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Default Tips †

By Kareem Haggag and Giovanni Paci *

We examine the role of defaults in high-frequency, small-scale 
choices using unique data on over 13 million New York City taxi 
rides. Using a regression discontinuity design, we show that default 
tip suggestions have a large impact on tip amounts. These results 
are supported by a secondary analysis that uses the quasi-random 
assignment of customers to different cars to examine default effects 
on a wider range of fares. Finally, we highlight a potential cost of 
setting defaults too high, as a higher proportion of customers opt to 
leave no credit card tip when presented with the higher suggested 
amounts. (JEL D12, L92)

The large effects of default options on consumer choices have been documented 

in various high-stakes, but low-frequency contexts, ranging from organ dona-

tion to 401(k) contributions. Because defaults preserve freedom of choice, but none-

theless appear to strongly influence behavior, they have been of great interest to both 

policymakers and academics (Thaler and Sunstein 2008). In contrast to the extant 

literature, we study the effects of defaults on a frequently encountered consumer 

choice: the decision of how much to tip a service provider.1 By studying tipping, we 

demonstrate the ability of defaults to nudge behavior in a decision problem which 

agents have arguably encountered enough times to learn their optimal responses. 

In doing so, we also extend the literature by documenting a case in which default 

effects were exploited by a for-profit industry.

Our study introduces a unique dataset that contains fare information for 170 mil-

lion New York City taxi rides over the calendar year of 2009. Among these rides, we 

have tip information for the 38 million credit card transactions, from which we use 

a sample of more than 13 million rides to study tipping (all credit card transactions 

on rides with no tolls, taxes, or surcharges). At the end of each ride, customers who 

used credit cards were presented with a screen that provided them with the option to 

either type in a desired tip amount or to press one of three buttons with default tip 

1 Though difficult to precisely measure, Azar (2011) estimates total annual tipping in the US food industry alone 
at $47 billion, or approximately 0.3 percent of annual GDP.
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suggestions. During the period of study, one of the credit card machine companies 

offered different tip suggestions depending on whether the fare was above or below 

$15. For rides under $15, tip suggestions were $2, $3, and $4, while rides above 

$15 were presented with 20  percent, 25  percent, and 30  percent tip suggestions 

and the corresponding dollar amounts. At the discontinuity, this shift represents an 

increase in the suggestion categories (low, medium, and high) of approximately $1, 

$0.75, and $0.50. Importantly, the shift in suggestions did not change the choice set; 

customers were still free to key in any tip amount. Under the assumption that all 

ride characteristics that affect tips vary smoothly with the base amount, the differ-

ence at the discontinuity can be used to identify the causal effect of this particular 

increase in default suggestions on tipping. We find that this local treatment effect 

is an increase in tip amounts of approximately $0.27–$0.30, which is more than a 

10 percent increase in the average tip at that margin.

The design of this choice context is not typical of the default effects literature. In 

order to complete a transaction, customers had to enter a tip amount. As such, our 

study is closely related to the literature on active choice, a type of design in which 

customers are not provided with a no-action option, and are thus required to actively 

choose among a set of similarly presented options (e.g., Carroll et al. (2009) in the 

context of retirement savings). Keller et al. (2011) go a step further, presenting cases 

in which some options are advantaged by using favorable language, a design they 

describe as enhanced active choice. Our context goes even further in the direction 

of a default, with the featured amounts being strongly effort advantaged and highly 

salient. These features draw the influence of these options over choice closer to that 

of a default, and so we describe the buttons as default tip suggestions.

To examine the role of default suggestions across a larger range of fares, we present 

a second econometric strategy. We use the quasi-random assignment of passengers to 

taxi cabs at LaGuardia airport to compare across credit card machine companies. For 

rides above $15, both companies provided percentage defaults; however, one company 

provided 15 percent, 20 percent, and 25 percent, while the other provided defaults of 

20 percent, 25 percent, and 30 percent. The distribution of tips clearly reflects this 

shift, and again, we find that higher defaults are associated with higher average tip 

amounts, controlling for time-invariant driver characteristics.

Having demonstrated the benefits of higher default suggestions on the intensive 

margin of tipping, we next highlight a potential cost of setting defaults too high. 

First, in both the regression discontinuity design and the comparison across ven-

dors, we find that the higher default suggestions reduce the probability of leaving a 

tip that corresponds to one of the default suggestions (24 and 7.8 percentage point 

reductions respectively).2 More striking is the result that rides with the higher tip 

suggestions are over 50 percent more likely to receive a zero-valued tip than those 

with the lower suggestions (1.7 and 2.8 percentage point increases). Such customers 

may have been penalizing drivers for using tip defaults that are perceived as unfairly 

high. Similarly, the absence of the lower amount button may have been construed 

by customers as an attempt to manipulate their behavior which induced them to 

2 However, we also find that the average manually entered tip amount increases. Thus, it is not clear that those 
induced to leave a manual tip are leaving lower tips than they would with the lower suggestions.
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respond adversely, as described in social psychology by reactance theory (Brehm 

1966).
Several factors may explain our observed default effects. Customers may be 

rationally inattentive, failing to compute their preferred tip due to the opportu-

nity cost of time and/or the cognitive costs associated with that computation. For 

instance, customers may have difficulty converting between dollars and percentages, 

and the alternative measures may evoke different intuitions on the appropriate tip 

(Kahneman 2011, 372).3 Moreover, customers that are unfamiliar with the tipping 

norm may interpret the defaults as the socially endorsed norm. Both uninformed and 

informed customers may experience disutility from deviating from these options. 

Ultimately, we cannot disentangle these different possible mechanisms.

We build upon the broad literature on defaults. Default effects have been demon-

strated across a wide variety of consumer choices. Most notably, Madrian and Shea 

(2001) and Choi, Laibson, and Madrian (2004) found large effects in retirement 

savings contributions, with Madrian and Shea (2001) finding a 50 percent increase 

in enrollment from switching from an opt-in to automatic enrollment default. In a 

similarly sparsely encountered consumer choice, Johnson and Goldstein (2003) and 

Abadie and Gay (2006) used cross-country analyses to suggest that presumed con-

sent policies induce higher organ donation rates than opt-in policies. Johnson et al. 

(1993) studied a somewhat more frequently encountered type of decision problem, 

namely (car) insurance plan choice, while Johnson, Bellman, and Lohse (2002) stud-

ied default effects in the decision to accept email marketing. Our paper contributes by 

showing that default effects can persist in a similarly habitually encountered consumer 

choice, using a much larger naturalistic field dataset. We also add to the literature by 

tracing out the response to higher defaults, including its limitations. Beshears et al. 

(2010) similarly study the limits to setting high defaults. They provide a case study 

of a firm that set the default contribution rate at 12 percent, a rate much higher than 

previously studied defaults in this area (2–6 percent) and one that the authors note 

was sub optimal for all employees in the sample. They find that roughly 25 percent 

of employees remain at this default rate after 12 months of tenure, in comparison to 

the 60 percent adherence rate seen at firms in previous studies. In our study, we find 

that a substantial proportion are induced to opt out of the default when presented with 

the higher suggestions. We still find a higher average contribution despite this result; 

however, our analysis also highlights the emergence of a cost (zero-valued tips) that 

suggests a potential reduction in tips if defaults are set sufficiently high.

The paper proceeds as follows. Section I provides background on taxis and tip-

ping and describes the data used. Section II presents our regression discontinuity 

results. Section III presents an analysis that compares across credit card machine 

companies. Section IV concludes.

3 On its own, the difficulty of comparing across the measurements does not imply that we should find higher tip 
amounts for the percentage suggestions. One potential explanation of this pattern would rely on this computational 
difficulty interacting with a particular type of self-deception. If customers adhere to tip percentage norms, then dollar 
suggestions could result in less generous tips by lowering the cost of self-deception. For example, consider a cus-
tomer that has a fare of $13 and adheres to a 25 percent tipping norm (i.e., a tip of $3.25). This customer may be able 
to convince herself that she is adhering to the norm by selecting the $3 option (rounding in the direction of her self-
interest), whereas she could not ignore her deviation from the norm if explicitly presented with the 25 percent option.



4 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS JULY 2014

I. Institutional Context and Data

The data for our study were provided by the Taxi and Limousine Commission 

(TLC) of New York City. In March 2004, the TLC mandated that all taxi cabs be 

outfitted with a set of technological improvements, including the electronic collec-

tion and transmission of trip data and the introduction of equipment to accept credit 

cards.4 These technological improvements also marked the introduction of a system 

that measured and saved the GPS coordinates of all pickup and drop-off locations. 

Though mandated in 2004, the entire taxi fleet was not outfitted with the equip-

ment until 2008.5 Our data spans the entirety of 2009, covering all rides by licensed 

Yellow Cab drivers in New York City. Before describing the data, we first present 

details about the institutional context.

A. Institutional Context

During the period of study, three companies were contracted to provide taxi 

cabs with credit card machines. The largest two, which we denote as “Vendor” and 

“Competitor,” account for 49 percent and 45 percent of observations in the raw 

data respectively. Each taxi cab was equipped with its own Passenger Information 

Monitor (PIM) which would display advertisements and other viewing material 

during the ride. At the end of the ride, the PIM displayed a payment screen (see 

the online Appendix for an example). Customers were presented with the base 

amount and had the option of keying in their own tip amount or using one of the 

suggested tip buttons. Each vendor was allowed discretion over how this page was 

displayed, and the two companies elected to offer different default buttons during 

the period we study.

There were three key ways in which the Vendor and Competitor differed with 

respect to tip suggestions. The Competitor offered three suggestions on all base 

amounts: 15 percent, 20 percent, or 25 percent. In contrast, the Vendor provided 

one set of suggestions ($2, $3, or $4) for all base amounts lower than $15, and 

another set of suggestions (20  percent, 25  percent, or 30  percent) for all base 

amounts above $15. The second difference is how the percentages were calculated. 

Though the Vendor used the base amount (i.e. the fare, toll, tax, and surcharge) to 

determine which set of suggestions to provide, the percentage tips were calculated 

on only the fare plus surcharge. The Competitor instead calculated percentages on 

the entire base amount. Thus, if the ride consisted of a $10 fare and a $10 toll, a 

customer that pushed the 20 percent button with the Vendor-equipped cab would 

be paying $2 in tip, whereas a customer in a Competitor-equipped cab would be 

paying $4. A third difference is that the Vendor displayed corresponding dollar 

amounts alongside the percentage tips, while the Competitor did not display these 

conversions. These differences are summarized in Figure 1.

4 Source: http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh.shtml.
5 Source: “Despite some grumbling, however, the TLC is moving to install the devices in all cars by August 31.” 

See Matthew Monks, “Hot Tip for Cabbies: Credit Cards Boost Tips,” New York Sun, March 12, 2008, accessed 
[insert date], http://www.nysun.com/business/hot-tip-for-cabbies-credit-cards-boost-tips/72783.
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Taxi meters determined the fare through a combination of time and distance 

measures. The standard city rate (Rate Code 1) charged customers $2.50 upon 

entry, and $0.40 for each additional unit.6 One unit is defined as either (i) a 

60 second interval in which the car is idle or driving less than 6 miles per hour 

or (ii) 0.20 miles when the car is driving 6 miles per hour or faster. Fractional 

amounts are rounded up to the next unit. Riders were also subject to different sets 

of surcharges depending on the period of the year or the time of the day. To main-

tain comparability on either side of the Vendor default discontinuity, we limit our 

analysis to a period of time during which there were no taxes or surcharges and 

we exclude rides with tolls. This period includes January 1, 2009 to October 31, 

2009 (i.e., prior to the introduction of a $0.50 MTA tax), and spans 6 am to 4 pm 

on Monday–Friday and 6 am to 8 pm on Saturday and Sunday (i.e., periods of time 

not subject to the $1.00 peak weekday or $0.50 night time surcharges). During 

this time period, the largest base amount to the left of the $15 discontinuity was 

$14.90, and the smallest base amount to the right of the discontinuity was $15.30.

B. Data Description

Our preliminary dataset included 170,896,479 observations. Though the TLC 

has its own private routine for removing electronic glitches, the provided data-

set still contained a number of possible electronic errors, including zero-valued 

 distances/durations and surcharges that did not correspond to the appropri-

ate schedule. We took a number of steps to clean the data, which we outline in 

greater detail in the Appendix. Our largest sample reductions were the removal 

of cash payments (approximately three-quarters of the sample), and the removal 

6 Other Rate Codes include: Rate Code 2—rides to and from JFK—charged a flat rate of $45. Rate Code 3—
rides to and from Newark Airport—charged the standard rate in addition to a $15 surcharge. Rate Code 4—rides 
to Nassau or Westchester county—charged the standard city rate while in city limits, and double the standard rate 
while in Nassau or Westchester county. Rate Code 5—rides outside New York City, excluding Nassau, Westchester, 
or Newark Airport—Charged flat rate (determined through negotiation between rider and driver).

Source: http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml (accessed August 10, 2012).

Figure 1. Default Tip Suggestions by Vendor and Competitor

Vendor:
($2, $3, $4)  (20%, 25%, 30%)*

Total amount: |
$15

Competitor:
(15%, 20%, 25%)**

* Percentage computed on fare plus surcharge.
Buttons display conversion of percentages to dollar amounts.

** Percentage computed on fare plus surcharge, tax, and tolls.
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of rides with taxes or surcharges. Our final dataset consists of 13,820,784 rides. 

For the majority of our estimates, we limit our sample to rides completed on cars 

equipped by the Vendor (7.28 million) and to fares between $5 and $25 (6.22 mil-

lion observations).
The variables provided in the data are as follows: anonymized driver identifier, 

car identifier, credit card machine company, payment type, ride duration, ride dis-

tance, number of passengers, fare, surcharge, MTA tax, toll amount, and pickup 

and drop-off latitude, longitude, and time. Because we do not have an indicator for 

whether the customer physically selected one of the default suggestion buttons, we 

needed to create this key variable. To do so, we make the assumption that all tip 

amounts that correspond to one of the relevant tip suggestions (e.g., $2/$3/$4 for 

Vendor if the base amount is less than $15) were selected from one of these buttons. 

We thus make the assumption that customers recognize this congruence and save the 

time of keying in this amount by pressing a single button.

For the purpose of computing heterogeneous treatment effects, we use data from 

the American Community Survey’s 5 year estimates (2006–2010). This dataset pro-

vides census tract level summary statistics. We match these statistics to each pickup 

Table 1—Summary Statistics by Ride

Competitor
(1)

Vendor
(2)

Difference
[(1) − (2)]

(3)

Fare 9.690 9.813 −0.123***
(5.479) (5.668)

Tip amount 1.694 1.920 −0.227***
(1.253) (1.431)

Tip as percentage of fare 18.266 21.463 −3.196***
(9.254) (16.602)

Tip corresponds to a default tip option 0.556 0.495 0.061***
(0.497) (0.500)

Ride duration (minutes; drop-off time − pickup time) 12.674 12.854 −0.180***
(8.136) (7.931)

Ride distance (miles) 2.531 2.596 −0.065***
(2.310) (2.401)

Zero tip 0.020 0.029 −0.009***
(0.139) (0.167)

High choice [Pr(Select ‘High’ default | Select a default option)] 0.129 0.037 0.092***
(0.335) (0.189)

Medium choice [Pr(Select ‘Med’ default | Select a default option)] 0.419 0.184 0.234***
(0.493) (0.388)

Low choice [Pr(Select ‘Low’ default | Select a default option)] 0.452 0.778 −0.326***
(0.498) (0.415)

Observations 6,542,807 7,277,977 13,820,784

Notes: Standard deviations are in parentheses. T-tests for the equality of columns 1 and 2 are rejected at the 
1 percent level for all differences. The sample is limited to rides without tolls, taxes, or surcharges (January 1,  
2009–October 31, 2009; 6 am–4 pm on Monday–Friday and 6 am–8 pm on Saturday and Sunday). High choice 
(Vendor: $4 or 30 percent, Competitor: 25 percent), Medium choice (V: $3 or 25 percent, C: 20 percent), and Low 
choice (V: $2 or 20 percent, C: 15 percent) estimates are conditional on using a default tip option.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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and drop-off location. To do so, we first assign each GPS coordinate to a census 

tract using a point-in-polygon operation in PostgreSQL (PostGIS). We then merge 

each pickup location and each drop-off location with the ACS census tract variables. 

We focus on one variable in particular: median household income. Table 1 provides 

summary statistics for the sample, split by Vendor and Competitor.

II. Regression Discontinuity

A. Visual Evidence

We start by presenting a visual analysis of the discontinuity. As a first test of the 

validity of the regression discontinuity approach, Figure 2 demonstrates that the 

density of the forcing variable is smooth. Next, we limit the forcing variable (fare) 
to be between $5 and $25 and calculate the mean tip percentage within each of the 

discrete fare amounts ($0.40 increments). On each side of the discontinuity, we scat-

ter plot these estimates and perform a LOWESS separately on either side of the dis-

continuity. Figure 3 displays this plot for tip percentages on Vendor-equipped cabs, 

clearly demonstrating a jump at $15. Finally, as a robustness test, Figure 4 repeats 

this graph for the Competitor, showing no jump at $15.

B. Regression

To supplement the visual evidence, we estimate a regression discontinuity model 

for the case of a forcing variable with discrete support. To the extent that the tip paid 

is smoothly related to the fare, observations at either side of the cutoff can be used 

to identify the causal effect of a change in the suggested amount. Following Lee and 

Card (2008), we estimate equation (1): 

(1)  Y r  =  β 0 𝟙 (  F r  ≥ 15 )  +  β 1 h (  F r  − 15 )  +  β 2 𝟙 (  F r  ≥ 15 )  × g (  F r  − 15 )  +  X r  θ +  u r  ,

where  Y r  is the tip amount in dollars, 𝟙 (  F r  ≥ 15 )  is an indicator function that the fare 

is greater than or equal to $15, h (  F r  − 15 )  and g (  F r  − 15 )  are polynomials in the 

fare, centered at $15, on either side of the discontinuity, and  X r  is a vector of fixed 

effects consisting of pickup hour, day of week, pickup borough, and drop-off borough 

indicators. Since our source of variation is at the fare value relative to the discontinu-

ity, rather than the ride level, we follow Lee and Card (2008) and cluster our standard 

errors at the level of the forcing variable, thereby correcting our degrees of freedom 

and allowing for random specification errors due to the discrete bins. We estimate four 

specifications in Table 2, starting with a 2nd order polynomial in the first column up 

to a 5th order polynomial in the last column. Our local treatment effect is a $0.27 to 

$0.30 increase in tip amounts over a baseline level at the cutoff of $2.22.

C. Other Outcomes of Interest

Our primary outcome of interest, tip amount, is produced through movements 

along an extensive margin (using a default suggestion) and two intensive margins 
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Figure 2. Histogram of Fares

Notes: The sample is limited to fares between $5 and $25 on Vendor-equipped cab rides with-
out tolls, taxes, or surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on Monday–
Friday and 6 am–8 pm on Saturday and Sunday). Fares are in $0.40 intervals.
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Figure 3. LOWESS Smoothed Mean Tip Percentages within 
Each Discrete Fare Amount ($0.40 Intervals)

Notes: Each dot is the average within a discrete fare amount ($0.40 intervals). Solid lines display 
the smoothed values from locally weighted regressions performed separately on either side of 
the discontinuity ($15). The sample is limited to fares between $5 and $25 on  Vendor-equipped 
cab rides without tolls, taxes, or surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on 
Monday–Friday and 6 am–8 pm on Saturday and Sunday). Fares are in $0.40 intervals.
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(amounts tipped either manually or through one of the suggestions). Table 3 pres-

ents results for a number of other variables.

Notably, the higher tip suggestions induce a 24 percentage point reduction in the 

probability of using a default suggestion, and a shift in the composition of those 

that use default suggestions toward the low option. However, since the low option is 

approximately equal to the medium option to the left of the discontinuity, we see a 
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Figure 4. LOWESS Smoothed Mean Tip Percentages within 
Each Discrete Fare Amount ($0.40 Intervals), for Vendor and Competitor

Notes: Each dot is the average within a discrete fare amount ($0.40 intervals). Solid and dashed 
lines display the smoothed values from locally weighted regressions performed separately on 
either side of the discontinuity ($15). The sample is limited to fares between $5 and $25 on 
rides without tolls, taxes, or surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on 
Monday–Friday and 6 am–8 pm on Saturday and Sunday). Fares are in $0.40 intervals.

Table 2—Regression Discontinuity Estimates of the Effect on Tip Amount

Tip amount

(1) (2) (3) (4)

𝟙(Far e r  ≥ 15) 0.292*** 0.276*** 0.275*** 0.296***
(0.004) (0.006) (0.008) (0.010)

Observations 6,218,196 6,218,196 6,218,196 6,218,196
R2 0.207 0.207 0.207 0.207
DepVarMean 2.221 2.221 2.221 2.221

Notes: Robust standard errors clustered at each fare value ($0.40 intervals), in parentheses. 
Columns 1–4 present 2nd–5th order polynomials. 𝟙(Far e r  ≥ 15) is an indicator function that 
the fare is greater than or equal to $15. DepVarMean is the mean of the dependent variable 
on rides with fares of $14.90. All specifications include fixed effects for driver, pickup day of 
the week, pickup hour, pickup location borough, and drop-off location borough. The sample 
is limited to fares between $5 and $25 on Vendor-equipped cab rides without tolls, taxes, or 
surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on Monday–Friday and 6 am–8 pm 
on Saturday and Sunday).

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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net increase in the amount tipped by those that select a default option. There is also 

an increase in amount tipped manually, which reflects a change in the composition 

of the tippers, but may also reflect the influence of the higher suggestions on those 

that would tip manually when faced with either set of suggestions.

Column 8 shows perhaps the most interesting of these behavioral responses. 

The probability of leaving no credit card tip increases by 1.7 percentage points 

when customers are faced with the higher tip suggestions. Figure 5 repeats the 

visual analysis for this outcome variable. This negative response is consistent with 

the social psychology literature on “reactance.” Within this framework, individu-

als react to a perceived reduction in their freedom of choice by doing the oppo-

site of the intended manipulation (Brehm 1966, 1989). Though customers’ choice 

sets of tip amounts were not changed by the shift to higher suggestions, they 

may have still perceived the replacement of the lower button amounts as a threat 

to their behavioral freedom. The negative reaction also has some parallel in the 

vast literature on ultimatum games. Insofar as customers have some fixed notion 

of a “fair” tip, presenting the higher suggestions might have led them to punish 

the drivers by leaving a lower tip than would be provided in the absence of the 

“unfair” split. This result highlights a potential cost of setting defaults too high, 

although we cannot confirm whether this cost would persist in a context featur-

ing homogeneous suggestions across vendors (e.g., all vendors currently offer 

the 20 percent/25 percent/30 percent suggestions). The backlash to high sugges-

tions may hinge on the existence of a reference “fair tip” in a comparable market. 

Table 3—Regression Discontinuity Estimates of the Effect on Alternative Outcomes

Tip
percent

Default
tip

Default
tip amount

Manual
tip amount

High
choice

Medium
choice

Low
choice

Zero
tip

(1) (2) (3) (4) (5) (6) (7) (8)

𝟙(Far e r  ≥ 15) 2.025*** −0.243*** 0.714*** 0.368*** −0.021*** −0.169*** 0.190*** 0.017***

(0.038) (0.002) (0.003) (0.011) (0.001) (0.002) (0.003) (0.001)

Observations 6,218,196 6,218,196 3,227,726 2,990,470 3,227,726 3,227,726 3,227,726 6,218,196
R2 0.097 0.058 0.568 0.122 0.015 0.029 0.038 0.008
DepVarMean 14.907 0.749 2.489 1.422 0.073 0.342 0.585 0.028

Notes: Robust standard errors clustered at each fare value ($0.40 intervals), in parentheses. 𝟙(Far e r  ≥ 15) is an 
indicator function that the fare is greater than or equal to $15. Columns 1 (Tip percent), 3 (Default tip amount), 
and 4 (Manual tip amount) use continuous outcome variables, while columns 2 (Default tip), 5 (High choice), 
6 (Medium choice), 7 (Low choice), and 8 (Zero tip) use binary outcome variables. The dependent variable in col-
umn 2 (Default tip) takes on value 1 if the customer selected one of the default tip suggestions (buttons). The depen-
dent variable in column 3 is the tip amount conditional on using one of the default tip suggestions. The dependent 
variable in column 4 is the tip amount conditional on manually entering a tip using the keypad. The High choice 
(Vendor: $4 or 30 percent, Competitor: 25 percent), Medium choice (V: $3 or 25 percent, C: 20 percent), and Low 
choice (V: $2 or 20 percent, C: 15 percent) variables are conditional on using a default tip option, and take on 
value 1 if the customer selects the corresponding option. The dependent variable in column 8 (Zero tip) takes on 
value 1 if the customer left zero credit card tip. DepVarMean is the mean of the dependent variable on rides with 
fares of $14.90. All specifications use 3rd order polynomials and include fixed effects for driver, pickup day of the 
week, pickup hour, pickup location borough, and drop-off location borough. The sample is limited to fares between 
$5 and $25 on Vendor-equipped cab rides without tolls, taxes, or surcharges (January 1, 2009–October 31, 2009; 
6 am–4 pm on Monday–Friday and 6 am–8 pm on Saturday and Sunday).

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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Furthermore, without making strong assumptions, we cannot use this cost to trace 

out the set of optimal default suggestions. Finally, we cannot rule out an impor-

tant possible confound. Since we do not observe cash tips, it may be possible that 

customers were induced to switch from paying both their tips and fares by credit 

to instead paying their fares by credit and their tips by cash.

D. Heterogeneity

We next examine heterogeneous treatment effects along proxied income. Because 

wealthier riders have a lower marginal utility of income, they have less incentive to 

be attentive to the shift in tip suggestions. Similarly, these customers will poten-

tially have higher time costs. This reasoning suggests that higher income customers 

should (rationally) exhibit a larger default effect. Alternatively, wealthier indi-

viduals may have greater access to distraction-reducing devices, allowing them to 

deplete less attention during the day (Banerjee and Mullainathan 2008), and thus be 

less susceptible to default effects. A wealthier customer may also be more likely to 

take more taxi rides, and default effects possibly attenuate with experience (Löfgren 

et al. 2012). Ultimately, this exercise is theoretically ambiguous; however, it is an 

interesting source of potential heterogeneity that has been studied in other contexts. 

For example, Goldin and Homonoff (2012) found that low-income customers were 

more attentive to a low salience cigarette tax than were high income customers. In 
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Figure 5. LOWESS Smoothed Mean of “Zero-Valued Tip” 
within Each Discrete Fare Amount ($0.40 Intervals)

Notes: Each dot is the average within a discrete fare amount ($0.40 intervals). Solid lines 
display the smoothed values from locally weighted regressions performed separately on 
either side of the discontinuity ($15). The sample is limited to fares between $5 and $25 on 
 Vendor-equipped cab rides without tolls, taxes, or surcharges (January 1, 2009–October 31, 
2009; 6 am–4 pm on Monday–Friday and 6 am–8 pm on Saturday and Sunday).
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contrast, Beshears et al. (2010) found that 401(k) savings defaults had a greater 

influence on low-income employees than on high-income employees.

To proxy income, we use a variety of different sample groups. For the full sam-

ple, we proxy customer income by the average of the median income associated 

with the pickup location and drop-off location census tracts. These pickup and 

drop-off locations would not be an accurate assessment of tourists or any other 

customers that do not start or end at their home addresses. To partially reduce 

this concern, we use a variety of other specifications that attempt to remove these 

nonrepresentative customers. One set of specifications limit the sample to rides 

1.4

1.6

1.8

2

2.2

2.4

C
o

e
ff
ic

ie
n

t 
in

 r
e

g
re

s
s
io

n
 

d
is

c
o

n
ti
n
u

it
y

0 2 4 6 8 10

Income quantile (10 in total)

Sample: All

−4

−2

0

2

4

6

C
o

e
ff
ic

ie
n

t 
in

 r
e

g
re

s
s
io

n
 

d
is

c
o

n
ti
n
u

it
y

0 2 4 6 8 10

Income quantile (10 in total)

Sample: NonMan

−10

0

10

20

30

40

C
o

e
ff
ic

ie
n

t 
in

 r
e

g
re

s
s
io

n
 

d
is

c
o

n
ti
n
u

it
y

0 2 4 6 8 10

Income quantile (10 in total)

Sample: LGA

−5

0

5

10

C
o

e
ff
ic

ie
n

t 
in

 r
e

g
re

s
s
io

n
 

d
is

c
o

n
ti
n
u

it
y

0 2 4 6 8 10

Income quantile (10 in total)

Sample: LGANonMan

Coefficient on $15 discontinuity

Coefficient +/− 2*SE

Figure 6. Coefficients from Regression Discontinuity Estimates 
in Income Quantile Subsamples

Notes: Robust standard errors clustered at each fare value ($0.40 intervals). All specifications use 3rd order polyno-
mials and include fixed effects for driver, pickup day of the week, pickup hour, pickup location borough, and drop-
off location borough. The sample is limited to fares between $5 and $25 on Vendor-equipped cab rides without tolls, 
taxes, or surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on Monday–Friday and 6 am–8 pm on Saturday 
and Sunday). All income measures correspond to American Community Survey 5-year (2006–2010) estimates of the 
census tract median income. The LGA sample is restricted to rides that either originate or end within the census tract 
associated with LaGuardia Airport. Income is proxied by the median income in the pickup location census tract if the 
ride ends at LGA or by the income at the drop-off location if the ride starts at LGA. The NonMan sample is restricted 
to rides that both start and end outside Manhattan, and uses the average of the median income at the pickup and 
 drop-off census tracts. The LGANonMan sample corresponds to rides that start at LaGuardia Airport and end outside 
of Manhattan. The Average (Median ACS Census Tract) income within each quantile are as follows:

All: 49,244 - 68,340 - 78,945 - 86,876 - 93,574 - 99,455 - 105,490 - 112,490 - 121,617 - 145,084.
NonMan: 26,636 - 38,634 - 45,384 - 49,978 - 53,906 - 57,856 - 63,013 - 71,318 - 82,629 - 106,607.
LGA: 27,775 - 43,948 - 52,174 - 58,943 - 69,240 - 81,628 - 92,334 - 102,506 - 114,219 - 138,099.
LGANonMan: 28,271 - 42,718 - 48,115 - 51,752 - 54,076 - 57,739 - 61,705 - 69,823 - 77,697 - 118,845.
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that both start and end outside Manhattan. Another set of specifications limit to 

rides that either start or end at LaGuardia (LGA) airport, proxying income by 

the median income in the pickup (drop-off) location census tract if the ride ends 

(starts) at LGA. Finally, the most conservative set of specifications limits to rides 

that start at LaGuardia airport and end outside Manhattan. We then split these 

rides into ten income quantiles and run the regression discontinuity for each of 

these subsamples. Figure 6 plots the coefficients from these regressions, finding 

no systematic pattern in income. Although it might be that the absence of a clear 

pattern is due to measurement error in the income variable, the constancy in the 

discontinuity suggests that default effects are similar for customers across the dif-

ferent proxied income brackets in our sample.

III. Comparing across Vendors

While our regression discontinuity design provides compelling identification, 

it is limited to a localized treatment effect. One way to expand upon our results 

would be to compare rides over which both credit card machine companies pro-

vided percentage default suggestions. For fares above $15, the Vendor provided 

suggestions of 20 percent, 25 percent, and 30 percent, while the competitor pro-

vided suggestions of 15 percent, 20 percent, and 25 percent. However, there are 

several potential differences in the matches of customers and drivers between the 

two companies (e.g., see the online Appendix for a figure depicting the geospatial 

distribution of pickup locations between the two companies). While we can control 

for the pickup and drop-off location, there may be other unobservable differences 

in driver-customer match that affect the tip amounts. To address this challenge, we 

limit our analysis to rides that originate at LaGuardia airport.7 Customers queue 

at lines that contain a mix of taxis equipped with both credit card machine compa-

nies. Panel A of Figure 7 shows that the distribution of fares is comparable across 

the two credit card companies when we limit the sample to rides that are above 

$15 and originate at LaGuardia.8

For the distribution of tip percentages, we limit the sample to fares with tip per-

centages less than or equal to 50 percent in order to provide greater visual clarity. 

Panel B of Figure 7 demonstrates the stark difference in the two distributions, with 

the higher set of defaults inducing a distribution that has significantly more density 

around its lowest option. The left tail of the figure is also larger for the Vendor; how-

ever, this effect is limited to zero-valued tips.

We provide a regression analysis of these effects in Table 4. To address con-

cerns of any type of sorting between drivers and credit card machine companies, 

we also provide specifications with fixed effects for driver, pickup hour, and bor-

ough of the drop-off location. These fixed effects specifications exploit the 7 percent 

of drivers in our sample that drove on cars equipped by both companies on rides 

7 We exclude JFK airport because the majority of rides use a $45 fixed fare, complicating our placebo test of 
equality in fares between vendors. In the online Appendix, we repeat the analysis in this section pooling both LGA 
and JFK observations. Our estimates in that pooled sample are qualitatively similar.

8 However, it should be noted that a simple t-test of fare across the vendor (27.47) and competitor (27.36) rejects 
equality ( p = 0.0089 ).
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from LaGuardia Airport, allowing us to identify the coefficient on “Vendor” while 

 controlling for time-invariant driver characteristics.9 However, it is important to note 

that we cannot control for the influence of possible additional differences between 

9 There may be time-varying characteristics that present a threat to identification, such as motivation (e.g., driv-
ers may choose to use Vendor-equipped cabs on days in which they are more motivated to earn income).

Figure 7. Distribution of Fares (panel A) and Tip Percentages (panel B) 
across Vendor- and Competitor-Equipped Taxis

Notes: The sample is limited to fares greater than $15 on cab rides that originated at the census 
tract associated with LaGuardia Airport, without tolls, taxes, or surcharges (January 1, 2009–
October 31, 2009; 6 am–4 pm on Monday–Friday and 6 am–8 pm on Saturday and Sunday). 
Panel B is limited to rides with tip percentages less than 50 percent.
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the two  companies in the distribution of taxi cab characteristics, such as the display 

of the payment screens (e.g., the Vendor, unlike the Competitor, paired the percent-

age suggestions with their dollar conversions).
We find that the small difference in fare is significant at the 5 percent level in 

specifications that do not include fixed effects (column 1), and insignificant in speci-

fications that do include fixed effects (column 2)—though these coefficients are not 

statistically different from each other. We find a significant increase in the tip per-

centage, consistent with our regression discontinuity estimates, though the effect 

size is smaller in magnitude. We also find a reduction in the probability of using one 

of the suggested amounts, also consistent with Section II. Columns 7 and 8 show a 

small decrease in the probability of leaving a tip greater than 0 percent but less than 

10 percent; however, columns 9 and 10 show a significant increase in the probability 

of leaving a zero-valued tip. As with the regression discontinuity analysis, we cannot 

rule out the possibility that customers presented with the higher options were simply 

switching to paying their tips in cash. Unlike the regression discontinuity analysis 

Table 4—OLS: Comparison of Vendor (20 percent/25 percent/30 percent) 
and Competitor (15 percent/20 percent/25 percent)

Fare Tip percent Default tip

(1) (2) (3) (4) (5) (6)

Vendor 0.128** 0.176 0.675*** 0.699*** −0.083*** −0.078***
(0.056) (0.146) (0.099) (0.259) (0.004) (0.013)

Observations 100,577 100,577 100,577 100,577 100,577 100,577
R2 0.000 0.295 0.001 0.265 0.007 0.222
MeanDepVar 27.047 27.047 18.652 18.652 0.634 0.634
Fixed Effects? X X X
PVal_FEvsNoFE 0.721 0.917 0.661

TipPercent0to10 Zero tip Tip25

(7) (8) (9) (10) (11) (12)

Vendor −0.003** −0.016*** 0.028*** 0.028*** 0.034*** 0.037***
(0.001) (0.006) (0.001) (0.006) (0.002) (0.007)

Observations 100,577 100,577 100,577 100,577 100,577 100,577
R2 0.000 0.213 0.004 0.204 0.003 0.210
MeanDepVar 0.052 0.052 0.039 0.039 0.080 0.080
Fixed Effects? X X X
PVal_FEvsNoFE 0.011 0.998 0.671

Notes: Robust standard errors clustered at the driver level, in parentheses. Even columns include fixed effects for 
driver, pickup hour, and drop-off borough. The dependent variable in columns 5 and 6 (Default tip) takes on value 
1 if the customer selected one of the default tip suggestions (buttons). The dependent variable in columns 7 and 8 
(Tip percent > 0 & < 10) takes on value 1 if the tip is greater than 0 percent and less than 10 percent of the fare. 
The dependent variable in columns 9 and 10 (Zero tip) takes on value 1 if the customer left zero credit card tip. The 
dependent variable in columns 11 and 12 (Tip percent = 25) takes on value 1 if the customer selected the 25 percent 
tip button. DepVarMean is the mean of the dependent variable in the control group (rides on Competitor-equipped 
cabs). PVal_FEvsNoFE is the p-value from a Chow Test for the equality of coefficients across even and odd col-
umns. The sample is limited to fares greater than $15 on cab rides that originated at the census tract associated with 
LaGuardia Airport, without tolls, taxes, or surcharges (January 1, 2009–October 31, 2009; 6 am–4 pm on Monday–
Friday and 6 am–8 pm on Saturday and Sunday).

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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presented in Section II, this comparison suffers from the  potentially  confounding 

influence of other differences between the two  companies. For  example, these 

 zero-valued tip entries could reflect data errors that were more likely to be pro-

duced by Vendor machines. In cleaning the data, we removed all zero-valued dis-

tance and ride duration observations; however, we found that there were slightly 

more of these distance errors associated with the Competitor (0.88 percent versus 

0.65 percent) and more ride duration errors associated with the Vendor (0.65 per-

cent versus 0.05 percent). It is possible that some of the zero-valued tip percent-

age entries are residual electronic errors or tests, and that these tip errors are more 

concentrated in Vendor credit card machines. Despite this issue, the results are 

congruent with the regression discontinuity results for the zero tipping outcome.

Finally, columns 11 and 12 present the proportion of customers who selected 

the 25 percent button, i.e., the “high” option for Competitor cabs and the “middle” 

option for Vendor cabs. We find that the proportion of customers who select the 

25 percent button increases by 3.7 percentage points when it is the “middle” option, 

relative to when it is the “high” option. This result is suggestive of customers being 

influenced by a context effect similar to the “compromise effect” (Simonson 1989). 
A typical test of the compromise effect would compare the tendency to choose an 

option (e.g., 25 percent) between a choice set in which it is the high option out of 

two (e.g., 20 percent and 25 percent) against a choice set that adds a higher option 

(e.g., 20 percent, 25 percent, and 30 percent).10 Our test differs in that the addition 

of a higher button (30 percent) comes with the removal of a low button (15 percent). 
Nonetheless, this result is suggestive of a compromise effect operating, even when 

the choice set of possible tip amounts if preserved and only the set of default tip 

suggestions is manipulated.

IV. Conclusion

Using an extensive dataset, we show that a small change in default tip sugges-

tions has a significant effect on tipping amounts. Our data allow us to provide 

very clean identification in a large naturalistic field setting. We use a regres-

sion discontinuity design to show that an upward shift in the set of suggestions 

induces higher average tip amounts, despite significantly reducing the probability 

that customers use one of the defaults. To analyze consumers’ responses across 

sets of suggestions that were closely framed in terms of percentages, as well as 

to provide less localized treatment effects, we performed a secondary analysis 

of trips originating at LaGuardia airport. Exploiting these quasi-random driver-

to-customer matches, we again find that higher default tip suggestions (20 per-

cent/25 percent/30 percent versus 15 percent/20 percent/25 percent) result in 

higher average tip amounts. This analysis also reveals a potential cost of setting 

10 One could also examine the removal of an “inferior” option from the choice set (e.g., the removal of the 
15 percent button) on the propensity to choose what was previously the middle option (20 percent). We do not find 
this to be a particularly compelling test of the compromise effect because 15 percent is a highly relevant (frequently 
chosen) alternative, rather than a decoy (in contrast to the rarely chosen 30 percent option). Thus, in that manipula-
tion, the default effect is the more relevant phenomenon and appears to dominate the compromise effect (Figure 7b 
shows that the propensity to choose 20 percent actually increases when it becomes the low option).
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defaults too high—customers are also more likely to leave no tip in response to the 

higher defaults. The observed default effect may be attributed to three potentially 

complementary mechanisms. First, customers may be rationally inattentive if the 

cognitive effort or time costs are sufficiently high to justify the additional tip.11 A 

second possible explanation is that the default serves an information transmission 

purpose, acting as a signal of the social norm to unfamiliar customers.12 Finally, 

customers may experience disutility from deviating from the status quo, either 

due to social pressure or other forms of psychological resistance. Ultimately, 

our data do not allow us to cleanly parse the three proposed mechanisms. 

As firms begin to use the insights of behavioral economics to inform their product 

design and promotion, our study suggests that default effects can be exploited 

even in habitually encountered consumer choices. However, there may be a back-

lash to defaults that exceed certain thresholds, and so firms and policymakers alike 

should be cognizant of this potential cost when optimally designing their defaults.

Appendix

Our final dataset was constructed by first performing a number of consistency 

checks and then removing data that appeared to be generated by electronic tests or 

other types of data errors. The full sample of 170,896,479 was reduced to 13,820,735 

observations by performing a number of procedures. We made the following con-

sistency adjustments:

 (i) The pickup came after the drop-off time in 0.14 percent (241,964) of obser-

vations. We replaced these pickup times with their drop-off times, and vice 

versa.

 (ii) The drop-off time came after the pickup time of the subsequent trip in 

0.36 percent (618,570) of observations. We set the drop-off time equal to the 

pickup time of the subsequent trip for all of these cases.

11 The effects of these changes in suggestions on overall spending are relatively small even for regular New York 
City taxi users, though sizable for taxi drivers. To perform a back-of-the-envelope calculation, we use a question 
about the frequency of taxi use from a voluntary passenger survey administered in 2010 by the Taxi and Limousine 
Commission (http://www.nyc.gov/html/tlc/downloads/pdf/tot_survey_results_02_10_11.pdf). We approximate the 
average of these bucketed responses to ∼ 100 rides per year, and scale down by the proportion of rides paid by 
credit in 2009 (∼ 25 percent). Even with this selected sample of passengers, if we extrapolate from our RDD 
(∼ $0.30) or Across Vendor (∼ $0.20) point estimates, the change in overall spending is just $7.25/$5 for a passen-
ger who spends over $1,000 a year on taxis. In contrast, for the median driver in the raw data with ∼ 5,000 rides per 
year (∼ 1,250 by credit), similar calculations produce estimates of $375/$250 increases in their annual incomes. 
We should stress that extrapolating from our local average treatment effects requires making several strong and 
unrealistic assumptions—these calculations are reported here solely to give the reader a rough sense of magnitude.

12 A prime example of this social pressure mechanism is expressed in a New York Sun article on the introduction 
of the credit card system: “It forces you to tip,” a Manhattan resident who recently tipped 15 percent on a $14 fare, 
Greg Mack, said. “What if you didn’t enjoy the ride? It made me feel obligated.” (See Matthew Monks, “Hot Tip for 
Cabbies: Credit Cards Boost Tips,” New York Sun, March 12, 2008, accessed August 10, 2012, http://www.nysun.
com/business/hot-tip-for-cabbies-credit-cards-boost-tips/72783/).
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The full sample of 170,896,479 was reduced to 163,348,600 by dropping all 

observations for which:

 (i) There was a duplicate observation in terms of all original variables (750; 

0.0004 percent).

 (ii) The payment type was “No Charge” (509,194; 0.30 percent) or “Dispute” 

(94,784; 0.06 percent).

 (iii) The ride duration was either equal to zero or longer than 3 hours (619,604; 

0.36 percent).

 (iv) The distance was either equal to zero or greater than 100 miles (929,498; 

0.55 percent).

 (v) The surcharge was greater than $1 (75,295; 0.04 percent).

 (vi) Corresponding to drivers that drove fewer than 100 rides in 2009 (58,495; 

0.03 percent).

 (vii) Multiple cars were associated with the same driver during the same shift 

(1,298,412; 0.77 percent).

 (viii) The driver’s shift was longer than 20 hours (3,872,241; 2.31 percent).

 (ix) The driver’s shift was shorter than 30 minutes (89,606; 0.05 percent).

We then dropped the 5.95 percent (9,718,999) of observations that were on 

cars equipped with the third credit card machine vendor. Next, we dropped obser-

vations for which either the pickup location or drop-off location could not be 

mapped to a census tract in New York, New Jersey, Connecticut, or Pennsylvania 

(2,022,218; 0.13 percent). To ensure that the regression discontinuity is identi-

fied off representative rides, we dropped all rides that had toll amounts applied. 

This dropped the 4,882,731 (3.22 percent) rides which were associated with a 

toll amount greater than zero. We then made the largest sample reduction, remov-

ing the 108,620,194 rides paid by cash, as the data did not include tip informa-

tion for these rides. From this sample of 38,104,458 rides, we further limited to 

those rides for which the base amount (the sum of the fare, tolls, surcharge, and 

tax) was equivalent to the “fare.” Performing this reduction ensured that rides on 

either side of the discontinuity were comparable in terms of the time of day, time 

of year, and the fees faced by the customer. This reduction left 13,929,933 rides 

that occurred prior to November 1, 2009 and between the hours of 6 am to 4 pm 

on Monday through Friday or 6 am to 8 pm on Saturday and Sunday. Finally, 

we removed rides that didn’t correspond to a multiple of $0.40 (the unit of fare 

accrual) added to $2.50 (the flat entry fee), leaving 13,820,784 observations in 

the final sample.
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