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THE ANATOMY of the adult vertebrate brain was
once believed to remain relatively static throughout

an individual’s lifespan (age-related neuron loss not
withstanding). In the early 1960s, however, two reports
suggested the need to revise this widely held view. In
1962, Joseph Altman observed neuron proliferation in
the adult rodent brain1 and in 1964, Edward Bennett
and his colleagues reported that environmental en-
richment produced a subtle but significant increase in
cortical mass in adult rodents2. These studies suggested
that anatomical plasticity persists in the brain long after

early ontogeny. Almost two decades later, Fernando
Nottebohm confirmed this hypothesis by demonstrat-
ing dramatic seasonal morphological changes of entire
brain regions that control song behavior in canaries
(Serinus canarius)3.

Nottebohm’s discovery stimulated much research
describing seasonal changes in the nervous systems of
a wide variety of adult animals. Seasonal plasticity of
structure and function is now known to be a common
feature of the brains of many species, particularly 
seasonal breeders (Table 1). These animals provide
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powerful models within which to study naturally occur-
ring plasticity in the adult brain. No animal, however,
has provided as much insight on this topic as songbirds.

The volumes of song control nuclei change
seasonally

Song is a learned behavior used by birds to attract
mates and to defend breeding territories21. In oscine
passerines (songbirds), song behavior is controlled by
a network of discrete interconnected brain regions or
nuclei (Fig. 1). Song behavior and the brain regions that
control it are seasonally plastic in every species of sea-
sonally breeding adult songbird that has been system-
atically studied36–39. The entire volumes of several song
nuclei, including the neostriatal region HVc (sometimes
referred to as the ‘high vocal center’), the robust nucleus
of the archistriatum (RA) and area X of the parolfactory
lobe, are considerably larger during the spring breeding
season than during autumn and winter in wild birds
(Fig. 1; Table 2). In the most extreme example, the vol-
ume of HVc in spotted towhees (Pipilo maculatus) nearly
triples between the non-breeding and breeding seasons
(Fig. 2). This naturally occurring plasticity in the song-
bird brain is perhaps the most pronounced observed in
any adult vertebrate. One should note, however, that
not all of the song nuclei exhibit seasonal volumetric
changes. For example, these changes have not been
observed in the lateral portion of the magnocellular
nucleus of the anterior neostriatum (lMAN)37,38,40,44,45.

Day length is the primary environmental cue that
stimulates seasonal reproductive development and song

system growth3,38,40,44,46. Each year prior to the breeding
effort, the lengthening days of late winter and early
spring stimulate gonadal recrudescence, development
of secondary sexual characteristics and increases in cir-
culating blood levels of gonadal sex steroids47. The sea-
sonal growth of the song control system occurs during
this early stage of seasonal reproductive development,
several weeks before the actual onset of breeding37. Re-
cent data suggest that the seasonal growth of the song
nuclei can also be influenced by seasonal cues other than
day length. In the laboratory, social cues from sexually
receptive female white-crowned sparrows (Zonotrichia
leucophrys gambelii) enhanced the photo-induced growth
of two song nuclei in their male cagemates45. HVc and
RA were 20% and 15% larger, respectively, in males
housed with females on long spring-like days than in
males housed similarly without females. Future studies
should determine whether other seasonal cues such 
as food availability, temperature or precipitation also
influence the vernal growth of the song system.

In the laboratory, long spring-like days (LD) and
elevated circulating testosterone (see below) stimulate
structural changes in the song circuitry that closely
resemble those observed in wild animals (Table 3).
These changes occur rapidly and sequentially37,39,51. In
captive white-crowned sparrows, HVc volume increased
by 69% within seven days of exposure to LD and testos-
terone. The primary efferent targets of the HVc, RA and
area X, appeared to grow more slowly, only achieving
full breeding volumes after 7 to 20 days of exposure to
LD and testosterone. This sequential growth of the song
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TABLE 1. Comparative survey of seasonal plasticity in the adult central nervous systema

Class Examples Refs   

Gastropoda Inhibitors of protein kinases A and C are most effective during the non-breeding season at suppressing egg- 4
laying hormone secretion from the neuroendocrine bag cells of Aplysia californica.       

A greater percentage of Aplysia californica siphon motoneurons exhibit an excitatory response to FMRFamide 5
treatment during the summer months.

Crustacea Motor terminals that innervate the crayfish (Procambarus clarkii) claw-closer muscle produce smaller EPSPs, 6
are more resistant to fatigue and have more synaptic varicosities during the summer than during the winter.

Osteichthyes Androgen-receptor levels peak during spawning in the goldfish (Carassius auratus) brain. 7
The size of pineal organ cell bodies increases during the fall and winter in goldfish (Carassius auratus). 8

Amphibia The volume of the medial-amygdala–anterior-preoptic-complex is larger in hibernating (pre-breeding) than in 9
post-breeding male toads (Bufo japonicus).

Reptilia The size of the anterior-hypothalamus–preoptic area increases while the size of the ventromedial 10
hypothalamus decreases during the breeding season in male whiptail lizards (Cnemidophorus inornatus).

Aves The volume of the hippocampal formation and neuronal incorporation into this brain region increase during 11,12
the fall in black-capped chickadees (Parus atricapilus).

The volume of several song control nuclei increases during the breeding season in songbirds. 3
GnRH immunoreactivity is decreased, and the number of axo-somatic synaptic terminals contacting GnRH 13,14
neurons is greatest in photorefractory European starlings (Sturnus vulgaris).

Mammalia Motoneurons in the spinal nucleus of the bulbocavernosus are larger in breeding than in non-breeding 15
white-footed mice (Peromyscus leucopus).

Vasopressin innervation is enhanced in various regions of the European hamster (Cricetus cricetus) brain 16
during the breeding season.

Preoptic GnRH neurons in the ewe receive more synaptic inputs during the breeding season. 17
In male Siberian hamsters (Phodopus sungorus) that are shifted from long days to short days, the levels of 18
neural cell  adhesion molecule increase in the AH and POA, but decreases in the MBH. Polysialic acid levels 
are reduced in the AH and MBH of these animals.

Hippocampal neuronal incorporation is greatest during the fall in Syrian hamsters (Mesocricetus aruatus). 19
The volume of the hypothalamic suprachiasmatic nucleus and the number of vasopressin-immunoreactive 20
neurons contained within it are greater during the autumn than during the summer in humans.

aNote that this list is not exhaustive, but is intended to provide examples from a wide variety of taxa.

Abbreviations: AH, anterior hypothalamus; GnRH, gonadotropin-releasing hormone; MBH, mediobasal hypothalamus; POA, pre-optic area.
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control nuclei in adults is similar to the sequential
ontogeny of these structures in juvenile birds. In young
male zebra finches (Poephila guttata; between 12 and
53 days post-hatch), Bottjer et al. reported that the
developmental growth of HVc preceded that of RA
and area X (Ref. 52). These observations might suggest
that early ontogeny and adult plasticity in the brain
exploit similar mechanisms, an idea that dates back 
to Ramon y Cajál53. Rigorous tests of this hypothesis
should be carried out in a species other than the zebra
finch because these birds are not typical photoperiodic
seasonal breeders54.

The sequential seasonal growth of the song control
nuclei is consistent with the hypothesis that the sea-
sonal growth of RA and area X requires trans-synaptic
support from HVc. In support of this hypothesis,
Brenowitz and Lent reported preliminary data that
lesions of HVc blocked the seasonal growth of RA and
area X in captive white-crowned sparrows55. This result
is also reminiscent of developmental studies where HVc
lesions in juvenile male zebra finches blocked the full
development of RA and area X (Refs 56,57). In young
male zebra finches, HVc neurons produce brain-derived
neurotrophic factor (BDNF), which appears to be trans-

ported anterogradely to RA and area X (Ref. 58).
Exogenous BDNF decreases deafferentation-induced
apoptosis in the RA of developing male zebra finches59,
and might be one trans-synaptic trophic factor that
supports RA development in juveniles. If adult plastic-
ity in the brain is mediated by similar processes to those
that regulate development, then BDNF might be one
component of the trans-synaptic support that HVc
provides to RA and area X in adults.

Neuron number changes seasonally in HVc

Seasonal changes in the morphology of HVc were first
demonstrated in male canaries by Nottebohm. He used
Nissl-stained tissue to show that HVc volume3 and
neuron number60 were twice as large during the spring
than during autumn (Table 3). The reliability of Nissl
criteria to define the borders of song nuclei, especially
HVc, was subsequently called into question (see Box 1).
A wide series of studies have since shown, however, that
the Nissl-defined borders of HVc coincide with those
defined by a variety of other cytological markers, in-
dicating that the volume and number of neurons in
HVc do in fact change with season in several different
species37,39,44,49,61,62. In one study of wild song sparrows
(Melospiza melodia morphna), for example, the number
of neurons in HVc increased from approximately 
150 000 in the late autumn to 250 000 in the early
spring37. This result was confirmed in this same species
using a neuron-specific antibody to label and count
HVc neurons63. The seasonal volumetric growth of HVc
clearly reflects seasonal neuronal addition into this
nucleus.

This vernal increase in neuron number is a result of
ongoing neurogenesis in the songbird brain64–67. The
adult HVc continues to incorporate new RA-projecting
neurons and interneurons that replace older dying
cells68,69. This neuronal turnover is seasonally regulated
and is greatest during the non-breeding season63,70.
Elevated circulating sex steroids appear to decrease the
turnover and increase the survival of HVc neurons,
thus increasing their numbers during the breeding
season63,71,72.

Seasonal changes in HVc neuronal turnover are cor-
related with changes in song behavior. Canaries learn to
produce new song elements as adults and are therefore
referred to as ‘open-ended’ or ‘age-independent’ song
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Fig. 1. The song control system is organized into two principal circuits.

The main descending motor pathway (black arrows) begins in HVc

(sometimes called the ‘high vocal center’) and terminates at the syrinx

(the vocal production organ). Neuronal activity in HVc and in the robust

nucleus of the archistriatum (RA) is synchronized with sound production

from the syrinx22,23, and inactivation of either of these nuclei abolishes

song production24. HVc lesions can also impair song discrimination25,26.

The anterior forebrain circuit (gray arrows) indirectly connects HVc to RA

and is essential for song learning and perception23,27. Lesions of anterior

forebrain nuclei prevent normal song learning in juvenile birds28–30 and

song perception in adult birds31,32. Feedback circuits also exist within the

song control system. Neurons in the lateral portion of the magnocellular

nucleus of the anterior neostriatum (lMAN) that project to RA send col-

laterals to area X in the parolfactory lobe closing one loop. Projections

from RA also initiate reafferent thalamo-telencephalic loops (broken

arrows) that might provide indirect feedback to HVc (Refs 33,34). The

HVc receives afferent input from two song nuclei that are not shown:

nucleus interfacialis of the caudal neostriatum and nucleus uvaeformis

of the thalamus. HVc and RA also receive input from several auditory

forebrain regions that are not shown35. Finally, neurons in the lateral

hypothalamus project to the dorsomedial nucleus of the posterior thala-

mus (DMP), which in turn projects to the medial portion of the magno-

cellular nucleus of the anterior neostriatum (mMAN), suggesting inte-

gration of information between the hypothalamus and the song

system33. Abbreviations: DLM, dorsolateral nucleus of the medial thala-

mus; nXIIts, the tracheosyringeal portion of the hypoglossal nucleus; 

V, lateral ventricle.

TABLE 2. Seasonal plasticity of song control nuclei in
male songbirds captured in the wild

Speciesa HVcb RAb Area Xb Ref.

Spotted towhee 2.88 2.35 1.60 40
(Pipilo maculatus)        

Western song sparrow 1.54 1.46 1.31 37
(Melospiza melodia morphna)        

Nuttal’s white-crowned sparrow 2.23 1.80 1.57 38
(Zonotrichia leucophrys nuttalli)        

Gambel’s white-crowned sparrow 1.73 nm nm 41
(Zonotrichia leucophrys gambelii)

Dark-eyed junco         1.61 1.36 1.40 42
( Junco hyemalis)  

aNote that all species that have been studied in the field are from the family

Emberizidae. Kirn et al.43 studied red-winged blackbirds (Agelaius phoeniceus),

but with equivocal results.
bNumbers represent ratios of song nucleus breeding volume to non-breeding

volume.

Abbreviations: nm, not measured; RA, robust nucleus of the archistriatum.
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learners36. Song learning in these birds occurs prefer-
entially during the non-breeding season when song
syllables are produced with less temporal and spectral
stereotypy. These peak periods of song learning coincide
with peaks in HVc neuronal recruitment70, suggesting
that perhaps seasonal patterns of neuronal replacement
in HVc provide the neural substrate for seasonal song
learning in adult birds65,70,73,74. Recently, however, sea-
sonally variable neuronal incorporation has also been
demonstrated in adult song sparrows in which, as for
canaries, HVc recruits more new neurons during the
non-breeding season63. Song sparrows are similar to
canaries in that song stereotypy is diminished during

the non-breeding season37. Unlike canaries, however,
song sparrows are ‘critical-period’ or ‘age-limited’ learn-
ers and do not learn to produce new songs as adults.
This observation suggests that seasonal patterns of neur-
onal turnover in HVc might be necessary, but not suf-
ficient for adult song learning. Alternatively, perhaps
seasonal patterns of neuronal turnover in HVc are more
directly associated with seasonal changes in song
stereotypy.

Dendritic growth and synaptogenesis in RA

The cellular basis of the volumetric growth of RA
differs from that observed in HVc. Neuron number
does not change seasonally in RA, but neuron size and
spacing in this nucleus are both greater during the
breeding season37,39,44,49,61,62,75. The increase in neuronal
spacing is associated with a vernal increase in the den-
dritic arborizations of RA neurons60. Synaptic morphol-
ogy also varies seasonally in RA, such that the sizes of
presynaptic and postsynaptic profiles are largest during
the breeding season in canaries76. The number of trans-
mitter vesicles per synapse is also greatest during the
breeding season. In captive red-winged blackbirds
(Agelaius phoeniceus), the density of dendritic spines on
RA neurons was greater in males maintained on long,
spring-like day lengths than in males on short days77.
These seasonal patterns of dendritic change suggest
that synaptic efficacy in RA is enhanced during the
breeding season78. Electrophysiological studies should
address this hypothesis.

Testosterone mediates seasonal changes in the
song system

Several lines of evidence strongly suggest that testos-
terone (or its active metabolites) is the primary physio-
logical cue that mediates the cyclical anatomical
changes in the song circuitry. Several song nuclei, in-
cluding HVc, RA, the medial and lateral portions of
the magnocellular nucleus of the anterior neostriatum
(mMAN and lMAN), the tracheosyringeal portion of the
hypoglossal nucleus (nXIIts), and the dorsolateral nu-
cleus of the medial thalamus (DLM) contain gonadal
steroid receptors79–83. The seasonal pattern of circulat-
ing testosterone correlates positively with the seasonal
growth pattern of the song control circuitry3,37,38,40,41,63.
Castration strongly attenuates the seasonal growth of
the song nuclei42,44,46. Exogenous testosterone can in-
duce song-nucleus growth in castrated males and non-
breeding males in fall and winter44,71,75,84,85.
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Fig. 2. Seasonal volumetric changes in the songbird brain. Wild male spotted towhees were

collected and killed during the spring breeding season (left) and during the winter non-breeding

season (right). Nissl-stained coronal sections through HVc (a), robust nucleus of the archistriatum

(RA) (b) and area X (c) are shown. The overlying hippocampal formation has been removed in

(a). Scale bars, 0.5 mm. Modified, with permission, from Ref. 40.

TABLE 3. Experimentally induced plasticity of song control nuclei in captive male songbirds

Species Treatment HVca RAa Area Xa Ref.   

Canary (Serinus canarius) Natural photoperiod April versus September 1.99 1.77 nm 3        
Red-winged blackbird (Agelaius phoeniceus) 15 h versus 9.5 h light 1.34 1.28 1.42 43      
Orange bishop (Euplectes franciscanus) 14 h versus 10 h light 1.80 1.60 nm 48      
Eastern towhee (Pipilo erythrophthalmus) 15 h versus 9 h light 1.68 1.54 1.62 49      
Gambel’s white-crowned sparrow 20 h light and testosterone versus 8 h lightb 1.82 1.71 1.57 44
(Zonotrichia leucophrys gambelii)         

European starling (Sturnus vulgaris) P-stim versus P-refracc 1.44 no change no change 50      
American tree sparrow (Spizella arborea) 20 h versus 8 h light 1.76 1.46 1.74 46  

aNumbers represent song nucleus volume ratios between treatment groups.
bAll birds were castrated.
cPhotostimulated (P-stim) males had testes that were not fully recrudesced (birds might not have been fully stimulated). After six to eight weeks of long

days, males became photorefractory (P-refrac) and had fully regressed testes.

Abbreviations: nm, not measured; RA, robust nucleus of the archistriatum.



TINS Vol. 23, No. 6, 2000 255

The effects of testosterone on HVc neuronal survival
and the volumetric growth of this nucleus appear to
be mediated (at least in part) through BDNF. Treatment
with testosterone increases protein synthesis86 and
BDNF-like immunoreactivity in HVc (Ref. 87). Intra-
parenchymal BDNF infusion adjacent to HVc mimics
the effects of testosterone, enhancing neuronal survival
in HVc and increasing its volume. Finally, and most
interestingly, neutralizing antibodies to BDNF block
the effects of testosterone on neuronal survival within
HVc and the volumetric growth of HVc. Insulin-like
growth factors 1 and 2 have also been identified in the
adult HVc (Refs 88,89). It will be informative to deter-
mine whether these factors also influence sex steroid
action within HVc (Ref. 66).

Circulating testosterone can be converted to active
androgenic and estrogenic metabolites in the brain90.
The enzyme 5!-reductase converts testosterone into
5!-dihydrotestosterone (DHT), and aromatase converts
testosterone to estradiol (E

2
). Furthermore, 5"-reductase

is thought to inactivate testosterone by converting it to
5"-DHT. All of these enzymes are widely distributed in
the songbird brain, thus, the effects of testosterone on
the song system might be mediated through its conver-
sion to one or more of these metabolites. In support of
this hypothesis, exogenous 5!-DHT and E

2
delivered in

combination can induce dendritic growth in the canary
RA that is similar to that induced by testosterone treat-
ment91. Note that exposure to either 5!-DHT or E

2
alone

evokes less dendritic growth, perhaps suggesting some
synergy between these metabolites. Additionally, E

2
pro-

motes the survival and decreases neuronal turnover in
the canary HVc (Ref. 72). Apart from these studies, the
possible roles of 5!-DHT and E

2
in the adult song system

have received little attention.
Emerging evidence suggests that the sensitivity of the

song nuclei to circulating testosterone might vary sea-
sonally. At the end of the breeding season birds become
refractory to the stimulatory effects of long days and
the testes regress, sex steroid levels decrease in the blood
and feather molt ensues92. During this photorefractory
period, androgen- and estrogen-receptor production in
HVc appear to be diminished41,93 (Fig. 3). One study has
demonstrated that 5"-reductase levels in the hyper-
striatum increase with the onset of photorefractoriness
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Most investigations of seasonal plasticity in the song system

have used Nissl stains to visualize the borders of song nuclei.

The reliability of these stains in this context was questioned

by Gahra,b. He reported that the Nissl-defined borders of HVc

were larger in breeding than in non-breeding male canaries,

but that the size of this nucleus did not differ between these

groups when measured by estrogen-receptor immunoreactiv-

ity. Gahr also reported that area X-projecting neurons lay

outside the apparent Nissl-defined borders of HVc in non-

breeding birds. Since Gahr’s report, several investigators

from different laboratories have compared seasonal volu-

metric changes of HVc using a Nissl stain and additional

histological markers. All of these studies failed to replicate

Gahr’s observation and found that the Nissl-defined vol-

ume of HVc coincided with the volume as defined by other

markers, regardless of season or hormone condition (see

Table I). These studies demonstrate that the seasonal

changes observed in the song nuclei using Nissl-stained 

tissue represent real changes in the structure of these

regions. For a detailed discussion of this issue see Refs f,g,j.
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Box 1. Reliable anatomical markers of song control nuclei

TABLE I. Studies that have reported seasonal or hormonally induced
changes in HVc volume using multiple histological markers

Species Histological markers used Refs  

Canary Nissl stain, [3H]DHT and E
2

c,d,e
(Serinus canarius) accumulation, RA- and area 

X-projecting neurons.      

European starling Nissl stain, !
2
-adrenoceptor f

(Sturnus vulgaris) autoradiography.      

Gambel’s white-crowned sparrow Nissl stain, area X-projecting neurons, g
(Zonotrichia leucophrys gambelii) acetylcholinesterase histochemistry.

Gambel’s white-crowned sparrow Nissl stain, androgen-receptor h
(Zonotrichia leucophrys gambelii) immunocytochemistry.

Western song sparrow Nissl stain, Hu immunocytochemistry. i
(Melospiza melodia morphna)      

Abbreviations: DHT, dihydrotestosterone; E
2
, estradiol; RA, robust nucleus of the archistriatum.

Fig. 3. Androgen-receptor immunoreactivity in HVc of wild white-

crowned sparrows. Male birds were collected and killed during the spring

breeding season (a) and during the autumnal migration (b). Immuno-

label is localized to HVc cell nuclei and is more intense in breeding 

birds than in photorefractory birds. The density of immunopositive HVc

cells is also greater in breeding birds. Scale bar, 20 #m. Modified, with

permission, from Ref. 41.
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in European starlings (Sturnus vulgaris)94, perhaps indi-
cating that testosterone inactivation is enhanced in
the brains of photorefractory birds. In another study,
Bernard and Ball implanted photorefractory starlings
with exogenous testosterone and reported no increase
in HVc volume85.

Non-steroidal cues contribute to seasonal plasticity

The seasonal plasticity in the song control system is
not governed solely by gonadal steroids. Studies from
two laboratories have indicated that manipulations of
day length can induce changes in the song nuclei of cas-
trated animals. Long days increased the volume of HVc
slightly in castrated white-crowned sparrows44 and star-
lings95. Another study suggested that photostimulation
increased the volumes of HVc, RA and area X in cas-
trated American tree sparrows (Spizella arborea)46. These
researchers all pointed out that the gonad-independent
effects of photoperiod were much less pronounced than
those observed in gonadally intact birds. The interpre-
tation of results from these studies of castrated animals
must be tempered by reports of non-gonadal sources of
sex steroids96.

Several non-steroidal endocrine signals have been iden-
tified as potential mediators of song system plasticity.
Melatonin binding in HVc and RA is photoperiodically
regulated in captive house sparrows (Passer domesticus)97,
and exogenous melatonin can inhibit photo-induced
song system growth in castrated starlings95. Preliminary
evidence suggests that thyroid hormones might also in-
fluence seasonal plasticity in the song control system,
especially considering their involvement in seasonal
plasticity of the avian gonadotropin system98–100.

Why does the structure of the song system change
seasonally? An hypothesis

The sustained peak performance of a seasonally pre-
dictable behavioral task is often preceded by hypertrophy
of the organs or tissues, that support that task101. For ex-
ample, the size of the gonads and other reproductive

structures increases dramatically in preparation for the
annual breeding season and these organs regress when
the breeding season is terminated47. Long-distance mi-
gration in birds is preceded by a host of physiological
changes including elevated fat stores and increased
flight muscle mass102,103. Anticipatory changes such as
these are stimulated by seasonal environmental cues
and mediated by neural and endocrine signaling mecha-
nisms. The maintenance of hypertrophied organ sys-
tems and tissues is thought to be energetically expensive
and so these systems regress when peak performance is
not required101,104.

The principles of performance-associated hypertro-
phy might also pertain to the seasonal plasticity of
the song control circuitry. This hypothesis predicts
that song performance should be enhanced during
the breeding season. This prediction is supported by
data from canaries, white-crowned sparrows and song
sparrows. In these species, males sing more stereo-
typed songs (less song-to-song variability) during the
spring breeding season, and song production is more
frequent (more sustained) at this time of the
year36,37,39,61,105 (Fig. 4). During the non-breeding sea-
son, birds sing less frequently and with less stereotypy
(more variability).

Another prediction of the performance-associated
hypertrophy hypothesis is that the growth of the song
nuclei should occur in anticipation of behavioral
changes. This appeared to be true in a study of captive
white-crowned sparrows where seasonal cues initiated
rapid song system growth that preceded significant im-
provements in song stereotypy39. This prediction merits
further study and does not exclude the possibility that
experiential factors might also influence song system
growth in complex ways. For example, perhaps singing
can provide behavioral feedback that modifies song
system growth. This idea has not been directly tested.

A third prediction of the performance-associated
hypertrophy hypothesis is that the energetic costs of
maintaining a fully developed song system throughout
the non-breeding season outweigh those associated with
recrudescing the song system each spring. Currently, the
relative metabolic costs of maintaining or rebuilding the
song system each year are not known.

Concluding remarks and prospects for the future

Seasonal plasticity of the song system can serve as a
model to address the following questions, which are
of fundamental importance to the study of neural
plasticity in general.

• What are the mechanisms that mediate hormone ac-
tion in the adult brain? Does hormone metabolism
contribute to adult brain changes? How does trans-
synaptic support from afferent and efferent targets
support or influence, hormone action in a given brain
region?

• What growth factors and trophic agents influence
adult brain plasticity? This question has already
received much attention in non-avian models, but
the song system can shed light on how these agents
synergize with or mediate, the effects of circulating
hormones.

• How are neuronal proliferation, incorporation and
survival in the adult brain controlled? What is the
behavioral consequence of seasonally regulated
neuronal turnover?
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Fig. 4. Song stereotypy changes seasonally. Spectrograms are presented of songs recorded

from a single adult male canary during two successive breeding seasons (April 1982 and 1983)

and the intervening non-breeding season (September 1982). During April 1982, this bird’s

repertoire contained 28 highly stereotyped syllables (only five are shown). In September, song

stereotypy was markedly decreased. For example, syllable 5 was produced as two simultaneous

and independently modulated sounds. Canaries can learn new song elements as adults, and

do so preferentially during such periods of song instability. By the following April (1983), this

bird’s song repertoire contained 35 syllables and song production was once again stable and

stereotyped. Modified, with permission, from Ref. 36.
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• Do neurons possess different electrophysiological
characteristics in different seasons? To what extent
is neural processing (for example, synaptic efficacy)
affected by seasonal anatomical and physiological
changes in these brain regions?

• What is the functional relevance of brain changes in
adults? What are the behavioral consequences? Does
plasticity facilitate adult learning?

• What are the costs and benefits associated with the
seasonal growth and regression of brain centers?

Adult brain plasticity is a common phenomenon
across a wide variety of animal taxa, and is a rich topic
of investigation with many questions yet unanswered.
Future studies should take advantage of the great diver-
sity of seasonally breeding animals that exhibit natu-
rally occurring cyclical brain changes. Such a compara-
tive approach is likely to uncover general principles that
govern dynamic events in the adult brain. In addition,
this approach will provide fundamental insights into
the behavioral consequences of structural changes in
the adult brain.
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