
PL-Detective: A System for Teaching Programming
Language Concepts ∗

Amer Diwan
University of Colorado

Boulder, CO 80309

diwan@cs.colorado.edu

William M. Waite
University of Colorado

Boulder, CO 80309

waite@cs.colorado.edu

Michele H. Jackson
University of Colorado

Boulder, CO 80309

jackson@colorado.edu

ABSTRACT
The educational literature recognizes that people go through
a number of stages in their intellectual development. During
the first stage, called received knowledge or dualism, people
expect knowledge to be handed to them by authority fig-
ures (thus “received”) and think in terms of black and white
(thus “dualism”). Our experience indicates that many com-
puter science students are at this first stage of learning. To
help students move beyond this stage, we describe a system
and strategy, the PL-Detective, to be used in a “concepts
of programming languages” course. Assignments using this
system directly confront students with the notion that there
are often multiple equally good answers and that discussion
with students (rather than asking the instructor) is an ef-
fective way of learning how to reason.

Categories and Subject Descriptors
D.3.m [Programming Languages]: Miscellaneous

General Terms
Human Factors, Languages

Keywords
Concepts of programming languages, Education

1. INTRODUCTION
People go through a number of stages in their ability to

learn [10, 3]. The first stage, received knowledge, is when a
subject expects an authority figure to provide the informa-
tion that he or she needs to know. Subjects at this stage
think in terms of black and white and thus this stage is
also called dualism [10]. In later stages subjects increasingly

∗This work is supported by NSF grant CCR-0086255. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the authors’ and do not neces-
sarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04,March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

realize that information can come from within themselves;
i.e., they can “create” knowledge. Proceeding through these
stages brings the awareness that there may be many possible
answers, each with its own merits and weaknesses.

Our experience in the classroom indicates that many of
our students are still at the stage of received knowledge:
they prefer the instructor to lecture to them and expect ex-
ams and assignments to test only material that the instruc-
tor has covered in class. A primary goal of our research is
to discover and validate techniques that help students move
beyond this stage, reducing their reliance on authority fig-
ures for knowledge and convincing them that most problems
have a number of solutions.

One effective educational technique to reduce students’
reliance on authority figures is for them to learn from each
other (i.e., “equals”) [2, 16]. This requires that they collab-
orate with one another, both inside and outside the class-
room. Unfortunately, our findings from ethnographic obser-
vation and interviews with over 130 computer science and
computer engineering students [8] show that they actively
develop strategies to avoid collaboration. In order to get
students to engage with one another collaboratively, profes-
sors must design assignments that clearly reward this type
of interaction.

Collaboration is particularly important when a problem
has a number of possible solutions, and none stands out
clearly as the best. Finely-balanced design decisions made
by an individual are often based on unstated prejudice or
very specific experiences. True collaboration can expose
those prejudices, and bring a variety of experience to bear.
Thus collaborative decisions are often better than those
made by an individual, and students learn the underlying
material faster [1].

We have developed a tool, the PL-Detective, for building
assignments and demonstrations in the context of a course
titled Principles of Programming Languages.1 PL-Detective
assignments reward true collaboration and directly expose
students to problems with no clear “right” answer.

The PL-Detective is a flexible and extensible implemen-
tation of a language called Mystery. It supports a fixed
syntax for Mystery but allows the semantics of the Mys-
tery program to be varied. The current version of the PL-
Detective exports seven interfaces, each of which controls the
semantics for a single aspect of Mystery. We provide at

1Computer science and computer engineering majors take
this course in their junior year after they have already taken
a number of programming courses, including “data struc-
tures” and “computers as components”.

80

least two implementations for each semantic interface. Ev-
ery combination of implementations for the seven semantic
interfaces defines a particular behavior for Mystery pro-
grams.

The PL-Detective supports two kinds of assignments,
both of which encourage collaboration. The first, language
analysis, is structured as a puzzle: Students attempt to dis-
cover the semantics of a particular Mystery implementa-
tion by running programs and observing the results. The
second kind of assignment, language design, requires stu-
dents to select implementations for the semantic interfaces
such that a given Mystery program will produce specified
results. For both kinds of assignments, the instructor limits
the number of attempts allowed for each group of students
to prevent an unprincipled “trial and error” approach.

In this paper we summarize Mystery (Section 2), out-
line the semantic interfaces supported by the PL-Detective
(Section 3), describe assignments using the PL-Detective
(Sections 4 and 5), outline the implementation of the PL-
Detective (Section 6), and present preliminary results (Sec-
tion 7). Finally, we review prior work (Section 8) and sum-
marize the paper (Section 9).

2. THE MYSTERY LANGUAGE
We based the design of Mystery on two principles:

• Mystery should exhibit many if not most of the con-
cepts covered in traditional undergraduate courses cov-
ering the principles of programming language.

• Mystery should contain only the features needed to
exhibit these concepts.

We used the textbook for our course [11] (and in particular
its excellent “design issues” lists) as a checklist for neces-
sary concepts, and rigidly excluded features that required
no additional concepts to explain them.

The Mystery syntax (Figure 1) is a subset of Modula-3
syntax [9] (which is based on Pascal [6] syntax). We picked
Modula-3 syntax instead of the more popular syntax from
the C family [7] because we find some aspects of Modula-3
syntax to be cleaner and easier to read. For example, the
following declares a variable of procedure type with one ar-
gument of type INTEGER and a return type of BOOLEAN
in Modula-3 and C-family syntax:

VAR x: PROCEDURE (i: INTEGER): BOOLEAN; // Modula-3

boolean (*x)(int); // C family

While the Modula-3 syntax is more verbose, we find it to be
more readable and intuitive. Thus Modula-3 syntax will be
easier for students to understand and master.2

Mystery provides all of the standard structuring con-
cepts for actions in imperative languages (sequencing, con-
ditionals, iteration, and abstraction). Integers, subranges,
arrays, and functions are all first-class values in Mystery
(i.e. they can be assigned to variables and passed as param-
eters).

The + operator allows a program to create new integer
values, while the > operator allows the program to create
truth values for use in conditions. Mystery does not have

2In our experience, the concept of first-class functions is for-
eign to most students in the class and thus, prior familiarity
of the students was not an issue in this decision.

a first-class Boolean type since it does not introduce signif-
icant new semantic issues. We included the AND operator
so that we could introduce the concept of short-circuit eval-
uation in Mystery. Other logical or arithmetic operations,
such as OR or subtraction, do not introduce any new se-
mantic issues and thus we omitted them.

Arrays are the only data structuring mechanism provided
by Mystery. Mystery omits records because many of the
interesting semantic issues with records (and more) can be
explored with arrays (e.g., distinction between name and
structural type equivalence). We omitted objects because
many of the semantic issues with objects can be demon-
strated by features already in Mystery. For example, ar-
rays, subrange types, and first-class functions together can
demonstrate several of the subtyping issues that arise in
object-oriented languages. First-class functions are also in-
valuable for demonstrating some of the flexibility and power
of functional programming languages.

Finally, to illustrate the concept of scoping, Mystery al-
lows nesting of blocks and function definitions.

3. SEMANTIC INTERFACES FOR
MYSTERY

The PL-Detective exports seven interfaces, called seman-
tic interfaces. Each semantic interface corresponds to one
aspect of the semantics of Mystery. For example, the
type-assignability interface determines the type assignabil-
ity rules for Mystery: given an l-value, what are the legal
types whose instances can be assigned to the l-value? To
pick the semantics for the full Mystery one needs to pick
an implementation for each semantic interface. The seven
semantic interfaces are as follows; the numbers in paren-
thesis give the number of implementations that we already
provide for the interface.

• Order of evaluation of parameters, which determines
how and when to evaluate parameters to a call (2).

• Evaluation of logical expressions, which determines
whether or not the evaluation is short-circuited (2).

• Parameter passing modes, which determines how to
pass parameters (4).

• Scoping disciplines, which determines the binding of
names (2).

• Type assignability, which determines the legality of as-
signments and parameter passing (3).

• Type equality, which determines when two types are
equal (3).

• Type of, which determines the type of a constant or
expression (2).

Multiplying out the implementations for each interface,
we see that the current snapshot of the PL-Detective sup-
ports 576 different semantics for Mystery. Of course, not
all combinations make sense (more on this in Section 5).

We have found it easy to add new implementations of
semantic interfaces. The files for semantic interface imple-
mentations are typically 20-30 lines of code (including im-
ports, class headers, and other declarations). One notable
exception is the class that implements static scoping, which

81

Program → DeclList
DeclList → Decl | Decl ; DeclList | ε
Decl → VAR id : Type | TYPE id = Type | ProcDecl
ProcDecl → PROCEDURE id (Formals) : Type = Block
Formals → FormalList | ε
FormalList → Formal | FormalList ; Formal
Formal → id : Type
Type → INTEGER | id | SubrangeType | ArrayType | ProcType
SubrangeType → [Number .. Number]
ArrayType → ARRAY SubrangeType OF Type
ProcType → PROCEDURE (Formals) : Type
Block → DeclList BEGIN StmtList END
StmtList → Stmt | Stmt ; StmtList | ε
Stmt → Assignment | Return | Block | Conditional | Iteration | Output
Assignment → Expr := Expr
Return → RETURN Expr
Conditional → IF Expr THEN StmtList ELSE StmtList END
Iteration → WHILE Expr DO StmtList END
Output → PRINT Expr
Expr → Operand | Expr Operator Operand
Operand → Number | id | Operand [Expr] | Operand (Actuals) | (Expr)
Operator → + | > | AND
Actuals → ActualList | ε
ActualList → Expr | ActualList , Expr

Figure 1: Syntax of Mystery

is over 100 lines. Since this class needs to push and pop
environments at the entry and exit of each program, block,
and procedure, it is not surprising that it is quite large.

4. USING THE PL-DETECTIVE FOR
LANGUAGE ANALYSIS

From the perspective of students, the goal of an anal-
ysis assignment is to determine the semantics of a par-
ticular Mystery implementation by interrogating the PL-
Detective. To interrogate the PL-Detective, student groups
submit programs in Mystery syntax using a web interface
(e.g., [4]). PL-Detective responds with any output produced
during compilation or execution of the submitted program.
On receiving the output a group may decide that it has
figured out the semantics of Mystery or may decide to
continue the interrogation by submitting another program.
In the former case, the group produces a “language report”
that defines the discovered semantics and carefully describes
how the group came to their conclusion. That description
includes the evidence gathered by the group, which takes
the form of a sequence of programs that the group submit-
ted, the output they received, and the conclusions they drew
from each submission.

From the perspective of the instructor, the goal is to
sharpen the students’ understanding of a concept by reflect-
ing on the effects of different interpretations of that concept.
To use the PL-Detective, the instructor first decides which
semantic interfaces are relevant to the material that the as-
signment needs to cover. Since language features interact
with each other, it may be that more than one interface is
related to a given programming language concept. The in-
structor picks the implementation of all interfaces that are
not relevant to the assignment in question and tells stu-
dents what the implementations are. For the relevant inter-
faces, there are two possibilities: (i) the instructor can either
choose their implementations (but not reveal the implemen-
tations to the students); or (ii) the instructor can use a ran-
domization procedure to provide a potentially different con-
figuration to each group. For example, in an assignment on
parameter passing, one group may get pass-by-name while
another may get copy-in-copy-out. Finally, the instructor

needs to limit the number and kinds of programs that a
group may use in its interrogation. The limit may be hard
(e.g., the interrogation may not use more than 5 procedure
calls total) or may be soft (any procedure calls beyond the
fifth are charged a 5 point penalty). The instructor should
base this limit on the number of attempts a student group
would take to discover the semantics if the group undertook
a careful and systematic exploration of the search space.

As a concrete example consider an assignment designed
to teach students about parameter passing modes. In this
assignment, students probe the PL-Detective with programs
designed to expose the difference between different param-
eter passing modes. Let’s suppose a student group sub-
mits the program in Figure 2 to the PL-Detective. If this
program produces the output “20”, then students can im-
mediately eliminate pass-by-value as a parameter passing
mechanism. It will take more probes to distinguish between
the remaining parameter-passing mechanisms (e.g., pass-by-
name, pass-by-copy-in-copy-out, pass-by-reference). If, on
the other hand, this code produces the answer 10, the group
can be quite confident that it uses parameter passing by
value at least for integers. More work remains to be done
before the group is able to fully define the parameter passing
semantics. For example, how does the language pass arrays?
Does it pass just the base of the array as pass-by-value (ala
C) or does it actually copy the entire array (ala Modula-3)?

When a student probes the system, the probe may or may
not compile successfully (e.g., syntax error). If it compiles
successfully, it may or may not run successfully (e.g., type-
mismatch error). In the case of an unsuccessful compile or
run, it is important to provide output that is useful to the
students but is not so detailed that it solves the mystery.
For example, imagine an assignment where students must
discover whether Mystery uses static or dynamic scoping.
Giving an error at compile time that a variable is undefined
or out of scope would give too much information to the stu-
dent about the semantics of Mystery. To address this sit-
uation, the web-based user interface for the PL-Detective
delivers all error messages (except for syntax errors) at run
time even for errors detected at compile time. We have
also written the error messages so that they indicate the er-

82

PROCEDURE f(x: INTEGER): INTEGER =
BEGIN

x := 20;
RETURN 0;

END;
PROCEDURE main(): INTEGER =

VAR p: INTEGER;
VAR q: INTEGER;
BEGIN

p := 10;
q := f(p);
PRINT p;
RETURN 0;

END;

Figure 2: Code to distinguish between parameter
passing modes

ror (e.g., “Line 11: type mismatch”) without saying exactly
what error was detected. There is a tradeoff involved here:
if we put too much information into the error messages, we
may reveal too much of the solution; if we reveal too little,
we risk frustrating the students unnecessarily. We expect
that we will revise the form and timing of error messages
once we have some experience with the system.

The language analysis assignments have several proper-
ties relevant to our goals of helping students move beyond
received knowledge. First, these assignments are complex
and high on solution multiplicity [12] meaning that there is
not “a single acceptable outcome that can be easily demon-
strated to be correct”. At each step of this assignment, stu-
dents need to pick a strategic probe based on knowledge of
all their previous probes and outcomes. Moreover, different
groups will most likely pick a completely different sequence
of probes even if they arrive at the same conclusions. The
nature of the task, therefore, resists segmentation, and the
multiplicity rewards students that collaborate [13].

5. USING THE PL-DETECTIVE FOR
LANGUAGE DESIGN EXERCISES

From the perspective of students, the goal of these as-
signments is to design a language that exhibits a particular
behavior. An assignment specifies one or more programs
and their desired outputs. Students must design a language
(by picking appropriate implementations of the semantic in-
terfaces) that yield the desired output. Students try out
different designs using a web interface: they note which im-
plementations of semantic interfaces they want to use and
the system runs the PL-Detective with their choices on the
example program and produces the output. Given that
many different semantics could produce the same answer,
the group report needs to not just list which implementa-
tions they used but also state why. More specifically, the
report needs to argue that their language design is a sound
one and makes sense beyond the examples specified in the
assignment.

From the perspective of the instructor, the goal is to get
the students to exercise judgment in the design space defined
by the semantic concepts. The instructor’s responsibilities
are similar to a language analysis assignment (Section 4). As
before, the instructor needs to choose the implementation of
the semantic interfaces that are irrelevant to the assignment.
Also as before, the instructor needs to limit the number of
attempts allowed per group.

As with the language analysis assignments, the language
design assignments also serve our goal of helping to move
students beyond the stage of received knowledge. These
assignments are similar to language analysis assignments
in that there are many ways of approaching the problem.
However, unlike the language analysis assignments, there is
multiplicity even in the final answer (the language design);
many possible language designs may yield the same out-
come for the examples specified in the assignment. While
the PL-Detective allows users to pick implementations of
a semantic interface independently from implementations
of other interfaces, many combinations do not make sense.
For example, it is well known that allowing subtypes to be
passed to a pass-by-reference parameter is unsound. Thus
some of the answers may be preferable to others based on
objective considerations (e.g., soundness) or subjective con-
siderations (e.g., taste). Thus, we expect the very nature of
these assignments to reduce dualistic thinking amongst stu-
dents, which is one of the key aspects of moving away from
received knowledge. Prior work [13] suggests that greater
collaboration leads to greater success in tasks with high so-
lution multiplicity. Thus, we can expect these assignments
to also reward groups that collaborate.

6. IMPLEMENTATION
The PL-Detective consists of two components. The first

component is a compiler that processes Mystery programs.
It is written in Java [5], and translates Mystery to Java.

The second component of the PL-Detective is the run-
time system. It provides classes for representing data during
program execution (e.g., the Closure class for representing
procedure values or IntValue for representing integer val-
ues). The compiler and run-time system are 3200 and 300
non-blank, non-comment lines of code respectively. The se-
mantic interface implementations contribute 515 to the line
count of the compiler.

PL-Detective generates a closure for each Mystery func-
tion. The code component of each closure takes exactly one
argument, which is a list of values. The environment com-
ponent of each closure exports a method that maps names
to values. PL-Detective represents values using dynamically
allocated instances of the RTValue class and its subclasses.
The above mentioned closures are also of a class (Closure)
that is a subtype of RTValue. The different subclasses of
RTValue export methods specific to the kind of value. For
example, ArrayValue exports a subscript method that re-
turns the RTValue residing at a given index in the array
value. As another example, the Closure class exports a
method that invokes the code portion of the closure. The
run-time system defines RTValue, environments, closures,
and their subclasses.

It is worth emphasizing that the PL-Detective places all
values and environments on the garbage-collected Java heap.
This organization gives us significant flexibility in imple-
menting interesting semantics for Mystery. For example,
since closures and environments reside in Java’s garbage col-
lected heap, it is easy for us to support first class functions.
If instead, we had used stack space for storing values of vari-
ables we would have had to incorporate complex mechanisms
for copying and restoring the stack to support escaping func-
tions. Similarly, we can easily emulate different scoping
mechanisms by changing the linking of environments.

83

7. PRELIMINARY RESULTS
Our prior results based on ethnographic observations [8,

15] indicate that computer science students prefer to work
alone and when forced to work in groups they often divide
up the task between the group members.

To get a preliminary sense of whether or not the PL-
Detective was effective in getting students to collaborate we
surveyed a Fall 2003 course. The instructor left the room
while an outside researcher distributed and collected the sur-
vey. The students knew that the instructor would see only
summaries of the survey results (i.e., they were assured con-
fidentiality). Each student filled out the survey separately
from his or her group members. The class enrollment was 95
students and students worked in groups of 3 (and occasion-
ally 2), which they formed at the beginning of the semester.

The results of the survey strongly suggest that the PL-
Detective is helpful in getting students to collaborate. For 30
groups, all members said ”we do all the assignment together
all the time”. All members of one group indicated that
they did not work together but segmented the assignments.
There were two groups whose members gave inconsistent
responses. Many of the students filling out the survey noted
that they thought the PL-Detective was ”cool”.

8. RELATED WORK
We are not aware of a system that has similar goals to the

PL-Detective. However, while designing the PL-Detective
and its associated exercises we have been greatly influenced
by the vast literature on collaboration in the communication
field. Two pieces of research that have been particularly
influential in our work are Belenky et al. [3] and Perry [10].

The notion that student collaboration can improve the
learning experience for students is well known. Alavi [2]
conducted an experiment where half of her class used GDSS
(group decision support system) and half did not. She found
that the two halves performed similarly up to the finals
but the half that used GDSS performed better in the fi-
nals. Thus, she found a benefit to using collaboration in
the classroom. Moreover, it took some time before students
started exhibiting a benefit from the approach. Williams
and Kessler [16] found that using pair programming in class
not only enhanced student enjoyment of the course but also
enabled them to perform better. Williams and Kessler also
reported that it took some time before the pairs started
working together effectively. While this prior work effec-
tively tried to take the tools used in industry and apply them
to the classroom, our approach has been to design tools and
strategies specifically for the classroom. We hope that our
more direct approach will yield even greater benefits than
observed in prior work.

Prior work on the Conversational Classroom [14] also aims
to involve students in collaborative learning. PL-Detective
work has some of the same goals, most importantly get-
ting students to collaborate and thus learn from each other.
However, while the conversational classroom focuses on col-
laboration in the classroom, PL-Detective focuses on collab-
oration outside the classroom.

The structure of the PL-Detective is not in itself novel.
It is simply a compiler for a small language that has been
carefully modularized along dimensions that we considered
important for our class. The novelty of the PL-Detective
comes from its focus on getting students to work together

and to learn from each other. The bottom line goal is to get
students to move beyond the phase of received knowledge;
i.e., to realize that there can be more than one right answer
and that they can “create” knowledge by thinking through
the issues and discussing them with their peers.

9. SUMMARY AND CONCLUSIONS
We have described a system, the PL-Detective, and a

strategy to help students progress beyond the stage of re-
ceived knowledge. The assignments supported by the PL-
Detective have three key aspects First, they are designed to
reward group work and thus encourage students in a group
to actually collaborate rather than segment the task into
pieces that can be done independently. Second, they are
designed to directly expose students to the notion of mul-
tiplicity; that there is no one right answer and that their
carefully reasoned argument is more important than the fi-
nal answer. Third, since these assignments are structured as
games, we hope that they will make a relatively theoretical
class (concepts of programming languages) more fun for the
students. Our preliminary results strongly suggest that the
PL-Detective is effective in getting students to collaborate
on the assignments.

10. REFERENCES
[1] M. L. J. Abercrombie. The anatomy of judgment; an

investigation into the processes of perception and reasoning.
Hutchinson, London, 1960.

[2] Maryam Alavi. Computer-mediated collaborative learning: An
empirical evaluation. MIS Quarterly, 18(2):159–174, 1994.

[3] Mary Field Belenky, Blythe McVicker Clinchy, Nancy Rule
Goldberger, and Jill Mattuck Tarule. Women’s way of
knowing. Basic Books, 1997.

[4] Amer Diwan, William Waite, and Michele Jackson. An
infrastructure for teaching skills for group decision making and
problem solving in programming projects. In 33rd ACM
Technical Symposium on Computer Science Education
(SIGCSE), 2002.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java language specification. Addison Wesley, second edition,
2000.

[6] Kathleen Jensen and Niklaus Wirth. PASCAL - User Manual
and Report. Springer Verlag, 1991. ISBN 0-387-97649-3.

[7] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Software Series. Prentice-Hall,
Englewood Cliffs, NJ, second edition, 1988.

[8] Paul M. Leonardi. The mythos of engineering culture: A study
of communicative performances and interaction. Master’s
thesis, University of Colorado, Boulder, 2003.

[9] Greg Nelson, editor. Systems Programming with Modula-3.
Prentice Hall, New Jersey, 1991.

[10] W. G. Perry. Forms of intellectual and ethical development in
the college years. Holt, Rinehart and Winston, 1970.

[11] Robert W. Sebesta. Concepts of Programming Languages.
Addison Wesley, 6th edition, 2003.

[12] M. E. Shaw. Group dynamics: The psycholoogy of small group
behavior. McGraw Hill, 3 edition, 1981.

[13] M. E. Shaw and J. M. Blum. Group performance as a function
of task difficulty and the group’s awareness of member
satisfaction. Journal of Applied Psychology, 49:151–154, 1965.

[14] William Waite, Michele Jackson, and Amer Diwan. The
conversational classroom. In 34rd ACM Technical Symposium
on Computer Science Education (SIGCSE), 2003.

[15] William M. Waite, Michele H. Jackson, Amer Diwan, and Paul
Leonardi. Student culture vs group work in computer science.
In 35rd ACM Technical Symposium on Computer Science
Education (SIGCSE), Norfolk, VA, March 2004.

[16] Laurie Williams and Robert Kessler. Experimenting with
industry’s pair programming model in the computer science
classroom. Journal of Computer Science Education, 10(4),
December 2000.

84

	Introduction
	The Mystery Language
	Semantic Interfaces for Mystery
	Using the PL-Detective for Language Analysis
	Using the PL-Detective for Language Design Exercises
	Implementation
	Preliminary Results
	Related Work
	Summary and Conclusions
	REFERENCES -9pt

