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A B S T R A C T   

Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive prop-
erties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural 
derivatives (collectively referred to as psiloids), which have played significant roles in human society and cul-
ture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and 
horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no 
precise ecological roles of psilocybin have been experimentally determined. The structural and functional sim-
ilarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the 
fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of 
psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential 
adaptive advantages psiloids may confer to fungi.   

1. Introduction 

Psilocybin is a secondary/specialized metabolite in certain 
mushroom-forming and other fungal species that has potent effects on 
the nervous systems of humans and other animals. Psilocybin-producing 
fungi, commonly referred to as psychedelic/magic mushrooms, have a 
rich history of use by humans for medicinal and spiritual purposes (Van 
Court et al., 2022). These fungi are hypothesized to have influenced 
human cognitive evolution (Rodríguez Arce and Winkelman, 2021) and 
have shown promise as a supportive tool in treating psychological dis-
orders in recent decades (Vollenweider and Preller, 2020). While 
knowledge of psilocybin’s psychopharmacological effects on humans is 
advancing, its roles and origins in natural systems are still not well 
understood, despite recent speculation about the ecological interactions 
it may mediate (Boyce et al., 2019; Bradshaw et al., 2022; Lenz et al., 
2021b; Reynolds et al., 2018). Psilocybin and its natural precursors and 
derivatives (collectively psiloids; Fig. 1A) primarily exert their potent 
psychoactive properties by interfering with serotonin signaling (Fig. 1B) 
(Vollenweider and Preller, 2020), but also act on other facets of the 
nervous system (Ray, 2010; Roth and Driscol, 2011). 

Psiloids comprise eight tryptamine alkaloids derived from trypto-
phan via the psilocybin biosynthesis pathway (Fricke et al., 2017; Stijve, 
1984). They are substituted on the tryptamine 4-position with either a 

compound-stabilizing phosphate group (4-OP) or a less stable hydroxyl 
group (4-OH). Psilocybin and the other phosphorylated psiloids are 
prodrugs (attenuated precursors) of their hydroxylated counterparts, 
some of which are considered the primary bioactive metabolites in an-
imals (Klein et al., 2020; Madsen et al., 2019). Additionally, the terminal 
amine group can have zero (T), one (NMT), two (DMT), or three (TMT) 
separate carbon (methyl) groups attached. Norbaeocystin (4-OP-T) and 
4-hydroxytryptamine (4-HT) have no methyl groups, baeocystin (4-OP- 
NMT) and norpsilocin (4-OH-NMT) have one, psilocybin (4-OP-DMT) 
and psilocin (4-OH-DMT) have two, and aeruginascin (4-OP-TMT) and 
4-trimethylhydroxytryptamine (4-OH-TMT) have three. Psilocybin is 
the psiloid found in the highest concentrations in mushrooms, and the 
majority of bioactivity is attributed to its metabolite psilocin 
(Gotvaldová et al., 2021; Sherwood et al., 2020; Tsujikawa et al., 2003). 
However, psiloid mixtures may have unique effects (Gartz, 1989; Mat-
sushima et al., 2009; Zhuk et al., 2015). 

Psilocybin has been hypothesized to mediate interactions between 
fungi and other organisms (Reynolds et al., 2018). It is possible that, like 
many other fungal specialized metabolites, psilocybin evolved as a de-
fense against antagonistic organisms such as fungivores and resource 
competitors (Spiteller, 2008). However, given its neuroactive proper-
ties, psilocybin may increase spore dispersal distance by altering the 
behavior of animals visiting the mushroom and expanding their travel 
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radius. Alternatively, psilocybin has been proposed as a store or disposal 
product of excess nitrogen that might otherwise be toxic to the fungus 
itself (Schröder et al., 1999). However, its preferential production in 
mushrooms, which are not readily mined by the mycelium for later use, 
argues against this nitrogen storage hypothesis. 

Although most attention to psilocybin derives from its spiritual- 
cultural history and potential therapeutic properties, its ecological 
functions likely preceded human use by tens of millions of years (Rey-
nolds et al., 2018; Rodríguez Arce and Winkelman, 2021). Conse-
quently, psilocybin’s evolutionary history and ecological interactions 
probably do not entail a long-term role for our species. Nevertheless, 
studying the mechanisms and natural targets of psilocybin may shed 
new light on its effects and applications in humans. Moreover, exploring 
the dynamics of psilocybin ecology may also reveal how the animal 
nervous system has adapted to neurochemical interference and 
contributed to the evolution of consciousness. 

In this review, we present and weigh the evidence for potential 
ecological role(s) of psilocybin by investigating the evolution, nutri-
tional modes, and lifestyles of psilocybin-producing fungi. First, we 
consider the ecological contexts in which fungi produce psilocybin and 
how this relates to the diversification of psilocybin-producing species. 
We then present genomic evidence of selection for psilocybin production 
and identify ecological associations with genome evolution events 
related to its production. Finally, we use what is known about the 
neurological mechanisms of psilocybin activity to consider lineages of 
animals that may have been the targets of psilocybin throughout time. 

2. The distribution, structure, and evolution of psilocybin bear 
evidence of natural selection 

Psilocybin-producing fungi are globally distributed in a variety of 
biomes and on various substrates. The historical and ecological context 
of molecular evolution events, including the clustering of genes, 
convergent pathway evolution, and horizontal gene transfer, suggest 
selective pressures that have led to the psilocybin phenotype. Further-
more, the morphologies and ecological niches of these fungi highlight 
potential fitness advantages of psilocybin production. Psilocybin- 

producing mushrooms’ various ecological roles and phylogenetic ana-
lyses reveal a complex evolutionary history of these fungi, showcasing 
the breadth of psilocybin’s utility. 

2.1. The distribution of psilocybin production raises hypotheses about its 
ecological function 

Psilocybin-producing fungi represent a geographically and phylo-
genetically diverse group of species. While most known psilocybin 
producers are mushroom-forming fungi that inhabit dung and late-wood 
decay niches (Reynolds et al., 2018), some species are ectomycorrhizal 
(Matheny et al., 2019), and there is one report of psilocybin in an insect 
pathogen (Boyce et al., 2019). There is also an unconfirmed account of 
psilocybin in a lichen (Schmull et al., 2014) (Table 1). Psilocybin- 
producing fungi are documented on all continents except Antarctica 
and are found in diverse climates, from tropical rainforests to arid de-
serts, with the highest species concentrations and diversity found in the 
neotropics (Guzmán et al., n.d.). The most common factor among the 
various ecological niches of psilocybin-producing fungi appears to be 
their low-nitrogen substrates. For example, the late stages of wood and 
dung decay are nitrogen-poor environments (Chen et al., 2013; Cowling 
and Merrill, 1966; Hao et al., 2004; Hess et al., 2021; Petersen et al., 
1998), and ectomycorrhizal species are effective nitrogen scavengers for 
their host plants (Hernández et al., 2002; Mbarki et al., 2008; Stamets, 
1996). Yet, despite environmental limitations, a large portion of nitro-
gen is allocated to psiloids. For example, psilocybin can make up to 1.6% 
of a mushroom’s total nitrogen content (Borner and Brenneisen, 1987; 
Braaksma and Schaap, 1996; Gartz, 1994; Kamata et al., 2005). This 
substantial nitrogen investment to psiloids is similar to that of other 
specialized metabolites important to the fitness of different fungi, such 
as amatoxins and ergot alkaloids (Aiken et al., 2009; Caradus et al., 
2022; Kaya et al., 2015; Long et al., 2020; Newell et al., 1987). The high 
nitrogen allocation to psilocybin production suggests that its benefits 
outweigh any cost to nitrogen-limited growth and reproduction 
processes. 

Most psilocybin-producing mushrooms have an agaricoid 
morphology (Table 1), which is characterized by an umbrella-like pileus 

Fig. 1. Tryptophan-derived compounds in 
psychedelic/magic mushrooms (Gurevich, 
1993; Lenz et al., 2021b). (A) Psiloids: the 
eight known natural 4-substituted trypt-
amine metabolites of the psilocybin biosyn-
thesis pathway (Fricke et al., 2017; Stijve, 
1984) found primarily in mushroom fruiting 
bodies (Blei et al., 2020). (B) Serotonin: a key 
signaling molecule found in all domains of 
life (Erland et al., 2019) and a key neuro-
transmitter in animals (Andrés et al., 2007). 
(C) β-carbolines: compounds with mono-
amine oxidase inhibitory (MAOI) and 
neuroactive properties found primarily in the 
mycelium of some psilocybin-producing 
fungi (Blei et al., 2020). (D) Chromophoric 
Oligomers: complexes of oxidatively-coupled 
psiloid dimers hypothesized to have tannin- 
and flavonoid-like properties (Lenz et al., 
2020).   
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(cap) with lamellae (gills) on its underside and elevated by a stipe 
(stem). Some species also have a secotioid morphology, in which the 
hymenophore of the mushroom is either partially enclosed or remains 
almost entirely enclosed at maturity, leaving them dependent on passive 
or animal dispersal. The secotioid morphology has arisen convergently 
in psilocybin-producing species of the mostly agaricoid genera Psilocybe 
and Panaeolus (Borovička et al., 2011). Some species additionally pro-
duce sclerotia, colloquially referred to as “truffles,” that produce psilo-
cybin and other neuroactive compounds (i.e., β-carbolines) but lack a 
spore-producing hymenophore. Most psilocybin-producing mushrooms 
have firm-to-tender flesh, making them potential targets for fungivores. 
Mycophagy pressures have likely driven the evolution of multiple 
defensive strategies, such as the production of toxic metabolites 
(Spiteller, 2015), including psilocybin. 

Psilocybin production has been confirmed in species from several 
distantly related families in the mushroom-forming order Agaricales 
(Basidiomycota), including Bolbitiaceae, Inocybaceae, Hymenogas-
traceae, and Pluteaceae (Dinis-Oliveira, 2017; Stamets, 1996; Wurst 
et al., 2002). It has also been reported outside of Basidiomycota in the 
insect pathogen Massospora levispora/platypediae, in the family Ento-
mophthoraceae (Entomophthoromycota) (Boyce et al., 2019). Here, we 
discuss the range of ecologies and phylogenetic diversity of psilocybin- 
producing fungi to identify patterns in their distribution. 

Grasslands are home to diverse psilocybin-producing taxa. The genus 
Panaeolus (Bolbitiaceae) contains approximately 100 species and is 
found in grassy regions worldwide, often associated with herbivore dung 
(Stamets, 1996; Strauss et al., 2022). At least 18 of these species produce 
psilocybin. The presence of psilocybin in Panaeolus is sporadic and found 
in the most distantly related clades of the genus (Hu et al., 2020). All 
species from the Copelandia clade (a genus name describing a clade sister 
to the clade containing all other Panaeolus species) produce psilocybin, 
and other Panaeolus clades contain psilocybin-producing species (Hu 
et al., 2020). Consequently, psilocybin production may be ancestral in 
Panaeolus, with some combination of subsequent losses and a potential 
re-acquisition. Alternatively, the distribution could be the result of 
several independent acquisitions. The history of psilocybin in Panaeolus, 
like other lineages below, will be better resolved when genetic data are 
available. 

Other psilocybin-producing species inhabit grasslands and meadows 
just outside forest tree lines. Pholiotina is a paraphyletic genus in which 
the genus Conocybe (Bolbitiaceae) is derived. These genera are distrib-
uted globally and found in various substrates such as grass, wood chips, 
and other organic matter (Stamets, 1996). Out of approximately 300 
combined species, only two in each genus are known to produce psilo-
cybin. In all instances, the psilocybin-producing species are distantly 
related in recently-formed clades (Tóth et al., 2013). The distant rela-
tionship between psilocybin-producing species in multiple clades sug-
gests multiple, recent, independent acquisitions as the most 
parsimonious hypothesis for its origin in these genera, and the place-
ment of currently unsequenced psilocybin-producing species (e.g., 
C. siligineoides) in molecular phylogenies will improve our ability to infer 

psilocybin evolutionary events. 
Psilocybin-producing mushrooms are also found in forest habitats. 

Indeed, it can be inferred that the first origin of the psilocybin pathway 
was in the late-stage wood decay niche in the common ancestor of Psi-
locybe and Gymnopilus. An alternative, perhaps more parsimonious, 
hypothesis of independent origins in these two genera would still imply 
multiple origins in late-stage wood decay. Gymnopilus (Hymenogas-
traceae s.l.) is a global and diverse genus of white-rot wood-decay fungi. 
The genus contains over 250 species, with a small portion (i.e., 17 
species) known or presumed to produce psilocybin due to blue staining 
(Stamets, 1996; Strauss et al., 2022). Psilocybin production is found 
across the major clades of Gymnopilus (Guzmán-Dávalos et al., 2003; 
Khan et al., 2017; Reynolds et al., 2018). Furthermore, the psilocybin 
pathway has been detected in the genome of a species not previously 
known to be psychedelic (e.g., G. chrysopellus) (Reynolds et al., 2018), 
suggesting psilocybin is more widespread in Gymnopilus than reported. 
In the G. spectabilis/G. junonius species complex, some populations 
produce psilocybin while others do not (Hatfield and Valdes, 1978; 
Kusano et al., 1986). In this species complex, inactive remnants of the 
psilocybin metabolic pathway persist in the genome, suggesting dy-
namic evolution on recent timescales (Ruiz-Dueñas et al., 2021). 
Cumulatively, the evidence for any particular hypothesis of the history 
of psilocybin production within Gymnopilus is ambiguous. Psilocybin 
production may be the ancestral trait in Gymnopilus with several sub-
sequent losses, but without further genetic evidence, the possibility of 
multiple acquisitions exists. 

Another forest-inhabiting genus, Pluteus (Pluteaceae), is globally 
distributed and primarily contains species that grow on wood. Of the 
over 500 species, only nine are known to produce psilocybin (Stamets, 
1996; Strauss et al., 2022). Psilocybin-producing species of Pluteus are 
only found in the small salicinus clade (Justo et al., 2014; Menolli et al., 
2014). While most species within the salicinus clade produce psilocybin, 
those that do not are polyphyletic (Justo et al., 2014; Menolli et al., 
2014), consistent with subsequent losses. The salicinus clade has also 
arisen recently, suggesting psilocybin production is not the ancestral 
state of Pluteus (Justo et al., 2014; Menolli et al., 2014). The current 
phylogeny is consistent with either two independent acquisitions or one 
acquisition with two subsequent losses in the salicinus clade as the most 
parsimonious explanation for the distribution of psilocybin in Pluteus, 
and the best of these models may emerge when more genetic data is 
available (Justo et al., 2014; Menolli et al., 2014). 

An important ecological function of many mushroom-forming fungi 
in forests is forming ectomycorrhizal nutritional mutualisms with tree 
roots. The only ectomycorrhizal psilocybin-producing genus, Inocybe 
(Inocybaceae), is globally distributed but concentrated in temperate and 
tropical forests of the Northern Hemisphere. The genus contains over 
800 species, of which only eight are known to produce psilocybin 
(Kosentka et al., 2013; Stamets, 1996). Psilocybin is inferred to have 
originated twice in recently-derived clades within Inocybe (Kosentka 
et al., 2013). Inocybe produces the trimethylated psiloid aeruginascin in 
higher concentrations than other psilocybin-producing fungi (Gartz, 

Table 1 
Basic taxonomic, ecological, and morphological information of genera with psilocybin-producing species (Banerjee, 1994; Boyce et al., 2019; Gartz, 1986a, 1995; 
Guzmán et al., n.d.; Justo et al., 2011; Kalichman et al., 2020; Smith et al., 2015; Stamets, 1996).  

Genus Family PS þ Spp.* Lifestyle Morphology Sclerotia†

Conocybe Bolbitiaceae 2 Saprobic Agaricoid No 
Panaeolus Bolbitiaceae 18 Saprobic Agaricoid, Secotioid Yes 
Pholiotina Bolbitiaceae 2 Saprobic Agaricoid No 
Gymnopilus Hymenogastraceae 17 Saprobic Agaricoid No 
Psilocybe Hymenogastraceae 137 Saprobic Agaricoid, Secotioid Yes 
Pluteus Pluteaceae 9 Saprobic Agaricoid Yes 
Inocybe Inocybaceae 8 Ectomycorrhizal Agaricoid Yes 
Massospora Entomophthoraceae 1 Insect Pathogenic Abdominal Spore Mass No  
* Estimated number of described psilocybin-producing species. 
† Yes = at least one known species produces sclerotia, No = no known species produce sclerotia. 
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1989). The presence of aeruginascin (and psiloids in general) in an 
ectomycorrhizal species raises the idea that it may play a role in plant- 
fungal communication, given the structural similarity with auxin plant 
hormones. Auxins produced by other mycorrhizal fungi are known to 
facilitate interactions with their hosts (Strzelczyk and Pokojska- 
Burdziej, 1984). For example, hypaphorine (N,N,N-trimethyl-
tryptophan), which is structurally similar to aeruginascin, manipulates 
root morphology in Pisolithus-Eucalyptus mycorrhizal interactions 
through auxin interference (Ditengou et al., 2003). It is possible that 
Inocybe species also produce hypaphorine, as other psilocybin-producing 
species contain an additional non-PsiM methyltransferase (TrpM) that 
allows for methylation of tryptophan’s terminal amine group directly 
(Blei et al., 2018), but the presence of this gene or compound has not yet 
been explored in Inocybe. 

The globally distributed genus Psilocybe (Hymenogastraceae s.l.) 
contains the majority of all psilocybin-producing species. Psilocybe has 
diversified in various habitats and substrates, including grassy and forest 
humus soils, with a few species growing on herbivore dung (e.g., Ps. 
cubensis and Ps. subcubensis) (Stamets, 1996; Strauss et al., 2022). Psi-
locybe is also the only known genus of psilocybin-producing fungi where 
the pathway has been transmitted through multiple ecological transi-
tions (e.g., wood decay to dung decay). Most Psilocybe mushrooms are 
small to medium in size, with a brown to yellow–brown colored 
hygrophanous pileus that leaves a spore print ranging from lilac-brown 
to dark purple-brown in color. They are commonly found in the neo-
tropics, particularly in Mesoamerica, Brazil, and Chile, as well as in 
temperate regions such as mulched landscaped areas. For decades, psi-
locybin production was considered a variable trait in Psilocybe. How-
ever, the removal of several species now placed in Deconica based on 
molecular systematics has resulted in all but one of the over 100 Psilo-
cybe species, Ps. fuscofulva, producing psilocybin (Borovička et al., 2015; 
Guzmán, 2005; Ramirez-Cruz et al., 2013; Redhead et al., 2007). The 
nearly universal presence of psilocybin in Psilocybe suggests that psilo-
cybin is a shared-derived trait for species in the genus. 

Multiple species of Psilocybe found in the wet montane forests of 
central Mexico (e.g., Ps. zapotecorum, Ps. hoogshagenii, Ps. caerulescens, 
Ps. barrerae, Ps. muliercula) are commonly referred to as “derrumbes” 

(landslides) mushrooms by indigenous peoples. These mushrooms 
typically emerge from vertical walls and scars created by landslides at 
high elevations (Guzmán, 2012), where accumulated buried organic 
material provides a carbon source. Anecdotally, Derrumbes exhibit 
longer-lasting basidiocarps compared to other Psilocybe species (Alan 
Rockefeller, personal communication; Derrumbes & Landslide Mush-
rooms of the Trans-Mexican Volcanic Belt, 2022), allowing them to 
sporulate over an extended period. This characteristic may provide an 
adaptive advantage by increasing the likelihood of landing on pockets of 
organic matter within the surrounding rubble. However, the limited 
nitrogen in these zones (Dalling and Tanner, 1995; Guariguata, 1990) 
may attract fungivorous animals to the mushrooms and lead to selection 
for chemical defenses. Fungi are effective nitrogen scavengers (Behie 
et al., 2012; Gadd, 2006; Hodge and Fitter, 2010; Lee et al., 2013; Ray 
et al., 2019) and may represent a significant source of available nitrogen 
in this environment. Derrumbes mushrooms are rumored to have high 
potency, with dried Ps. zapotecorum specimens reportedly containing 
2.6% or more psilocybin (Jordan Jacobs, personal communication). 
Nitrogen scarcity for animals may underpin the tendency for psilocybin- 
producing mushrooms to be associated with nitrogen-limited 
environments. 

2.2. The molecular evolution of the psilocybin gene cluster gives clues 
about selective pressures 

The molecular evolution of psilocybin production offers insights into 
its chemical ecology. For example, specific molecular evolution events 
can indicate that ecological selection has impacted the psilocybin 
pathway. The psilocybin biosynthetic pathway consists of a tryptophan 

decarboxylase (PsiD), a P450 monooxygenase (PsiH), a methylthioribose 
family small-molecule kinase (PsiK), an S-adenosylmethionine-depen-
dent methyltransferase (PsiM), and a major-facilitator-type transporter 
(PsiT), which enable the transformation of tryptophan into psilocybin 
(Fricke et al., 2017; Stijve, 1984). The presence of the pathway across 
multiple lineages and its organization into a gene cluster suggest a se-
lective pressure on the end product, likely driven by its ecological 
function as a chemical defense or for interaction with other organisms. 
Selection on the psilocybin pathway is further supported by its conver-
gent evolution in multiple lineages and multiple horizontal transfers of 
the psilocybin gene cluster (Awan et al., 2018; Reynolds et al., 2018). 

The organization of the psilocybin biosynthetic pathway genes into a 
metabolic gene cluster is de facto evidence of natural selection for the 
production of psilocybin printed in the genome architecture (Slot and 
Gluck-Thaler, 2019). Metabolic gene clusters are loci containing genes 
(usually from diverse gene families) that participate in the same meta-
bolic pathway, such as the psilocybin biosynthesis pathway. The as-
sembly of the psilocybin pathway from various genes, from different 
gene families, and originating from multiple genome locations is 
improbable without selection. The clustering of this biosynthesis 
pathway may result from the selection of an optimal metabolic pheno-
type (Lawrence and Roth, 1996; McGary et al., 2013; Mylona et al., 
2008; Xu et al., 2019a; Zinani et al., 2022) through mechanisms such as 
co-inheritance, co-adapted alleles, and coordinated gene expression 
(Lawrence, 1999; Schwander et al., 2014; Walton, 2000; Zinani et al., 
2022). The resulting cluster may be optimized to reduce autotoxic psi-
locybin intermediates and for the metabolic efficiency of end-product 
production. For example, if the phosphorylating gene (PsiK) were lost 
or poorly coordinated with its substrate production, unstable hydrox-
ylated psiloids might form potentially autotoxic tannin-like structures 
(Anttila et al., 2013; Jin, 2019; Lenz et al., 2021a, 2020). 

The convergent evolution of the psilocybin gene cluster is further 
evidence of selection for psilocybin production. Psilocybin gene clusters 
have arisen independently at least twice in the Agaricales order, 
resulting from different genes converging on similar functions (Awan 
et al., 2018). Furthermore, the absence of homologs of known psilocybin 
genes in Entomophthoromycota is consistent with another convergent 
origin of the pathway (Boyce et al., 2019). The convergent psilocybin 
clusters within Agaricales appear to have near-identical pathways in 
terms of gene functionality (i.e., monooxygenase, kinase, methyl-
transferase, and transporter) but evolved from different gene families 
(Awan et al., 2018; Fricke et al., 2017). Yet despite convergent evolution 
in multiple mushroom-forming fungi and an insect pathogen, and its 
relatively simple biosynthesis compared to other specialized metabo-
lites, psilocybin has not been found in filamentous Ascomycota or yeasts. 

The horizontal transfer of the psilocybin gene cluster is still further 
evidence of selection for psilocybin production, pointing to precise 
ecological niches where this selection may occur. The psilocybin gene 
cluster is inferred to have undergone multiple horizontal transfers 
(Fig. 2A) across divergent genera (Awan et al., 2018; Reynolds et al., 
2018). This is noteworthy due to the various obstacles preventing such 
transfers in eukaryotes, such as genetic material traversing the bound-
aries of the cell wall and nuclear envelope (Jaramillo et al., 2015; Jen-
sen, 2016). Given the odds against the retention of randomly acquired 
DNA, a selective benefit of producing psilocybin in the recipient fungi 
can easily be inferred (Gogarten and Townsend, 2005; Kimura, 1977; 
Kurland, 2005). Furthermore, the psilocybin cluster is a rare example of 
horizontal transfer of a biosynthetic gene cluster in mushrooms (Luo 
et al., 2018; Reynolds et al., 2018; Slot and Gluck-Thaler, 2019; Walton, 
2018; Wisecaver et al., 2014). This is noteworthy, as morphologically 
complex fungi like mushrooms are generally considered to have less- 
clustered genomes than those with simpler development, suggesting 
that its benefit might outweigh any elevated costs of HGT in these fungi 
(Marcet-Houben and Gabaldón, 2019; Slot and Gluck-Thaler, 2019). The 
evolution of psilocybin clusters is reminiscent of “selfish clusters,” 

whose individual genes are weakly selected, but their collective fitness 
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increases through HGT of the complete selectable function of the 
pathway in a clustered state (Lawrence and Roth, 1996; Walton, 2000). 
Like selfish clusters, acquiring the psilocybin cluster likely provides a 
strong but temporary benefit to its hosts due to chemical arms races with 
organisms targeted by psilocybin (Hatfield and Valdes, 1978; Kusano 
et al., 1986; Ruiz-Dueñas et al., 2021). Indeed, the psilocybin cluster has 
been lost in at least one and probably many instances, given the evi-
dence of a degenerate cluster in G. junonius (Ruiz-Dueñas et al., 2021) 
and its patchy distribution in multiple genera (Guzmán-Dávalos et al., 
2003; Hu et al., 2020; Justo et al., 2014; Khan et al., 2017; Kosentka 
et al., 2013; Menolli et al., 2014; Tóth et al., 2013). 

Evolutionary genomics is a powerful tool that can provide insights 
into the ecological role of psilocybin production. By studying rare mo-
lecular evolutionary events surrounding psilocybin’s biosynthetic 
pathway (i.e., gene clustering, convergent evolution, HGT), we are given 
clues as to how these species have adapted to their environments. Two 
convergent origins of the psilocybin gene cluster in Agaricales have been 
inferred in wood-decay (a nutritional mode shared by Gymnopilus and 
Psilocybe) and in the ectomycorrhizal Inocybe, with another possible 
convergence in Entomophthoromycota (Awan et al., 2018; Boyce et al., 
2019; Reynolds et al., 2018). Most other known psilocybin producers are 
saprobes and likely acquired the wood-decay-associated cluster through 
HGT (Fig. 2A) (Reynolds et al., 2018). This suggests that psilocybin may 
have different functions in different ecological niches but is most useful 
in decay niches. The ancestral ecologies of the cluster donor species were 
likely similar saprobic niches to their recipients, leading to physical 
contact between them and increasing the chances of HGT (Gluck-Thaler 
and Slot, 2015; Reynolds et al., 2018). Horizontal acquisition of psilo-
cybin production may also facilitate expansion into new ecological 
niches (Slot, 2017). For instance, the HGT between the Ps. cubensis and 
Pa. cyanescens lineages likely occurred in their shared dung decay niche 
(Reynolds et al., 2018), suggesting both species faced similar pressures 
that psilocybin may have at least partially alleviated. Psilocybin pro-
duction may defend against cohabiting animals, especially insects, that 

compete for resources or consume the fungus. An ecological association 
with insects is further supported by the likely convergent origin of psi-
locybin in Massospora levispora/platypedia, a fungus that is directly 
antagonistic to an insect. 

Fungal specialized metabolite pathways are generally subject to 
rapid diversification, likely due to an ever-changing competitive land-
scape (Bradshaw et al., 2013; Raguso et al., 2015). Changes in these 
pathways can occur through modifications, gains, losses, and duplica-
tions of genes in the gene cluster, or through recombination with other 
pathways (Lind et al., 2017). Different enzyme activities may be 
responsible for the observed differences in psiloid proportions among 
species. For instance, Pa. cinctulus appears to have a relatively high 
concentration of baeocystin (Gotvaldová et al., 2022), and 
I. aeruginascens has a higher concentration of aeruginascin (Gartz, 
1989). However, the composition of the psilocybin cluster is remarkably 
stable, with the notable exceptions of monooxygenase (PsiH) and 
transporter (PsiT) genes of unknown function, which can vary in copy 
number among different species (McTaggart et al., 2022; Reynolds et al., 
2018). These duplications may increase the production of known psi-
loids or create new, yet-to-be-discovered products of the psilocybin 
pathway. Although much remains to be learned about the diversification 
of psiloid chemistry, there is certainly the potential to discover differ-
ently adaptive chemodiversity among the various psilocybin pathways. 

3. Organismal interactions may have selected for psilocybin 
production 

The study of chemical ecology aims to understand how specialized 
metabolites mediate the interactions between organisms and an eco-
system’s physical environment. Like plants and bacteria, fungi produce 
metabolites that can serve communicative, attractive, defensive, 
dispersive, behavior-manipulative, and symbiosis-facilitative ecological 
functions through antibiotic, antifeedant, bioluminescent, or nutrient- 
mining properties (Quin et al., 2014; Spiteller, 2008; Ülger et al., 

Fig. 2. Evolution of psilocybin-producing 
fungi and potential interacting animals. 
(A) Phylogeny of select psilocybin-producing 
lineages inferring key evolutionary events in 
the acquisition of psilocybin production 
(Awan et al., 2018; Boyce et al., 2019; 
Kosentka et al., 2013; Reynolds et al., 2018) 
alongside lineages’ lifestyles and relevant 
major Earth geological and ecological events 
(Floudas et al., 2012; MacFadden, 2000; 
Ramirez-Cruz et al., 2013; Retallack, 2001; 
Tóth et al., 2013). Branching order was 
derived from Reynolds et al. (2018) and 
Sánchez-García et al. (2020), and divergence 
dates from Ruiz-Dueñas et al. (2021), with 
exception of the divergence date of Agrocybe 
and Psilocybe, which is conjecture. (B) In-
crease of extant lineages of animal clades 
that are hypothesized to have driven the se-
lection of psilocybin: primates (Springer 
et al., 2012), flies (Wiegmann et al., 2011), 
termites (Bourguignon et al., 2015), ants 
(Chomicki and Renner, 2017), and terrestrial 
gastropods (Ayyagari and Sreerama, 2020). 
Lineages were selected due to hypotheses 
discussed in this review rather than a 
comprehensive survey of potential drivers. 
Based on chronograms, lineage counts within 
defined clades were assessed every 5 million 
years. A proportional value (0–1) was ob-

tained by dividing the lineage count at a specific time point by the total lineages at 0MYA, normalizing the data and enabling the comparison of clades with varying 
extant lineages on a single axis. Given that these dates are generated by different methods, each plot should be considered independently. This metric does not 
account for the role of extinction rates in observed diversity.   
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2020). The concentration of these metabolites is typically higher in 
fruiting bodies (i.e., mushrooms) than vegetative mycelium (Spiteller, 
2008; Stadler and Sterner, 1998), and this difference in expression may 
indicate the pressures each structure faces and, in turn, the ecological 
role of the compounds. No ecological roles have been definitively 
demonstrated for psilocybin, but we present some current compelling 
hypotheses here. 

3.1. Psilocybin may impact ecological interactions like mycophagy and 
spore dispersal 

The primary function of mushrooms is reproduction via sexual spore 
dispersal, which can be supported by specialized metabolites, including 
psilocybin (Splivallo et al., 2011). While the agaricoid morphology is 
thought to facilitate wind dispersal (Fischer and Money, 2010; Halb-
wachs, 2015), where investigated, only about 2% of wind-dispersed 
spores travel greater than 5 m, and only about 5% travel more than 1 
m (Galante et al., 2011; Li, 2005). Animals can facilitate long-distance 
dispersal by transporting spores on their exteriors (e.g., exoskeletons, 
scales, feathers, skin, fur, etc.) or by transporting the whole spore- 
bearing basidiocarp (Elliott et al., 2022). Furthermore, spores are usu-
ally viable after passing through animal digestive tracts and even after 
secondary consumption by carnivores (Buller, 1909; Elliott et al., 2023; 
Halbwachs, 2015; Koch and Aime, 2018; Lloyd, 2001; O’Malley et al., 
2013). 

Psilocybin-producing mushrooms, like most mushrooms, are a 
potentially valuable food source for many animals. They contain high 
nutritional value (e.g., protein, amino acids, selenium, etc.), require 
little processing (e.g., husking, peeling, extracting, etc.), and are a 
source of hydration in low-moisture environments (Elliott et al., 2022; 
Getz, 1968; Khaund and Joshi, 2015; Obodai and Apetorgbor, 2008). 
Larger animals typically eat the whole mushroom, while smaller animals 
generally prefer to graze on the lamellae (Buller, 1909; Castillo-Guevara 
et al., 2012; Elliott et al., 2022; Sharma and Gautam, 2015; Walton, 
1903). Anecdotal reports of animals consuming psilocybin-producing 
mushrooms primarily describe partial (rather than whole) mushroom 
consumption, which is possibly explained by some level of deterrence or 
behavior modification. The lamellae of poisonous mushrooms 
frequently have lower toxin concentrations than other mushroom tis-
sues, which may guide fungivorous animals to the spore-bearing gills 
(Eilers and Nelson, 1974). Indeed, the spores of psilocybin-producing 
mushrooms lack psilocybin (Gotvaldová et al., 2021), making it likely 
that the spore-producing gills would also have considerably lower psi-
locybin concentrations than the surrounding tissues. 

Another hypothesis may be that psiloids prevent the consumption of 
immature mushrooms before spore maturation. Broadly, repellents and 
toxins are more concentrated in the early stages of mushroom growth 
before the spores have fully developed (Ávila and Guevara-Pulido, 2020; 
Luo et al., 2010; Taskirawati and Tuno, 2016). A lack of appeal to fun-
givores during early growth could help ensure spores mature and 
disperse before the mushroom is consumed. While the psilocybin gene 
cluster is also expressed most highly in the early stages of mushroom 
development, the concentration of psilocybin appears to remain con-
stant from the early stages of development to maturity (Demmler et al., 
2020), suggesting that any potential repellent effect would not be 
limited to the early stages of development. Furthermore, the presence of 
psilocybin in vegetative mycelium, although in lower concentrations 
than the basidiocarps (Blei et al., 2020), also suggests it has some utility 
beyond the defense of its reproductive structures. 

3.2. Psiloids mimic serotonin molecules involved in various physiological 
processes 

Psiloids structurally resemble serotonin (5-hydroxytryptamine, 5- 
HT; Fig. 1B), an important molecule across the tree of life involved in 
intercellular signaling, growth, development, and responses to external 

stimuli (Erland et al., 2019; Roshchina, 2016). Two main differences 
exist between serotonin and psiloids. First, serotonin is hydroxylated on 
the 5-position of the tryptamine backbone, while psiloids are hydrox-
ylated (and subsequently phosphorylated) on the 4-position (Passie 
et al., 2002). Second, psiloids can have up to three methylations on the 
terminal amine, while serotonin has none. The position of the hydroxyl 
group and the number of terminal amine methylations can affect the 
psychoactive and physiological characteristics of tryptamines in mam-
mals by altering receptor-binding affinities (Glatfelter et al., 2022a, 
2022b; Pottie and Stove, 2022; Shulgin and Shulgin, 2002; Zamberlan 
et al., 2018) (Table 2). This is exemplified by the fact that some 
neuroactive tryptamines (e.g., 4-OH-MET) have a high affinity for the 5- 
HT2A receptor, while others (e.g., 4-OH-DiPT) have a low affinity for the 
same receptor (Kozell et al., 2023). 

3.3. Animal nervous systems are likely targets for psiloids in nature 

It is easy to surmise that animals are the target of psiloids due to their 
structural similarity to serotonin and binding specificity to its receptors. 
Many specialized metabolites mediate interactions by targeting the an-
imal serotonin system (Spiteller, 2008). The physiological effects of 
psilocybin on animals could also benefit fungi through several mecha-
nisms. For example, in humans, serotonin influences functions like 
gastrointestinal, cardiovascular, and neurological processes, as well as 
behavior and personality (Andrés et al., 2007). More broadly, serotonin 
affects crucial physiological processes in animals, making this com-
pound an effective point of interference during interactions with ani-
mals (Spiteller, 2008). Psiloids bind to serotonin receptors with varying 
specificity, and their effects on animals can vary depending on the di-
versity and distribution of differently adapted receptors among species. 
The wide range of receptor subtypes among different species, along with 
different psiloids’ varying binding affinities, suggest that the ecological 
and evolutionary pressures that these compounds may mediate are 
likely diverse and complex. 

An ancestral 5-HT receptor is believed to have diversified into most 
major classes, 5-HT1,2,4-7, approximately 650 to 700 million years ago, 
before the split of protostomes and deuterostomes (Ayala et al., 1998). 
This early diversification resulted in the sharing of the major seroto-
nergic receptor classes between vertebrates and invertebrates (Hauser 
et al., 2006; Peroutka and Howell, 1994). In animals, serotonin serves as 
a classical neurotransmitter (fast-acting; involved in memory, learning, 
and coordination), a neuromodulator (slow-acting; involved in arousal, 
hormone release), or a neurohormone (slow-acting; involved in meta-
bolism, growth, development, reproduction), and it is involved in 

Table 2 
Hydroxylated psiloids’ serotonin receptor binding affinities as compared to se-
rotonin (Chadeayne et al., 2020; Glatfelter et al., 2022b; Ray, 2010; Roth and 
Driscol, 2011).  

Receptor 4-OH-TMT Psilocin Norpsilocin 4-HT Serotonin 
5-HT1A 4,400* (H†) 164 (H) 86 (H) 95.5 (P‡) 3.2 (H) 
5-HT1B – 580 (H) 99 (H) 1,050 (R§) 4.3 (H) 
5-HT1D – 130 (H) 194 (H) – 5.0 (H) 
5-HT1E – 155 (H) 161 (H) – 7.5 (H) 
5-HT1F – – – – 10 (H) 
5-HT2A 670 (H) 180 (H) 391 (H) 724 (R) 11.6 (H) 
5-HT2B 120 (H) 8 (H) 57 (H) – 8.7 (H) 
5-HT2C – 175 (H) 243 (H) 40.7 (P) 5.0 (H) 
5-HT3 >10,000 (H) >10,000 (H) – – 593 (H) 
5-HT4 – – – – 126 (H) 
5-HT5a – 116 (H) 365 (H) – 251 (H) 
5-HT6 2,267 (H) 38 (H) 54 (H) – 98.4 (H) 
5-HT7 – 75 (H) 68 (H) – 8.1 (H)  
* Ki given as nM. Higher Ki values indicate lower receptor binding affinity. 
† Human receptor. 
‡ Pig receptor. 
§ Rat receptor. 
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multiple physiological and behavioral processes (Weiger, 1997). As a 
component of complex neurochemical pathways, serotonin influences a 
wide range of processes, including swimming contractions in cnidarians, 
reproductive behavior in platyhelminths, feeding and learning in mol-
lusks, swimming and feeding in annelids, aggression in crustaceans, 
locomotion in jawless fish, and sleep, appetite, and mood in mammals 
(Mohammad-Zadeh et al., 2008). Consequently, the physiological ef-
fects of psiloids may vary among species. For example, psilocybin in-
creases motor activity in fruit flies but decreases activity in rats (Chen 
et al., 2023; Hibicke and Nichols, 2022; Jefsen et al., 2019). 

Psiloids are agonists or partial agonists of several serotonin receptors 
(Halberstadt and Geyer, 2011). Psilocybin, the primary serotonergic 
compound in psychedelic mushrooms (Tsujikawa et al., 2003), is 
quickly dephosphorylated into its neuroactive metabolite psilocin when 
ingested (Passie et al., 2002). Psilocin’s psychedelic properties in 
humans are believed to result from its binding affinity for the 5-HT2A 
receptor, but it also has high affinities for other 5-HT receptors (Table 2) 
(Tyľs et al., 2014). Other free-hydroxyl psiloids also have activities on 5- 
HT receptors. 

Given the diverse roles of receptor subtypes in animals (Bubak et al., 
2020; Sharp and Barnes, 2020; Tierney, 2018), psiloids likely have a 
broad range of effects across and within different animal phyla. Addi-
tionally, small changes in the amino-acid sequence of serotonin re-
ceptors can significantly alter the binding affinity of psiloids and, 
consequently, their effects (Schmitz et al., 2022). The binding affinity 
and pharmacological action across species are further complicated by 5- 
HT receptors forming complexes with other receptors, modifying their 
functions (Ibi, 2022). And although the 5-HT2A receptor is often the 
focus of research due to its prominent psychedelic effects in humans 
(Dodd et al., 2022; Ling et al., 2022; Vollenweider et al., 2007), there is 
no clear evidence that any specific receptor or subtype is an ecological 
target. 

In addition to the strong effects on specific serotonin receptors, psi-
locin also binds to other neurotransmitter receptors (Table 3) (Ray, 
2010). For example, psilocin has a much stronger binding affinity to 
dopamine receptors D1 and D3 than to 5-HT2A. In fact, its affinity to D1 is 
significantly higher than that of serotonin or even dopamine itself, and it 
is comparable to dopamine’s binding affinity to D3 (Janowsky et al., 
2014). This high binding affinity of psilocin to D1, which plays a sig-
nificant role in regulating mood, motivation, and reward (Nieoullon and 
Coquerel, 2003), may contribute to its neuroactive effects in mammals 
(Grandjean et al., 2021). Relatedly, some research also suggests that 
psychoactive tryptamines like psiloids may be enzymatically converted 
to dopamine or other catecholamines in vivo, increasing their impact on 
the dopamine system (Fitzgerald, 2021). Dopamine receptors are pre-
sent in both invertebrates and vertebrates, playing important roles in 
regulating behavior, movement, and other neurological processes (Gallo 

et al., 2016; Nieoullon and Coquerel, 2003; Stefano and Kream, 2010; 
Yamamoto and Vernier, 2011). This suggests that psiloids may impact 
most animal phyla through both the dopamine and serotonin systems. 

The imidazoline receptor I1 is also a binding target of psilocin in 
humans (Table 3). Little is known about the function of imidazoline 
receptors, but I1 seems to influence cellular processes such as apoptosis, 
viability, growth, and proliferation in humans (Bousquet et al., 2020). In 
addition, psilocin weakly binds to the alpha-2 adrenergic receptors α2A, 
α2B, and α2C. Broadly, α2 receptors affect the human central nervous 
system and influence sedation, muscle relaxation, analgesia, and body 
temperature by modulating the effects of endogenous epinephrine and 
norepinephrine (Philipp et al., 2002). Psilocin also has an appreciable 
binding affinity to the trace amine-associated receptor 1 (TAAR1), which 
broadly regulates processes such as feeding, mating, and olfactory re-
sponses through the modulation of the dopamine and serotonin systems 
(Borowsky et al., 2001; Grandy et al., 2016; Miller, 2011). TAAR1 ago-
nism may also reduce the stimulant properties of psiloids, as it does for 
other monoamines (Cara et al., 2011). Finally, psilocin binds to the se-
rotonin transporter SERT, suggesting it may reduce serotonin reuptake, 
similar to the mechanism of drugs like SSRIs, SNRIs, and tricyclic anti-
depressants (David and Gardier, 2016). However, psilocin’s binding 
affinity to SERT is considerably lower than most antidepressants or se-
rotonin itself, making its effects likely minimal (Owens et al., 2001). 
Together, the diversity of potential targets in animal signaling pathways 
draws attention to the lack of conclusive evidence that 5-HT2A is the 
primary receptor of ecological significance, despite its importance in 
human phenomenology. 

The physiological effects of psilocybin have primarily been studied in 
mammalian models, and it is often shown to have strong neurological 
effects (Andrés et al., 2007). In humans, psilocybin ingestion has been 
found to alter sensory perception, mood, and states of consciousness (Jo 
et al., 2014). A growing body of research suggests that psilocybin may be 
useful in treating neurological disorders, including depression and 
anxiety, due to its ability to decrease activity in the amygdala and 
default mode network and increase neuroplasticity (Ling et al., 2022; 
Smausz et al., 2022). However, additional investigation is needed to 
develop a comprehensive model of the neuromodulatory effects of psi-
locybin to fully explain its mechanisms and the connected subjective 
psychedelic experience. While psilocybin may rarely cause adverse ef-
fects such as increased heart rate, nausea, and anxiety, clinical trials 
have demonstrated its general safety and efficacy (Jo et al., 2014). 

The 4-substituted nature of psiloids offers further clues that they may 
be targeted to animal central nervous systems. After spontaneous or 
enzymatic dephosphorylation, psilocin can form a pseudo-ring structure 
due to the hydroxyl group on its 4-position (Bhadoria and Ramanathan, 
2023; Lenz et al., 2022), which reduces its polarity and allows it to more 
easily cross the lipophilic membrane of the blood–brain barrier. The 
pseudo-ring structure also slows its degradation by endogenous mono-
amine oxidase (MAO) (Lenz et al., 2022). In comparison, 5-hydroxylated 
tryptamines (e.g., bufotenine) are too polar to readily cross the 
blood–brain barrier (McBride, 2000; Migliaccio et al., 1981; Zohairi 
et al., 2023), and non-hydroxylated tryptamines (e.g., DMT) are too 
quickly degraded by MAO to reach the blood–brain barrier (Barker et al., 
1980). Many animal lineages (including invertebrates) have a lipid- 
based central nervous system diffusion barrier similar to that of the 
human blood–brain barrier (Dunton et al., 2021) and produce MAO 
(Sloley, 2004). Therefore, psiloids’ pharmacodynamics may be similar 
among other animal phyla, consistent with the hypothesis that they are 
targeted broadly to the central nervous system. 

3.4. Psilocybin may act in synergy with other tryptamines 

The psiloids produced by psychedelic mushrooms exhibit different 
properties. For example, pure baeocystin and norbaeocystin do not 
produce any psychoactive effects on their own in vivo (Adams et al., 
2022; Sherwood et al., 2020). Although psilocybin is the psiloid 

Table 3 
Psilocin, serotonin, and dopamine binding affinities (<10,000 nM) on non- 
serotonin receptors and transporters (Janowsky et al., 2014; Ray, 2010; Rickli 
et al., 2016; Roth and Driscol, 2011).  

Receptor/Transporter Psilocin Serotonin Dopamine 
D1 20* (H†) 9,690 (H) 4,300 (H) 
D2 3,700 (H) >10,000 (H) 1,710 (H) 
D3 101 (H) – 61 (H) 
α1A 6,700 (H) >10,000 (R‡) – 

α2A 2,044 (H) >10,000 (R) >10,000 (R) 
α2B 1,271 (H) >10,000 (R) >10,000 (R) 
α2C 4,404 (H) >10,000 (R) – 

I1 792 (H) – – 

H1 1,600 (H) – – 

TAAR1 1,400 (R) 6,000 (H) 422 (H) 
SERT 852 (H) 44 (R) 6,489 (R)  
* Ki given as nM. Higher Ki values indicate lower receptor binding affinity. 
† Human receptor. 
‡ Rat receptor. 
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produced in the highest quantities within the mushrooms, whole- 
mushroom extracts have been shown to produce more potent physio-
logical effects on mammals than pure synthetic psilocybin, even at one- 
tenth of the concentration (Zhuk et al., 2015). This is consistent with the 
“entourage effect” hypothesis, which posits that psiloids and/or other 
fungal compounds act synergistically in animals (Dörner et al., 2022). 

Relatedly, some psiloid-producing fungi synthesize β-carbolines 
(Fig. 1C), such as harmane, norharmane, and harmine, at varying levels 
and combinations across species (Blei et al., 2020). Like psiloids, 
β-carbolines also have binding affinities to serotonin and dopamine re-
ceptors and can produce moderate psychoactive stimulant effects on 
their own (Glennon et al., 2000; Grella et al., 1998). Additionally, 
β-carbolines can potentiate the effects of psiloids by acting as mono-
amine oxidase inhibitors (MAOIs) (Estrella-Parra et al., 2019; McKenna 
et al., 1984), which prevent the metabolic elimination of psiloids by 
monoamine oxidase A (MAO-A) (Dinis-Oliveira, 2017; Gessner et al., 
1960). Thus, the MAOI activity of the fungal β-carbolines is expected to 
potentiate and prolong the bioactivity of psiloids. The fungal β-carbo-
lines are expressed in higher concentrations in the mycelium (21 µg/g 
dry mass) than in the mushrooms (0.2 µg/g dry mass) or sclerotia (1.5 
µg/g dry mass) if present (Blei et al., 2020). This means that if an animal 
consumes the mycelium, the higher concentration of β-carbolines may 
enhance the action of the psiloids despite their minute concentrations. 
Conversely, the minute quantities of β-carbolines in the mushroom may 
enhance the effect of psilocybin or cause other psiloids to become 
psychoactive. 

The presence of serotonin in several species of the psiloid-producing 
genus Panaeolus raises the possibility of synergy between compounds 
that act on similar physiological systems (Gurevich, 1993; Stijve, 1992; 
Tyler, 1958; Wier and Tyler, 1963). Compared to other genera, Pan-
aeolus only recently acquired the psilocybin gene cluster (Reynolds 
et al., 2018). One hypothesis is that serotonin itself can also, at least 
partially, perform a similar ecological role to psiloids. And while sero-
tonin cannot cross the blood–brain barrier directly, it may be brought 
across via 5-HT transporters or act on peripheral serotonin receptors 
(Jonnakuty and Gragnoli, 2008). Indeed, plants utilize serotonin for 
anti-herbivory purposes (Chen et al., 2022; Ishihara et al., 2008). 
However, psiloids may be more effective than serotonin at this role, 
which may explain why other psiloid-producing fungi have not been 
found to produce serotonin. 

3.5. Psilocin oligomers may have ecological functions 

A recent hypothesis states that the primary ecologically active 
products of the psilocybin cluster may not be psilocin, but rather its 
oligomers. Psiloid-producing fungi turn blue when damaged, caused by 
a rapid conversion of phosphorylated psiloids into their hydroxylated 
counterparts, followed by oxidative coupling that forms blue oligomers 
(Fig. 1D) (Lenz et al., 2020). This transformation is enzymatically 
mediated by a phosphatase (PsiP) and a laccase (PsiL). The oligomers 
contain between three and thirteen subunits and are preferentially 
coupled at the 5 and 7 positions within their indole ring, with 7,7′- 
dimeric coupling contributing most to the blue coloration (Lenz et al., 
2021a). This production of chromophoric oligomers appears to be a 
unique property of 4-substituted psiloids and does not naturally occur in 
other bioactive tryptamines, such as serotonin and bufotenine, despite 
their structural similarities (Gilmour and O’Brien, 1967; Lenz et al., 
2021a), and may play a role in their organisms’ ecology beyond its 
psychoactive properties. 

Chromophoric oligomers may serve a defensive ecological function 
due to their similar polyphenolic and aryl-coupling properties to tan-
nins, melanins, and oligomeric polypyrroloindolines (Jamison et al., 
2017; Leopoldini et al., 2004a, 2004b). When ingested, these com-
pounds generate reactive oxygen species, causing intestinal lesions in 
insects (Barbehenn and Peter Constabel, 2011; Salminen and Karonen, 
2011). Additionally, gastropods also experience adverse health effects 

such as lethargy, shell reclusion, hemolymph release, growth disruption, 
detoxification inhibition, appetite reduction, and death when exposed to 
tannins and flavonoids (Noorshilawati et al., 2020; Silva et al. 2020; 
Singaba et al., 2006). Furthermore, tannins can cause disorientation, 
decrease egg-laying rates, and increase mortality in nematodes, likely 
through external cuticular damage and enzyme-inhibiting activities 
(Hoste et al., 2006; Maistrello et al., 2010). While some tannins have 
positive health effects in vertebrates, some can cause digestive, liver, 
and kidney pathologies (Mueller-Harvey, 2006). By analogy, psiloids 
may serve as inactive monomers that only become toxic when the 
mushroom is damaged by predators, functioning as an on-demand de-
fense against fungivory (Lenz et al., 2020). 

It is unlikely that the formation of tannin-like psilocin oligomers is 
the only mechanism involved in psilocybin ecology. Although most 
species of psilocybin-producing mushrooms bruise blue easily, indi-
cating the catalyzed oligomerization reaction, some species require 
excessive mechanical tissue destruction for this to occur (Borovička 
et al., 2015; Gartz, 1986b). In these species, catalyzed oligomerization is 
likely insufficient for ecological activity. If the chromophoric oligomers 
were the sole active product, all psilocybin-producing species might be 
expected to bruise blue when macroscopically damaged. Furthermore, 
the genes responsible for the oligomerization reaction (i.e., PsiP, PsiL) 
are not found in the psilocybin gene cluster (Lenz et al., 2020), which 
suggests that psilocybin production and oligomerization are not 
inherited together during horizontal gene transfers. However, these 
genes are highly conserved in Agaricales, so they may be readily utilized 
for this function following the acquisition of psilocybin synthesis due to 
their nonspecific activity (Lenz et al., 2020). Collectively, both psiloid 
monomer neuroactivity and their oligomers’ toxicity appear to be strong 
hypotheses. 

3.6. Diversification of other neuroactive compounds alongside psilocybin 
suggests coevolution with animals 

In some genera of psilocybin-producing mushrooms, alternative 
neuroactive compounds are present in species that do not produce psi-
loids. For example, many species in the genus Inocybe produce the 
parasympathetic nervous system toxin muscarine, while few species 
instead produce psilocybin (Kosentka et al., 2013). Muscarine mimics 
the neurotransmitter acetylcholine and binds to muscarinic acetylcho-
line receptors, in contrast to psilocybin’s affinity for serotonin receptors. 
The production of muscarine is thought to be the ancestral state of these 
lineages, which was lost coincident with multiple convergent origins of 
psilocybin (Kosentka et al., 2013). Similarly, the genus Gymnopilus has 
many species that produce psilocybin and others that produce nicotinic 
acetylcholine receptor agonists called gymnopilins (Hatfield and Valdes, 
1978; Kayano et al., 2014; Kusano et al., 1986). The production of 
gymnopilins is most likely the ancestral trait, with a later gain and loss of 
psilocybin (Caldas et al., 2022; Guzmán-Dávalos et al., 2003; Hatfield 
and Valdes, 1978). Although psilocybin and gymnopilins have not been 
recorded as appearing in the same specimen to date, more systematic 
studies are required to verify this condition. Furthermore, different 
entomopathogenic Massospora species produce either psilocybin or the 
amphetamine cathinone (M. levispora/platypediae and M. cicadina, 
respectively), with both species seemingly producing behavior- 
manipulating effects in their cicada hosts (Boyce et al., 2019). The 
possibility that psilocybin and other neuroactive compounds are inter-
changeable could suggest that they serve similar ecological functions but 
may be adapted to different predators or predator populations with 
more recently evolved toxin resistance. 

3.7. Above- versus below-surface pressures may have driven differential 
psilocybin expression 

The differing concentrations of psiloids in the mushroom, mycelium, 
and sclerotia of psilocybin-producing fungi may reflect the distinct 

M. Meyer and J. Slot                                                                                                                                                                                                                           



Fungal Genetics and Biology 167 (2023) 103812

9

environmental selective pressures they face inside and outside the sub-
strate. Mushrooms, which produce more psiloids than β-carbolines 
(67,500:1 psilocybin to harmane) (Blei et al., 2020; Gotvaldová et al., 
2021), are generally exposed to larger predators (e.g., macro-insects, 
vertebrates) because they grow above ground. In contrast, the myce-
lium, which is harder to separate from its substrate, is more likely to be 
targeted by smaller predators (e.g., microarthropods and nematodes) 
and generally produce more β-carbolines (70:1 psilocybin to harmane) 
(Blei et al., 2020; Gotvaldová et al., 2021). Sclerotia are a potential 
target of digging animals and smaller animals living in the substrate, as 
their larger structure makes for a more substantial source of nutrients 
that can be more easily separated from the substrate. It is possible that 
the ratio of psiloids to β-carbolines reflects these dual environmental 
pressures (i.e., macro and micro predators), as concentrations measured 
in the sclerotia fall between those found in mushrooms and mycelium 
(1,750:1 psilocybin to harmane) (Blei et al., 2020; Gartz, 1995). 
Considering these patterns of expression, it can be speculated that psi-
loids are specialized for above-surface pressures (e.g., mediating in-
teractions with larger animals), while β-carbolines are specialized for 
below-surface pressures (e.g., smaller substrate-dwelling and larger 
animals that dig). 

4. Specific animal phyla may have provided initial selective 
pressures on psilocybin-producing fungi 

Psiloids may act as neurotransmitter analogs and interfere with 
fungivorous and competitor animals. The emergence of lignified tissues 
approximately 380MYA (Floudas et al., 2012) created the new wood- 
decay niche that would be filled by many ancestral fungal lineages 
later known to produce psilocybin. Following this, psilocybin produc-
tion is estimated to have horizontally dispersed and independently 
emerged alongside the expansion of grasslands and the emergence of 
dung-producing mammalian herbivorous megafauna 50-40MYA (Mac-
Fadden, 2000; Ramirez-Cruz et al., 2013; Retallack, 2001; Tóth et al., 
2013), creating additional ecological niches to be filled such as grass and 
dung decay. Many diverse animals also inhabit these niches, but in-
vertebrates likely exert stronger selective pressures on mushrooms in 
these niches than most vertebrates due to their greater numbers (Wal-
ton, 2018). Four taxonomic groups, Arthropoda, Gastropoda, Nematoda, 
and Primates, are compelling candidates as the drivers of selection for 
psilocybin production in fungi. These animal clades are commonly 
fungivorous or compete with fungi for resources, are in close physical 
contact with fungi in shared ecologies, and have overlapping evolu-
tionary diversification times. 

4.1. Arthropods and psilocybin producers cohabitate in ecological niches 

Arthropods, especially insects, have the most substantial evidence of 
co-diversification alongside and likely in shared niches with psilocybin- 
producing fungi. Psilocybin-producing fungi commonly occupy late- 
stage dung- and wood-decay ecological niches, directly competing 
with mycophagous and wood/dung-eating insects (Reynolds et al., 
2018). Indeed, terrestrial isopods have been observed feeding on wood- 
decaying Ps. cyanescens psilocybin-producing mushrooms (Gießler, 
2018). Decay niches, like those occupied by psilocybin-producing fungi, 
are also highly competitive environments among fungi. The ability of 
fungi to tolerate damage from arthropods during the final stages of 
decay might confer a greater competitive advantage than direct fungus- 
fungus combative ability (A’Bear et al., 2013; A′Bear et al., 2013; 
Crowther et al., 2011, 2011; Jacobsen et al., 2015), providing yet 
another pressure for psilocybin-producing fungi to mediate interactions 
with insects. 

The means by which psilocybin might have coevolved with arthro-
pods is through the regulation of a wide range of serotonin-controlled 
physiological processes, including sleep, memory, vision, swarming, 
aggression, muscular contractions, heart rate, olfaction, mating, 

reproduction, appetite, and digestion (Anstey et al., 2009; Dacks et al., 
2003; Dierick and Greenspan, 2007; Evans and Myers, 1986; French 
et al., 2014; Lee et al., 2001; Neckameyer, 2010; Python and Stocker, 
2002; Sitaraman et al., 2012, 2008; Thamm et al., 2010; Yuan et al., 
2006, 2005; Zornik et al., 1999). As a prime example, the entomopa-
thogenic M. levispora/platypediae produces psilocybin, which is posited 
to contribute to the behavior manipulation of its host cicadas, increasing 
sexual behavior and increasing spore dispersal (Boyce et al., 2019). 
Additionally, Drosophila flies fed psilocybin (0.03 mM) for five consec-
utive days exhibited increased motor activity (Hibicke and Nichols, 
2022). Furthermore, one documented instance showed a single dark- 
winged fungus gnat (Sciaridae sp.) larva completing development (i.e., 
egg to adult) inside a psiloid-producing mushroom (Ps. cyanescens) 
(Awan et al., 2018). While this shows that some insects can develop 
while consuming psilocybin-containing tissue, it is notable that only a 
single fly emerged in this experiment, considering that a single fly can 
lay dozens of eggs on a single mushroom (Erler et al., 2011, 2009). This 
may imply that there was some factor inhibiting larval development (e. 
g., psiloids) because most eggs complete development and emerge in the 
absence of toxins (or with coevolved tolerance to said toxins) (Erler 
et al., 2011, 2009; Scott Chialvo and Werner, 2018). 

4.2. Gastropods are voracious fungivores 

Terrestrial gastropods (i.e., snails and slugs) pose a threat to 
psilocybin-producing fungi due to their generalist feeding behavior on 
both mushrooms and hyphae (Barker and Efford, 2004; Butler, 1922; 
Elliott, 1922; Keller and Snell, 2002; White-Mclean and Capinera, 2014; 
Wolf and Wolf, 1939). Snails and slugs have been specifically observed 
grazing on psilocybin-producing Ps. cyanescens, preferentially feeding 
on the gills (Gießler, 2018). Additionally, fungivorous gastropods are 
well-established dispersal agents of fungal spores via excretion within 
their nutrient-rich feces (Kitabayashi et al., 2022), providing an incen-
tive to manipulate their feeding and travel behaviors. Although terres-
trial gastropods (order Stylommatophora) began to rapidly diversify 
starting around 110MYA (Fig. 2B), this diversification continued 
through the evolution of psilocybin-producing fungi (~40MYA) without 
plateauing (Ayyagari and Sreerama, 2020). Serotonin plays a crucial 
role in gastropods, regulating processes such as locomotion, olfactory 
perception, reproduction, and development (Audesirk et al., 1979; Croll, 
2009; Croll et al., 1991; Muschamp and Fong, 2001, p. 2001; Pavlova, 
2001; Roshchin and Balaban, 2012; Sugamori et al., 1993), providing a 
wide variety of targets for psilocybin to influence. Because terrestrial 
gastropods can be both antagonists and mutualists of mushroom- 
forming fungi, psilocybin may act both as a deterrent and as a benefi-
cial behavior manipulator depending on the species interaction. 

4.3. Nematodes are strong resource competitors and predators of 
psilocybin producers 

Nematodes are potential drivers of fungal psilocybin production, as 
both nematodes and fungi are among the most prevalent eukaryotes in 
decay ecosystems and frequently interact antagonistically (Zhang et al., 
2020). Nematodes (order Tylenchida) inhabit and consume mushrooms 
(Zhang et al., 2020) and are known to consume half of the fungal 
biomass in soil (Spiteller and Spiteller, 2008), presenting a strong se-
lection on fungi for defense against these organisms. Additionally, 
numerous non-psilocybin-producing wood decay fungi generate com-
pounds toxic to wood-dwelling nematodes (Futai, 2013; Lee et al., 2023; 
Pimenta et al., 2017), suggesting psilocybin may also have been selected 
to combat nematodes. A nematode’s muscular system, carbohydrate 
metabolism, and adenylate cyclase regulation are all influenced by se-
rotonin (Mansour, 1979), and nematodes are vulnerable to compounds 
that interfere with serotonin receptors (Levin and York, 1978; Mansour, 
1979; Rodriguez et al., 1982). It is, therefore, plausible that nematodes 
may be a target of psilocybin. Many nematodes also inhabit dung- and 
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wood-decay niches, suggesting fungi may have evolved the ability to 
produce psilocybin as a way to combat fungivorous and resource- 
competitor nematodes. 

4.4. Primate diversification coincided with psilocybin-producing 
mushroom diversification 

The majority of psilocybin-producing mushrooms arose following 
the K/T extinction, which also marks the beginning of the age of 
mammals (Springer et al., 2019). Many mammals are known to browse 
on mushrooms and could have imposed predation pressure that favored 
psilocybin’s diversification. For example, primates may be an early 
target of psilocybin due to the alignment of their diversification time-
frames with psilocybin-producing fungi. Although there is conflicting 
evidence on the exact origin date of the primate clade (Heads, 2010), 
major studies agree that primates originated earlier than the diversifi-
cation of most psilocybin-producing species (approximately 40MYA) 
(Janečka et al., 2007; Reynolds et al., 2018; Ruiz-Dueñas et al., 2021). 
Regardless of the exact origin date, extant lineages of primates began to 
rapidly increase in number, approximately 25MYA (Springer et al., 
2012), in alignment with the diversification of psilocybin-producing 
species of fungi (Fig. 2B). Although the apes (superfamily Homi-
noidea) also originated around this time period (approximately 
28MYA), humans were likely not a selective force for the initial evolu-
tion of fungal psilocybin production, as the genus Homo only evolved 
approximately 2.8MYA (Spoor et al., 2015). 

Shared geographic ranges and ecologies between ancestral non- 
human primates and psilocybin-producing mushrooms also allow for 
the possibility of evolutionarily significant interactions. Extant primate 
species typically reside in tropical zones throughout the globe, though 
some species also occupy temperate and arid biomes (Reed and Fleagle, 
1995). Psilocybin-producing mushrooms have a broad range, but the 
highest concentration and diversity also occur in the tropics (Guzmán 
et al., n.d.). Most primate diets are dominated by fruit and insects 
(Hohmann, 2009; Redford et al., 1984), but fungi are also consistently 
eaten by many species (Hanson et al., 2003; Sawada, 2014). Mycopha-
gous primates typically consume the above-ground fruiting bodies, but 
some also seek out below-ground sclerotia. The ancestral ecology of 
psilocybin-producing fungi is hypothesized to be wood decay (Reynolds 
et al., 2018), and these niches are also heavily populated with wood- 
eating termites (Bignell et al., 2010). Specifically, termites are a staple 
of many primate diets (Adams et al., 2017; Davies and Baillie, 1988; De 
Moraes et al., 2014; Hamad et al., 2014; Julliot and Sabatier, 1993; 
Matsuda et al., 2009), and it is possible that while consuming termite- 
inhabited tree bark or termite fishing (Falotico, 2011; McGrew, 2014), 
these primates may have consumed the psilocybin-containing mush-
rooms fruiting from the same decaying wood. Such chance consumption 
could have instigated effects that deterred further feeding or altered 
primate behavior in a way that increased spore dispersal. Since primates 
have behaviors and even simple technologies that are transmitted so-
cially, it could be speculated that they have periodically experienced 
creative advances that resulted in novel selective forces within their 
populations (Rodríguez Arce and Winkelman, 2021). However, any such 
creative effects on primates are not likely to have favored psilocybin- 
producing species until the sociocultural implementation by modern 
humans increased their dispersal through trade (Merino, 2022; de Ter-
esa, 2022). 

5. Psilocybin-mediated interactions with animals may entail a 
variety of mechanisms 

5.1. Psilocybin may cause direct toxicity 

Perhaps the most straightforward hypothesis for psilocybin’s 
ecological role is as a form of direct toxicity upon ingestion by fungiv-
orous species, as is the case for many fungal specialized compounds 

(Spiteller, 2008). In mouse models, relatively high doses (LD50 = 293 
mg/kg) of psilocin have been fatal (Zhuk et al., 2015). Furthermore, at 
considerably lower doses (10 mg/kg), psilocin can cause oxidative DNA 
damage to the frontal cortex and hippocampus of rats (Wojtas et al., 
2022). Additionally, extracts of psilocybin-producing fungi are highly 
lethal to the arthropod model, brine shrimp (Artemia spp.) (Meyer, 
2017). While not extensively tested on invertebrates, the potential for 
psiloids to produce oxidative damage could be lethal, as other defensive 
specialized metabolites act via this mechanism (Choquer et al., 2007; 
Kensler et al., 2011; Wu et al., 2014). As discussed earlier, it is also 
possible that the psiloid oligomers may also be directly toxic to animals 
that have ingested them. They may generate reactive oxygen species 
when ingested, leading to deleterious effects that decrease fitness in a 
variety of phyla. 

5.2. Psilocybin may modulate gut microbiomes with varied effects 

Many plants produce compounds that downregulate the appetite of 
herbivorous insect species, resulting in reduced overall herbivory (Lev- 
Yadun and Mirsky, 2007; Saha et al., 2017). Psilocybin may also reduce 
feeding in fungivorous species, as 5-HT agonism has been demonstrated 
to be an appetite suppressant (Dacks et al., 2003; Falibene et al., 2012; 
French et al., 2014). The mechanism of action may be related to the 
ability of serotonin to regulate insect gut microbiome levels via Duox 
expression (Zeng et al., 2022), and gut microbiome levels can affect 
appetite (Fetissov, 2017). Furthermore, excess serotonin can increase 
mortality (Zeng et al., 2022), likely again related to microbiome dys-
biosis (Raymann et al., 2017; Wei et al., 2017; Xu et al., 2019b). 

5.3. Psilocybin may cause immune system depression and select against 
mushroom consumption 

Psilocybin may also act as an indirect defense by impairing insects’ 

immune systems, creating higher susceptibility to pathogen infection. In 
human microglia, psilocin downregulates pro-inflammatory factors 
(TLR4, p65, and CD80) and upregulates TREM2 (Kozłowska et al., 
2021). These immunomodulatory factors are also crucial for defense 
against bacterial infections in Drosophila (Patrick et al., 2019; Tauszig 
et al., 2000), and the serotonin system influences insect immunity 
(Hasan et al., 2019; Milutinović and Schmitt, 2022). If psilocin’s 
immunomodulatory effects also weaken insects’ immune systems, they 
would become more susceptible to infections in the bacteria-rich decay 
niches psiloid-producing fungi often inhabit. 

5.4. Social behavior may be disrupted by psilocybin ingestion 

Because serotonin can modify social behaviors in insects, psilocybin 
disrupting prosocial behaviors among mycophagous eusocial species 
may be advantageous. The primary consumers of herbivore dung 
worldwide are termites (Khan et al., 2018), likely putting them in con-
tact with coprophilous psilocybin-producing fungi. Like ants, termites 
function as a superorganism and rely on prosocial behaviors for 
ecological success (Nalepa, 2015). Xylaria nigripes is a fungus that col-
onizes abandoned termite nests and the termite gut (Fricke et al., 2023; 
Rogers et al., 2005; Sreerama and Veerabhadrappa, 1993). X. nigripes 
also produces ergot alkaloids under specific conditions (Hu and Li, 
2017), posing the possibility that the serotonergic compounds may 
disrupt colony cooperation. For example, LSD has been shown to pro-
duce asocial behaviors within ants, such as decreased group formation, 
food sharing, and nest return rates of foragers (Frischknecht and Waser, 
1980). Consequently, the available food for the colony decreases, and 
nursing ants are recruited as foragers, restricting the colony’s growth. By 
analogy, psilocybin may affect similar behaviors in termites, selecting 
for avoidant behavior toward psiloid-producing fungi. 
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5.5. Psilocybin may promote dispersal through animal behavior 
manipulation 

A complementary hypothesis to defense is that psilocybin facilitates 
interactions with animal vectors. Mycophagous animals evolve to 
overcome the chemical defenses of different fungal genera, altering the 
composition of animal communities (Yamashita and Hijii, 2013). Fungal 
toxins may create an environment suitable for animals that are less 
harmful to the host fungus than non-adapted insects, or the compounds 
may facilitate mutualistic relationships where the animals disperse the 
spores of the mushroom (Tuno et al., 2010). For example, fruit flies 
travel more after ingesting psilocybin (Hibicke and Nichols, 2022), 
which in a naturalistic setting, could potentially facilitate further spore 
dispersal than flies having consumed fungal tissues without psilocybin. 
In fact, spores of some mushroom-forming Basidiomycota species see 
improved germination from passage through insect digestive tracts and, 
therefore, incentivize visitation (Kobayashi et al., 2017; Page et al., 
2017; Tuno, 1998). 

Alternatively, if animals can detect and avoid psilocybin, this may 
deter them from the mushroom flesh while guiding them to the non- 
psilocybin-containing spores (Gross, 2000), potentially helping to 
distribute the spores. This phenomenon is seen in gastropods, as some 
snails prefer the spore-containing lamellae of Ps. cyanescens, avoiding 
the psilocybin-containing pileus and stipe (Gießler, 2018). 

Psilocybin’s effects on behavior may also include making fungivores 
more visible to predators, potentially increasing the likelihood of their 
predation. For example, other psiloid-like serotonergic agents can 
induce writhing and undulation behavior in gastropods, which may 
attract their predators (Abramson and Jarvik, 1955; Aguiar and Wink, 
2005; Sakharov and Salánki, 1982), in a manner similar to how other 
gastropod-manipulating organisms attract birds (Wesołowska and 
Wesołowski, 2014). Fungal tissues (e.g., mycelium, mushrooms, spores) 
are viable not only after passage through slug stomachs but also through 
the digestive tracts of toads that have consumed slugs containing fungal 
tissues (Vogilino, 1895). If the fungal tissues of psilocybin-producing 
fungi are also viable after secondary consumption by birds, the 
dispersal radius would be greatly enhanced through bird droppings. 

Some psilocybin-producing fungi may also rely on vertebrates as 
their primary dispersal agents. The fact that some psilocybin-producing 
species have convergently evolved the secotioid morphology and 
retained their ability to produce psilocybin (Borovička et al., 2011) 
further suggests that psilocybin may not deter all animals, as secotioid 
mushrooms rely heavily on mammalian consumption for spore dispersal 
(Albee-Scott, 2007; Thiers, 1984). Because larger mammalian fungi-
vores typically consume the whole mushroom (Elliott et al., 2022), they 
would likely ingest a neuroactive dose of psilocybin. However, the 
possible beneficial effects of psilocybin for the mushroom in terms of 
behavior manipulation in these scenarios remain to be seen. 

6. Conclusions 

Psilocybin may offer a small window into the vast array of neuro-
active metabolites produced by fungi and plants in dynamic competitive 
environments. The specific evolutionary trajectories and unique prop-
erties of psilocybin production suggest the existence of yet-to-be- 
described ecological relationships between psilocybin-producing fungi 
and animals. Evidence of selection for psilocybin can be found in the 
genome of species that produce it, such as gene clustering, horizontal 
gene transfer, and convergent evolution of the psilocybin biosynthetic 
pathway. Specific animals that prey on and compete with psilocybin- 
producing fungi likely exert pressures that are partially mitigated by 
psilocybin. Existing evidence suggests invertebrates are likely to have 
driven the emergence and dispersal of the psilocybin pathway, although 
it is possible that primates also played a role at more recent timescales. 
The alternate production of psilocybin and other neuroactive metabo-
lites in fungi further suggests psilocybin is targeted to animals, and also 

that its benefits may be temporary and interchangeable with other 
neuroactive compounds in the ongoing animal-fungal chemical arms 
race. Psiloids’ chemical properties give them a unique relationship with 
animal physiology, allowing them to avoid digestive degradation and 
access the central nervous system in ways other tryptamines cannot. 
Psilocybin has a particular affinity for serotonin receptors, but also 
dopamine and other receptor types, potentially having wide-ranging 
neuroactive effects across different animal phyla. Psiloids may also 
function through mechanisms beyond neuroactivity, including as pre-
cursors to complex chemical structures with potential anti-fungivory 
properties via digestive and nutritional interference. The fitness bene-
fits of psilocybin to fungi may come in the form of reduced predation or 
improved spore dispersal, and different mechanisms may be at play in 
different circumstances. These questions will be addressed by direct 
experimentation that we expect will lead to novel insights into the ge-
netics, chemistry, and ecology of fungal psychedelics. 
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