitation Tasks Considered, Namely, Direct Similarity Judgments and Generalization

Judgments

Note. See the online article for the color version of this figure.
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are made publicly available in the following Open Science Framework

repository: https://osf.io/rbkgh (see Method for additional details

regarding data analysis). This work was not preregistered. All partici-

pants provided informed consent prior to participation in accordance

with an approved Princeton University Institutional Review Board

(Protocol 10859).

Results

The average similarity matrices over the different domains and

tasks are summarized in Figure 2. The first thing to observe is that

the generalization and similarity judgment tasks yield results that

are significantly correlated across domains, with a Pearson correla-

tion of r= .71 (95% confidence interval [CI] [.69, .74]) for animals,

r= .55 (95% CI [.52, .58]) for fruits, and r= .36 (95% CI [.33, .40])

for vegetables (CIs bootstrapped over participants with 100 repeti-

tions). This is consistent with the expectation that generalization

over blank properties and similarity judgments capture shared vari-

ance (Kemp & Tenenbaum, 2009).

Next, to get a better sense of the psychological content of those

spaces, we visualized their two-dimensional MDS solutions in

Figure 3. All three domains revealed a semantically structured organi-

zation of the stimuli (a large high-resolution version of the figure is

provided in the OSF repository). In the case of animal images, distinct

and interpretable organization schemes emerged, corresponding to

animal categories such as herbivores, carnivores, amphibians, reptiles,

and birds. In the case of fruits and vegetables, the distribution is more

continuous, with color serving as a clear semantic axis, with interpret-

able subclasses occupying different areas of the space such as citrus

fruits and berries in the case of fruits, and whether the vegetable

grows above or below the ground in the case of vegetables. These

results are consistent with the findings of Peterson et al. (2018) in

the case of similarity and extend them to generalization, implying

again that both tasks are capturing shared semantic content.

We are now ready to analyze the generalization gradients for each

of the conditions and test to what extent they can be explained by the

different models. The average binned gradients along with their opti-

mal fit for all models are shown in Figure 4 (seeMethod; raw gradients

are shown in Figure A2; explicit fitted parameter values and their CIs

are provided in Tables A1–A4 and B1–B4 for the raw and binned

analyses, respectively). As can be seen, the scatter points appear to fol-

low a concave trend, with the similarity data in particular tightly track-

ing the exponential curve, which also overlaps substantially with the

quadratic, Gaussian (except at short distances), and GAM models.

The linearmodel, on the other hand, appears tofind some intermediate

compromise due to its limited flexibility. To quantify this, we provide

the full list of evaluationmetrics on the raw gradients in Tables 1 and 2

(see Tables A5 and A6 for additional metrics; see also Tables B5–B8

for the binned equivalent). The exponential function provides an

excellent model for the data with an average model–data Pearson cor-

relation of rc= .96 (corrected for attenuation, see Method). To see

where the exponential model stands with respect to the different mod-

els in each condition, we performed a cross-validation analysis

wherebywe bootstrapped the difference inVE relative to the exponen-

tial modelDR2 = R2
exponential − R2

model across training (DR
2
train) and test

(DR2
test) split-halves (see Method). Starting from the domain of simi-

larity, we found that the exponential model outperformed the linear

model in all three domains, with DR2
train 95% CIs given by [.06,

.08], [.12, .15], [.12, .15] for animals, fruits, and vegetables, respec-

tively (positive values favor exponential in our definition). The same

holds for the corresponding DR2
test CIs (i.e., when penalizing for com-

plexity), [.07, .08], [.13, .15], [.13, .15]. As for the quadratic solution,

the models performed practically the same (with a slight boost for the

exponential) withDR2
train CIs given by [−.002, .001], [.006, .020], and

[.008, .016] for animals, fruits, and vegetables, respectively (and like-

wise for the corresponding DR2
test [−.001, .001], [.013, .023], and

[.013, .019]). Crucially, however, all quadratic solutions converged

on concave curvature with strictly positive second derivatives g′′(x)=
2a. 0 with CIs [1.77, 1.85], [2.36, 2.24], and [2.22, 2.31] (see

Table A3) consistent with the universal law hypothesis. Next, for the

Gaussian solution, we have DR2
train CIs [.01, .02], [.01, .03], and

[.01, .03] andDR2
test CIs [.01, .02], [.02, .03], and [.02, .03] for animals,

fruits, and vegetables, which suggest a small but robust preference for

the exponential model. This small difference is expected as the

Gaussian solution is largely concave except for the near-zero region.

Finally, for the flexible GAM model, we found that it was unable to

meaningfully improve on the exponential model despite its flexibility,

with DR2
train CIs given by [−.008, .000], [−.010, −.002], [−.008,

−.001], and DR2
test CIs given by [−.005, −.001], [−.004, .002],

[−.004, .001], for animals, fruits, and vegetables, respectively.

As for the generalization data, we observed a similar pattern,

namely, the exponential model outperformed the linear (DR2
train

CIs, [.016, .029], [.009, .028], [.006, .030], and DR2
test CIs, [.021,

Figure 3

Two-Dimensional MDS Embeddings for the Similarity and

Generalization Data With the Raw Image Stimuli From the

Different Natural Categories Overlaid

Note. MDS=multidimensional scaling. See the online article for the

color version of this figure.
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.032], [.021, .034], [.030, .054], for animals, fruits, and vegetables,

respectively). Likewise, the quadratic model performed on par with

the exponential model (DR2
train CIs, [.000, .002], [.002, .005], [.005,

.014], and DR2
test CIs, [.000, .002], [.005, .008], [.021, .028]), and

was strictly concave on all domains (g′′(x)= 2a. 0 with CIs

[0.82, 0.93], [0.90, 1.05], and [0.99, 1.13]). Similarly, for the

Gaussian solution we have DR2
train CIs [.006, .013], [.011, .021],

[.018, .040], and DR2
test CIs, [.004, .012], [.015, .025], [.022,

.040]. Finally, the GAM model did not improve on the exponential

model despite the additional degrees of freedom DR2
train CIs, [−.003,

.001], [−.005, .001], [−.012,−.001], and DR2
test CIs, [−.002, .002],

[−.003, .002], [−.012, −.001]).

As an additional control to ensure that the exponential relation

does not arise merely from theMDS algorithm itself, we randomized

Figure 4

Generalization Gradients Across Domains of Natural Images and Tasks With the Optimal Model Fits

Overlaid

Note. Error bars indicate 95% confidence intervals. GAM= generalized additive model; MDS=multidimen-

sional scaling. See the online article for the color version of this figure.

Table 1

Full List of Model Evaluation Metrics on the Similarity Tasks and Their 95% Confidence Intervals

Based on Split-Half Bootstrap Over Trials With 100 Repetitions

Category Model R
2

δR
2

rmd δrmd rc δrc

Animals Exponential .854 .005 .906 .002 .982 .01
Animals Linear .784 .006 .868 .003 .968 .033
Animals Quadratic .854 .005 .906 .002 .98 .008
Animals Gaussian .840 .006 .899 .003 .970 .007
Animals GAM .858 .005 .907 .003 .983 .008
Fruits Exponential .575 .014 .69 .009 .998 .022
Fruits Linear .441 .014 .615 .008 .933 .048
Fruits Quadratic .563 .015 .683 .009 .991 .021
Fruits Gaussian .557 .016 .680 .009 .982 .015
Fruits GAM .581 .014 .692 .009 .997 .019
Vegetables Exponential .645 .010 .75 .007 .99 .009
Vegetables Linear .509 .010 .679 .005 .902 .015
Vegetables Quadratic .633 .011 .743 .007 .983 .009
Vegetables Gaussian .624 .012 .739 .007 .977 .008
Vegetables GAM .649 .010 .752 .007 .992 .008

Note. The measures are: R2= coefficient of determination; rmd=model–data Pearson correlation; rc=model–data
correlation corrected for attenuation; GAM= generalized additive model. δ indicates 95% confidence error (i.e., δX=
1.96 · σX where σX is the standard deviation of X ). See Method for full details.
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our data by shuffling the entries of the similarity and generalization

matrices and then recomputed the generalization gradients (since

these matrices are symmetric with unit diagonal, the shuffling

boils down to the upper triangle). The resulting gradients are

shown in Figure A3. As can be seen, the concave patterns largely

disappear (compared to original Figure A2), and indeed, the VE of

the exponential model dropped drastically relative to the original

baseline: for the original similarity data sets we have 85.4%,

57.5%, and 64.5% VE for animals, fruits, and vegetables, respec-

tively, whereas for the shuffled data sets we only have 16.0%,

19.2%, and 18.9%. Likewise, for the original generalization data

sets, we have 52.2%, 32.0%, and 20.2% VE for animals, fruits,

and vegetables, respectively, whereas for the shuffled data, we

have 12.6%, 12.4%, and 11.9%. Moreover, the other models per-

formed equally poorly on the shuffled data (,20% VE) suggesting

that the relationship in this case is largely unstructured (see also

Appendix C for an additional control regarding model misspecifica-

tion). Viewed together, these results provide strong evidence for the

universal law of generalization.

Discussion

Shepard’s universal law of generalization stands out as a theoret-

ical claim about cognition in its intended scope, covering all intelli-

gent entities and all stimuli. However, previous work had only

evaluated it using relatively small, simple sets of stimuli. We

assessed its performance in large sets of high-dimensional natural

images comprising more than 600,000 human judgments. Our

results provide robust evidence for the validity of the universal

law and extend its long research tradition into rich naturalistic

domains. By analyzing both similarity and generalization judg-

ments, we also confirmed that generalization over blank properties

and default similarity judgments indeed capture shared sources of

variance even when the dimensionality of the space is particularly

large.

There are a number of limitations of the present work that can be

further addressed by future research. First, our population was lim-

ited to online U.S. participants to allow for efficient scaling of

data crowdsourcing. However, cross-cultural research is necessary

in order to evaluate the extent to which our findings generalize

beyond U.S. populations and English speakers (Blasi et al., 2022).

Nevertheless, the fact that we focused specifically on widespread

natural categories should facilitate such an investigation. Second,

in the present work, we restricted ourselves to the visual modality,

but one could equally consider natural categories in other primary

modalities like the auditory and audio-visual (e.g., environmental

sounds and scenes). While perhaps not as common as images,

large behavioral data sets over such domains are becoming increas-

ingly more accessible due to the growing interest in multimodal

models in the machine learning community (see, e.g., Gemmeke

et al., 2017; Marjieh et al., 2023). Third, future work could explore

how the results of our generalization analysis vary when other blank

properties are considered. Indeed, one might expect that different

blank properties may activate different forms of inductive reasoning

(Kemp & Tenenbaum, 2009) as well as intersubject variation. The

extent to which these too support the universal law of generalization

is an open question that requires further investigation. Finally, natu-

ralistic stimuli provide much more space than artificial stimuli

for interrogating the relationship between generalization and similar-

ity. Our results showed a significant correlation between similarity

and generalization, but it varied significantly across domains. This

raises questions such as what features of a complex stimulus people

rely on when generalizing from one stimulus to another, and

how their weights differ when people evaluate similarity. This is

particularly relevant when one considers the research prospects

that are enabled by modern deep learning methods beyond tradi-

tional MDS. For example, one could use the framework of contras-

tive learning to incorporate similarity judgments in the training

of deep networks (Muttenthaler et al., 2023) and then compare the

generalization behavior of those networks against their learned

representations and human data. In fact, this idea of learning an

embedding based on one type of data (e.g., generalization judg-

ments) and testing it on the other (e.g., similarity judgments)

might be informative even within the framework of MDS. As a

proof-of-concept, we computedMDS distances based on generaliza-

tion data and plotted them against similarity data. The results again

Table 2

Full List of Model Evaluation Metrics on the Generalization Tasks and Their 95% Confidence

Intervals Based on Split-Half Bootstrap Over Trials With 100 Repetitions

Category Model R
2

δR
2

rmd δrmd rc δrc

Animals Exponential .522 .031 .655 .01 .951 .015
Animals Linear .500 .032 .641 .01 .946 .026
Animals Quadratic .521 .031 .656 .01 .95 .014
Animals Gaussian .513 .031 .654 .01 .944 .012
Animals GAM .523 .031 .656 .01 .951 .015
Fruits Exponential .320 .023 .459 .012 .875 .023
Fruits Linear .301 .022 .449 .012 .863 .028
Fruits Quadratic .316 .023 .458 .012 .872 .023
Fruits Gaussian .304 .023 .451 .012 .864 .023
Fruits GAM .322 .023 .46 .012 .879 .024
Vegetables Exponential .202 .016 .265 .016 .928 .047
Vegetables Linear .184 .014 .263 .016 .903 .048
Vegetables Quadratic .192 .015 .261 .016 .918 .048
Vegetables Gaussian .173 .015 .248 .016 .915 .056
Vegetables GAM .209 .016 .27 .016 .933 .045

Note. See Table 1 for definitions of the various evaluation metrics. GAM= generalized additive model.
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revealed tight exponential relations (Figure C1), however, curiously

the curve for the animal domain exhibited a small nonconcavity at

small MDS distances which suggests a nontrivial relation between

similarity and generalization judgments. One possible interpretation

is that people are more conservative when they reason about scien-

tific facts (e.g., having an enzyme) in a familiar domain like that

of animals (relative to the less constrained similarity judgments).

We hope to engage with these questions more systematically in

future work.

More broadly, our work showcases the prospects of scaling up

psychological research, providing unprecedented precision for

tests of foundational hypotheses in cognitive science, as well as

new avenues for exploration of naturalistic stimuli. If our goal is to

identify universal psychological principles underlying human cogni-

tion, being able to test those principles in naturalistic settings is

essential to making strong claims about their universality. Finding

that the universal law of generalization holds for natural images pro-

vides support for its use as a component of other cognitive models

applied to these rich and complex stimuli (e.g., Battleday et al.,

2020; Sanders & Nosofsky, 2020), laying the groundwork for

more extensive deployment and testing of models of human behav-

ior based on psychological theory.

Constraints on Generality

As noted in the Discussion, we focused on online U.S. popula-

tions to allow for efficient and large-scale crowdsourcing on AMT.

Further cross-cultural research is necessary in order to assess

whether our findings generalize beyond U.S. populations and

English speakers (Blasi et al., 2022). However, the fact that we

focused specifically on natural categories that are widespread across

cultures should facilitate such an investigation.
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Appendix A

Supplementary Information

Figure A1

Nonmetric MDS Stress Curves for the Various Domains Considered in the Present Work as a

Function of MDS Dimensions

Note. Based on this analysis, we selected the first dimensionality (d= 4, marked in dashed red vertical

lines) for which all stress values across all data sets dropped below 0.2 (a standard threshold above which

MDS fit is deemed poor; Kruskal, 1964). MDS=multidimensional scaling. See the online article for the

color version of this figure.

Figure A2

Raw Generalization Gradients Across Domains of Natural Images and Tasks With the Optimal

Fitted Models Overlaid

Note. GAM= generalized additive model; MDS=multidimensional scaling. See the online article for

the color version of this figure.

(Appendices continue)
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Figure A3

Raw Generalization Gradients for Randomly Shuffled Similarity and Generalization Matrices

Across Domains of Natural Images and Tasks With the Optimal Fitted Models Overlaid

Note. GAM= generalized additive model; MDS=multidimensional scaling. See the online article for

the color version of this figure.

Table A1

Exponential Model Parameters of the Form g(x)= ae−bx
+ c

Task Category a δa b δb c δc

Similarity Animals 1.179 0.009 2.022 0.043 −0.138 0.009
Similarity Fruits 0.969 0.008 3.243 0.075 0.072 0.005
Similarity Vegetables 1.005 0.007 3.08 0.056 0.032 0.005
Generalization Animals 0.844 0.018 1.525 0.085 0.154 0.022
Generalization Fruits 0.711 0.012 2.029 0.114 0.28 0.016
Generalization Vegetables 0.604 0.009 2.916 0.144 0.378 0.01

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions.

Table A2

Linear Model Parameters of the Form g(x)= ax+ b

Task Category a δa b δb

Similarity Animals −0.917 0.005 0.827 0.003
Similarity Fruits −0.629 0.008 0.639 0.006
Similarity Vegetables −0.671 0.007 0.646 0.005
Generalization Animals −0.568 0.007 0.86 0.005
Generalization Fruits −0.484 0.008 0.807 0.006
Generalization Vegetables −0.39 0.009 0.745 0.006

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions.

(Appendices continue)
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Table A4

Gaussian Model Parameters of the Form g(x) = ae−bx2 + c

Task Category a δa b δb c δc

Similarity Animals 0.824 0.006 5.058 0.148 0.058 0.004
Similarity Fruits 0.767 0.010 9.055 0.350 0.151 0.003
Similarity Vegetables 0.776 0.009 8.325 0.256 0.121 0.002
Generalization Animals 0.525 0.006 3.802 0.211 0.351 0.007
Generalization Fruits 0.481 0.010 5.109 0.386 0.400 0.007
Generalization Vegetables 0.458 0.014 7.981 0.777 0.440 0.006a

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions.
a In two out of the 100 runs, the optimizer did not converge for the generalization/vegetables condition, so we
excluded those runs.

Table A3

Quadratic Model Parameters of the Form g(x)= ax2+ bx+ c

Task Category a δa b δb c δc

Similarity Animals 0.906 0.021 −1.872 0.023 1.007 0.005
Similarity Fruits 1.152 0.03 −1.951 0.033 0.957 0.009
Similarity Vegetables 1.134 0.024 −1.968 0.026 0.956 0.007
Generalization Animals 0.436 0.027 −1.069 0.03 0.977 0.007
Generalization Fruits 0.488 0.036 −1.058 0.04 0.951 0.01
Generalization Vegetables 0.528 0.035 −1.017 0.039 0.906 0.01

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions.

Table A5

Complementary List of Evaluation Measures on the Similarity Tasks and Their 95% Confidence Intervals Based on Split-Half Bootstrap Over

Trials With 100 Repetitions

Category Model rdd δrdd rmm δrmm rmd δrmd ▵BIC δ▵BIC

Animals Exponential .890 .004 .956 .019 .906 .002 0.0 0.0
Animals Linear .890 .004 .905 .063 .868 .003 2782.613 138.579
Animals Quadratic .890 .004 .960 .016 .906 .002 −4.387 35.575
Animals Gaussian .890 .004 .965 .014 .899 .003 654.683 119.148
Animals GAM .890 .004 .958 .016 .907 .003 −19.403 103.188
Fruits Exponential .591 .011 .808 .041 .690 .009 0.0 0.0
Fruits Linear .591 .011 .737 .083 .615 .008 1970.43 139.787
Fruits Quadratic .591 .011 .803 .039 .683 .009 207.94 56.923
Fruits Gaussian .591 .011 .812 .031 .680 .009 293.346 77.199
Fruits GAM .591 .011 .815 .036 .692 .009 58.402 39.297
Vegetables Exponential .640 .010 .897 .018 .750 .007 0.0 0.0
Vegetables Linear .640 .010 .884 .033 .679 .005 2321.842 136.625
Vegetables Quadratic .640 .010 .893 .019 .743 .007 236.349 43.698
Vegetables Gaussian .640 .010 .893 .016 .739 .007 416.224 80.967
Vegetables GAM .640 .010 .898 .017 .752 .007 69.554 39.957

Note. The measures are: rdd= data–data Pearson correlation; rmm=model–model Pearson correlation; rmd=model–data Pearson correlation; ▵BIC=
BICmodel−BICexponential the BIC relative to the exponential model in each category and BIC= n log(RSS/n) + k log n where RSS =

∑

i (xi − x̂i)
2 is the

residual sum of squares between data and model, n is the number of data points and k is the number of fitted parameters. δ indicates 95% confidence error
(i.e., δX= 1.96 · σX where σX is the standard deviation of X ). BIC=Bayesian information criterion; GAM= generalized additive model; RSS= residual
sum of squares.

(Appendices continue)

MARJIEH, JACOBY, PETERSON, AND GRIFFITHS584

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.



Appendix B

Binned Analysis

Table A6

Complementary List of Evaluation Measures on the Generalization Tasks and Their 95% Confidence Intervals Based on Split-Half Bootstrap

Over Trials With 100 Repetitions

Category Model rdd δrdd rmm δrmm rmd δrmd ▵BIC δ▵BIC

Animals Exponential .577 .011 .823 .037 .655 .010 0.0 0.0
Animals Linear .577 .011 .796 .056 .641 .010 320.879 44.845
Animals Quadratic .577 .011 .825 .036 .656 .010 10.57 6.792
Animals Gaussian .577 .011 .832 .033 .654 .010 139.584 30.441
Animals GAM .577 .011 .824 .037 .656 .010 148.101 14.716
Fruits Exponential .417 .013 .661 .041 .459 .012 0.0 0.0
Fruits Linear .417 .013 .649 .049 .449 .012 188.706 53.238
Fruits Quadratic .417 .013 .660 .04 .458 .012 36.861 8.414
Fruits Gaussian .417 .013 .652 .039 .451 .012 170.940 26.997
Fruits GAM .417 .013 .658 .042 .46 .012 135.5 15.998
Vegetables Exponential .188 .016 .437 .053 .265 .016 0.0 0.0
Vegetables Linear .188 .016 .454 .061 .263 .016 158.541 55.12
Vegetables Quadratic .188 .016 .432 .055 .261 .016 88.4 20.665
Vegetables Gaussian .188 .016 .391 .052 .248 .016 257.959 51.938
Vegetables GAM .188 .016 .447 .054 .27 .016 101.458 26.378

Note. See Table A5 for definition of the various metrics. BIC=Bayesian information criterion; GAM= generalized additive model.

Table B1

Exponential Model Parameters of the Form g(x)= ae−bx
+ c

Task Category a δa b δb c δc

Similarity Animals 1.154 0.017 2.194 0.101 −0.097 0.021
Similarity Fruits 1.059 0.028 3.396 0.14 0.071 0.01
Similarity Vegetables 1.069 0.022 3.195 0.129 0.032 0.009
Generalization Animals 0.844 0.044 1.525 0.201 0.153 0.056
Generalization Fruits 0.75 0.044 1.769 0.347 0.229 0.068
Generalization Vegetables 0.608 0.036 2.546 0.661 0.344 0.063

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions and n= 100 bins.

Table B2

Linear Model Parameters of the Form g(x)= ax+ b

Task Category a δa b δb

Similarity Animals −0.882 0.046 0.817 0.018
Similarity Fruits −0.723 0.03 0.721 0.016
Similarity Vegetables −0.77 0.032 0.731 0.015
Generalization Animals −0.57 0.02 0.869 0.01
Generalization Fruits −0.491 0.02 0.819 0.012
Generalization Vegetables −0.385 0.03 0.747 0.016

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions and n= 100 bins.

(Appendices continue)
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Table B3

Quadratic Model Parameters of the Form g(x)= ax2+ bx+ c

Task Category a δa b δb c δc

Similarity Animals 0.958 0.033 −1.919 0.033 1.008 0.008
Similarity Fruits 1.203 0.086 −2.057 0.093 0.992 0.024
Similarity Vegetables 1.189 0.077 −2.067 0.081 0.984 0.019
Generalization Animals 0.43 0.072 −1.063 0.073 0.974 0.015
Generalization Fruits 0.386 0.099 −0.96 0.11 0.93 0.026
Generalization Vegetables 0.37 0.172 −0.841 0.189 0.858 0.043

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions and n= 100 bins.

Table B4

Gaussian Model Parameters of the Form g(x) = ae−bx2 + c

Task Category a δa b δb c δc

Similarity Animals 0.801 0.009 5.808 0.282 0.071 0.008
Similarity Fruits 0.748 0.024 9.581 0.633 0.150 0.006
Similarity Vegetables 0.755 0.018 8.863 0.531 0.120 0.006
Generalization Animals 0.522 0.012 3.796 0.361 0.343 0.016a

Generalization Fruits 0.467 0.015 3.810 0.789 0.359 0.028
Generalization Vegetables 0.388 0.032 5.336 2.224 0.405 0.041

Note. Errors (δ) indicate 95% confidence intervals (i.e., δX= 1.96 · σX where σX is the standard deviation of X)
bootstrapped over trials with 100 repetitions and n= 100 bins.
a In one out of the 100 runs, the optimizer did not converge for the generalization/animal condition, so we
excluded that run.

Table B5

Full List of Model Evaluation Metrics on the Similarity Tasks and Their 95% Confidence Intervals

Based on Split-Half Bootstrap Over Trials With 100 Repetitions and n= 100 Bins

Category Model R
2

δR
2

rmd δrmd rc δrc

Animals Exponential .994 .002 .997 .001 .999 .001
Animals Linear .911 .014 .954 .005 .956 .005
Animals Quadratic .993 .002 .996 .001 .998 .001
Animals Gaussian .975 .004 .987 .002 .989 .001
Animals GAM .997 .001 .998 .001 1.0 .0
Fruits Exponential .986 .005 .993 .002 .998 .002
Fruits Linear .812 .018 .902 .005 .906 .006
Fruits Quadratic .969 .008 .984 .003 .989 .003
Fruits Gaussian .972 .007 .986 .002 .991 .002
Fruits GAM .991 .005 .994 .002 1.0 .001
Vegetables Exponential .991 .004 .995 .001 .999 .001
Vegetables Linear .837 .014 .915 .004 .919 .004
Vegetables Quadratic .979 .005 .989 .002 .993 .002
Vegetables Gaussian .978 .006 .989 .002 .993 .002
Vegetables GAM .993 .004 .996 .002 1.0 .001

Note. The measures are: R2= coefficient of determination; rmd=model–data Pearson correlation; rc=model–
data correlation corrected for attenuation; GAM= generalized additive model. δ indicates 95% confidence error
(i.e., δX = 1.96 · σX where σX is the standard deviation of X ). See Method for full details.

(Appendices continue)
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Table B7

Complementary List of Evaluation Measures on the Similarity Tasks and Their 95% Confidence Intervals Based on Split-Half Bootstrap Over

Trials With 100 Repetitions and n= 100 Bins

Category Model rdd δrdd rmm δrmm rmd δrmd ▵BIC δ▵BIC

Animals Exponential .996 .002 1.0 .0 .997 .001 0.0 0.0
Animals Linear .996 .002 1.0 .0 .954 .005 257.735 27.564
Animals Quadratic .996 .002 1.0 .0 .996 .001 16.567 20.269
Animals Gaussian .996 .002 1.0 .0 .987 .002 141.725 24.090
Animals GAM .996 .002 .999 .001 .998 .001 21.103 40.222
Fruits Exponential .99 .005 1.0 .0 .993 .002 0.0 0.0
Fruits Linear .99 .005 1.0 .0 .902 .005 226.335 31.753
Fruits Quadratic .99 .005 1.0 .0 .984 .003 71.777 25.337
Fruits Gaussian .990 .005 1.0 .0 .986 .002 61.495 28.891
Fruits GAM .99 .005 .999 .001 .994 .002 39.543 30.356
Vegetables Exponential .992 .004 1.0 .0 .995 .001 0.0 0.0
Vegetables Linear .992 .004 1.0 .0 .915 .004 251.392 35.803
Vegetables Quadratic .992 .004 1.0 .0 .989 .002 72.835 31.745
Vegetables Gaussian .992 .004 1.0 .0 .989 .002 77.422 37.945
Vegetables GAM .992 .004 .999 .001 .996 .002 52.324 28.149

Note. The measures are: rdd= data–data Pearson correlation; rmm=model–model Pearson correlation; rmd=model–data Pearson correlation; ▵BIC=
BICmodel−BICexponential the BIC relative to the exponential model in each category and BIC= n log(RSS/n) + k log n where RSS =

∑

i (xi − x̂i)
2 is the

residual sum of squares between data and model, n is the number of data points and k is the number of fitted parameters. δ indicates 95% confidence error
(i.e., δX = 1.96 · σX where σX is the standard deviation of X ). BIC=Bayesian information criterion; GAM= generalized additive model; RSS= residual
sum of squares.

Table B6

Full List of Model Evaluation Metrics on the Generalization Tasks and Their 95% Confidence

Intervals Based on Split-Half Bootstrap Over Trials With 100 Repetitions and n= 100 Bins

Category Model R
2

δR
2

rmd δrmd rc δrc

Animals Exponential .989 .01 .994 .004 1.0 .003
Animals Linear .951 .02 .975 .007 .98 .007
Animals Quadratic .989 .008 .994 .003 .999 .003
Animals Gaussian .978 .025 .989 .008 .995 .004
Animals GAM .992 .004 .993 .006 1.0 .001
Fruits Exponential .97 .016 .985 .006 .997 .006
Fruits Linear .932 .02 .966 .006 .978 .007
Fruits Quadratic .965 .017 .982 .007 .994 .006
Fruits Gaussian .948 .020 .973 .008 .986 .008
Fruits GAM .982 .01 .986 .009 1.0 .003
Vegetables Exponential .935 .052 .965 .021 .991 .017
Vegetables Linear .888 .051 .945 .018 .97 .02
Vegetables Quadratic .924 .044 .958 .023 .985 .016
Vegetables Gaussian .892 .055 .943 .024 .972 .020
Vegetables GAM .974 .015 .964 .039 1.0 .005

Note. See Table 1 for definitions of the various evaluation metrics. GAM= generalized additive model.

(Appendices continue)
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Appendix C

Additional Controls

Controlling for Model Misspecification

To ensure that our similarity and generalization matrices are con-

sistent with low-dimensional spatial representations irrespective of

any embedding procedure, we computed two diagnostic measures

proposed by Tversky and Hutchinson (1986). These measures are

known as centrality and reciprocity and they characterize the near-

est neighbor statistics induced by a given proximity matrix sij.

Centrality is defined as C = 1
n

∑

i N
2
i where Ni is the number of

stimuli whose nearest neighbor is stimulus i, and n is the overall

number of stimuli. Likewise, reciprocity is defined as R =
1
n

∑

i Ri where Ri is the rank of stimulus i in the proximity order

of its nearest neighbor (ties are broken at random). Tversky and

Hutchinson (1986) compellingly argued that low-dimensional spatial

representations tend to generically produce low R, C scores

(theoretically, 2, but in practice, 3), whereas nonspatial concep-

tual representations with semantic hubs (e.g., superordinate

categories that are nearest neighbors to many other concepts) tend

to produce high R, C values (in some cases as high as 10–15). We

computed these measures on our data sets and found that they are

indeed small as summarized in Table C1.

Table B8

Complementary List of Evaluation Measures on the Generalization Tasks and Their 95% Confidence Intervals Based on Split-Half Bootstrap

Over Trials With 100 Repetitions and n= 100 Bins

Category Model rdd δrdd rmm δrmm rmd δrmd ▵BIC δ▵BIC

Animals Exponential .989 .007 1.0 .001 .994 .004 0.0 0.0
Animals Linear .989 .007 1.0 .0 .975 .007 125.869 39.802
Animals Quadratic .989 .007 1.0 .001 .994 .003 3.683 16.468
Animals Gaussian .989 .007 .999 .019 .989 .008 59.403 46.175
Animals GAM .989 .007 .998 .006 .993 .006 53.514 53.277
Fruits Exponential .976 .014 1.0 .001 .985 .006 0.0 0.0
Fruits Linear .976 .014 1.0 .0 .966 .006 66.156 44.537
Fruits Quadratic .976 .014 .999 .002 .982 .007 13.808 9.359
Fruits Gaussian .976 .014 .999 .004 .973 .008 48.669 17.033
Fruits GAM .976 .014 .996 .008 .986 .009 40.117 46.13
Vegetables Exponential .950 .042 .998 .004 .965 .021 0.0 0.0
Vegetables Linear .950 .042 1.0 .0 .945 .018 39.1 54.258
Vegetables Quadratic .950 .042 .995 .011 .958 .023 12.989 18.99
Vegetables Gaussian .950 .042 .992 .020 .943 .024 40.484 22.805
Vegetables GAM .950 .042 .979 .037 .964 .039 9.844 63.035

Note. See Table B7 for definition of the various metrics. BIC=Bayesian information criterion; GAM= generalized additive model.

Table C1

Centrality (C) and Reciprocity (R) Measures for the Different

Behavioral Matrices

Task Category C R

Similarity Animals 1.82 2.14
Similarity Fruits 1.78 1.77
Similarity Vegetables 1.80 1.98
Generalization Animals 1.70 2.02
Generalization Fruits 1.87 1.99
Generalization Vegetables 1.72 2.21

(Appendices continue)
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Figure C1

Hybrid Generalization Gradients Across Domains of Natural Images and Tasks With the

Optimal Exponential Model Overlaid

Note. MDS distances were computed based on the generalization data and plotted against similar-

ity scores. Error bars indicate 95% confidence intervals. MDS=multidimensional scaling. See the

online article for the color version of this figure.
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