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Abstract. Using Fourier transform techniques, we establish inequalities for integrals of the form∫ ∞
0

n∏
k=0

sin(akx)

akx
dx.

We then give quite striking closed form evaluations of such integrals and finish by discussing various extensions
and applications.
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1. Introduction

Motivated by questions about the integral1

µ :=
∫ ∞

0

∞∏
k=1

cos

(
x

k

)
dx, (1)

we study the behaviour of integrals of the form∫ ∞
0

n∏
k=0

sin(akx)

akx
dx.

In Section 2 we use Fourier transform theory to establish monotonicity properties of these
integrals as functions ofn. In Section 3, by direct methods, we give closed forms for these
integrals and for similar integrals also incorporating cosine terms. In Section 4, we provide

∗Research supported in part by the National Sciences and Engineering Research Council of Canada.
1Through J. Selfridge and R. Crandall we learned that B. Mares discovered thatµ < z

4 .
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a very different proof of one of these results following an idea in an 1885 paper of St¨ormer
[2]. Finally, in Section 5 we return to the study of (1).

2. Fourier cosine transforms and sinc integrals

Define

sinc(x) :=


sinx

x
if x 6= 0

1 if x = 0.

and, fora > 0,

χa(x) :=


1 if |x| < a
1

2
if |x| = a

0 if |x| > a.

We first state some standard results about the Fourier cosine transform (FCT) which may
be found in texts such as [4, ch. 13].

The FCT of a functionf ∈ L1(−∞,∞) is defined to be the function̂f given by

f̂ (t) := 1√
2π

∫ ∞
−∞

f (x) cos(xt) dx.

Observe that iff is also even, then so iŝf and

f̂ (t) =
√

2

π

∫ ∞
0

f (x) cos(xt) dx.

Further, if f is even andf ∈ L1(−∞,∞) ∩ L2(−∞,∞), then f̂ ∈ L2(−∞,∞). If,
in addition, this f̂ ∈ L1(−∞,∞), then f is equivalent to the FCT of̂f , that is

f (x) = 1√
2π

∫ ∞
−∞

f̂ (t) cos(xt) dt for a.a.x ∈ (−∞,∞).

Hence, if f is even,f ∈ L1(−∞,∞)∩ L2(−∞,∞), f̂ ∈ L1(−∞,∞), and f is continuous
on (−α, α) for someα > 0, then

f (x) = 1√
2π

∫ ∞
−∞

f̂ (t) cos(xt) dt for x ∈ (−α, α),

since the right-hand term is also continuous on(−α,α) by dominated convergence.

Note that, fora > 0, the FCT ofχa is a
√

2
π

sinc(ax), so that the FCT ofa
√

2
π

sinc(ax) is
equivalent toχa. (In fact it can easily be shown to be identically equal toχa, either directly
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or by appeal to a standard result about inverse Fourier transforms of functions of local
bounded variation.)

Note also that iff̂1, f̂2 are FCTs of even functionsf1, f2 ∈ L1(−∞,∞)∩ L2(−∞, ∞),
then f1 f2 is the FCT of 1√

2π
f1 ∗ f2, where

f1 ∗ f2(x) :=
∫ ∞
−∞

f1(x − t) f2(t) dt for all realx.

In addition, we have the following version of Parseval’s theorem for such even functions:∫ ∞
0

f1(x) f2(x) dx =
∫ ∞

0
f̂1(x) f̂2(x) dx,

provided at least one of the functionsf1, f2 is real.
We are now in a position to prove:

Theorem 1. Suppose that{an} is a sequence of positive numbers. Let sn :=∑n
k=1 ak and

τn :=
∫ ∞

0

n∏
k=0

sinc(akx) dx.

(i) Then

0< τn ≤ 1

a0

π

2
,

with equality if n= 0, or if a0 ≥ sn when n≥ 1.
(ii) If an+1 ≤ a0 < sn with n≥ 1, then

0< τn+1 ≤ τn <
1

a0

π

2
.

(iii) If a0 < sn0 with n0 ≥ 1, and
∑∞

k=0 a2
k <∞, then there is an integer n1 ≥ n0 such that

τn ≥
∫ ∞

0

∞∏
k=0

sinc(akx) dx ≥
∫ ∞

0

∞∏
k=0

sinc2(akx) dx > 0 for all n ≥ n1.

Observe that applying Theorem 1 to different permutations of the parameters will in general
yield different inequalities.

Proof: Part (i). Thatτ0 = 1
a0

π
2 is a standard result (proven e.g., by contour integration

in [1, p. 157] and by Fourier analysis in [3, p. 563]) with the integral in question being
improper (i.e. not absolutely convergent—the integrals in the other cases are absolutely
convergent). Assume therefore thatn ≥ 1, and let

F0 := 1

a0

√
π

2
χa0, Fn := (√2π

)1−n
f1 ∗ f2 ∗ · · · ∗ fn, where fn := 1

an

√
π

2
χan .
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Then it is readily verified by induction that, forn ≥ 1, Fn(x) is an even function which
vanishes on(−∞,−sn) ∪ (sn,∞) and is positive on(−sn, sn). Moreover,Fn+1 = 1√

2π
Fn

∗ fn+1, so that

Fn+1(x) = 1√
2π

∫ ∞
−∞

Fn(x − t) fn+1(t) dt = 1

2an+1

∫ x+an+1

x−an+1

Fn(u) du.

HenceFn+1(x) is absolutely continuous on(−∞,∞) and, for almost allx ∈ (−∞,∞),

2an+1F ′n+1(x) = Fn(x + an+1)− Fn(x − an+1) = Fn(x + an+1)− Fn(an+1− x).

Since(x+an+1) ≥ max{(x−an+1), (an+1−x)} ≥ 0 whenx > 0, it follows that ifFn(x) is
monotone non-increasing on(0,∞), thenF ′n+1(x) ≤ 0 for a.a.x ∈ (0,∞), and soFn+1(x)
is monotone non-increasing on(0,∞). This monotonicity property ofFn on (0,∞) is
therefore established by induction for alln ≥ 1. Also

Fn is the FCT ofσn(x) :=
n∏

k=1

sinc(akx), and σn is the FCT ofFn.

Thus, all our functions and transforms are even and are inL2(−∞,∞). Hence, by the
above version of Parseval’s theorem,

τn =
∫ ∞

0
Fn(x)F0(x) dx = 1

a0

√
π

2

∫ min(sn,a0)

0
Fn(x) dx. (2)

Whena0 ≥ sn, the final term is equal to1a0

√
π
2

√
π
2σn(0) = 1

a0

π
2 sinceσn(x) is continuous

on (−∞,∞); and whena0 < sn, the term is positive and less than1a0

π
2 sinceFn(x) is

positive and continuous for 0< x < sn. This establishes part (i).
Part (ii). Observe again thatFn+1 = 1√

2π
Fn ∗ fn+1, and hence that, fory > 0,

∫ y

0
Fn+1(x) dx = 1√

2π

∫ y

0
dx
∫ ∞
−∞

Fn(x − t) fn+1(t) dt

= 1

2an+1

∫ y

0
dx
∫ an+1

−an+1

Fn(x − t) dt = 1

2an+1

∫ an+1

−an+1

dt
∫ y

0
Fn(x − t) dx

= 1

2an+1

∫ an+1

−an+1

dt
∫ y−t

−t
Fn(u) du=

∫ y

0
Fn(u) du+ 1

2an+1
(I1+ I2),

where

I1 :=
∫ an+1

−an+1

dt
∫ 0

−t
Fn(u) du and I2 :=

∫ an+1

−an+1

dt
∫ y−t

y
Fn(u) du.
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Now I1 = 0 since
∫ 0
−t Fn(u) du is an odd function oft , and fory ≥ an+1,

I2 =
∫ an+1

0
dt
∫ y−t

y
Fn(u) du+

∫ 0

−an+1

dt
∫ y−t

y
Fn(u) du

= −
∫ an+1

0
dt
∫ y

y−t
Fn(u) du+

∫ an+1

0
dt
∫ y+t

y
Fn(u) du

=
∫ an+1

0
dt
∫ y

y−t
(Fn(u+ t)− Fn(u)) du≤ 0

sinceFn(u) is monotonic non-increasing foru ≥ y− t ≥ y− an+1 ≥ 0. Hence∫ y

0
Fn+1(x) dx ≤

∫ y

0
Fn(x) dx whenan+1 ≤ y < sn. (3)

It follows from (2), and (3) withy = a0, that 0< τn+1 ≤ τn if an+1 ≤ a0 < sn, and this
completes part (ii).
Part (iii ). Let ρ(x) := limn→∞ σ 2

n (x) =
∏∞

k=1 sinc2(akx) for x > 0. Observe that the
limit exists since 0≤ sinc2(akx) < 1, and that there is a setA differing from (0,∞) by a
countable set such that 0< sinc2(akx) < 1 wheneverx ∈ A andk = 1, 2, . . . . Now

sinc(akx) = 1− δk, where 0≤ δk

a2
k

→ x2

3
ask→∞,

so that
∑∞

k=1 δk<∞, and hence, by standard theory of infinite products,σ(x) :=
limn→∞ σn(x) exists andσ 2(x) = ρ(x) > 0 for x ∈ A. It follows, by part (ii), that

τn ≥
∫ ∞

0
σ 2

n (x) dx ≥
∫ ∞

0
ρ(x) dx > 0

for all n ≥ n1, wheren1 ≥ n0 is an integer such thatan+1 ≤ a0 for all n ≥ n1. In addition,
by dominated convergence,

lim
n→∞ τn =

∫ ∞
0
σ(x) dx ≥

∫ ∞
0
ρ(x) dx,

and this completes the proof of part (iii). 2

3. Some elementary identities

In this section we prove some identities involving products of sines and cosines by straight-
forward methods not involving Fourier transform theory. We adopt the usual convention
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that empty sums have the value 0 and empty products have the value 1, and we define

sign(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0.

Theorem 2. Let a0,a1, . . . ,an be complex numbers with n≥ 1. For each of the2n

ordered n-tuplesγ := (γ1, γ2, . . . , γn) ∈ {−1, 1}n define

bγ := a0+
n∑

k=1

γkak, εγ :=
n∏

k=1

γk.

(i) Then

∑
γ∈{−1,1}n

εγbr
γ =


0 for r = 1, 2, . . . ,n− 1

2nn!
n∏

k=1

ak for r = n,

and

n∏
k=0

sin(akx) = 1

2n

∑
γ∈{−1,1}n

εγ cos

(
bγ x − π

2
(n+ 1)

)
.

(ii) If a0,a1, . . . ,an are real, then∫ ∞
0

n∏
k=0

sin(akx)

x
dx = π

2

1

2nn!

∑
γ∈{−1,1}n

εγbn
γ sign(bγ ).

If, in addition,

a0 ≥
n∑

k=1

|ak|,

then ∫ ∞
0

n∏
k=0

sin(akx)

x
dx = π

2

n∏
k=1

ak.

Proof: Observe that

ea0t
n∏

k=1

(
eakt − e−akt

) = ∑
γ∈{−1,1}n

εγebγ t .

Sinceeakt −e−akt = 2akt +O(t2) ast → 0, the first summation formula in part (i) follows
on equating coefficients oftr in the above identity. Note that the formula also holds for
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r = 0 if we defineb0
γ = 1 even whenbγ = 0. Similarly

n∏
k=0

sin(akx) = 1

(2i )n+1

(
eia0x − e−ia0x

) n∏
k=1

(
eiakx − e−iakx

)
= 1

(2i )n+1

∑
γ∈{−1,1}n

εγ
(
eibγ x − (−1)ne−ibγ x

)
= 1

2n

∑
γ∈{−1,1}n

εγ cos

(
bkx − π

2
(n+ 1)

)
,

and this completes the proof of part (i).
To prove part (ii) of the theorem, observe that∫ ∞

0

n∏
k=0

sin(akx)

x
dx = 1

2n

∫ ∞
0

x−n−1Cn(x) dx, (4)

whereCn(x) :=∑γ∈{−1,1}n εγ cos(bγ x− π
2 (n+ 1)). BecauseCn(x) is an entire function,

bounded for all realx, with a zero of ordern+ 1 atx = 0, we can integrate the right-hand
side of (4) by partsn times to get∫ ∞

0

n∏
k=0

sin(akx)

x
dx = 1

2nn!

∫ ∞
0

dx

x

∑
γ∈{−1,1}n

εγbn
γ sin(bγ x)

= 1

2nn!

∑
γ∈{−1,1}n

εγbn
γ

∫ ∞
0

sin(bγ x)

x
dx

= π

2

1

2nn!

∑
γ∈{−1,1}n

εγbn
γ sign(bγ ).

Since the additional hypothesis implies thatbγ ≥ 0 for all γ ∈ {−1, 1}n, the final formula
in the theorem follows from part (i). 2

Corollary 1. If 2ak ≥ an > 0 for k = 0, 1, . . . ,n− 1 and

n∑
k=1

ak > a0 ≥
n−1∑
k=1

ak,

then ∫ ∞
0

r∏
k=0

sin(akx)

x
dx = π

2

r∏
k=1

ak for r = 0, 1, . . . ,n− 1,

while ∫ ∞
0

n∏
k=0

sin(akx)

x
dx = π

2

{
n∏

k=1

ak − (a1+ a2+ · · · + an − a0)
n

2n−1n!

}
.
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Proof: Let γ ′ := (−1,−1, . . . ,−1) ∈ {−1, 1}n, Observe thatbγ ′ :=a0−a1− · · · −an

< 0, thatbγ ≥ 0 for every otherγ ∈ {−1, 1}n, and thatεγ ′ = (−1)n. It follows that∫ ∞
0

n∏
k=0

sin(akx)

x
dx = π

2

1

2nn!

∑
γ∈{−1,1}n

εγbn
γ sign(bγ )

= π

2

1

2nn!

( ∑
γ∈{−1,1}n

εγbn
γ + εγ ′bn

γ ′(sign(bγ ′)− 1)

)

= π

2

{
n∏

k=1

ak − 2(−bγ ′)n

2nn!

}
,

as desired. 2

Remarks 1. (a) If a0,a1, . . . ,an are real and non-zero, then, by Theorem 2(ii),

τn : =
∫ ∞

0

n∏
k=0

sin(akx)

x
dx = π

2

1

2nn!

∑
γ∈{−1,1}n

εγbn
γ sign(bγ )

= π

2

1

2nn!

( ∑
γ∈{−1,1}n

εγbn
γ +

∑
bγ <0

εγbn
γ (sign(bγ )− 1)

)

= π

2a0

{
1− 1

2n−1n!a1a2 · · ·an

∑
bγ <0

εγbn
γ

}
.

(b) Suppose further thatak > 0 for k = 0, 1, . . . ,n. Consider the polyhedra

Pn = Pn(a0,a1, . . . ,an)

:=
{
(x1, x2, . . . , xn) | − a0 ≤

n∑
k=1

xk ≤ a0,−ak ≤ xk ≤ ak for k = 1, 2, . . . ,n

}
.

Qn = Qn(a0,a1, . . . ,an)

:=
{
(x1, x2, . . . , xn) | − a0 ≤

n∑
k=1

akxk ≤ a0,−1≤ xk ≤ 1 for k = 1, 2, . . . ,n

}
,

Hn := {(x1, x2, . . . , xn) | − 1≤ xk ≤ 1 for k = 1, 2, . . . ,n}.
(i) If we return to Eq. (2) we observe that

τn = π

a0

1

2na1a2 · · ·an

∫ min(sn,a0)

0
χa1 ∗ χa2 ∗ · · · ∗χandx

= π

2a0

Vol(Pn)

2na1a2 · · ·an
= π

2a0

Vol(Qn)

Vol(Hn)
.

Moreover, we now explain the behaviour ofτn when we note that the value drops precisely
when the constraint−a0 ≤

∑n
k=1 akxk ≤ a0 becomes active and bites into the hypercubeHn.
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(ii) We sketch a probabilistic interpretation. From (i) it follows thatpn := 2a0τn/π

may be regarded as the probability that independent random variables{xk, k = 1, 2, . . .}
identically distributed in [−1, 1] satisfy|∑n

k=1 akxk| ≤ a0. Correspondingly

p∞ := 2a0

π

∫ ∞
0

∞∏
k=1

sinc(akx) dx

is the probability that the constraint|∑∞k=1 akxk| ≤ a0 is met. We have also shown thatpn

decreases monotonically top∞.
(c) Consider now the special case

µn := τn−1 =
∫ ∞

0
sincn(x) dx.

In this case we haveak = 1 for k = 0, 1, . . . ,n− 1, and it is straightforward to verify that

∑
γ∈{−1,1}n−1,bγ <0

εγbn−1
γ =

∑
1≤r≤ n

2

(−1)r+1

(
n− 1

r − 1

)
(n− 2r )n−1,

and hence that

µn = π

2

{
1− 2

2n−1(n− 1)!

∑
1≤r≤ n

2

(−1)r+1

(
n− 1

r − 1

)
(n− 2r )n−1

}

= π

2

{
1+ 1

2n−2

∑
1≤r≤ n

2

(−1)r

(r − 1)!

(n− 2r )n−1

(n− 1)!

}
.

The following formula forµn appears as an exercise in [5, p. 123]:

µn = π

2n(n− 1)!

∑
0≤r≤ n

2

(−1)r
(

n

r

)
(n− 2r )n−1.

To show that this formula forµn is equivalent to the one derived above, it clearly suffices
to prove that

∑
0≤r≤ n

2

(−1)r
(

n

r

)
(n− 2r )n−1 = 2n−1(n− 1)! +

∑
1≤r≤ n

2

(−1)r+1

(
n− 1

r − 1

)
(n− 2r )n−1.

Since (
n

r

)
− 2

(
n− 1

r − 1

)
= 1

n

(
n

r

)
(n− 2r ),



82 BORWEIN AND BORWEIN

this is equivalent to proving that∑
0≤r≤ n

2

(−1)r
(

n

r

)
(n− 2r )n = 2n−1n!,

which, by symmetry, is equivalent to proving that

1

n!

n∑
r=0

(−1)r
(

n

r

)
(n− 2r )n = 2n.

But the left-hand side of this latter identity is the coefficient oftn in

n∑
r=0

(−1)r
(

n

r

)
e(n−2r )t = ent(1− e−2t )n = (2 sinht)n.

Since 2 sinht = 2t+O(t2)ast → 0, the coefficient is indeed 2n, and the desired equivalence
of the formulae forµn is proved.

The next theorem extends Theorem 2 by adjoining cosines to the product of sines.

Theorem 3. Let a0,a1, . . . ,an+m be complex numbers with n≥ 1 and m≥ 0. For each
of the2n+m ordered(n+m)-tuplesγ := (γ1, γ2, . . . , γn+m) ∈ {−1, 1}n+m define

bγ := a0+
n+m∑
k=1

γkak, εγ :=
n∏

k=1

γk.

(i) Then

∑
γ∈{−1,1}n+m

εγbr
γ =


0 for r = 1, 2, . . . ,n− 1

2n+mn!
n∏

k=1

ak for r = n,

and(
n∏

k=0

sin(akx)

)(
n+m∏

k=n+1

cos(akx)

)
= 1

2n+m

∑
γ∈{−1,1}n+m

εγ cos

(
bγ x − π

2
(n+ 1)

)
.

(ii) If a0,a1, . . . ,an+m are real, then∫ ∞
0

(
n∏

k=0

sin(akx)

x

)(
n+m∏

k=n+1

cos(akx)

)
dx = π

2

1

2n+mn!

∑
γ∈{−1,1}n+m

εγbn
γ sign(bγ ).

If, in addition,

a0 ≥
n+m∑
k=1

|ak|,
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then ∫ ∞
0

(
n∏

k=0

sin(akx)

x

) (
n+m∏

k=n+1

cos(akx)

)
dx = π

2

n∏
k=1

ak.

Proof: By Theorem 2 we have that

n+m∏
k=1

sin(akx) = 1

2n+m

∑
γ∈{−1,1}n+m

ε′γ cos

(
bγ x − π

2
(n+m+ 1)

)
,

where, for eachγ = (γ1, γ2, . . . , γn+m) ∈ {−1, 1}n+m,

bγ = a0+
n+m∑
k=1

γkak, ε′γ =
n+m∏
k=1

γk = ±1,

and

∑
γ∈{−1,1}n+m

ε′γbr
γ =


0 for r = 1, 2, . . . ,n+m− 1

2n+m(n+m)!
n+m∏
k=1

ak for r = n+m.

Differentiating these expressions partially with respect toan+1, an+2, . . . ,an+m yields part
(i) of Theorem 3 with

εγ = ε′γ
m∏

k=1

γn+k =
(

n∏
k=1

γk

)
m∏

k=1

γ 2
n+k =

n∏
k=1

γk.

To deal with part (ii) of Theorem 3 we observe that, by Theorem 2, ifa0, a1, . . . ,an+m are
real, then∫ ∞

0

n+m∏
k=0

sin(akx)

x
dx = π

2

1

2n+m(n+m)!

∑
γ∈{−1,1}n+m

ε′γbn+m
γ sign(bγ ).

Differentiating partially with respect toan+1, an+2, . . . ,an+m, we get∫ ∞
0

(
n∏

k=0

sin(akx)

x

) (
n+m∏

k=n+1

cos(akx)

)
dx

= π

2

1

2n+mn!

∑
γ∈{−1,1}n+m

εγbn
γ sign(bγ).

If, in addition,

a1 ≥
n+m∑
k=2

|ak|,
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then, by Theorem 2, ∫ ∞
0

n+m∏
k=0

sin(akx)

x
dx = π

2

n+m∏
k=2

ak.

Differentiating partially with respect toan+1, an+2. . . . ,an+m, we get∫ ∞
0

(
n∏

k=0

sin(akx)

x

) (
n+m∏

k=n+1

cos(akx)

)
dx = π

2

n∏
k=1

ak. 2

Corollary 2. If 2ak ≥ an+m > 0 for k = 0, 1, . . . ,n+m− 1 and

n+m∑
k=1

ak > a0 ≥
n+m−1∑

k=1

ak,

then∫ ∞
0

(
r∏

k=0

sin(akx)

x

) (
r+m∏

k=r+1

cos(akx)

)
dx = π

2

n∏
k=1

ak for r = 1, 2, . . . ,n− 1,

while ∫ ∞
0

(
n∏

k=0

sin(akx)

x

) (
n+m∏

k=n+1

cos(akx)

)
dx

= π

2

{
n∏

k=1

ak − (a1+ a2+ · · · + an+m − a0)
n

2n+m−1n!

}
.

Proof: The first part follows immediately from Theorem 3, and the second part can be
derived from Corollary 1 withn+m in place ofn by differentiating partially with respect
to an+1, an+2, . . . ,an+m, as above. 2

4. An alternative proof

The next theorem is a restatement of the last part of Theorem 3 restricted to real numbers.
It appears as an example without proof in [5, p. 122] where it is ascribed to Carl St¨ormer
[2]. Störmer’s article does not contain the integral in question, but his proof for the series
identity

∞∑
r=1

(−1)r+1

(
n∏

k=1

sin(rak)

r

) (
m∏

j=1

cos(rc j )

)
= 1

2

n∏
k=1

ak,

provided
n∑

k=1

|ak| +
m∑

j=1

|cj | < π,
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is readily adapted to yield a proof of the theorem which is radically different from the proof
of Theorem 3.

Theorem 4. If a, a1, a2, . . . ,an, c1, c2, . . . , cm, are real numbers with a> 0 and

a ≥
n∑

k=1

|ak| +
m∑

j=1

|cj |,

then ∫ ∞
0

(
n∏

k=1

sin(akx)

x

) (
m∏

j=1

cos(cj x)

)
sin(ax)

x
dx = π

2

n∏
k=1

ak. (5)

Proof: We prove the theorem by induction. Applying as before the convention that empty
sums have the value 0 and empty products have the value 1, we observe that formula (5)
for the casen = m= 0 reduces to the standard result∫ ∞

0

sin(ax)

x
dx = π

2
.

Formula (5) also holds for the casen = 1, m= 0, by the casen = 1 of Theorem 1 (which
can easily be proved directly).

Assume that the theorem holds for certain integersn ≥ 1 andm≥ 0. First suppose that

a ≥
n∑

k=1

|ak| +
m+1∑
j=1

|cj |.

Then

a ≥ |a1± cm+1| +
n∑

k=2

|ak| +
m∑

j=1

|cj |,

and hence ∫ ∞
0

sin(a1± cm+1)

x

(
n∏

k=2

sin(akx)

x

) (
m∏

j=1

cos(cj x)

)
sin(ax)

x
dx

= π

2
(a1± cm+1)

n∏
k=2

ak. (6)

Adding the two identities in (6), we immediately obtain∫ ∞
0

(
n∏

k=1

sin(akx)

x

) (
m+1∏
j=1

cos(cj x)

)
sin(ax)

x
dx = π

2

n∏
k=1

ak. (7)
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Next suppose that

a ≥
n+1∑
k=1

|ak| +
m∑

j=1

|cj |,

and lett lie between 0 andan+1. Then, by (7), we have∫ ∞
0

(
n∏

k=1

sin(akx)

x

) (
m∏

j=1

cos(cj x)

)
cos(t x)

sin(ax)

x
dx = π

2

n∏
k=1

ak. (8)

Now integrate (8) with respect tot from 0 toan+1 to get∫ ∞
0

(
n+1∏
k=1

sin(akx)

x

) (
m∏

j=1

cos(cj x)

)
sin(ax)

x
dx = π

2

n+1∏
k=1

ak. (9)

Identities (7) and (9) show that if the theorem holds for a pair of integersn,m with
n≥ 1, m ≥ 0, then it also holds for the pairsn, m+ 1 andn + 1, m. Since it holds for
n = 1, m= 0, the proof is completed by induction. 2

Remarks 2. Parts of our previous theorems do, of course, overlap with Theorem 4, but
this latter theorem does not deal with cases where the identity in (4) fails, whereas the other
theorems do. Thus, for example, ∫ ∞

0
sinc(x) dx = π

2
,∫ ∞

0
sinc(x) sinc

(
x

3

)
dx = π

2
,∫ ∞

0
sinc(x) sinc

(
x

3

)
· · · sinc

(
x

13

)
dx = π

2
,

yet ∫ ∞
0

sinc(x) sinc

(
x

3

)
· · · sinc

(
x

15

)
dx

=467807924713440738696537864469

935615849440640907310521750000
π, (10)

and this fraction in (10), in accord with Corollary 1, is approximately equal to
0.499999999992646. When this fact was recently verified by a researcher using a computer
algebra package, he concluded that there must be a “bug” in the software. Not so. In the
above example,13+ 1

5+· · ·+ 1
13 < 1, but with the addition of115, the sum exceeds 1 and the

identity no longer holds. This is a somewhat cautionary example for too enthusiastically
inferring patterns from symbolic or numerical computation.
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5. An infinite product of cosines

We return to the integral, which we denote byµ, in (1). Let

C(x) :=
∞∏

n=1

cos

(
x

n

)
.

This product is absolutely convergent, since cos( x
n ) = 1− x2

2n2 + O( 1
n4 ) asn→∞. Here

and elswhere in this section we ignore the countable set of points on which individual terms
of such an infinite product vanish. Recall the absolutely convergent Weierstrass products
[4, p. 144]

sinc(x) =
∞∏

n=1

(
1− x2

π2n2

)
, cos(x) =

∞∏
k=0

(
1− 4x2

π2(2k+ 1)2

)
,

from which it follows that

C(x) =
∞∏

n=1

∞∏
k=0

(
1− 4x2

π2n2(2k+ 1)2

)
=
∞∏

k=0

∞∏
n=1

(
1− 4x2

π2n2(2k+ 1)2

)
=
∞∏

k=1

sinc

(
2x

2k+ 1

)
. (11)

It is interesting to note that the alternative absolutely convergent product expansion ofC(x)
afforded by (11) can also be derived from the Weierstrass expansion of sinc(x) together
with Vieta’s formula [3, p. 419] in the form

sinc(2x) =
∞∏

n=0

cos

(
x

2n

)
,

since every positive integer is uniquely expressible as an odd integer times a power of 2.
Now apply Theorem 1 and (11) to obtain

0< µ =
∫ ∞

0
C(x) dx = lim

N→∞

∫ ∞
0

N∏
k=1

sinc

(
2x

2k− 1

)
dx <

π

4
.

These sinc integrals are essentially those of the previous Remarks. Note that all parts of
Theorem 1 apply since

∑∞
k=1

1
(2k−1)2 <∞ =

∑∞
k=1

1
2k−1.

We observe that Theorem 1 allows for reasonable lower bounds onµ. Indeed, as cos2 x >
1−x2 > 0 for 0< x < 1, we see—using the product form for sinc—thatC2(x) > sinc(πx)
on the same range. Hence, by Theorem 1(iii),

π

4
> µ >

∫ ∞
0

C2(x) dx >
1

π

∫ π

0
sinc(x) dx ≈ .5894898722.
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We could produce a better lower bound, and indeed lower bounds for our more general sinc
integrals in the same way.

In fact ∫ ∞
0

C(x) dx ≈ 0.785380557298632873492583011467332524761

while π
4 ≈ .785398 only differs in the fifth significant place. We note that high precision

numerical evaluation of these highly oscillatory integrals is by no means straightforward.
If C(x) is replaced by

C∗(x) := cos(2x)C(x) = cos(2x)
∞∏

n=1

cos

(
x

n

)
,

we similarly obtain

C∗(x) = sinc(4x)
∞∏

n=1

sinc

(
2x

2n+ 1

)
. (12)

It now takes 55 terms before13 + 1
5 + · · · + 1

2n+1 > 2, so that the corresponding integrals
drop belowπ

8 . Indeed, lengthy numerical computation shows that

0<
π

8
−
∫ ∞

0
C∗(x) dx <

1

1041
.

We finish by recording without details that (11) allows us to obtain the Maclaurin series for
log C(x). It is

logC(x) = −
∞∑

k=1

4k − 1

k

ζ 2(2k)

π2k
x2k,

with radius of convergence12π . This in turn shows that the coefficient ofx2n in the Maclaurin
series forC(x), saycn, is a rational multiple ofπ2k and is explicitly given by the recursion

c0 := 1, cn := −1

n

n∑
k=1

(4k − 1)
ζ 2(2k)

π2k
cn−k for n > 0.

Thus

C(x) = 1− 1

12
π2x2+ 11

4320
π4x4− 233

5443200
π6x6+ 1429

3048192000
π8x8+ O(x9).

Incidentally, as pointed out by David Bradley, the Maclaurin series of logC(x) can be
obtained without appeal to (11) via the Weierstrass product for cos(x).
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Note

1. Through J. Selfridge and R. Crandall we learned that B. Mares discovered thatµ < π
4 .
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