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Bipolar disorder (BD) is a chronic and disabling psychiatric illness characterized by complex pathophysiological mechanisms.
Traditional treatments often fail to address these multidimensional processes, highlighting the need for novel therapeutic
strategies. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), widely used for metabolic disorders, have emerged as promising
candidates for a range of neuropsychiatric conditions due to their broad neurobiological effects. This narrative review synthesizes
preclinical, clinical, and real-world evidence evaluating the therapeutic potential of GLP-1RAs in BD. These agents modulate
neurotransmission, reduce neuroinflammation and oxidative stress, enhance mitochondrial and neurotrophic function, and
improve insulin sensitivity and hypothalamic-pituitary-adrenal (HPA) axis regulation. These mechanisms are implicated in the
neurobiology of BD, and preliminary findings suggest benefits across core psychopathological domains and common
comorbidities, including depression, anxiety, mania, cognitive dysfunction, weight gain, and substance use disorders. While human
data—particularly in BD populations—remain limited, evidence points to potential adjunctive benefits, especially in individuals
with metabolic or cognitive vulnerabilities. Given their pleiotropic actions and established safety profile, GLP-1RAs represent
compelling candidates for drug repurposing in BD. Well-powered, controlled trials are needed to confirm efficacy and safety,

identify optimal subgroups, and evaluate long-term outcomes.
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INTRODUCTION

Bipolar disorder (BD) is a chronic psychiatric condition character-
ized by episodic fluctuations in mood and energy [1]. Even during
remission, patients often experience persistent subsyndromal
symptoms, such as cognitive dysfunction, reward system altera-
tions, or disturbances in appetite and sleep [2]. BD is among the
leading causes of disability worldwide and is frequently comorbid
with cardiovascular disease, metabolic syndrome and diabetes,
and other psychiatric conditions [3-5].

The etiology of BD is multifactorial, involving genetic, epige-
netic, environmental, and neurobiological factors [6]. Genome-
wide association studies have linked BD to multiple risk loci
related to ion channel regulation, neurotransmitter signaling,
neuroplasticity, cellular signaling pathways, and neurodevelop-
ment [2, 7]. Additionally, factors such as inflammation [8],
mitochondrial dysfunction [9], hypothalamic-pituitary-adrenal
(HPA) axis dysregulation [10] or insulin resistance (IR) [11] have
been implicated in BD pathophysiology. Despite available treat-
ments—primarily mood stabilizers and antipsychotics—many
patients experience incomplete response and significant side

effects [12], underscoring the need for innovative, safe and
effective interventions [13].

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) were
developed for glycemic control in type 2 diabetes (T2DM) [14] and
are now endorsed by the 2025 American Diabetes Association
(ADA) guidelines [15] as an alternative to metformin. They act
through GLP-1R, a G-protein-coupled receptor expressed in the
pancreas, gastrointestinal tract, and brain [14]. Beyond metabolic
benefits, GLP-1RAs exert molecular and cellular effects in several
brain regions that may underlie potential therapeutic benefits in
neuropsychiatric disorders [16]. While clinical trials are underway
in conditions such as Alzheimer’s disease [17] or Parkinson'’s
disease [18], their psychiatric applications remain nascent.
Increased public and clinical attention, along with growing off-
label use, particularly among adolescents and young adults [19],
has intensified interest in their broader therapeutic goal.

Given the diverse neurobiological effects of GLP-1RAs, there is
growing interest in their potential role in addiction or mood
disorders (MD) [20, 21]. Although GLP-1RAs may offer transdiag-
nostic benefits, BD represents a uniquely promising clinical target.
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This is due to its convergence of treatment-resistant mood
symptoms, cognitive impairment, high rates of metabolic
comorbidity, and progressive neurobiological changes [1]—many
of which intersect with the mechanistic effects of GLP-1RAs. In
particular, accumulating evidence underscores the strong bidirec-
tional link between psychiatric and metabolic disorders such as
diabetes, highlighting at the therapeutic potential of interventions
that address both simultaneously. Moreover, BD is associated with
markedly long-term functional morbidity [22], emphasizing the
need for interventions that go beyond symptoms reduction to
address functional recovery and mortality risk. Crucially, GLP-1RAs
may offer metabolic safety advantages over current standard
treatments. Nonetheless, their application in BD remains unex-
plored, with only one randomized controlled trial (RCT) [23], one
pilot open-label study [24], and a limited number of retrospective
studies [25, 26] to date. This narrative review synthesizes current
evidence on the potential role of GLP-1RAs in BD—not only as a
metabolic intervention with secondary psychiatric benefits, but
also as agents that may directly target core pathophysiological
processes. Of particular interest is to characterize specific
individual profiles within BD that may derive the greatest clinical
benefit from GLP-1RA treatment, in terms of both psychiatric
outcomes and metabolic parameters. Specifically, we (1) describe
the main physiological effects of GLP-1R activation; (2) outline key
properties of GLP-1RAs; (3) analyze their role in crucial pathophy-
siological mechanisms of BD—discussed separately despite their
interdependence [27]—and (4) review the available preclinical
and clinical evidence across key psychopathological domains and
comorbidities, including depression, anxiety, mania and mood
regulation, cognition, weight gain and metabolic disturbances,
and comorbid substance use disorders. Each of these domains and
comorbidities plays a critical role in the disease burden and
treatment complexity of BD and will be examined both from a
transdiagnostic perspective and within the specific context of BD
(Table 1). Finally, we will discuss the safety and tolerability of these
agents with a specific focus on neuropsychiatric side effects
(Table 2). To improve clarity, human studies are reviewed in
decreasing order of evidentiary strength: (1) meta-analyses and
RCTs, followed by (2) observational, and (3) real-world studies such
as pharmacovigilance analyses. Our aim is to evaluate whether
GLP-1RAs may represent a novel therapeutic avenue in BD,
bridging biological plausibility with unmet clinical needs.

METHODS

A narrative, non-systematic review approach was chosen due to
the broad scope of the topic and the large number of studies
exploring BD pathophysiology and its interaction with GLP-1RAs.
This analysis did not require ethical approval, and a protocol was
not pre-registered. A comprehensive literature search was
conducted in PubMed for articles published in English up to
March 1st, 2025. using key terms such as “GLP-1", “GLP-1 receptor
agonists”, “bipolar disorder”, “depression”, “mania”, “cognition”,
“neurobiology”, and “treatment”. Additional studies were identi-
fied through backward citation tracking of relevant reviews and
primary sources. We included preclinical, observational and
experimental studies reporting on the physiological effects of
GLP-1RAs and their relevance to selected pathophysiological
mechanisms and core psychopathological domains of BD. We
included articles providing original data or high-quality synthesis
addressing these dimensions. Studies were included regardless of
clinical setting, population demographics, or comparator. Exclu-
sion criteria included non-English publications, conference
abstracts without full-texts, preprints, case reports or series, and
grey literature. When findings overlapped, more recent, compre-
hensive, or methodologically rigorous studies were prioritized.
Although not a systematic review, efforts were made to minimize
selection bias by applying broad search parameters, prioritizing
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clinical relevance, and including diverse study designs. Our aim
was to provide a balanced synthesis that reflects both the current
evidence and existing uncertainties.

PHYSIOLOGICAL EFFECTS OF GLP-1R ACTIVATION

GLP-1 is an incretin hormone primarily secreted by enteroendo-
crine L-cells in the distal small intestine and colon in response to
nutrient intake, as well as by certain neurons in the nucleus of the
solitary tract (NST) in the brainstem [28]. GLP-1R is a G-protein-
coupled receptor widely expressed in both peripheral tissues and
the CNS [29]. Upon activation, GLP-1R triggers multiple intracel-
lular signaling pathways, mediating diverse cellular effects that
range from metabolic regulation to cytoprotection [28]. Periph-
erally, GLP-1 enhances insulin secretion, suppresses glucagon
release, facilitates peripheral glucose uptake, and delays gastric
emptying. Growing evidence also suggests its involvement in
modulating inflammation and cardiovascular function [28].

In the CNS, GLP-1Rs are expressed in key regions involved in
energy homeostasis, mood, and cognition, including the cortex,
hypothalamus, thalamus, hippocampus, caudate-putamen,
and globus pallidus [30]. In rodents, GLP-1R have also been
characterized in the NTS, nucleus accumbens (NAc), several other
nuclei of the hypothalamus, amygdala, and other limbic structures
[29, 31, 32]. Through these receptors, GLP-1 influences appetite
and body weight, reducing hunger, increasing energy expendi-
ture, and promoting weight loss [33].

UNIQUE PROPERTIES OF GLP-1RAS

GLP-1RAs are pharmacological agents that mimic endogenous GLP-
1 and are available in subcutaneous or oral formulations [34]. These
drugs cross the blood-brain barrier (BBB) [35] and reach key regions
involved in mood regulation such as the hippocampus, amygdala,
prefrontal cortex, as well as the brainstem and hypothalamus
[36, 37]. They are classified into short-acting (e.g. exenatide,
administered twice daily, and lixisenatide, once daily) or long-
acting formulations, with the latter being introduced more recently.
Long-acting agents, such as liraglutide, semaglutide, dulaglutide,
and albiglutide, achieve greater stability through chemical mod-
ifications, allowing for less frequent dosing (ranging from daily to
weekly). More recently, tirzepatide has emerged as a dual agonist
targeting both GLP-1 and glucose-dependent insulinotropic poly-
peptide (GIP) receptors. Despite their benefits, GLP-1RAs commonly
cause gastrointestinal side effects, including nausea, vomiting,
diarrhea, and constipation, which may impact tolerability [38].

TARGETING PATHOPHYSIOLOGICAL MECHANISMS IN BIPOLAR
DISORDER: THE POTENTIAL ROLE OF GLP-1RAS
Modulation of neurotransmission
Neurotransmitter dysregulation is a longstanding hypothesis in MD
[39]. Mania is associated with excessive dopaminergic and glutama-
tergic activity, whereas depression involves reductions in these
neurotransmitters and in GABAergic signaling. Serotonin and norepi-
nephrine dysregulation further contributes to mood fluctuations,
anxiety, cognitive dysfunction, and circadian rhythm disturbances.
GLP-1RAs modulate several neurotransmission systems impli-
cated in BD. For instance, intracerebroventricular GLP-1 reduces
hypothalamic serotonin in rodents, while exendin-4—a GLP-1RA
derived from the venom of the Gila monster—decreases both
serotonin and its metabolite, 5-HIAA [40]. Additionally, exendin-4
transiently increases tonic and synaptic currents mediated by
GABA receptors in the hippocampus [41, 42] and laterodorsal
tegmental nucleus [43], mitigating neuronal hyperexcitability and
potentially stabilizing cognitive and emotional fluctuations
associated with BD. GLP-1 increases dopamine turnover in the
amygdala via D2 receptor signaling [44], and GLP-1RAs are known
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to influence mesolimbic dopaminergic activity [45-47]. Further-
more, GLP-1RAs modulate glutamate transmission by reducing
AMPA receptor expression and excitatory postsynaptic currents in
ventral tegmental area (VTA) dopamine neurons [48], weakening
excitatory strength in reward circuits.

Anti-inflammatory effects

The neuroinflammatory hypothesis of BD suggests that CNS
inflammation plays a key role in its pathophysiology [49, 50].
Elevated levels of proinflammatory cytokines (e.g. C-reactive
protein, IL-1, IL-4, IL-6, IL-1B, and tumor necrosis factor-alpha
(TNF-a)) and microglial activation have been observed in BD.
These inflammatory processes can disrupt neurotransmitter
metabolism, influence kynurenine pathway metabolites, impair
neurogenesis and synaptic plasticity, alter mitochondrial function,
and increase BBB permeability—ultimately establishing a vicious
cycle that drives disease progression [49].

GLP-1RAs exhibit immunomodulatory effects that could miti-
gate neuroinflammatory burden in BD. Exendin-4 reduces TNF-a
levels induced by multiple Toll-like receptor (TLR) agonists [51],
while semaglutide decreases bacterial load and systemic inflam-
mation [51]. GLP-1RAs further suppress inflammation by inhibiting
NF-kB activation [52], attenuating microglial activation [53, 54],
reducing proinflammatory cytokines (IL-6, TNF-a, and IL-1f), and
enhancing anti-inflammatory cytokine (IL-10 [55]) production.
*"Clinically, these agents show promise in reducing systemic
inflammation in cardiovascular diseases, neurodegenerative dis-
eases [54], and inflammatory bowel disease [55]. However, their
role in MD-related inflammation remains unclear. In animal
models of depression, exendin-4 prevented lipopolysaccharide
(LPS)-induced depression-like behaviors but did not significantly
alter proinflammatory cytokine levels [56]. These discrepancies
suggest that GLP-1RAs may differentially influence neuroinflam-
matory pathways depending on the model and context.

Effects on mitochondrial function and oxidative stress
Mitochondrial dysfunction and oxidative stress are critical
components of BD pathophysiology. Abnormalities include altered
mitochondrial morphology and intracellular distribution, disrupted
oxidative phosphorylation, reduced ATP production, a shift toward
glycolysis, and increased oxidative stress markers [9, 57-59].
Insufficient ATP levels in the brain can impair Na+/K+-ATPase
activity, resting membrane potential, and neurotransmitter
release, potentially triggering mood episodes [60]. These dysfunc-
tions compromise neuronal activity and long-term potentiation
(LTP), contributing to emotional dysregulation, cognitive deficits,
and neurodegeneration [61].

GLP-1 signaling appears essential for mitochondrial integrity.
Astrocytic GLP-1R loss has been shown to disrupt mitochondrial
structure [62] and increases the production of fibroblast growth
factor 21 (FGF21), a key stress response factor involved in
mitigating mitochondrial dysfunction [63]. Conversely, GLP-1RA
activate cytoprotective pathways, protects neurons from oxidative
stress and promotes (-oxidation in astrocytes [64]. In epilepsy
models, liraglutide prevented mitochondrial stress and inflamma-
tion [65], while in focal cortical ischemia, it restored Krebs cycle
enzyme activity, reduced reactive oxygen species (ROS) produc-
tion, stabilized mitochondrial membrane potential, enhanced
mitochondrial complex | activity, and increased ATP levels [66].
Liraglutide also activates the nuclear factor erythroid 2-related
factor (Nrf2) pathway, that upregulates key antioxidant genes [67].
Altogether, GLP-1RAs may counteract BD-associated mitochon-
drial dysfunction and oxidative stress by enhancing mitochondrial
integrity and antioxidant pathways.

Neurotrophic, neuroplastic and brain connectivity effects

Neurotrophins, including brain-derived neurotrophic factor
(BDNF), regulate neuronal survival, growth, and synapse

SPRINGER NATURE

formation, playing a critical role in neuroplasticity and cognitive
processes. Reduced levels of BDNF, its receptor TrkB, and other
neurotrophins have been observed in both peripheral and central
samples from BD patients [68, 69]. Furthermore, certain BDNF
polymorphisms have been repeatedly associated with the
disorder [70]. Preclinical BD models show decreased BDNF in
association to depressive and manic behaviors [71-73]. Conver-
sely, chronic lithium or valproate administration increases BDNF
expression [74].

GLP-1RAs enhance BDNF and other neurotrophin expression
across models of aging [75], diabetes [76], and neurodegeneration
[77]. They also neurogenesis markers such as BrdU, Ki67, and DCX
in the hippocampus, olfactory bulb, and medial striatum [37],
modulate apoptotic and survival pathways (e.g., PI3K, CREB, Wnt/
B-catenin), and restore dendritic spine density via mTOR1
activation [78]. Furthermore, GLP-1RAs promote neural stem/
progenitor cell proliferation, a crucial process in neurogenesis [79],
by 100-150% in some rodent models [54, 80].

Closely related to neuroplasticity is brain connectivity, which is
known to be altered in individuals with BD—particularly in the
hippocampus, amygdala and cortical regions [81-83]. In this
context, GLP-TRAs modulate several large-scale brain networks
implicated in BD psychopathology, including the default mode,
salience, and frontoparietal network [84]. Some agents, such as
liraglutide and exenatide, also increase connectivity in subcortical
regions such as the hippocampus, hypothalamus, and NTS [85].
These findings further support the potential neuroplastic effects of
GLP-1RAs in BD.

Modulation of the stress response

The HPA axis is the primary mediator of the biological stress
response and is frequently dysregulated in BD [10], with
heightened activity during manic episodes and inter-episodic
periods [10]. Additionally, prolonged exposure to elevated cortisol
contributes to hippocampal atrophy, emotional dysregulation and
long-term cognitive decline seen in BD [86, 87].

GLP-1 is produced by preproglucagon neurons in the NST and
projects to the hypothalamus and brainstem, influencing auto-
nomic function and stress adaptation [88]. Acute hypothalamic GLP-
1R activation stimulates corticotropin-releasing factor (CRF) release
and elevates adrenocorticotropic hormone (ACTH) and corticoster-
one levels in both rodents and humans [89]. However, the effects of
GLP-1RAs on the HPA axis appears complex and context-
dependent. In rodents, subacute or prolonged administration of
short-acting GLP-1RAs like exendin-4 and liraglutide (7-14 days)
induces HPA axis hyperactivity, disrupts circadian glucocorticoid
secretion, causes adrenal hypertrophy, and dysregulates the
hypothalamic-adrenal stress response [90]. In contrast, a RCT of
weekly dulaglutide over three weeks in healthy humans showed no
significant effects on HPA function [91], suggesting that long-acting
GLP-1RAs may have a more neutral neuroendocrine profile.

Insulin resistance

Over 50% of BD patients show impaired glucose metabolism [11].
Co-occurring T2DM is associated with a more severe illness course
[92] and a poorer treatment response [93]. Additionally, BD
patients with IR or T2DM exhibit reduced hippocampal and
cortical volumes compared to both euglycemic BD and non-
psychiatric controls [94]. Pre-treatment levels of neural-derived
extracellular vesicle pS312-IRS-1, a marker of IR, were associated
with cognitive dysfunction and reduced ventromedial prefrontal
cortex volume, highlighting a potential link between insulin
dysregulation, neurostructural changes, and cognitive impairment
in BD [95]. Mechanistically, insulin plays a key role in hippocampal
neuroplasticity [96], and IR disrupts neuronal function and
synaptic plasticity, potentially contributing to cognitive decline.
IR is also bidirectionally linked to inflammation, oxidative stress,
lipid peroxidation [97], and endothelial dysfunction [98].
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GLP-1RAs may reduce brain insulin resistance [99, 100]. Liraglu-
tide has been shown to improve hippocampal insulin sensitivity in
individuals with mild cognitive impairment [101]. Additional
studies have reported increased cerebral metabolic activity
following GLP-1 administration [102]. These insulin-sensitizing
effects suggest a therapeutic avenue by which GLP-1RAs may
benefit neuroplasticity and cognition in BD.

GLP-1RAS IN BD KEY PSYCHOPATHOLOGICAL DOMAINS AND
COMORBIDITIES

Antidepressant effects

Bipolar depression is the leading cause of morbidity in BD, and a
major contributor to its high suicide risk, functional impairment,
and reduced quality of life [103].

Emerging evidence suggests that GLP-1RAs may exert anti-
depressant effects via mechanisms relevant to BD, including
modulation of neurotransmission and neuroinflammation,
enhancement of BDNF signaling, promotion of hippocampal
neurogenesis, and restoration of mitochondrial function in brain
regions involved in mood regulation [20]. In this context,
preclinical studies have yielded mixed findings [104]. While some
reported no behavioral effects [105, 106], most support
antidepressant-like properties [107-113], often accompanied by
hippocampal neuroprotection or cognitive improvement. In
comorbid models, exendin-4 worsened depressive behavior and
increased seizure frequency in rodents with epilepsy [114],
whereas liraglutide reduced depression-like symptoms in a similar
context [115]. In diabetic depression models, exendin-4 showed
antidepressant-like effects, possibly through microglial modula-
tion [116]. Supporting translational relevance, a postmortem
human study by our group [117] found reduced GLP-1R gene
expression in the dorsolateral prefrontal cortex and hippocampus
of individuals with MD—a pattern not observed in schizophrenia.
While heterogeneity exists, the bulk of preclinical data suggests a
potential antidepressant effect of GLP-1RAs.

Two meta-analyses—mostly involving patients with T2DM—
further support this hypothesis. The first [118] included two RCTs
[119, 120], a post-hoc analysis of five trials [121], one exploratory
[122] and one extension [123] non-controlled trials, a sequential-
treatment trial [124], and three observational studies [125-127]. It
reported a significant antidepressant effect of GLP-1RAs versus
controls (SMD = —1.28, 95% CI [-2.34, —0.21], p=0.02), with
even larger effects in studies not excluding depressed patients
(SMD = —-2.09, 95% Cl [—2.28, —1.91], p<0.00001). A second
meta-analysis [21], which included five RCTs [119, 120, 128-130]
and one prospective cohort study [131] supported these findings
(SMD=-0.12, 95% Cl [-0.21, —0.03], p<0.01). Subgroup
analyses suggested that liraglutide, but not exenatide, was
associated with mood improvements, though direct comparisons
were inconclusive. Notably, effect sizes varied depending on study
design, duration, measurement tools, agents, and population. One
large-scale clinical trial [132] published after these meta-analyses
compared metformin to other glucose-lowering agents in 5047
adults with T2DM. Among 450 participants assigned to liraglutide,
no significant differences in depressive symptoms were observed.
Observational studies have yielded mixed results: a pharmacov-
igilance analysis found lower reporting of depression-related
adverse events with GLP-1RA [133], while a Taiwanese insurance
database study reported significant antidepressant effects only for
dulaglutide (p < 0.001) [134]. However, these studies carry a lower
evidentiary weight and should be considered hypothesis-
generating.

A key limitation of existing literature is the focus on T2DM
populations rather than individuals with primary MD. Improved
cerebral perfusion and reduced microvascular dysfunction may
confound mood outcomes in these cases. Similar mood improve-
ments observed with other glucose-lowering medications, such as
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pioglitazone, reinforces this concern [135]. Additionally, negative
findings have been reported in non-metabolic populations,
including individuals with Parkinson’s disease [128] and polycystic
ovary syndrome [122].

In an open-label trial by our group [24], we evaluated liraglutide
in individuals with major depressive disorder (MDD) and BD. After
four weeks, we observed a significant reduction in Hamilton
Depression Rating Scale (HAM-D) scores across both populations
(baseline = 12.18 (4.82) vs. post-treatment = 8.41 (6.12), Cohen’s
d=0.68, p=0.022). Although exploratory and limited by its
uncontrolled design, this study provides preliminary clinical
support for liraglutide’s antidepressant potential in BD. We found
no ongoing RCTs focusing on depressive symptoms as the primary
outcome in MD populations treated with GLP-1RAs. However, two
trials are underway assessing mood as a secondary outcome: one
in BD (NCT06331286, liraglutide) and another in MDD
(NCT0446635, semaglutide).

Effects on anxiety

Anxiety is a common comorbidity in BD, affecting up to 50% of
individuals and often complicating its course and management
[136]. The presence of co-occurring anxiety disorders is associated
with greater symptom severity, functional impairment, and higher
suicide risk in BD [136].

The relationship between GLP-1R signaling and anxiety is
complex. In rodent models, peripheral administration of GLP-1RAs
has shown anxiolytic effects in some studies [137], while GLP-1R
knockout mice exhibit either unchanged or increased anxiety-like
behaviors [138]. However, other studies report opposing results:
acute administration of GLP-1 and exendin-4—either intraperito-
neally or directly into the dorsal raphe nucleus—induced anxiety-
like behaviors, along with increased serotonergic activity in the
amygdala [109]. Interestingly, subchronic central injections of
exendin over nine days normalized anxiety symptoms and
produced antidepressant effects [109]. This biphasic pattern—
initial anxiogenesis followed by longer-term anxiolysis—resem-
bles early treatment responses seen with selective serotonin
reuptake inhibitors [139]. Variability in outcomes may stem from
differences in agents, drug administration routes, dosing regimen,
rat strains, and behavioral testing protocols.

In humans, evidence remains limited. One large RCT including
80 individuals with T2DM and obesity post-bariatric surgery found
no significant differences in anxiety symptoms between liraglutide
and placebo after 26 weeks. Similarly, an intravenous GLP-1
challenge study in anxiety-prone individuals found no anxiogenic/
panicogenic effects [140]. However, a small cross-sectional study
[141] of 43 patients with T2DM and obesity reported an
association between exenatide use and increased perceived
stress, which mediated worsening depressive symptoms. In
contrast, real-world studies—defined as analyses based on data
collected outside the context of RCTs (e.g. electronic health
records, insurance databases, or large observational cohorts)—in
T2DM populations suggest potential anxiolytic benefits, even after
adjusting for key variables such as demographics, body mass
index (BMI), comorbidities, and concurrent medications [134].
Tirzepatide, in particular, showed the strongest effects, with a 60%
lower likelihood of developing anxiety compared to non-GLP-1RA
users [142]. In summary, while findings are mixed, emerging
evidence suggests that GLP-1RAs may influence anxiety-related
pathways. Given the high prevalence and clinical impact of
anxiety in BD, further investigation into the potential anxiolytic
effects of GLP-1RAs in this population is warranted. Notably, no
ongoing RCTs currently target anxiety as a primary outcome.

Antimanic and mood-stabilizing effects

Manic and hypomanic episodes are hallmark features of BD. The
neurobiology of mania involves dysregulation across multiple
systems, including oxidative stress [143], mitochondrial
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dysfunction inflammation, and neurotransmitter imbalances [39].
Current mood-stabilizing treatments are believed to act through
these pathways. Lithium, in particular, reduces oxidative stress
[144], and modulates glycogen synthase kinase-3 beta (GSK-3(3)
[145, 146], a key signaling enzyme involved in inflammation,
mitochondrial function, and ion channel activity in BD [147].

Preclinical models suggest that GLP-1RAs may exert mood-
stabilizing effects. In the amphetamine-induced mania model,
liraglutide significantly attenuated hyperlocomotion and cognitive
deficits but did not reverse impulsivity-related behaviors [148].
However, when combined with lithium, liraglutide mitigated the
majority of amphetamine-induced behaviors and outperformed
lithium monotherapy. Neurobiologically, liraglutide exerted anti-
oxidant and neurotrophic effects primarily in the hippocampus,
whereas lithium'’s actions were more pronounced in the prefrontal
cortex and amygdala. Importantly, the combination reversed
deficits across all examined regions.

In a separate ouabain-induced mania model, liraglutide reduced
hyperlocomotion, anxiety- and depression-like behaviors, and
modulated GSK-33 expression while alleviating oxidative stress.
These effects were reflected in an increased serum total
antioxidant status/total oxidant status ratio, reduced lipid
peroxidation in brain tissue, and restoration of antioxidant enzyme
activity [149]. Liraglutide’s efficacy was comparable to that of
valproate, a widely used mood stabilizer.

Collectively, these findings support the hypothesis that GLP-
1RAs may confer mood-stabilizing effects by modulating oxidative
stress, BDNF and GSK-3f signaling in BD. However, all evidence to
date derives exclusively from animal models and have not been
replicated in human studies. As such, they should be interpreted
only within a strict hypothesis-generating framework. At present,
no clinical data support the antimanic effects of GLP-1RAs, and no
ongoing RCTs specifically address this domain, highlighting an
important gap in translational research.

Cognitive effects

Cognitive dysfunction is a core domain in BD, affecting at least
30% of patients and exceeding rates observed in MDD [150].
Cognitive dysfunction contributes substantially to disability and
social burden, independently of concurrent mood episodes [150],
and remains inadequately addressed by current treatments [151].
Importantly, obesity and related metabolic abnormalities may
exacerbate cognitive impairment in BD [152].

Emerging evidence implicates GLP-1R signaling in the regulation
of cognitive function. GLP-1R knockout mice exhibit impaired
associative learning, which is reversed by hippocampal GLP-1R gene
transfer [153]. Similarly, intracerebroventricular GLP-1 administra-
tion enhances associative and spatial learning, effects abolished by
GLP-1R antagonists [154]. In stress-induced depression models,
liraglutide improves synaptic plasticity and mitigates LTP inhibition
in the hippocampus [54, 155]—key processes underlying learning
and memory [107]. Additional preclinical studies support these
findings [156-158], pointing to multiple converging mechanisms
[159, 160]: attenuation of neuroinflammation, restoration of
oxidative and endoplasmic reticulum function, improved insulin
signaling in neurons [161], and increased synthesis of neurotrophic
factors. GLP-1R activation has also been linked to enhanced
autophagy, reduced apoptosis, neurogenesis, improved cerebro-
vascular function and BBB integrity [159].

Human data are more mixed. A recent meta-analysis of five
RCTs involving over 7700 patients with T2DM reported no overall
cognitive benefit from GLP-1RA treatment [162]. However,
subgroup analyses suggested potential advantages in individuals
under 65 years or without cardiovascular disease. Another meta-
analysis of three long-term RCTs (n = 15,820) reported a reduced
risk of dementia with semaglutide and liraglutide compared to
placebo in T2DM [163], findings further supported by a
subsequent meta-analysis incorporating observational studies
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[164]. Five clinical trials have evaluated cognitive outcomes with
GLP-1RA in neuropsychiatric populations, though none found
significant cognitive improvements. These include (1) a 6-month
trial of liraglutide in Alzheimer’s disease (AD) [17], which showed
no cognitive or amyloid changes, but suggested preservation of
cerebral metabolic rate of glucose (CMRglc), a surrogate of disease
progression; and (2) a study showing increased default mode
network intrinsic connectivity in individuals at risk for AD [85].
Importantly, these two studies were underpowered for cognitive
outcomes. The other three trials trialed exenatide in (3) Parkinson'’s
disease [128], (4) mild cognitive impairment [165], and (5)
antipsychotic-treated patients with schizophrenia and obesity
[166]. A major limitation of these studies [85, 128, 165, 166] is the
lack of enrichment for cognitive dysfunction, which reduced the
power to detect treatment effects. Heterogeneity in sample
composition (e.g., elderly vs. younger adults), agents used, and
cognitive measures may also explain inconsistent results.

In contrast, our group conducted a 4-week open-label study of
liraglutide in patients with BD and MDD, selectively enrolling
those with preexisting executive dysfunction. Participants showed
significant improvements in executive function and a composite
cognitive index [24]. Structural brain changes were also observed
and correlated with both reductions in BMI and cognitive gains
[167]. However, these findings are preliminary and limited by the
study’s open-label design, small sample size, and absence of a
control group. Further well-controlled trials are needed to clarify
the cognitive effects of GLP-1RAs in MD and to identify subgroups
most likely to benefit. In this regard, an open-label study
(NCT06331286) is underway, comparing 24 weeks of dulaglutide
to lifestyle guidance in 60 patients with BD and obesity. Additional
trials are exploring GLP-1RAs in other high-risk groups:
NCT04466345 investigates semaglutide’s effects on executive
function in MDD with cognitive dysfunction; NCT06072963
examines semaglutide plus intranasal insulin in older adults with
metabolic syndrome and MCl; NCT05313529 evaluates liraglutide
in T2DM with MCl; and NCT06720246 investigates liraglutide and
bariatric surgery on cognitive-behavioral markers of long-term
weight loss.

Effects on reward and motivation

Dysfunction in reward processing and motivation is increasingly
recognized as a core feature of BD, regardless of subtypes and
mood states [168-171]. Interestingly, Jiménez et al. identified an
euthymic BD cognitive subtype with impaired decision-making
and reduced reward sensitivity, despite intact general cognition
[171]—supporting reward dysfunction as an independent
domain in BD.

GLP-1Rs are expressed in mesocorticolimbic regions involved in
reward valuation, salience attribution, and reinforcement learning
[172]. GLP-1RAs attenuate neuronal activation [50] in response to
high-reward stimuli—especially food-related cues—by decreasing
excitatory input from VTA dopaminergic neurons to the NAc [48].
They also reduce caloric intake, appetite, and cravings, while
shifting preference toward low-fat or sweet foods [173, 174].
These effects likely involve not only enhanced satiety but also
diminished reward valuation [175, 176], pointing to broader
neuromodulatory mechanisms.

GLP-1RAs also enhance motivation and adaptive learning. In
obese, insulin-resistant individuals, liraglutide restored impaired
associative learning by normalizing behavioral updating in
response to predictive cues and increasing activation in dopami-
nergic targets such as the ventral striatum and NAc [177]. These
effects align with modulation of dopamine-mediated prediction
error signaling, a key mechanism for flexible, goal-directed
behavior. Although direct effects on dopamine signaling appears
context-dependent, improved insulin sensitivity and reduced
neuroinflammation may contribute to restored dopaminergic
tone and motivational drive—suggesting possible benefit in BD.
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NCT06363487 is investigating the acute effects of semaglutide
versus placebo on reward sensitivity in healthy volunteers.
Secondary outcomes include emotional processing, impulsivity,
memory, and energy levels. We found no ongoing RCTs
specifically addressing reward processing or motivation in BD,
underscoring an important area for future investigation.

Treatment of comorbid substance use

BD and substance use disorders (SUDs) share one of the highest
comorbidity rates among all psychiatric conditions [178, 179].
Substance use worsens the clinical course of BD and complicates
its treatment [180, 181], leading to higher relapse rates, slower
recovery from mood episodes, greater need for hospitalization,
and overall worse functioning [182]. While pharmacological
options exist for SUD treatment, their effectiveness remains
limited, and sustained remission is uncommon [183], highlighting
the need for novel interventions.

GLP-1RAs may influence addiction vulnerability through several
converging neurobiological mechanisms [184, 185]. GLP-1Rs are
expressed in mesolimbic dopaminergic regions—including the
VTA and NAc [29], where they modulate drug-induced dopamine
release and reinforcement learning [186]. For instance, GLP-1R
activation attenuates cocaine-evoked dopamine surges in the NAc
and decreases drug-seeking behaviors [187]; Other regions, such
as the medial habenula, may mediate aversive responses to
nicotine: GLP-1R optogenetic stimulation in this area appears to
convert nicotine’s effects into aversive signals, thereby reducing
intake, while GLP-1RA knockout mice display increased consump-
tion of multiple addictive substances [188]. Semaglutide, liraglu-
tide, and tirzepatide, have been shown to reduce alcohol intake in
rodents [189], while liraglutide had similar effects in non-human
primates [190]. One study reported that exenatide blocked
amphetamine-conditioned place preference and alcohol con-
sumption in mice with intact GLP-1Rs but not in those with GLP-1R
deletion [191]. GLP-1RAs may also buffer stress-induced relapse—
a major driver of substance use—by modulating reward-related
responses to stress, as observed in models of stress-related
overeating [192]. Moreover, GLP-1RAs may exert anti-addictive
effects by mitigating neuroinflammation—a recognized contribu-
tor to both BD and SUD [193]—via opioid receptor-related
pathways [51]. Overall, preclinical evidence is robust: a recent
review reported over 24 studies on the beneficial effects of GLP-
1RAs on alcohol use, 8 in opioids, 16 on stimulants, and 4 on
nicotine [104].

Clinical data are emerging. A recent systematic review [194]
analyzed five RCTs evaluating GLP-1RAs for reducing substance
use. Two trials found reductions in alcohol [195] and nicotine [174]
consumption following GLP-1RA treatment; another found no
significant effect on alcohol consumption but did report benefits
in obese subgroups [196]. Conversely, two trials found no
significant impact on subjective cocaine effects or consumption
[197], or smoking cessation rates with dulaglutide [198]. Large
retrospective cohort studies have reported associations between
GLP-1RA use and reduced alcohol consumption [199, 200] and
decreased cannabis use disorder risk [201].

While these findings are promising, the limited number of
studies and heterogeneity in methodology, patient characteristics
and specific agents necessitate cautious interpretation. Ongoing
RCTs are exploring this therapeutic avenue. NCT06015893,
NCT05895643, and NCT05892432 are assessing semaglutide’s
safety and efficacy in alcohol use disorder (AUD). Tirzepatide is
also being studied for alcohol consumption in NCT06994338,
NCT06939088, and NCT06727331. For nicotine use, GLP-1RAs are
being investigated in NCT05530577, NCT03712098, and
NCT05610800. In opioid use disorder, semaglutide and tirzepatide
are under investigation in NCT06548490, NCT06639464, and
NCT06651177. Despite this growing interest, no ongoing RCTs
are investigating SUD outcomes in individuals with MD.
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Effects on iatrogenic and non-iatrogenic weight gain
Individuals with BD are at an increased risk of weight gain and
metabolic syndrome, driven by both intrinsic disease-related
factors—such as insulin resistance, hormonal imbalances, motiva-
tional deficits, and socioeconomic disparities [202], and iatrogenic
causes, particularly psychotropic-drug-related weight gain (PDWG)
[13]. These effects not only exacerbate metabolic burden but also
undermine treatment adherence [203], worsen long-term disease
control [204], and increase the risk of cardiovascular, endocrine,
and psychiatric comorbidities—ultimately reducing quality of life
and increasing healthcare utilization [205].

GLP-1RAs have emerged as promising agents for managing weight
gain in psychiatric populations. A systematic review [206] identified
five RCTs evaluating GLP-1RA for PDWG, most of which reported
positive outcomes [23, 207-210], with only one showing no
significant results [210]. Overall, GLP-1RAs were associated with
average weight reductions of 3.5 to 6kg compared to placebo,
alongside improvements in lipid profiles. Reflecting this evidence,
GLP-1RAs are increasingly recommended for the treatment of obesity
and PDWG, especially in patients with cardiometabolic risk [13].

In BD, McElroy et al. [23] conducted a 40-week, randomized,
placebo-controlled trial assessing liraglutide in patients with
comorbid overweight or obesity. Liraglutide led to a significant
reduction in body weight percentage, along with improvements in
BMI, HbA1c levels, hunger perception, and binge-eating fre-
quency. These findings align with those from a retrospective study
examining GLP-1As in BD and schizophrenia patients treated with
antipsychotics [26], as well as another study evaluating patients
with MDD and BD [25].

NEUROPSYCHIATRIC SAFETY

Randomized controlled trials

GLP-1RAs are generally well-tolerated and safe medications
[211, 212]. Two post-hoc analysis of pooled RCT data from obese,
diabetic populations—including one involving 5325 participants
treated with liraglutide [121] and another with GLP-1 [213]—
reported no significant differences in suicidal ideation or behavior
(SIB) compared to placebo. However, these trials systematically
excluded individuals with severe psychiatric disorders or a history
of suicidality, limiting their generalizability to BD. Importantly, one
RCT in BD [23] and one open-label trial including patients with
MDD and BD [24] reported no increase in neuropsychiatric
adverse events.

Observational studies and risk quantification

Most cohort studies, though primarily focused on T2DM or
obesity, have not found an association between GLP-1RA use and
suicidality [214-221]. A few studies have reported positive
associations [222, 223], but these findings are often limited by
residual confounding and lack of psychiatric stratification. Con-
versely, other observational data suggest a possible protective
effect of GLP-1RAs on SIB risk in these populations [224-226].

Pharmacovigilance and signal detection

Both the European Medicines Agency (EMA) and U.S. Food and
Drug Administration (FDA) have received reports of SIB associated
with GLP-1RA use, particularly with liraglutide and semaglutide
[227, 228]. An analysis of the FDA Adverse Event Reporting System
(FAERS) revealed an increased number of reports of depression
and suicidal ideation in GLP-1RA users [229]. However, such
findings are hypothesis-generating and represent signal detection,
not risk quantification. Signal detection refers to the identification
of unexpected or disproportionate reporting patterns in pharma-
covigilance systems. While it serves as a valuable early-warning
tool, it is subject to reporting bias, lack of denominator data, and
inability to adjust for key confounders. In contrast, risk quantifica-
tion relies on structured data—typically from RCTs—that enable
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statistical comparison between exposed and unexposed groups
under controlled conditions. It is important to consider that
individuals with T2DM have a 1.5- to 2-fold higher risk of
developing MDD [230], a pattern similarly observed in obesity
[231]. As such, these pharmacovigilance signals do not establish
causality [232, 233]. In the aforementioned study, no association
was found between GLP-TRA use and suicide attempts or
completed suicides. A second FAERS analysis also yielded negative
results [234]. Other studies using the World Health Organization’s
VigiBase also reported a higher rate of suicidal ideation reports
[235], but found reduced risk for suicide attempts or completed
suicides [236].

Vulnerable populations and biological considerations
Patients with a history of psychiatric disorders may be more
vulnerable to SIB, even if the overall incidence remains rare in the
general population, and particularly in response to rapid weight
loss. Rapid weight reduction can trigger increased psychosocial
[237] and biological stress, due to heightened allostatic load from
cortisol and norepinephrine [238], which have been implicated in
psychiatric disturbances and suicidality [239, 240]. Notably, in a
post-bariatric surgery cohort, 93% of SIB events occurred in
individuals with pre-existing psychiatric conditions [241]. Further-
more, the frustration of unmet weight loss expectations may also
contribute to increased SIB, as observed in patients who fail other
weight loss interventions [242]. These considerations are particu-
larly relevant for patients with BD [243], where suicide rates are up
to 20-30 times higher than in the general population [244].
Nevertheless, the two clinical trials evaluating GLP-1RA use in BD
reported no increased risk of SIB [23, 24]. Taken together, while
pharmacovigilance signals warrant attention, current data are
insufficient to establish a causal relationship between GLP-1RA use
and neuropsychiatric harm.

DISCUSSION

According to the principle of the “Five Ws and One H”, a
comprehensive analysis should answer the questions of what,
why, who, how, when, and where. In this regard, and in the first
place, what have we explored in this review? We have examined
the possible applications of GLP-1RAs in BD, synthesizing evidence
from preclinical, clinical, and real-world studies.

Why should GLP-1RAs be considered in BD? Biological
rationale and clinical evidence (Fig. 1)

GLP-1RAs warrant consideration in BD due to their pleiotropic
effects on biological systems implicated in the disorder, including
neurotransmitter regulation, neuroinflammation, mitochondrial
dysfunction and oxidative stress, neurotrophic signaling, and
insulin-glucose metabolism. Preliminary evidence suggests poten-
tial therapeutic benefits across multiple domains relevant to BD:
(1) meta-analyses in populations with T2DM report antidepressant
effects, and one open-label trial in MDD and BD observed
symptom improvement after four weeks of liraglutide treatment
[24]; (2) preclinical and real-world studies suggest anxiolytic
properties, though clinical data remain sparce; (3) in animal
models, liraglutide exhibits mood-stabilizing effects [245], parti-
cularly when combined with lithium [148], but these findings
await replication in humans; (4) emerging evidence suggests
cognitive benefits in MD [24], especially in individuals with
baseline executive dysfunction, though results across different
neuropsychiatric populations remain inconsistent [17, 165, 166];
(5) GLP-1RAs mitigate weight gain and metabolic disturbances in
BD—an especially relevant outcome for those patients exposed to
antipsychotics or/and mood stabilizers; and 6) preclinical and
retrospective studies suggest potential benefits for SUD, with
some RCTs showing efficacy in nicotine [174] and alcohol use
disorders [195].
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How should GLP-1RAs be incorporated into BD treatment?
Opportunities, risks, and practical challenges for the clinician
Managing BD extends beyond acute symptom control, emphasiz-
ing long-term functional recovery and metabolic health. GLP-1RAs
may provide a rare opportunity to target both psychiatric and
somatic dimensions of BD simultaneously, supporting sustained
recovery through improvements in cognition, motivation, and
cardiometabolic regulation. They could serve as adjunctive agents
to existing mood stabilizers or antipsychotics, mitigating their
metabolic side effects while potentially enhancing neuroprotec-
tion. Potential synergy with lithium deserves further investigation,
as both compounds complimentarily influence oxidative stress,
neurotrophic signaling, and mitochondrial function. Given their
properties, GLP-1RAs appear better suited for symptom preven-
tion and disease course modification rather than acute mood
episode treatment [246].

However, several limitations and risks must be acknowledged.
Although most studies do not show increased risk of SIB,
pharmacovigilance signals have emerged. Special caution and
monitoring are advised for individuals with a personal or family
history of suicidality [244], rapid weight changes, or significant
weight loss expectations. Another important concern is the
absence of studies evaluating potential drug interactions. GLP-
1RAs are known to delay gastric emptying [247], which could
theoretically affect the absorption of co-administered medications.
Although not yet demonstrated clinically, this may be particularly
relevant for drugs with narrow therapeutic windows such as
lithium. Furthermore, gastrointestinal side effects associated to
GLP-1RA may be exacerbated in patients already taking SSRI, SNRI,
or tricyclic antidepressants, all of which have overlapping side
effect profiles. The potential for additive or synergistic gastro-
intestinal burden deserves greater attention, as it may impact
both tolerability and adherence. Further studies should assess
these interactions directly, especially in patients receiving poly-
pharmacy regimens typical of real-world psychiatric care.

Who might benefit the most from GLP-1RAs? Key patient
profiles

Psychiatric disorders such as BD are highly heterogeneous, both in
clinical presentation, neurobiology, and treatment response. While
high-quality RCTs in BD are lacking, certain subgroups of patients
seem more likely to benefit. These include patients with
established executive dysfunction [24], elevated BMI [196],
metabolic syndrome, cardiovascular disease, or comorbid alcohol
[196] or nicotine use disorders [174]. Additionally, individuals at
higher risk for neuroprogression [248, 249] such as those with a
greater number of mood episodes (particularly manic episodes)
[250]; a history of trauma [250], biomarkers indicative of increased
peripheral inflammation [251] or neuroanatomical changes [251]
—could also derive significant benefits, given the role of GLP-1RAs
on inflammatory, oxidative, mitochondrial, and neuroplastic
pathways, which are thought to underlie BD progression [252].
Emerging evidence also points to greater cognitive benefits
among younger individuals [162].

When (and where) should GLP-1RAs be considered for BD
management? Practical challenges for the patient
The growing public interest in GLP-1RAs—Ilargely fueled by media
coverage of their weight loss benefits—presents an opportunity to
challenge the stigma surrounding psychiatric treatments. BD has
traditionally been a late-stage indication for novel pharmacothera-
pies, often following trials in schizophrenia, epilepsy, or unipolar
depression, leading to missed opportunities for millions of
individuals. Given that many GLP-1RAs are already commercially
available with well-established safety profiles, launching expe-
dited clinical trials seems feasible.

Several barriers, however, may impede their broader psychiatric
use. Chief among these remains cost. In the United States, annual
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treatment expenses can exceed $16,000, with insurance coverage
varying widely across states and plans. Financial constraints are
one the most commonly cited reasons for discontinuation,
reported by 50% of users [253-255]. Even in countries with lower
prices, such as the UK, prescribing restrictions confine access to
patients with severe obesity or comorbid conditions [255]. These
constraints may hinder broader application of GLP-1RAs, espe-
cially for patients who fall outside standard metabolic indications
but may still benefit from treatment. Beyond financial and
regulatory hurdles, other challenges include limited prescriber
familiarity with GLP-1RAs in psychiatric settings, a lack of long-
term safety data in psychiatric populations, and insufficient
exploration of potential drug interactions. Patient-related barriers
may also arise from stigma, a persistent underrecognition of
cognitive and subthreshold depressive symptoms as features of
MDD or BD, or a reluctance to conceptualize metabolic and
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mental illness as interconnected. Overcoming these challenges
would require coordinated efforts across regulatory agencies,
insurers, clinicians, and advocacy organizations to improve
education, reduce stigma, and ensure equitable access to
promising metabolic-psychiatric treatments.

Future directions and conclusions

While current evidence remains preliminary, heterogenous, and
mostly derived from T2DM populations, additional well-powered,
BD-focused studies are urgently needed. Future research should
examine differential responses across BD subtypes and clinical
subgroups, prioritizing individuals with treatment-resistant depres-
sion and comorbid metabolic conditions; early-stage BD patients
with high risk of neuroprogression, and those with cognitive
impairment. Trials should evaluate both psychiatric and somatic
outcomes and aim to determine treatment duration, long-term side
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effects, and combination strategies—including co-administration
with lithium, psychotherapy, or cognitive [256] or functional
remediation [257]. Longer follow-up periods will be essential to
assess sustained effects on cognition and functional recovery.
Practical considerations should guide compound selection. Oral
formulations like oral semaglutide may be preferable in psychiatric
populations, where injectable treatments often face adherence
barriers [258]. Newer multi-agonists, including tirzepatide, retatutride,
and orfoglipron, warrant evaluation given their broader metabolic
and neurobiological actions [259]. Whether the anticipated transfor-
mative potential of GLP-1RAs in medicine and society will extend to
individuals with BD remains unclear. However, the opportunity to
fully explore their potential—while maintaining appropriate caution
and scientific skepticism—should not be overlooked.
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