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A B S T R A C T   

Humans are unique in their capacity to both represent number exactly and to express these representations 
symbolically. This correlation has prompted debate regarding whether symbolic number systems are necessary to 
represent large exact number. Previous work addressing this question in innumerate adults and semi-numerate 
children has been limited by conflicting results and differing methodologies, and has not yielded a clear answer. 
We address this debate by adapting methods used with innumerate populations (a “set-matching” task) for 3- to 
5-year-old US children at varying stages of symbolic number acquisition. In five studies we find that children’s 
ability to match sets exactly is related not simply to knowing the meanings of a few number words, but also to 
understanding how counting is used to generate sets (i.e., the cardinal principle). However, while children were 
more likely to match sets after acquiring the cardinal principle, they nevertheless demonstrated failures, 
compatible with the hypothesis that the ability to reason about exact equality emerges sometime later. These 
findings provide important data on the origin of exact number concepts, and point to knowledge of a counting 
system, rather than number language in general, as a key ingredient in the ability to reason about large exact 
number.   

1. Introduction 

Humans, like pigeons, rats, fish, and other non-human animals, are 
sensitive to numerical properties of our environment, and can represent 
and discriminate large sets on the basis of their approximate magnitudes 
(Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004). Unlike other 
animals, however, humans are also capable of creating and transmitting 
external symbolic representations of numerical information via verbal 
numerals, body counting (Bender & Beller, 2012; Saxe, 1981; Wassmann 
& Dasen, 1994) written notation of numerals (Chrisomalis, 2021), 
physical artifacts such as clay tokens (Mattessich, 1987; Schmandt- 
Besserat, 1992), and calculating devices like the abacus (Frank & Barner, 
2012; Hatano, Miyake, & Binks, 1977; Stigler, 1984). Also unlike other 
animals, humans routinely use these symbolic systems to perform exact 
numerical computations that appear to be unavailable to non-human 
animals. This relation between symbolic representations and the abil-
ity to reason about exact number has emerged as the center of an active 
debate about the role of language in abstract numerical thought. 

One hypothesis suggested by this tight correlation between symbols 
and numerical thought is that the ability to reason about large exact 
number depends on learning the meanings of corresponding words, like 

“seven” and “fifty-two”. On this hypothesis, humans who lack a system 
of number words might also lack the ability to represent both large exact 
magnitudes and their properties: In the absence of a symbolic number 
system, humans might not only have no concept of exactly “seven,” but 
also no understanding that magnitudes can be exactly equal to one 
another. However, an alternative hypothesis is that the exact concepts 
encoded by number words depend on some form of pre-existing un-
derstanding of exact number. One possibility, for example, is that non- 
verbal number systems are capable of representing large number pre-
cisely (Clarke & Beck, 2021; Gallistel & Gelman, 2000; Gelman & But-
terworth, 2005), and that these concepts become accessible to humans 
when they learn to count (e.g., Gallistel & Gelman, 1992; Leslie, Gel-
man, & Gallistel, 2008). Another possibility is that humans lack repre-
sentations of large exact magnitudes, but nevertheless understand that 
sets can match or differ with respect to the number of items they contain. 
For example, it is possible to verify that two sets are equal without 
knowing exactly how many items each set contains, so long as every 
item in each set has a corresponding item in the other - what Boolos 
(1986) called “Hume’s principle.” This is important because it suggests 
that humans could, in principle, represent and reason about exact 
equality without verbal labels. Given this, although counting provides 
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an especially powerful tool for representing number, other, non- 
symbolic, procedures that draw on one-to-one correspondence might 
also be used to establish equality, including tallies (e.g., Owens & Lean, 
2018), tit-for-tat procedures (Sheldon, 1999; Silk, 2003), or simply 
pairing off individuals from two sets until none remain. The existence of 
such practices raises the possibility that humans who do not have a 
symbolic system for expressing exact numbers might nevertheless 
recognize that number can be represented exactly. 

1.1. Can innumerate people use one-to-one correspondence to establish 
equinumerosity? 

Perhaps one of the most influential attempts to determine whether a 
concept of exact number is dependent on symbolic number systems is 
Gordon’s (2004) study of the Pirahã, an indigenous group who live near 
the Maici River in the Brazilian Amazon, and who lack linguistic labels 
for any exact numbers, even “one” and “two.”1 Gordon presented his 
study as a test of the Sapir-Whorf hypothesis (Kay & Kempton, 1984; 
Whorf, 1956), and argued that if large exact number representations 
depend on language, then an innumerate group like the Pirahã should 
lack such concepts, and fail tests that depend upon them. To test this 
idea, Gordon used a series of “set-matching” tasks in which participants 
could use one-to-one correspondence to match sets generated by an 
experimenter (i.e., to establish exact equality). These encompassed not 
only relatively taxing tasks that required tracking a set of nuts hidden in 
a can (i.e., the “Nuts-in-a-can” task, Fig. 1C), or aligning a row orthog-
onally to the experimenter’s (i.e., the Orthogonal Task, Fig. 1B), but also 
much less demanding tasks, including a “parallel” set-matching task, in 
which the experimenter’s set was fully visible and the participant was 
asked to create a line in parallel to this model (see Parallel Match Task, 
Fig. 1A). Gordon found that, instead of using a one-to-one procedure to 
create exact matches for large sets, participants approximated for all but 
the smallest sets (2–3 items), compatible with the use of the Approxi-
mate Number System, which furnishes imprecise magnitude represen-
tations of large numerosities (Dehaene, 1997; Feigenson et al., 2004).2 

On the basis of his findings, Gordon argued that the Pirahã lack a 
concept of exact numerical equality, and therefore that such knowledge 
depends on language and culturally constructed systems of symbolic 
number, compatible with the Sapir-Whorf hypothesis. 

Subsequent investigations of this question have adopted Gordon’s 
logic but report varying results. In one study, Frank, Everett, Fedorenko, 
and Gibson (2008) provided another group of Pirahã participants with 
feedback and training, and found that they produced exact matches 
when sets could be visually aligned (as in the parallel task), but 
approximated for sets beyond the parallel individuation range when 
they could not (as in the Nuts-in-a-can task). Frank and colleagues took 
this as evidence that (a) Gordon’s original participants may not have 
sufficiently understood the task, and (b) the Pirahã understand that 
number can be represented exactly, despite lacking exact number words. 
Challenging this conclusion, however, Everett and Madora (2012) 
argued that the Pirahã individuals who had participated in the Frank 
et al. study had been exposed to number language and one-to-one 
training by missionaries operating in the area. This later work re-
ported that Pirahã participants who had not received this exposure 
failed to use one-to-one correspondence on the Parallel set-match task, 
replicating Gordon’s initial findings. 

Work done with other semi-numerate groups—who have either a 
limited count list, or limited knowledge of their culture’s counting 

system—also leaves this question unresolved. For example, using tasks 
adapted from Gordon (2004), Flaherty and Senghas (2011) concluded 
that speakers of Nicaraguan Sign Language who were unable to count 
were also unable to exactly match quantities greater than 3 when sets 
could not be aligned in parallel. However, like Frank et al. (2008), they 
found that participants performed well at a Parallel set-matching task 
that was used as a warm-up to other measures, raising questions about 
the extent of their failures. In another study, Pica, Lemer, Izard, and 
Dehaene (2004) found that the Mundurukú, an indigenous Amazonian 
group which has no words for numbers beyond “five,” failed to compute 
arithmetic operations exactly, and differentiated sets greater than five 
on the basis of their approximate magnitudes. At the same time, how-
ever, Pica et al. also reported that some Mundurukú participants were 
capable of placing objects into one-to-one correspondence with their 
fingers and toes (suggesting the presence of a body count system in some 
individuals). Finally, Butterworth and Reeve (2008) compared 
numerate English-speaking Australian children to innumerate children 
who spoke Walpiri or Anindilyakwa (indigenous languages spoken in 
the Northern Territory of Australia), and found no differences between 
groups in their ability to match sets, but also that all participants 
approximated in the tasks used, leaving open the question of how 
numeracy impacts reasoning about exact number. 

In addition to the inconsistencies found in these cross-cultural case 
studies, another limitation of much previous work in this literature is 
that it has been restricted to asking whether a symbolic number system 
is necessary for reasoning about exact number, without differentiating 
the various mechanisms by which a number system might have such an 
effect. Both cross-culturally and in development, numeracy is not a bi-
nary outcome defined by possession of a single symbolic capacity, but is 
better characterized as a combination of many different components 
that emerge at different points across the lifespan (e.g., knowledge of a 
culturally shared count list, the meanings of individual number words in 
this list, counting procedures and principles, arithmetic abilities, etc.; 
Schaeffer, Eggleston, & Scott, 1974; Stephens, Landeros, Perkins, & 
Tang, 2016; Wynn, 1990, 1992). Consequently, while it is possible that 
exposure to number words is the single component needed to reason 
about equality, it is also possible that number words are only one 
ingredient among many that support reasoning about exact number. In 
addition, numeracy can vary among individuals in idiosyncratic ways 
that reflect differences in access to education as well as context-specific 
economic needs and cultural practices (Coben et al., 2003; Garegae & 
Lekoko, 2006; Kifleyesus, 2009). Prior work with innumerate groups 
does not address the many ways in which experiences with symbolic 
number might impact the ability to reason about exact number, and thus 
does not provide a clear test of why innumerate groups differ from 
numerate groups, and what aspects of numeracy might explain differ-
ences between groups, if any. Finally, past work on this question, by 
adopting Gordon’s logic, has assumed that the set-matching task is a 
transparent test of one-to-one correspondence, and, by extension, un-
derstanding of exact equality. However, here, too, it is possible that 
innumerate participants have an understanding of exact equality, but 
fail to understand how to express this in a set-matching task, as previous 
studies have argued (Frank et al., 2008; Laurence & Margolis, 2007). To 
address these questions, we investigated a different semi-numerate 
group that varies with respect to numeracy within a single cultural 
context: children who are at different points in the process of learning 
the meanings of number words. 

1.2. Numeracy as a continuum: children as a semi-numerate case study 

In the US, and in many other numerate cultures, various distinct 
components of numeracy begin to emerge in the first 5–6 years of life in 
the form of number word learning, providing a natural experiment for 
investigating how numeracy impacts reasoning about exact equality. 
Most children in industrialized cultures have access to a culturally 
shared count list early in life, and can even recite portions of the count 

1 While the Pirahã were initially thought to have exact meanings for “one” 

and “two,” these meanings were later shown to be approximate (Frank et al., 
2008).  

2 Here, we elect to use the term “numerosity” to refer to the numerical 
properties of sets in the world, in friendly defiance of those who would have us 
call all things numerical “number” (see Clarke & Beck, 2021). 
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list by around 2 years of age, although the words in this count list likely 
lack numerical content at this stage, and appear to form part of an 
“unbroken” chain similar to the ABCs (for review, see Fuson, 1988). At 
around 2½ to 3 years of age children in many cultures begin to learn the 
meanings of these words, beginning with the word “one”, followed by 
“two” 6–9 months later, then eventually “three” some months after that 
(Wynn, 1990, 1992). During these months, children are called “subset 
knowers,” because they have acquired meanings for only a subset of the 
number words in their count list and cannot yet accurately label or count 
sets larger than 3–4. Also during this period, children begin to learn to 
recite number words while pointing at objects in one-to-one corre-
spondence, although initially these counting routines lack numerical 
content; children who accurately count often cannot say how many 
items are in the final set, or cannot use counting to construct sets 
themselves (Briars & Siegler, 1984; Frye, Braisby, Lowe, Maroudas, & 
Nicholls, 1989; Fuson, 1988; Fuson, Lyons, Pergament, Hall, & Kwon, 
1988; Fuson, Secada, & Hall, 1983; Sarnecka & Carey, 2008; Schaeffer 
et al., 1974; Siegler, 1991; Wynn, 1990). Sometime between 3 and 5 
years of age, children become “counting principle”- or “cardinal prin-
ciple”-knowers (CP-knowers), meaning that they can accurately label 
and construct large sets via counting. However, even at this stage chil-
dren appear to lack a complete understanding of how counting repre-
sents number, and take several years to learn that as you count up in the 
list, you should add one object for each word counted (Davidson, Eng, & 
Barner, 2012; Cheung, Rubenson, & Barner, 2017; see also Schneider, 
Sullivan, Guo, & Barner, 2021; Schneider et al., 2020; see Barner, 2017; 
Carey & Barner, 2019, for review). 

These distinct developmental changes offer the opportunity to 
investigate how different early components of numeracy relate to the 
ability to reason about exact equality. First, compatible with Frank et al. 
(2008), some argue that knowledge of number words is not necessary for 
reasoning about exact equality. For example, on some accounts, 
knowledge of equality might stem from innate counting principles that 
entail an understanding of exactness (Butterworth, 1999; Gelman & 
Butterworth, 2005; Gelman & Gallistel, 1978; Leslie et al., 2008). Other 
studies argue that preverbal infants can compare sets “via one-to-one 
correspondence to establish numerical equivalence” (Feigenson & 
Carey, 2003; p. 568;) (Feigenson et al., 2004; Xu, Spelke, & Goddard, 
2005). However, there is currently no evidence that pre-verbal humans 
can reason about exact equality for large sets. First, although infants can 
represent and compare sets that contain up to 3 items, they either fail 
completely for larger sets (e.g., Feigenson & Carey, 2005), or approxi-
mate (Cantrell, Boyer, Cordes, & Smith, 2015; Cantrell & Smith, 2013). 
Second, while infants may use one-to-one correspondence to compare 
small sets, it is unclear whether they use this information to infer that 

the sets are numerically equal. For example, Izard, Streri, and Spelke 
(2014) argue that when older children (who know the meanings of 
number words, but not the cardinal principle) use one-to-one corre-
spondence to track hidden objects, they track only the identity of hidden 
things, rather than their number. 

While some studies propose that the seeds of exact equality are 
present in preverbal infants, others have argued that children only begin 
to reason about large exact number once they have begun to learn the 
meanings of their first number words, compatible with Gordon (2004) 
and Everett and Madora (2012). Some studies posit that this occurs 
when children become subset knowers, and have not yet learned to 
count. For instance, Sarnecka and Gelman (2004) argue that although 
subset knowers only know the meanings of a few small number words, 
they may nevertheless have a concept of large exact number. As evi-
dence for this, they report that subset knowers judge that a set labeled 
with an unknown number word, like “seven” must receive a different 
label if an object is added to it, compatible with an understanding of 
exact equality. However, others have argued that these effects reflect the 
pragmatics of mutual exclusivity, are not specific to number words 
(Brooks, Audet, & Barner, 2013), and cannot be found in other, highly 
similar tasks that do not involve mutual exclusivity (Condry & Spelke, 
2008; Sarnecka & Gelman, 2004). 

Based on evidence from tasks that avoided these pragmatic concerns, 
Sarnecka and Wright (2013) argued that children’s intuitions about 
large exact number emerge at the moment that they become CP- 
knowers. In their study, they showed subset knowers and CP-knowers 
two sets of 5 or 6 items aligned in one-to-one correspondence and 
found that only CP-knowers judged that the two sets should receive the 
same label when they were equal, but not when they were unequal. 
From these findings, Sarnecka and Wright proposed that becoming a CP- 
knower may involve acquiring an understanding of exact equality, since 
counting establishes a one-to-one correspondence between sets which 
receive the same cardinal label, highlighting that two sets of, e.g., “five” 

must be equal. However, much like the earlier work that argued for 
knowledge of exact equality in subset knowers (Sarnecka & Gelman, 
2004), the tasks used by Sarnecka and Wright relied on children’s as-
sessments of number words, leaving open not only whether subset 
knowers might successfully reason about large exact sets in non-verbal 
tasks, but also whether CP-knowers’ abilities are limited to reasoning 
about number words, or if they could also deploy one-to-one corre-
spondence to match sets. 

Other studies have used non-verbal tests of equality and have found 
some evidence that CP-knowers and subset knowers differ, though these 
experiments have focused mainly on small sets. For example, Mix (1999) 
found that when preschoolers were shown a card with one set of 2–4 

Fig. 1. Example of task set-up for Parallel, Orthogonal, and Nuts-in-a-can set-matching tasks from Gordon (2004). Dashed lines in (A) indicate that rows can be 
spatially aligned using one-to-one correspondence. 
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items and then asked to select which one of two additional cards had the 
same number of items, children with little or no understanding of 
counting were only slightly better than chance, and performed even 
worse for items of different kinds (e.g., matching different objects to 
dots). Although Mix did not assess cardinal principle knowledge, chil-
dren who could correctly generate sets for large and small numerosities 
were both more likely to match sets and more likely to ignore perceptual 
dissimilarities. Similarly, Negen and Sarnecka (2009) showed that while 
subset knowers struggled to match sets of 1 to 4 items generated by an 
experimenter, CP-knowers were more likely to do so for all set sizes. 
Thus, although these studies do not assess reasoning about large sets, 
they do suggest that learning to count may play some role in children’s 
understanding of exact equality. Other studies temper this conclusion, 
however. First, studies of semi-numerate Tsimane children (Jara- 
Ettinger, Piantadosi, Spelke, Levy, & Gibson, 2017) have argued that 
although the CP- transition is correlated with understanding of exact 
equality, some subset knowers succeed at a test of set matching and 
some CP-knowers fail (a topic we revisit in the General Discussion). 
Second, there is evidence that CP-knowers are better than subset 
knowers at approximate matching, which could also explain improved 
set-matching for both small and large sets. For example, in a study by 
Shusterman and colleagues (Shusterman et al., 2017), children were 
asked to examine a large set on one table and then find a corresponding 
number of items on another table based on their memory of the first set. 
They found that CP-knowers outperformed subset knowers despite not 
being allowed to count, suggesting that CP-knowers were better than 
subset knowers at matching sets approximately. 

Finally, other studies argue that the capacity to reason about exact 
equality for large numerosities emerges very late in development, 
several years after children learn the cardinal principle. Most famously, 
work beginning with Inhelder and Piaget (1953) found that children as 
old as 6 years of age sometimes judge that lines of objects placed in one- 
to-one correspondence are not the same if one of the two sets is 
lengthened or shortened—a failure of what they called “conservation of 
number.” However, multiple subsequent studies argued that the trans-
formations involved in conservation underestimate children’s numerical 
knowledge due to pragmatic (McGarrigle & Donaldson, 1974; Mehler & 
Bever, 1967; Rose & Blank, 1974), linguistic (Markman, 1979), and 
attentional demands (Gelman, 1969). Despite this, some later work by 
Piaget (1965) found that when 5- and 6-year-old children were asked to 
match sets in a task analogous to Gordon’s Parallel match task, they 
often matched according to length rather than number (see Russac, 
1978, for a similar result in children as old as 7). 

Currently, conflicting findings and differing methodologies in the 
developmental literature make it difficult to determine when the ability 
to reason about exact equality emerges in children, what form such 
knowledge might take, and whether it is impacted by changes in 
numeracy. Developmental tests of exact equality vary with respect to 
whether they test small or large numbers, whether they offer perceptual 
cues to scaffold one-to-one correspondence, whether they require chil-
dren to explicitly reason about equality, and whether children need to 
reason about equality between two numeral labels or between sets of 
objects. In addition, there is no work which evaluates the contribution 
children’s general exposure to number language, or their mastery of 
early-learned rote procedures, like pointing at objects and reciting 
number words in one-to-one correspondence—an ability which might 
scaffold reasoning about one-to-one correspondence between sets. 
Further, despite the variety of paradigms used in the developmental 
literature, almost no studies have used methods directly comparable to 
those used with the Pirahã, making it unclear how past studies in chil-
dren relate to work in innumerate groups, and therefore whether semi- 
numerate children are a valid model for testing whether numeracy fa-
cilitates reasoning about exact number. 

In the current work we tested how early changes in numeracy relate 
to children’s ability to exactly match large sets using the set-matching 
task previously used with the Pirahã (Gordon, 2004). We reasoned 

that if the ability to generate exact matches emerges independent of 
number word knowledge, as Frank et al. (2008) suggest, then children 
should do well on the set-matching task independently of whether they 
are CP- or subset knowers. However, if the ability to generate exact 
matches depends on learning a system of large exact number words, as 
Gordon (2004) and Everett and Madora (2012) suggest, then subset 
knowers should fail to exactly match large sets since they lack meanings 
for large numbers, and CP-knowers should succeed. Finally, if simply 
learning a counting system is not enough, then even CP-knowers may 
not generate exact matches as consistently as numerate adults. In 
addition to testing how set matching abilities relate to numeracy, we 
also explored the validity of the set-matching task. As noted above, some 
past studies have argued that innumerate individuals who fail the set- 
matching task may be capable of reasoning about exact equality, but 
may fail to comprehend instructions, lack motivation to perform well, or 
simply lack an effective procedure for matching sets (Frank et al., 2008; 
Laurence & Margolis, 2007). While these possibilities are difficult to 
assess in remote innumerate groups for a host of reasons (language, 
culture, remoteness, and small groups), testing children offers the pos-
sibility of high-powered follow-up studies that investigate the role of 
alternative instructions, motivational factors, and different strategies 
that the task makes available (e.g., see Frank et al., 2008). This, in 
addition to exploring effects due to variable numeracy, was a primary 
motivation for the developmental approach we take here. 

In Study 1, we tested subset- and CP-knowers’ ability to use one-to- 
one correspondence to exactly match sets. However, unlike work done 
with innumerate groups, we broke down children’s numeracy into 
several components. First, we measured how high children could count, 
as children’s count list knowledge can be seen as a general proxy for 
their previous exposure to counting procedures (LeFevre et al., 2010), 
and is predictive of other numerical knowledge (Cheung et al., 2017; 
Davidson et al., 2012; Schneider et al., 2021; Schneider et al., 2020). 
Second, we tested children’s ability to respect one-to-one correspon-
dence when reciting the count routine and pointing at objects in a set. 
Previous work finds that this ability begins to emerge before children 
become CP-knowers (Frye et al., 1989; Sarnecka & Carey, 2008), raising 
the possibility that set-matching via one-to-one correspondence could 
depend on counting abilities that emerge prior to the CP transition. 
Given this, we reasoned that this ability, once learned in the context of 
counting, might impact children’s ability to execute analogous one-to- 
one matching of objects, potentially allowing them to set-match prior 
to becoming CP-knowers. Third, we measured children’s status as either 
subset knowers (who know a small set of number word meanings) or CP- 
knowers (who can accurately count and give large sets). Together, these 
measures allowed us to test which components of counting knowledge, if 
any, might contribute to the ability to make exact matches. In Studies 2, 
3, and 4 we tested three possible alternative explanations for children’s 
performance on these tasks, including attention to number (Study 2), 
motivation to create equal sets (Study 3), and the ability to surrepti-
tiously count while set-matching (Study 4). Finally, in Study 5, we 
constructed a set of model simulations to identify whether children’s set- 
matching behavior reflects the deployment of procedures which respect 
one-to-one correspondence. 

2. Study 1 

2.1. Method 

All methods and analyses were pre-registered at https://osf. 
io/3wta2 unless stated otherwise in-text. 

2.1.1. Participants 
We recruited 160 English-speaking children between 3;0 and 5;0 

from local preschools, daycare centers, and museums in San Diego, CA. 
Sixteen children were tested but excluded from analysis for the 
following reasons: Failure to finish the experiment (n = 9); experimenter 
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error or broken stimuli (n = 6); and failure to pass the training trials for 
both the parallel and orthogonal orientations (n = 1). After these ex-
clusions, our analyzable sample included 144 participants (Mage = 3.94 
years, SDage = 0.53 years; n female = 62, n male = 82). Demographic 
information by knower-level is shown in Table 1. While we did not 
collect other demographic information, for this and all other studies our 
sample was drawn from a population with the following statistics: White 
(75.5%), Black (5.5%), Asian (12.6%), American Indian or Alaska 
Native (1.3%), Pacific Islander (0.6%), Multiracial (4.5%) (US Census 
Bureau). 

2.1.2. Stimuli, design, and procedure 
Children were tested individually in a quiet spot within the class-

room or museum, or in a room set apart from the classroom. Participants 
received the tasks in a fixed order (Set-matching, How Many, Highest 
Count, and Give-N). 

2.1.2.1. Set-matching. We adapted the set-matching task used by Gor-
don (2004), framing it as a “matching game”: Children were told that the 
goal of the game was to make their “pond” (4.5”x30” blue rectangle) 
look like the experimenter’s pond (Fig. 2). At the beginning of the task, 
the experimenter presented children with an empty pond and 15 iden-
tical plastic fish, saying, “This is a matching game. Do you know what 
matching means? Matching means to make things look the same! So, in 
this game, you’re going to be making your pond look like my pond.” The 
experimenter then placed a board with one fish glued to its center 
directly above the child’s pond, and said, “Using your fish, can you make 
your pond look like my pond?” If the child responded correctly the 
experimenter said, “That’s right! Your pond looks like my pond because 
there is a fish here (indicating fish on experimenter’s board) and a fish here 
(indicating fish on child’s board). Great job! You made the ponds match.” 

If the child did not respond correctly, the experimenter said, “Hmm, I 
don’t think these ponds match,” and pointed out the discrepancies. 
Children then received an identical training trial for a set of two fish. If a 
child failed the training trials, the experimenter repeated them once 
more. Only children who demonstrated an understanding of the training 
trials by correctly generating sets for these trials with or without feed-
back were included in analyses. 

After the two training trials, children were tested on sets of 3, 4, 6, 8, 
and 10 with neutral feedback. All children completed trials with the 
boards first in a parallel orientation (experimenter’s board presented 
directly above the child’s, with about 1/2′′ of separation between them), 
and then in the orthogonal orientation (experimenter’s board rotated 90 
degrees and to the right of the child’s, Fig. 2B). Trial order was fixed for 
the parallel (3, 4, 10, 8, and 6) and orthogonal (4, 3, 8, 10, and 6) ori-
entations. Finally, because we wished to test how children’s ability to 
use one-to-one correspondence in this task was affected by the percep-
tual similarity of items across sets, we manipulated the identity of items 
between subjects. For all trials, half of all CP-knowers and subset 
knowers received fish which matched the experimenter’s (Identical 
condition), and half were tested with fish that did not match (Non- 
identical condition). 

Children were prevented from counting or using number language, 
and the experimenter did not use numerical language in their in-
structions or feedback for two reasons: First, we wished to replicate 
Gordon (2004)—where participants did not have access to symbolic 
number—as closely as possible. Second, we wished to ensure that dif-
ferences between CP- and subset knowers did not simply reflect the 
availability of a symbolic tool (counting) that only CP-knowers could 

use. If the experimenter observed a child counting they covered both 
boards and said, “This isn’t a counting game! This is just a matching 
game!” and restarted the trial, removing fish from the child’s board if 
necessary. Overt attempts to count were relatively rare: 15 CP-knowers 
made noticeable attempts to count on 64/700 trials, while 6 subset 
knowers tried to count on 28/740 trials. Only 10 children attempted 3 or 
more counts in either the parallel or orthogonal tasks. Counting attempts 
did not appear to have an impact on performance, as children produced 
incorrect responses on 47/92 trials where they attempted to count. 

2.1.2.2. How many?. We used a modified version of the “How Many?” 

task (Cantlon, Fink, Safford, & Brannon, 2007) to test children’s pro-
cedural counting mastery. This task was chosen because it measures 
children’s ability to execute a one-to-one counting procedure, in which 
each number word is assigned to a distinct object, analogous to the one- 
to-one procedure that children must use to match sets of objects in one- 
to-one correspondence. As noted in the Introduction, the ability to use a 
one-to-one counting procedure is known to emerge prior to the acqui-
sition of the CP, and therefore offers a measure of numeracy that is 
distinct from knower level. Also, the task captures intermediate steps in 
the mastery of this ability, by differentiating between children who 
correctly count sets on a first effort vs. those who make errors and 
correct them vs. children who are completely unable to execute a one-to- 
one counting procedure. 

After the final trial of the set-matching task, the experimenter placed 
a board containing either 8 or 10 fish in front of the child and said, “Can 
you count these fish out loud and tell me how many there are?” After the 
child finished counting the first board, the experimenter repeated this 
process with the other board, with order presentation randomized across 
participants. Following Cantlon et al., children received a score between 
0 and 3 for each instance of counting. A score of 3 indicated errorless 
counting (coordination of one-to-one tagging and labeling for all objects 
and correct determination of cardinality). A score of 2 indicated a cor-
rect count with errors fixed (either by restarting the count or back-
tracking). A score of 1 indicated correct counting for a minimum of two 
items; and a score of 0 indicated random counting. 

2.1.2.3. Highest count. We included Highest Count as a measure of 
children’s verbal counting mastery, as well as a proxy for variability in 
additional number knowledge after the CP-knower stage. The experi-
menter introduced this task by saying, “In this game, I want you to count 
as high as you can. Can you start counting?” If the child did not begin 
counting, the experimenter prompted them by saying, “Let’s start 
together! One…” with rising intonation. Children were allowed to 
continue counting if they made errors. If a child stopped counting, the 
experimenter prompted them once by saying, “Do you know what comes 
after N?” Children were only prompted to continue counting once. 
Children’s highest count was the highest number to which they could 
count, allowing for one error. 

2.1.2.4. Give-N. We assessed children’s knowledge of the cardinal 
principle with a titrated version of the Give-N task (Wynn, 1992). The 

Table 1 
Demographic information by knower-level for Study 1.   

n Mage (SD) 
Subset knowers Total n = 74 (n female = 35; n male = 39) 3.69 (0.41) 
CP-knowers Total n = 70 (n female = 27; n male = 43) 4.20 (0.52)  

Fig. 2. Setup for parallel (A) and orthogonal (B) set-matching task.  
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experimenter placed ten small plastic items (e.g., bananas) and a plate in 
front of the child, and said, “In this game, your job is to put these ba-
nanas on the plate! Can you put N bananas on the plate for me?” After 
the child generated the set, the experimenter asked, “Is that N? Can you 
count and make sure?” If the child realized they had made a mistake, 
they were permitted to fix it. If a child correctly generated a set in 
response to a given N, the next number queried was N + 1 (up to six). If 
they did not, the next number queried was N-1. This staircasing pro-
cedure was used to determine trial order until a child’s knower level 
could be established. Three was the first number queried for all children. 

Children who could correctly generate sets of six at least two out of 
three times were classified as CP-knowers. If children correctly con-
structed a set of six once, they were asked to do so a second time. If they 
succeeded, they were classified as a CP-knower, and the task ended. If 
they failed, the experimenter asked for a set of five, and the session 
continued until their knower level could be identified. 

If children could not meet the criteria for being classified as CP- 
knowers, they were identified as N-knowers if they correctly provided 
N on at least two out of the three trials that N was requested and, of those 
times that the child provided N, two-thirds of the time it was in response 
to a request for N. Because we could not ensure an even distribution of N- 
knower levels, in our confirmatory analyses we treat all non-CP-knowers 
as subset knowers. 

2.2. Results 

Descriptive statistics of set-matching accuracy are shown in Table 2. 
Closely mirroring the performance of innumerate adults reported in 
some previous studies (Everett & Madora, 2012; Gordon, 2004), subset 
knowers were able to match small sets with some degree of accuracy but 
failed to exactly match large sets in both the parallel and orthogonal 
conditions. Also, suggesting that the set-matching task is sensitive to 
changes in numeracy, CP-knowers outperformed subset knowers, with 
higher accuracy on both parallel and orthogonal trials. While both CP- 
and subset knowers were more likely to generate exact matches for small 
sets across both orientations, CP-knowers had greater accuracy even in 
the parallel condition. 

In our first set of analyses we test whether set-matching accuracy is 
significantly related to acquisition of the cardinal principle by con-
structing a generalized linear mixed effects model (GLMM) with the 
formula Accuracy (0/1) ~ Cardinal principle knowledge (CP/Subset) +
Set size (continuous) + Orientation (parallel/orthogonal) + Age 
(continuous) + (1 | Participant).3 A likelihood ratio test indicated a 

significant effect of cardinal principle knowledge (χ2(1) = 25.22, p <
.001; Model 1, Appendix),4 with CP-knowers significantly more likely 
than subset knowers to generate exact matches in this task overall, even 
when controlling for age (χ2(1) = 8.00, p = .005). In addition to this main 
effect of cardinal principle knowledge, the model also revealed signifi-
cant decreases in accuracy with increasing set sizes (χ2(1) = 324.94, p <
.001), as well as greater accuracy for trials in the parallel orientation 
(χ2(1) = 41.25, p < .001). These main effects are shown in Fig. 3. While 
CP-knowers outperformed subset knowers overall, they had much lower 
accuracy for large numerosities in the orthogonal orientation (M = 0.18) 
in comparison to large numerosities in the parallel orientation (M =
0.42). A follow-up analysis confirmed this three-way interaction be-
tween orientation, cardinal principle knowledge, and set size (χ2(1) =
9.93, p = .002; Model 3, Appendix). 

We also explored the magnitude of children’s errors on incorrect 
trials as a less conservative measure of their attention to exact equality. 
This was done in an effort to identify children who may have attempted 
to use one-to-one correspondence, but made occasional errors. For these 
analyses we used children’s absolute error (|Target quantity - 
Response|) on incorrect trials, with the logic that children who attempt a 
one-to-one match but make an error should generate a response rela-
tively close to the target quantity, regardless of set size, resulting in 
lower levels of absolute error. To test this hypothesis, we constructed a 
linear mixed effects model (LMM) with the formula Absolute error ~ 
Cardinal principle knowledge (CP/Subset) + Set size (continuous) +
Orientation (parallel/orthogonal) + Age (continuous) + (1 | Partici-
pant). A likelihood ratio test indicated that the a significant effect of CP- 
knower status(χ2(1) = 9.76, p = .002; Model 10, Appendix),5 with lower 
absolute error for CP-knowers (M = 2.42) in comparison to subset 
knowers (M = 3.27), as shown in Fig. 4. Once again, we found that this 
effect of cardinal principle knowledge was significant when controlling 
for the effects of age (χ2(1) = 2.71, p = .10), and also that absolute error 
significantly increased with set size (χ2(1) = 25.94, p < .001) and for 
trials in the orthogonal orientation (χ2(1) = 17.17, p < .001). 

In both these analyses, CP-knowers were more likely to generate 
exact matches not only for large numerosities, but also for small ones, 
resulting in higher accuracy and lower error. In contrast, and analogous 
to the Pirahã participants in Gordon (2004) and Everett and Madora 
(2012), subset knowers did not create exact set matches for large 
numerosities, and even struggled to do so for sets of 4. However, despite 
their higher accuracy, CP-knowers performed well below numerate 
adult levels (Frank, Fedorenko, Lai, Saxe, & Gibson, 2012), suggesting 
that acquiring the cardinal principle is insufficient to succeed on this 
task, regardless of the reasons underlying children’s failures. In addi-
tion, these findings raise the question of why some CP-knowers fail while 
others succeed. One possibility is that some children shift to a one-to-one 
strategy around the time they become CP-knowers, while others do not. 
The other is that CP-knowers, like subset knowers, use approximation to 
solve the task, but are more capable approximators, perhaps due to 
changes in their approximate number representations, or mappings 
between number words and the Approximate Number System (Shus-
terman, Slusser, Halberda, & Odic, 2016). 

We conducted a preliminary exploration of these potential mecha-
nisms by investigating differences in response patterns between the 
parallel and orthogonal trials for CP- and subset knowers (Fig. 5A and 
B). While parallel trials arguably highlight one-to-one correspondence 
by making it easy to visually align individuals, items within sets are not 

Table 2 
Accuracy on the set-matching task by knower-level and orientation.  

Knower-level Overall M (SD) Parallel M (SD) Orthogonal M (SD) 
Subset 

knower 
0.28 (0.45) Overall: 0.32 (0.47) Overall: 0.25 (0.43) 

Small sets: 0.60 
(0.49) 

Small sets: 0.41 (0.49) 

Large sets: 0.13 
(0.33) 

Large sets: 0.14 (0.34) 

CP-knower 0.51 (0.50) Overall: 0.61 (0.49) Overall: 0.40 (0.49) 
Small sets: 0.89 
(0.32) 

Small sets: 0.74 (0.44) 

Large sets: 0.42 
(0.32) 

Large sets: 0.18 (0.38)  

3 All GLMMs and LMMs were fit in R using the ‘lme4’ package (Bates et al., 
2015). All GLMMs used a logit link function. 

4 Although we pre-registered a model containing a CP-knower status*Set size 
interaction, a likelihood ratio test indicated that this interaction did not 
improve the fit of the main effects model (χ2(1) = 1.2, p = .27; Model 2, 
Appendix).  

5 Although we pre-registered a model containing a CP-knower status*Set size 
interaction, we found that this term did not significantly improve the fit of the 
model (χ2(1) = 2.74, p = .10; Model 11, Appendix) 
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spatially aligned on orthogonal trials, making it more likely that in-
dividuals will generate sets through approximation. Given this, we 
reasoned that if the difference between CP- and subset knowers was 
driven by a general improvement in approximation, then this should be 
similar across the parallel and orthogonal trials. However, if it resulted 
from an increased use of a one-to-one strategy, then the difference be-
tween groups may be greatest in the parallel condition. Compatible with 
this reasoning, in follow-up analyses using Levene’s Test we found that 
although subset knowers’ response variance for sets within the parallel 
individuation range was significantly different between the parallel and 
orthogonal trials (both ps < 0.02), there was no difference for large 
numerosities (all ps > 0.10). Also, subset knowers frequently appeared 
to use a “give-all” heuristic for these larger sets, and gave the maximum 
number of fish (15). This suggests that subset knowers likely used a 
similar strategy (e.g., approximation) for large numerosities regardless 
of whether individuals could be spatially aligned. In contrast, CP- 
knowers had significantly different distributions of responses between 
the parallel and orthogonal tasks for all set-sizes except three (all ps <
0.05). In addition, the overall shape of CP-knowers’ responses was 
strikingly different in the parallel and orthogonal trials, with their re-
sponses heavily centered on the target set size in parallel trials, and a 
wider distribution of responses in the orthogonal trials. These findings 
provide some preliminary evidence that CP-knowers’ set-matching re-
flects a shift towards a one-to-one strategy, a possibility we address more 
thoroughly in Study 5. 

In our final analysis of this section, we asked whether cardinal 

principle knowledge impacted children’s ability to ignore perceptual 
differences between members of sets (e.g., when the two sets contained 
different kinds of fish) in a follow-up GLMM with the formula Accuracy 
(0/1) ~ Identity (Identical/Non-identical)*cardinal principle knowl-
edge (CP/Subset) + Set size (continuous) + Orientation (parallel/ 
orthogonal) + Age (continuous) + (1 | Participant) (Model 4, Appendix). 
While we did not find a significant main effect of identity (χ2(1) = 0.32, p 
= .57), this model indicated a significant interaction between identity 
and cardinal principle knowledge (χ2(1) = 9.81, p = .002). Post hoc 
pairwise comparisons revealed that, consistent with past work showing 
that CP-knowers are more capable of inhibiting differences in identity to 
establish numerical equivalence (Mix, 1999; Negen & Sarnecka, 2009), 
CP-knowers had significantly greater accuracy (p < .001) on Non- 
identical trials (M = 0.54) in comparison to subset knowers (M =
0.23). While there was only a marginal difference (p = .05) between 
groups on Identical trials, CP-knowers’ performance did not signifi-
cantly differ between Identical (M = 0.47) and Non-identical trials (p =
.07). In contrast, subset knowers had significantly higher performance 
on Identical trials (M = 0.33) in comparison to Non-identical trials (p =
.008), suggesting that they were more able to create numerical set 
matches when item identity did not differ across sets. 

2.2.1. Counting 
In our next analyses, we tested whether children’s ability to exactly 

match sets was impacted by their procedural or verbal counting mastery. 
First, we used children’s performance on the How Many counting task to 

Fig. 3. Mean set-matching accuracy for parallel and orthogonal trials, grouped by CP-knower status. Error bars represent 95% confidence intervals computed by non- 
parametric bootstrap. 

Fig. 4. Mean absolute set-matching error by CP-knower status. Error bars represent 95% confidence intervals computed by nonparametric bootstrap.  
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identify their procedural counting skill. One child did not complete this 
task and was excluded from this analysis. We constructed a base GLMM 
with the formula Accuracy (0/1) ~ Set size (continuous, centered and 
scaled) + Orientation (parallel/orthogonal) + Age (continuous, 
centered and scaled) + (1 | Participant), and then tested whether the 
addition of either children’s averaged How Many score or their Highest 
Count improved the fit of the model. A breakdown of children’s scores 
on the How Many task is shown in Table 3. 

Model comparison indicated that procedural counting proficiency 
(measured with the How Many task, included as an ordinal term) was 
significantly related to set-matching accuracy when not accounting for 
cardinal principle knowledge (χ2(2) = 8.30, p = .02; Model 6, Appendix). 
However, performance on the task did not explain unique variance 
beyond children’s subset-/CP-knower classification (χ2(2) = 0.14, p =
.93; Model 7, Appendix). In contrast, we found a significant effect of 
cardinal principle knowledge even when controlling for performance on 
the How Many task (χ2(2) = 17.29, p < .001; Model 8, Appendix). 
Because subset knowers, unlike CP-knowers, exhibited variability on the 
How Many task, we conducted a follow-up analysis that included only 

subset knowers, and again found that the addition of a term indicating 
counting proficiency on the How Many task did not significantly 
improve the fit of the base model (χ2(2) = 0.16, p = .92; Model 5, Ap-
pendix).6 Together, the results from the How Many Task indicate that 
although knowledge of one-to-one counting procedures begins to 
emerge before children become CP-knowers, this knowledge is not alone 
sufficient to explain set-matching performance, which only begins to 
improve when children become CP-knowers. One interpretation of this 
pattern of results is that one-to-one counting procedures play no role in 
the development of set-matching. However, the results are also 
compatible with the idea that one-to-one procedures play a role, but 
only once they are completely mastered and children become CP- 
knowers - i.e., that they are necessary but not sufficient. We revisit 
this question of how counting procedures and set-matching are related 
in the General Discussion. 

In a second analysis, we found that children’s verbal counting 
fluency (measured with the Highest Count task) was unrelated to set- 
matching performance for children overall (χ2(1) = 0.86, p = .36; 
Model 9, Appendix), and failed to account for significant variance 
beyond cardinal principle knowledge (χ2(1) = 0.22, p = .64; Model 10, 

Fig. 5. Histogram of response distributions on each set size for a) parallel trials and b) orthogonal trials, grouped by cardinal principle knowledge. Dashed line 
indicates the correct response for each target quantity. 

Table 3 
Averaged scores from the “How Many” task by knower-level*.   

n subset knowers n CP-knowers 
Random counters (averaged score 0–0.99) 20 0 
Minimal counters (averaged score 1–1.99) 23 2 
Proficient counters (averaged score 2–3) 30 68  
* A score of 3 = errorless counting (coordination of one-to-one tagging and 

labeling for all objects and correct determination of cardinality); 2 = counting 
with errors that were fixed (either by restarting the count or backtracking); 1 =
maximum of two items counted without error; 0 = random counting. 

6 We also replicated these results in a post hoc analysis collapsing over 
Minimal and Random counters and comparing them to Proficient counters to 
test whether completely errorless counting predicted set-matching accuracy. 
Procedural counting proficiency on the How Many task (coded categorically as 
Proficient/Non-proficient) was significantly predictive of set-matching accu-
racy when not accounting for cardinal principle knowledge (χ2(1) = 8.12, p =
.004); however, it did not explain unique variance beyond subset-/CP-knower 
classification (χ2(1) = 0.03, p = .86), while CP-knower status was uniquely 
predictive of set-matching performance beyond procedural counting profi-
ciency (χ2(1) = 17.36, p < .001). 
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Appendix). In summary, although the CP-/Subset knower distinction 
was an important predictor of children’s set-matching performance, 
children’s verbal counting fluency (Highest Count task) and knowledge 
of one-to-one counting procedures (How Many task) failed to explain 
additional variance, leaving open what causes changes in set-matching 
beyond the CP transition. We return to this topic in the General 
Discussion. 

2.3. Discussion 

In Study 1 we adapted methods previously used with innumerate 
groups to explore the effect of symbolic number acquisition on exact 
number concepts in young US children. Mirroring the findings of some 
previous studies of innumerate adults, we found that subset knowers 
were unable to exactly match large sets, whereas CP-knowers performed 
significantly better, compatible with the proposal that set matching 
ability is related to numeracy (Everett & Madora, 2012; Gordon, 2004). 
However, while CP-knowers were more likely to exactly match sets, 
especially in the parallel condition (where sets could be visually 
aligned), and regardless of the perceptual similarity of set members, 
they were well below adult levels (Frank et al., 2012), averaging only 
around 40% accuracy on parallel trials. This suggests that knowing how 
to accurately count and generate large sets may not alone provide the 
ability to match sets, and that this ability emerges later in development. 
Importantly, these results also indicate that rigorously addressing the 
question of whether language influences numerical thought need not be 
conducted in hard-to-access populations, such as the Pirahã. Instead, we 
found that subset knowers perform almost identically to the innumerate 
adults reported by Gordon (2004), suggesting that semi-numerate chil-
dren offer an accessible model for conducting robust and replicable in-
vestigations on this topic. 

One interpretation of our data is that reasoning about exact equality 
requires knowledge of the cardinal principle as well as additional 
learning that occurs after the CP transition. However, another possible 
explanation of children’s struggles on the set-matching task is pragmatic 
rather than conceptual. Previous tests of numerical equality have found 
that both CP- and subset knowers often focus on other dimensions of 
stimuli, such as length (Gelman, 1969; Piaget, 1965; Russac, 1978), and 
color, shape, or size (Izard et al., 2014; Chan & Mazzocco, 2017; Sar-
necka & Wright, 2013), rather than number. However, when the in-
tentions of the experimenter are made more explicit, children’s 
performance sometimes improves markedly. Compatible with this, 
Negen and Sarnecka (2015) found that although CP-knowers are better 
than subset knowers at judging which of two dot arrays contains “more 
dots,” this difference disappears when subset knowers are given feed-
back emphasizing numerosity over cumulative surface area. 

Such findings raise the possibility that failures to make exact matches 
among young children—and perhaps innumerate adults like the 
Pirahã—may be due to the pragmatically ambiguous nature of the set- 
matching task, rather than a lack of numerical knowledge. In partic-
ular, it has been proposed that the Pirahã might fail to match sets not 
because they do not have a concept of exact number, but because they do 
not understand the task (Frank et al., 2008; Laurence & Margolis, 2007). 
Studies 2 and 3 tested this question in children. 

3. Study 2 

To test whether children’s difficulties with set-matching might stem 
from a failure to understand the task, in Study 2 we explicitly told 
children that the goal of the task was to match according to number. 

3.1. Method 

This study was not pre-registered. 

3.1.1. Participants 
We recruited 41 English-speaking children between 3;0 and 5;0 from 

local preschools, daycare centers, and museums in San Diego, CA. Nine 
of these children were tested but excluded from analyses for the 
following reasons: experimenter error (n = 5); failure to finish Give-N (n 
= 2); and failure to understand the task (n = 2). Demographic infor-
mation for our final analyzable sample (n = 32, Mage = 4.01 years, SDage 
= 0.55 years; n female = 19, n male = 9) is shown in Table 4. While we 
planned to collect data from 80 participants (n = 40 each CP- and subset 
knowers), data collection was halted due to COVID-19. 

3.1.2. Stimuli, design, and procedure 

3.1.2.1. Set-matching. The stimuli and procedure for set-matching were 
identical to Study 1, with the exception of instructions and feedback, 
that all children received identical fish, that there were no trials for set 
size 6, and that there were no orthogonal trials. We did not include trials 
for set size 6 to simplify and shorten the procedure. In addition, because 
Study 1 found considerable variability in the ostensibly easier parallel 
task, we omitted orthogonal trials and focused instead on methods that 
might improve performance for the parallel task. 

At the start of the task, the experimenter said, “We’re going to play a 
number matching game with fish in a pond. In this game, your job is to 
make sure that your pond has the same exact number of fish as my pond 
without counting.” On the first training trial (1 fish) the experimenter 
said, “I’m putting a fish here in my pond. Without counting, can you 
make your pond have the same number of fish as my pond?” If the child 
succeeded, the experimenter said, “Great! Your pond has the same exact 
number of fish as my pond, because there is one fish here, and one fish 
here!” If the child failed, the experimenter said, “Hmm, your pond 
doesn’t have the same exact number of fish as my pond,” pointed out the 
error, and restarted the training trial. The same process was repeated for 
the second training trial (2 fish). Only children who could pass both 
training trials were included in our sample. Once children passed both 
training trials the experimenter gave only neutral feedback. Order of 
trials (3, 4, 10, 8; or 4, 3, 8, 10) was counterbalanced across children. 
Although we used number language in our instructions, we did not allow 
counting during the task: Counting attempts were again rare, with two 
CP-knowers attempting to count on 5/78 trials and no subset knower 
attempts. 

3.1.2.2. Give-N. We again assessed children’s knowledge of the cardi-
nal principle with the Give-N task as in Study 1. 

3.2. Results 

We found evidence that explicitly telling children that the purpose of 
the task was to create a numerical match did not lead either CP- or subset 
knowers to create more exact matches. A GLMM constructed with both 
CP- and subset knower data with the formula Accuracy (0/1) ~ Study 
(Study 1/Study 2) + Set size (continuous, centered and scaled) + Age 
(continuous, centered and scaled) + (1 | Participant) indicated no effect 
of Study (χ2(1) = 2.57, p = .11; Model 12, Appendix). Accuracy in Study 
2 was equivalent to that of Study 1 for CP-knowers (Fig. 6), with 88% 
mean accuracy for small numerosities (compared to 89% in Study 1) and 
40% for large numerosities (compared to 42% in Study 1). There is some 
preliminary evidence that drawing attention to number may have 
slightly improved subset knowers’ performance, as they had marginally 
higher accuracy in comparison to Study 1 with 70% accuracy for small 

Table 4 
Demographic information by knower-level for Study 2.   

n Mage (SD) 
Subset knowers Total n = 12 (n female = 8; n male = 4) 3.61 (0.65) 
CP-knowers Total n = 20 (n female = 11; n male = 9) 4.41 (0.45)  
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numerosities (compared to 61%) and 21% for large numerosities 
(compared to 13%). However, due to the small number of subset 
knowers (n = 12) and the small differences in performance, these data 
are not conclusive and overall suggest that if mention of number had an 
effect, it was very small. 

3.3. Discussion 

In Study 2, we explicitly told children to match sets on the basis of 
number and found no significant difference in children’s pattern of re-
sponses. Instead, the results from Study 2 replicate our main findings 
from Study 1, with subset knowers failing to exactly match large sets, 
better performance among CP-knowers for both large and small 
numerosities, and a marked decrease in accuracy in both groups for 
large numerosities relative to small ones. 

These results suggest that children’s struggles with set-matching are 
likely not due to a failure to attend to number in this task. Nevertheless, 
it remains possible that children still did not understand the goals of the 
study, since children may be able to make exact matches before they 
understand the meanings of words contained in the instructions of Study 
2, like “exact number.” Also, it is possible that children understood the 
goal of creating exact matches, but were simply unmotivated to pursue 
this goal for larger sets (perhaps because of the additional effort 
required). 

To address these possibilities, in Study 3 we framed the set-matching 
task as a “sharing” game, in which each row was given to a character, 
and children had to ensure that the distribution of resources was “fair” 

and “the same.” Historically, human concerns for fairness and equitable 
distribution of resources motivated some of the earliest creations of 
symbolic number systems, often including one-to-one tallies to represent 
goods and trading (Ifrah, 2000; Schmandt-Besserat, 1992). Children 
have early-developing (Sloane, Baillargeon, & Premack, 2012) and 
strong expectations for fairness, and have normative beliefs about equal 
resource distribution by 3 years of age (Rakoczy, Kaufman, & Lohse, 
2016). In addition, recent work has argued that symbolic number 
knowledge supports equal resource distribution when fairness is at 
stake. In that work, children were more likely to prefer ‘fair’ (equal) 
resource distributions after they had acquired the cardinal principle, 
suggesting that counting abilities allow children to more accurately 
assess the equality of sets (Chernyak, Sandham, Harris, & Cordes, 2016). 
Relatedly, and most relevant to our study, work by Hamamouche, 
Chernyak, and Cordes (2020), found that children were more likely to a 
divide a set of 8 items equally between two characters when the task was 
presented as a sharing game than when it was a non-social task. This 
raises the possibility that children might also match large sets exactly 
when prompted to create a fair distribution of resources. Tempering this, 

however, when children in the Hamamouche et al. study were shown 
two characters that had unequal amounts (e.g., 6 vs. 2) their ability to 
correctly add or subtract items to balance the distribution of resources 
did not differ across sharing and non-social conditions. Also, because 
children’s successes in the division condition were limited to small sets 
(two pairs of 4), it is unclear which mechanism they used to succeed - e. 
g., approximation, counting, or one-to-one correspondence. Overall, the 
sharing literature suggests that children are motivated to favor equal 
distributions of resources, but leaves open whether children can equally 
distribute large sets by establishing a one-to-one correspondence be-
tween them. Given this, we asked whether fairness concerns might 
motivate children to attend to exact numerical equality for large sets, 
leading to improved performance on the set-matching task. 

4. Study 3 

Study 3 tested set-matching in the context of a sharing game. 

4.1. Methods 

This study was pre-registered on OSF (https://osf.io/n9t5p/? 
view_only=dca1acb1eeed496899e84a9b96015150), and all methodo-
logical and analytical choices were pre-registered, unless stated 
otherwise. 

4.1.1. Participants 
We recruited 102 English-speaking children between 3;0 and 5;0 

from local preschools, daycare centers, and museums in San Diego, CA. 
Sixteen of these children were tested but excluded from analyses for the 
following reasons: failure to finish (n = 11); parental interference (n =
3); experimenter error (n = 1); and failure to understand the task (n = 1). 
Demographic information for our final analyzable sample (n = 86, Mage 
= 4.13 years, SDage = 0.56 years) is shown in Table 5. 

4.1.2. Stimuli, design, and procedure 

4.1.2.1. Sharing game. We modified the set-matching task from Study 1 
by framing it as a “sharing game” between two animals. The experi-
menter presented children with two blue rectangular boards and two 

Fig. 6. Mean accuracy for CP- and subset knowers on the parallel set-matching task in Studies 1 and 2. Error bars represent 95% confidence intervals computed by 
nonparametric bootstrap. 

Table 5 
Demographic information by knower-level for Study 3.   

n Mage (SD) 
Subset knowers Total n = 33 (n female = 16; n male = 17) 3.86 (0.42) 
CP-knowers Total n = 53 (n female = 31; n male = 22) 4.30 (0.56)  
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stuffed animals of the same kind (e.g., penguins). Next, the experimenter 
showed children a bowl with plastic fish and said, “These penguins 
worked together to catch these fish, but they need our help to share them 
in their ponds. Do you know what sharing means? Sharing means to 
make things fair so that people have the same. Because these penguins 
both worked hard to catch these fish, they should have the same, 
because that’s fair, right?” We emphasized equal collaboration to 
encourage children to distribute resources equitably (Ng, Heyman, & 
Barner, 2011). 

To ensure children understood the purpose of the task, the experi-
menter then provided a demonstration of one fair and one unfair share. 
First, the experimenter placed one fish in each penguin’s “pond,” and 
said “Let’s ask the penguins if this is fair!” The experimenter made each 
penguin say, “Yay! That’s fair!” and then told the child, “This is fair, 
because there is a fish in this penguin’s pond and a fish in this penguin’s 
pond, so they have the same.” Next, the experimenter showed children 
an unfair share by placing one fish in one pond and no fish in the other 
pond and saying, “Now, let’s ask the penguins if this is fair.” The 
experimenter made both penguins protest, saying “That’s not fair!” and 
then told the child, “This isn’t fair, because there’s a fish in this pen-
guin’s pond, but no fish in this penguin’s pond. Let’s try again, and this 
time you can help me make it fair.” 

After these two demonstrations the experimenter began the training 
trial. The experimenter removed all fish from the boards, added two fish 
to one penguin’s board and then offered the bowl to the child and 
saying, “Now it’s your turn to share with the other penguin. Remember 
to make it fair!” After the child was done, the experimenter said, “Let’s 
ask the penguins if this is fair,” making the penguins say “Yay! It’s fair!” 

if the child placed two fish in the pond, or “Hey! That’s not fair!” if they 
had not. If the child failed the training trial, the experimenter repeated it 
a second time. Only children who could pass the training trial and 
demonstrated an understanding of the task were included in the study. 

After training, children received five test trials with neutral feedback 
for sets of 3, 4, 6, 8, and 10. Order of trials (3, 4, 10, 6, and 8; or 4, 3, 8, 6, 
and 10) was counterbalanced across participants. The experimenter al-
ways placed their set on one board before allowing the child to generate 
their set. Both the experimenter and child drew fish from the same bowl 
to emphasize that fish were a common resource; before each trial the 
experimenter covertly added or subtracted some number of fish to the 
bowl so that the bowl always contained 15 fish when the child generated 
their set. 

As in Studies 1 and 2, children were not allowed to count. If the 
experimenter observed a child counting they covered both boards and 
said, “This isn’t a counting game, it’s a sharing game!” Counting at-
tempts were again rare: Four CP-knowers attempted to count on 8/265 
trials, while four subset knowers attempted counts on 9/170 trials. 

4.1.2.2. Give-N. We again assessed children’s knowledge of the cardi-
nal principle with the Give-N task as in Studies 1 and 2. 

4.2. Results 

To test whether concern for fairness motivates children to generate 
exact numerical matches for both small and large numerosities we 
compared data from the sharing task to data from the parallel task in 
Study 1. To do this we constructed a GLMM with the formula Accuracy 
(0/1) ~ Study (Study 1/Study 3) + Set size (continuous) + Cardinal 
principle knowledge (CP/Subset) + Age (continuous) + (1 | Partici-
pant). A likelihood ratio test indicated a significant effect of Study (χ2(1) 
= 9.1, p = .003; Model 13, Appendix); surprisingly, however, accuracy 
was significantly lower for the sharing (M = 0.41), relative to matching 
condition (M = 0.46), as shown in Fig. 7. We pursued this difference 
with a set of follow-up t-tests comparing mean accuracy between con-
ditions for CP- and subset knowers by numerosity, and found that it was 
due to subset knowers’ low accuracy on small numerosities in the 

sharing condition in comparison to the matching condition (t(105) =
−2.37, p = .02). Consistent with our findings in Studies 1 and 2, we 
found a significant effect of numeracy, with CP-knowers (M = 0.53) 
more accurate than subset knowers (M = 0.24), even controlling for age 
(χ2(1) = 21.46, p < .001) and set-size (χ2(1) = 7.78, p = .006). 

We again investigated differences in the magnitude of error between 
the two datasets as a less conservative measure of whether framing the 
task as a sharing game encouraged children to attempt exact matches. As 
in Study 1, we calculated the absolute error of incorrect trials (|Target 
item - Response|), and then constructed a LMM with the formula Ab-
solute error ~ Study (Study 1/ Study 3) + Set size (continuous) +
Cardinal principle knowledge (CP/Subset) + Age (continuous) + (1 | 
Participant). Reflecting children’s lower accuracy in the sharing task, a 
likelihood ratio test indicated a significant effect of condition (χ2(1) =
5.4, p = 02; Model 14, Appendix), with higher absolute error for the 
sharing condition (M = 2.90) in comparison to matching (M = 2.71). 
Once again, however, follow-up t-tests of mean performance between 
conditions indicated that this difference was due to significantly higher 
absolute error in subset knowers for small numerosities in the sharing 
task (t(67) = 2.66, p = .009), while there was no difference in absolute 
error for CP-knowers between the two conditions (ps > 0.3). Overall, 
children’s pattern of responses was generally similar in both the sharing 
and matching conditions (Fig. 8). 

4.3. Discussion 

The results of Study 3 indicate that children’s failures to establish 
exact matches in the set-matching task are not improved by asking them 
to ensure resources are shared fairly. In fact, compared to results from 
Study 1, subset knowers were actually less likely to equally distribute 
resources for small numerosities in the sharing condition, in line with 
other findings that the ability to distribute resources equitably for even 
small sets is linked to CP acquisition (Chernyak et al., 2016). Instead, we 
replicate the finding that performance on the set-matching task is 
significantly related to numeracy and that subset knowers struggled to 
create exact matches for sets >3 items, while CP-knowers were signifi-
cantly more likely to do so for all set sizes. This suggests that, while 
numerical competence improves the ability to share fairly, being in a 
context that requires sharing fairly may not make children any more 
likely to establish exact equality between the shares. 

Studies 2 and 3 tested whether the set-matching task might under-
estimate children’s knowledge. However, another possibility is that the 
task actually overestimates knowledge of one-to-one correspondence by 
unwittingly allowing children to count. Although CP-knowers who 
create exact matches may have learned to do so via one-to-one corre-
spondence, an alternative explanation is that they outperform subset 
knowers by surreptitiously counting the two sets. While we prevented 
children from counting out loud in Studies 1–3, more advanced counters 
may nevertheless count subvocally to generate exact matches, thereby 
explaining why CP-knowers perform better on average than subset 
knowers, and why some CP-knowers perform better than others. We 
tested this possibility in Study 4. 

5. Study 4 

Study 4 tested whether subvocal counting might explain the differ-
ence between CP-knowers and subset knowers on set-matching. 

5.1. Method 

All methods and analyses were conducted as pre-registered at 
https://osf.io/pj4zy unless stated otherwise in-text. 

5.1.1. Participants 
We recruited 38 English-speaking children between 3;0 and 5;0 from 

local preschools, daycare centers, and museums in San Diego, CA. Ten of 
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these children were tested but excluded from analyses for the following 
reasons: not being a CP-knower (n = 9); and experimenter error (n = 1). 
After exclusions, our final analyzable sample included 28 CP-knowers (n 
female = 12, n male = 16; Mage = 4.38 years, SDage = 0.52 years). While 
we pre-registered an n of 40, data collection was halted due to COVID- 
19. We therefore temper our conclusions accordingly. 

5.1.2. Stimuli, design, and procedure 

5.1.2.1. Set-matching with follow-up question. To test whether CP- 
knowers used subvocal counting to succeed in Studies 1–3, we tested 
children on the parallel version of the set-matching task. Procedures for 
training and test trials were identical to Study 1, except that all children 
received identical fish, and trial order (3, 4, 10, 6, 8; or 4, 3, 8, 6, 10) was 
counterbalanced across participants. To test whether children counted 
the experimenter’s set, after the last trial the experimenter covered both 
boards with their arms, and asked the child, “How many fish are in my 

pond?” If the child responded “I don’t know,” they were prompted to 
guess. The logic of this follow-up question was that if a child had used a 
count of the experimenter’s board to generate their set, they should 
provide an accurate response when asked to generate the target set’s 
cardinality, and also that this count should reflect the cardinality of the 
set they generated. 

To help control for differences in working memory, and to ensure 
that all children could remember the cardinality of a recently-counted 
set, after the child gave their response the experimenter uncovered the 
boards and said, “Why don’t you count the fish in my pond and see how 
many fish there are?” Immediately after the child finished counting, the 
experimenter covered both boards again and said, “Now, how many fish 
are in my pond?” 

5.1.2.2. Give-N. We again assessed children’s knowledge of the cardi-
nal principle with the Give-N task as in Study 1. 

Fig. 7. Mean accuracy on Matching (Study 1) and Sharing (Study 3) tasks by knower-level. Error bars indicate 95% confidence intervals, computed by nonpara-
metric bootstrap. 

Fig. 8. Distribution of number of items given in response to a prompt in Matching (Study 1) and Sharing (Study 3) tasks by knower-level. Dashed lines indicate target 
set size. 
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5.2. Results 

We found several pieces of evidence indicating that CP-knowers’ 

performance in the first three studies was not explained by subvocal 
counting. First, we closely replicated our findings from Study 1: A 
GLMM with the formula Accuracy (0/1) ~ Study (Study 1/Study 4) +
Set size (continuous) + Age (continuous) + (1 | Participant) indicated no 
effect of experiment (χ2(1) = 0.006, p = .94; Model 15, Appendix). CP- 
knowers had 93% accuracy for small sets (compared with 89% in 
Study 1), and 41% accuracy for large sets (compared with 42% in Study 
1). Second, around half of children (15/28, 54%) replied “I don’t know” 

when asked how many fish were in the experimenter’s pond, despite 
nearly all children giving the correct count when asked to recall a 
recently counted set (26/28, 93%). Thirteen children did initially pro-
vide a number in response to the experimenter’s question before being 
invited to count, but only two of these children guessed correctly. The 
remaining 15 children first said “I don’t know” in response to the ex-
perimenter’s question; when these children were prompted to guess, 
only seven did so, and only one was correct. Finally, and most conclu-
sively, no child’s guess matched the number of fish they actually placed 
on their board, and verbal responses differed from the target by about 
four on average (M = 4.25, SD = 3.24). Follow-up analyses showed that 
children who gave numerical responses did not match sets significantly 
more accurately than children who were unable to answer the experi-
menter’s initial question (t(26) = −0.65, p = .52). Together, these re-
sults suggest that CP-knowers were not subvocally counting either to (a) 
count the experimenter’s set, or (b) generate their own sets in Studies 
1–3. 

5.3. Discussion 

Thus far, we have found evidence that children’s ability to exactly 
match sets is poor prior to acquiring knowledge of the cardinal principle, 
that it improves when they become CP-knowers, but also that CP- 
knowers exhibit substantial variability in their performance. The find-
ings from Study 4 suggest that CP-knowers’ increased accuracy on this 
task does not reflect a change in their ability to subvocally count. 
Although the sample size included in this study was smaller than plan-
ned, somewhat limiting generalizability, the results were nevertheless 
quite categorical, and none of the 28 CP-knowers were able to correctly 
report how many objects were contained within a row of fish they had 
just matched. These findings therefore suggest that CP-knowers’ 

advantage over subset knowers is likely due to other changes in strategy. 
In Study 5, we tested two possibilities—a shift towards the use of one-to- 
one correspondence versus changes in the acuity of approximation while 
set-matching. 

6. Study 5 

In Studies 1–4 we found evidence that acquiring the cardinal prin-
ciple may be implicated in the ability to reason about exact equality. 
However, as noted by Izard et al. (2014), matching by approximation 
may frequently yield the same outcome as one-to-one correspondence 
on the set-matching task. For example, it is possible that all children in 
Studies 1–4 used an approximation strategy that simply improved as 
they became CP-knowers, resulting in increasing numbers of correct 
responses (Shusterman et al., 2016). However, another possibility is that 
becoming a CP-knower is one step towards learning procedures for 
matching sets via one-to-one correspondence, and that some children 
take longer than others to converge on this procedure, resulting in a mix 
of approximation and one-to-one strategies. In principle, both of these 
possibilities might produce a distribution of responses similar to the one 
we observed in Study 1 (Fig. 5). To investigate this issue, we used a 
modeling approach to identify the strategies underlying children’s set- 
matching behavior in Study 1. 

6.1. Methods 

We compared two models that each represented distinct hypotheses 
about the source of CP-knowers’ accuracy: a) that CP-knowers’ 

increased set-matching accuracy is driven by a refinement of the same 
approximation strategy used by subset knowers, or, b) that in some 
cases, CP-knowers instead use a qualitatively different strategy—one-to- 
one correspondence—rather than approximation. 

The first model assumes a purely approximation-based response, 
with CP-knowers’ higher set-matching accuracy due to increases in the 
acuity of their Approximate Number System. This “Approximation-only” 

model represents the null hypothesis that CP-knowers’ set-matching 
behavior relies on a numerical mechanism shared with subset 
knowers, and their performance reflects improvement in this mecha-
nism rather than a qualitative shift in their ability to reason about exact 
equality. On the Approximation-only model, we expect the distribution 
of CP-knowers’ responses to reflect the scalar variability associated with 
the ANS, but featuring greater precision than subset knower responses.7 

To test this hypothesis, we used maximum likelihood estimation to fit a 
Coefficient of Variation (COV) to CP-knowers’ responses for large sets 
(6, 8, and 10) on the parallel task.8 COV, a measure of how the error in 
participants’ responses (i.e., their generated set) increases with the 
magnitude of the stimulus, captures the scalar variability associated 
with approximation (Gordon, 2004; Whalen, Gallistel, & Gelman, 
1999). The fitted COV for the Approximation-only model therefore re-
flects a best estimate of participants’ approximation accuracy, allowing 
for a quantitative assessment of first, whether CP-knower behavior is 
well-characterized by an approximation strategy, and second, whether 
the difference between CP-knowers and subset knowers is primarily one 
of more accurate approximation. Concretely, the model estimates a COV 
by assuming that subject responses are sampled from a normal distri-
bution centered at the trial magnitude (6, 8, or 10) and with a standard 
deviation that is a product of the trial magnitude and the COV. In other 
words, participant responses y are independently sampled according to 
y ~ N(m, σ) for trial magnitude m ∈ {6, 8, 10} and σ = m * COV. The 
model estimates the most likely COV given the participant responses y. 

To test the alternative possibility that CP-knower responses reflect a 
combination of approximation and exact matching, rather than 
approximation alone, we also tested a “One-to-one mixture” model in 
which responses can either be generated by approximation or an exact 
match strategy. Concretely, the model assumes that a proportion k of 
responses were made through an error-free one-to-one matching pro-
cedure, while the remaining 1-k were generated through approximation 
as above (Zeigenfuse & Lee, 2010). The model therefore estimates a 
match percentage k, as well as a COV parameter to characterize the 
approximation behavior in 1-k percentage of trials. Intuitively, the more 
correct responses participants make above and beyond what would be 
expected by approximation alone, the better the One-to-one mixture 
model should characterize CP-knower data relative to the 
Approximation-only model. 

To evaluate the models, we first compare model fits for the 
Approximation-only and One-to-one mixture models applied to CP- 

7 Another possibility is that CP-knower performance reflects a greater pre-
cision in their mapping from ANS magnitudes to verbal labels than subset 
knowers, rather than a greater precision in ANS representations themselves. For 
our purposes, we treat these alternatives as equivalent, since both are consistent 
with an improved “Approximation-only” strategy.  

8 We did not include small numerosities (3, 4) in the fitting process. It is 
possible that participants may have recruited a mechanism other than 
approximation (e.g., subitizing, object-tracking) for these small sets (Feigenson 
et al., 2004); given this uncertainty, we restricted our analysis to the range 
where children would need approximation in the absence of exact matching, 
which is a conservative assumption, since subitizing behavior likely looks more 
like exact matching. 
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knower responses in Study 1. Further, using the estimated model pa-
rameters, we simulate response data for each model to provide an 
intuitive comparison to the empirical distribution obtained in Study 1. 
Next, we fit both models to the subset knower responses from Study 1; 
we expect that subset knowers are primarily using a noisy approxima-
tion strategy, which therefore provides a useful comparison for the 
model fits and parameter estimates from the CP-knower responses. In 
this vein, we also fit both models to the orthogonal responses from Study 
1, since we expected responses there to reflect an approximation strat-
egy by both subset and CP-knowers. 

If the responses from CP-knowers simply reflect an accurate 
approximation strategy, we should see little if any improvement by 
adding the exact match parameter k in our One-to-one mixture model 
and the fitted value for k should be small. In this case, we would also 
expect the simulated data from the Approximation-only model to closely 
match the CP-knower responses. On the other hand, if CP-knowers are 
using one-to-one correspondence in their responses, as the data in 
Fig. 5A suggests, then the One-to-one mixture model should provide a 
better fit and may have a large estimated match percent k, and should 
produce simulated data that more closely resemble the results from 
Study 1. Finally, because subset knowers are less likely to use an exact 
match strategy than CP-knowers, the results of the model comparison 
with CP-knower data should be attenuated among subset knowers. 

6.2. Results 

The Approximation-only model estimated a COV of 0.32 for the CP- 
knower responses. This COV is slightly higher than 0.15, the value 
typically associated with approximation for both numerate and innu-
merate adult approximation (Whalen, Gallistel, & Gelman, 1999; Gor-
don, 2004; Frank et al., 2008; Frank et al., 2012), but is comparable to 
COVs reported in previous developmental work using a similar task that 
could only be solved by approximation (Shusterman et al., 2017).9 Using 
summary values reported from Experiment 1 of Shusterman et al. (2017) 
for sets of 5–9 (a similar range as the large numerosities in Study 1), we 
calculated a mean COV of 0.27, which aligns with our fitted value of 
0.32 in the present task. 

Using the COV of 0.32 estimated by the Approximation-only model, 
we simulated independent responses for 10,000 participants approxi-
mating sets of 6, 8, and 10, and compared the resulting distribution to 
CP-knower data from Study 1 (Fig. 9, top). Although the simulated data 
matches the spread of the behavioral data, it fails to capture one key 
aspect: CP-knowers’ modal responses were centered on the correct set 
size for all large numerosities, resulting in a large peak. For simulated 
responses from the Approximation-only model to capture the large 
number of correct responses in the CP-knower data, it would be neces-
sary to assume a much lower COV than the fitted estimate (reflecting 
greater approximation precision). However, the simulated response 
distribution resulting from this modification would deviate from the 
empirical CP-knower distribution in two ways: it would include many 
more responses which are close, but not identical, to the correct number 
than what we find among CP-knowers, and it would fail to capture the 
spread of the empirical response distribution. In short, the high variance 
and the large number of exact matches exhibited by CP-knowers is not 
readily captured by the Approximation-only model, in which responses 
are normally distributed based on a stable, group-level COV. 

In contrast, the One-to-one mixture model provides a close fit to the 
empirical distribution of CP-knower responses from Study 1. It esti-
mated an exact match proportion k = 0.3, suggesting that roughly 30% 
of trials were associated with exact matches rather than approximating. 

As a reminder, since the model fitting treats trials independently, this k 
value indicates the percentage of all trials that are best fit by assuming 
exact matching behavior rather than responses generated via approxi-
mation. The COV estimate for approximation responses was 0.32, 
identical to the value obtained by the Approximation-only model. The 
stability of this fitted COV estimate in both models, along with the 
relatively high exact match proportion, further supports the conclusion 
that a combination of approximate and one-to-one strategies better 
captures CP-knowers’ behavior on the set-matching task. Indeed, the 
simulated data from the One-to-one mixture model (Fig. 9, bottom) 
provides a close approximation of the empirical distribution of CP- 
knower responses (Fig. 9, top). In addition to the qualitatively better 
fit provided by the One-to-one mixture model, model comparison using 
Bayesian Information Criterion (which penalizes the One-to-one mixture 
model for its additional parameter) suggests that the One-to-one mixture 
model provides a better fit to our behavioral data (BIC = 867.4, n = 210, 
k = 2, L = −428.3) than the Approximation-only model (BIC = 945.1, n 
= 210, k = 1, L = −469.9). 

Finally, we asked whether this mixture of approximation and one-to- 
one strategies was unique to CP-knowers by repeating the same process 
with the subset knower data from Study 1. Here, the Approximation- 
only model estimated a COV of 0.5710 (again, similar to a COV of 0.53 
calculated for subset knowers from Shusterman et al., 2017). Critically, 
the One-to-one mixture model produced a similar COV estimate of 0.56, 
but with an exact match estimate k of only 4% of all trials. Indeed, unlike 
our finding with CP-knowers, the addition of the exact match term did 
not produce a better fit to the subset knower data (BIC = 1213.3, n =
222, k = 2, L = −601.3) relative to the Approximation-only model (BIC 
= 1211.9, n = 222, k = 1, L = −603.2). Consistent with the possibility 
that many subset knowers may have simply provided the maximum 
allowable value as a distinct “strategy”, a separate model in which we 
estimated a “give-all percentage” p similar to the exact match percentage 
in our One-to-one mixture model estimated that 15% of trials followed 
the give-all strategy and produced a much better fit to the data than 
either the One-to-one mixture or Approximation-only model (“give-all” 

BIC = 1140.1, n = 222, k = 2, L = −564.7). 
The previous model results focused on set-matching behavior in the 

parallel condition of Study 1, illustrating the role of one-to-one corre-
spondence among CP-knowers but not subset knowers. In contrast, CP- 
knower responses in the orthogonal trials of Study 1 show no evidence 
of exact matching behavior for sets larger than 3–4 (Fig. 5B), suggesting 
that the Approximation-only model may better capture these data. 
Indeed, similar to the pattern of results with subset knower data on the 
parallel trials, the Approximation-only model estimates a COV of 0.46 
for the CP-knower orthogonal responses while the One-to-one mixture 
model estimates a similar COV of 0.49 and an exact match value k of 
only 7%. Unsurprisingly given these results, a model comparison reveals 
little improvement from the added exact match parameter (Approxi-
mation-only: BIC = 1068.9, n = 210, k = 1, L = −531.8; One-to-one 
mixture: BIC = 1067.7, n = 210, k = 2, L = −528.5).11 Thus, the 
value of the One-to-one mixture model’s exact match parameter appears 

9 In the study, 3- to 5-year-old CP-knowers were asked to fetch socks for a 
caterpillar with 1–20 ft (Shusterman et al., 2017). Because the caterpillar and 
socks were on different tables and all socks had to be retrieved in a single trip 
children could only use an approximation strategy. 

10 While earlier model fits did not use a prior in the maximum likelihood 
estimation, here we included a loose prior on the COV equal to the fitted value 
from the CP-knower responses. Without such a prior, the model estimates a 
subset knower COV closer to 0.7; this likely reflects an attempt to fit the many 
subset knower responses of 15 (the maximum value) as approximations greater 
than or equal to 15. The results reported here remain consistent even if we do 
not include a prior in the model fitting process for subset knower responses.  
11 The responses from subset knowers offer little point of comparison here. In 

fact, both models fail to converge on parameter estimates for the orthogonal 
trials from subset knowers. This is likely due to the fact that while CP-knower 
responses are roughly normally distributed, subset knower responses appear 
almost uniform for magnitudes above 4 (Figure 5B), with little discernible 
difference between response distributions for 6, 8, and 10, making it impossible 
to estimate a COV for subset knower responses. 
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to apply selectively to CP-knower responses on parallel trials, but not 
subset knower responses on the same trials or CP-knower responses on 
the orthogonal trials in Study 1. 

6.3. Discussion 

The findings of Study 5 suggest that CP-knowers’ increased set- 
matching accuracy relative to subset knowers reflects a qualitative 
shift in the strategies they used to generate exact matches, rather than a 
quantitative change in the acuity of approximation. Using a modeling 
approach, we found that a One-to-one mixture model, which assumed 
that CP-knowers deployed a combination of approximation and one-to- 
one strategies, was better able to capture CP-knower behavior compared 
to an Approximation-only model. Importantly, this effect was limited to 
CP-knowers on parallel trials; we found little evidence that any subset 
knowers were using one-to-one correspondence over approximation to 
establish exact matches, and little evidence for exact matching behavior 
in CP-knower responses on orthogonal trials. These results suggest that 
becoming a CP-knower may constitute an important step in learning 
how one-to-one correspondence can be used to establish exact equality. 
However, the results of these models also provide support for the hy-
pothesis that additional learning must occur after this point, as our One- 
to-one mixture model indicated a large proportion of trials on which CP- 
knowers were likely still approximating. 

7. General discussion 

Across five studies, we found evidence that the ability to establish 
exact equality between sets is related to children’s ability to accurately 
construct large sets through counting, but also that counting ability is 
not alone sufficient. Similar to innumerate adults described in some 
previous studies (Everett & Madora, 2012; Gordon, 2004), many chil-
dren failed to create exact matches for sets with greater than 3 items 
even when asked to match sets in parallel lines. In particular, we found 
that subset knowers—and some CP-knowers—resembled innumerate 
adults in this respect. Although subset knowers were unlike the Pirahã in 

that they did understand the meanings of some number words, they 
nevertheless generated sets either by noisily approximating or through 
the use of error-prone heuristics like giving all items in a set. In contrast, 
CP-knowers generated exact matches for both small and large sets 
significantly more often, though some proportion failed to do so 
consistently. Studies 2, 3, and 4 found that these results were not easily 
explained either by failure to understand that the goal of the task was to 
match sets by number, insufficient motivation to do so, or by surrepti-
tious counting on the part of CP-knowers. Finally, model simulations in 
Study 5 provided evidence that CP-knowers’ advantage on this task was 
not due to increases in approximation acuity after the subset knower 
stage, but instead reflected a shift towards a one-to-one matching 
strategy. 

These results have important implications for understanding the 
relationship between symbolic number and exact equality. First, the 
results address conflicting findings from studies in innumerate pop-
ulations. Previous evidence from innumerate groups was limited in 
several respects. First, because these studies included participants who 
lacked any number language, they were unable to isolate which com-
ponents of symbolic learning might impact numerical reasoning. Sec-
ond, because these studies have focused on small and remote indigenous 
populations, researchers have understandably been limited to relatively 
small sample sizes, and replication and extension of results by inde-
pendent labs is challenging. By using the methods developed for 
studying innumerate populations to study semi-numerate children, our 
studies address the same debate, but allow for a finer-grained under-
standing of the relation between numeracy and the ability to reason 
about exact equality. In particular, we ruled out several hypotheses, 
including the idea that reasoning about large exact number might 
emerge after learning 2–3 small number words, or that it might depend 
exclusively on the ability to perform rote counting procedures (e.g., 
pointing at objects and placing them in one-to-one correspondence with 
number words). Also, we found that knowledge of the cardinal principle 
appears to play some role, though even this is likely not sufficient, since 
even CP-knowers are accurate only about half the time when matching 
larger sets. These findings are compatible with the proposal that 

Fig. 9. Behavioral data from CP-knowers in Study 1 overlaid with simulated data from the Approximation-only (top) and One-to-one mixture (bottom) models for set 
sizes of 6, 8, and 10. 
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symbolic number is implicated in the ability to reason about exact nu-
merical equality for large numerosities (Everett & Madora, 2012; Gor-
don, 2004), while also greatly narrowing the possible roles that symbolic 
number might play. Also, this work suggests that to further study effects 
of symbolic number on non-verbal numerical thought, it may be un-
necessary to study members of remote indigenous groups since young 
children perform similarly and offer greater variability in their exposure 
to symbolic number. 

Although our studies were designed to address the debate regarding 
the role of symbolic systems in reasoning about exact equality that 
began in work on innumerate indigenous groups, caution should be 
taken in generalizing from our results back to those populations. The 
evidence we present is compatible with the thesis that symbolic number 
systems —specifically, verbal numerals—play an important role in 
human reasoning about exact equality, compatible with the conclusion 
reached by Gordon (2004) and others (Everett & Madora, 2012; Pica 
et al., 2004). However, members of the Pirahã, Munduruku, and other 
innumerate groups are different from children in very many ways, 
including their age, cognitive and linguistic development, exposure to 
formal education, exposure to formal testing environments, familiarity 
with western researchers, etc. Therefore, it remains possible that the 
way in which semi-numerate US children interpret experiments is 
entirely different, and that different mechanisms explain ostensibly 
similar behaviors across groups. For example, it remains possible that 
innumerate Pirahã adults are capable of making exact matches, but that 
they only fail when they do not understand that exact matches are the 
goal intended by the experimenter (Frank et al., 2008; Laurence & 
Margolis, 2007). As noted in the Introduction, some existing work begins 
to address this, by testing semi-numerate Tsimane children’s reasoning 
about exact number (Jara-Ettinger et al., 2017; Piantadosi, Jara- 
Ettinger, & Gibson, 2014). Although these studies use slightly 
different methods from both the work reported here and studies in the 
Pirahã and Munduruku, they converge in finding that the ability to 
generate exactly matching sets correlates with mastery of counting, but 
that knowledge of counting may not be the lone factor in explaining 
performance.12 Such work provides preliminary reason to believe that 
mechanisms at play in semi-numerate US children may also apply to 
other groups. 

In addition to addressing differing accounts from work in innumerate 
groups, our findings also provide an important framework for synthe-
sizing previous studies of children’s understanding of exact equality. As 
noted in the Introduction, past work in children has arrived at different 
conclusions that have been difficult to reconcile due to the use of 
different methods. For example, some studies have argued that because 
subset knowers judge that adding items to a set requires changing the 
number word that describes it—even for large numbers they do not yet 
know—children must know that large numbers have exact meanings, 
and therefore must have some understanding of exact equality, too. 
Other studies have argued that, to become CP-knowers, children must 
acquire knowledge of one-to-one correspondence and exact equality, 
and so claim that this knowledge should be present in all CP-knowers 
(Lipton & Spelke, 2006; Sarnecka & Carey, 2008; Sarnecka & Wright, 
2013). Finally, other studies have reported poor understanding of 
equality in much older CP-knowers (Piaget, 1965; Russac, 1978), 
sometimes even for small sets, though these studies failed to test 
whether understanding improved with changes in numeracy, or whether 
children understood the goals of the experiment. 

Our findings help to adjudicate between these previous claims by 

relating changes in numeracy in early development to children’s abili-
ties to make exact, non-symbolic matches of sets. Our repeated finding 
that subset knowers failed to match sets greater than 3 items, and that 
their set-matching was impacted by the similarity of objects across sets, 
is compatible with the finding of Izard et al. (2014) that subset knowers 
do not reliably track the numerosity of sets of objects (or empty 
branches) greater than 3, and that object identity may be especially 
important to matching sets for children at this level of numeracy. Also, 
our finding that CP-knowers’ are better at creating exact matches for 
large numerosities, and that they do so even when sets are made up of 
dissimilar objects, indicates that learning how to generate sets via 
counting likely plays an important role in helping children to reason 
abstractly about numerical equality for both small and large sets (Mix, 
1999; Negen & Sarnecka, 2009; Sarnecka & Wright, 2013). However, 
contrary to some claims in the literature (Carey, 2004; Sarnecka & 
Carey, 2008; Sarnecka & Wright, 2013), we fail to find evidence that 
acquiring the cardinal principle entails a complete understanding of 
exact equality. Instead, our results, coupled with the model simulations 
of Study 5, show that while CP-knowers as a group were more likely to 
match sets using one-to-one correspondence, many children appear to 
still approximate. Thus, though counting has a significant impact on 
children’s ability to match large sets, this ability may continue to 
develop for some years after children become CP-knowers. 

Perhaps the most interesting question raised by this work is precisely 
how learning to accurately count might facilitate reasoning about exact 
equality, and why counting alone might be insufficient. One reading of 
the findings presented here is that knowledge of exact equality is con-
structed in development; children may initially represent large numer-
osities only approximately, and may build new conceptual resources 
when they acquire symbolic number representations in language, 
consistent with the Whorfian claims of Gordon (2004). However, 
another possibility is that a concept of exact equality is innately avail-
able, and that innumerate and semi-numerate humans simply lack the 
necessary procedures for applying it to large sets. Such a hypothesis 
would make sense of the observation that children and innumerate 
groups are relatively good at matching small sets, and the claim that 
infants can represent and compare sets of up to ~3, even when hidden 
from sight. In their work on parallel individuation, Feigenson and Carey 
(2005) argued that representations of individual objects, which they call 
‘object-files’, “implicitly contain information about the number of ob-
jects in an array, in that there is a one-to-one correspondence between 
object-files and objects.” (p. 297). Critically, on their hypothesis, object 
files that correspond to each object in a set are activated simultaneously 
and in parallel, such that the number of objects that can be represented 
at any given time is constrained by the resources of working memory, 
with a limit of around 3–4 (Feigenson & Carey, 2005; Leslie, Xu, 
Tremoulet, & Scholl, 1998). One live possibility, then, is that innu-
merate humans can represent exact equality via one-to-one correspon-
dence, but do so only with a parallel, capacity-limited, verification 
procedure. 

When children become CP-knowers, they master a sequential veri-
fication procedure—i.e., counting—that allows the evaluation of one-to- 
one correspondence for sets of any size, effectively bypassing the ca-
pacity limits of working memory. As noted by Gelman and Gallistel 
(1978), a key characteristic of all human counting systems is that they 
allow sets to be partitioned into two groups, i.e., those that have been 
counted, and those that have not. Objects in an array are ticked off by 
labeling them, touching them, setting them aside, etc., often using a 
unique label (or body position) to distinguish each step in the parti-
tioning procedure. Crucially, the working memory resources required by 
such partitioning procedures do not differ as a function of set size—the 
5th step in the procedure is no more or less resource intensive than the 
10th step, or the Nth step. In other words, counting constitutes a Markov 
process that requires a constant amount of memory: As the size of the set 
increases, it is always represented by the single state of the current 
count, while the elements of the set—no matter how many—need never 

12 The findings of Jara-Ettinger et al. (2017) are consistent with the results 
reported here in that they found approximately half of CP-knowers (12/26) 
could not state whether two sets in one-to-one correspondence were “of equal 
quantity” through a number of transformations. Although they highlight that 
some subset knowers succeeded, only a few (6/37) were at ceiling on this task, 
a rate potentially compatible with an approximation strategy. 
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be stored in memory at all. Consequently, unlike parallel individuation, 
which is capacity limited due to its parallel one-to-one verification 
procedure, counting allows humans to assess equality via a similar one- 
to-one operation, but without a set-size limit. 

Notably, like the counting procedure, matching sets via one-to-one 
correspondence is also a Markov process. Much like counting, it re-
quires tracking which items in a set have most recently been paired off 
and partitioning them from items that have not been paired off yet. 
Given this structural similarity, we might expect children who have 
learned this basic counting procedure to notice, by analogy, that a 
similar process might be used to match large sets. However, as we 
showed here, knowledge of counting alone is clearly not sufficient, since 
even some subset knowers know how to count and partition sets (despite 
failing to recognize its significance to cardinality). Critically, though, 
understanding Hume’s principle requires more than knowing how to 
deploy a one-to-one correspondence procedure—it also requires recog-
nizing the significance of this relation to number, and that two sets that 
exhibit one-to-one correspondence are numerically equal (Decock, 
2008; Frege, 1884; Heck, 2000; Hume, 1739/2003; Wright, 1999). By 
most accounts, this is precisely what subset knowers do not appreciate 
about counting—that the one-to-one relation it creates between objects 
and labels provides a system for labeling the cardinalities of sets, and 
thus for exactly matching any two sets with the same label. 

Still, although children might have the conceptual basis for forming 
an analogy between counting and set-matching by the time they become 
CP-knowers, there is clearly something more that is required to notice 
this analogy, since not all CP-knowers successfully make exact matches. 
One hypothesis, tested in Study 3, is that the same social concerns for 
fair divisions of resources that led humans to develop symbolic number 
systems in the first place (Ifrah, 2000; Schmandt-Besserat, 1992) might 
lead children to want to ensure that two recipients get exactly matching 
shares. Although previous research has established that CP-knowers 
generate more exact matches than subset knowers when asked to 
share (Chernyak et al., 2016; Chernyak, et al., 2019), we found that 
presenting the set matching task in a sharing context did not make either 
CP or subset knowers more likely to generate exact matches, even for 
smaller set sizes (in contrast with Hamamouche et al., 2020). While 
those children who are already capable of generating exactly equal sets 
may apply that ability in the context of fair sharing, our findings suggest 
that a sharing context may not enable children who would not otherwise 
do so to generate exactly equal distributions. 

An alternative candidate hypothesis is that making this analogy de-
pends on experience generating and evaluating the outcomes of count-
ing procedures. Practice generating sets through counting provides 
opportunities to notice how counts with the same outcome contain the 
same number of items and vice versa, an ability which appears to emerge 
after children become CP-knowers (Frydman & Bryant, 1988; Muldoon, 
Lewis, & Freeman, 2003). Also, it may allow children to notice that 
adding exactly 1 item to a set changes a count, and therefore that dif-
ferences of even one item result in unequal amounts. This too, appears to 
emerge after the CP-knower stage (Condry & Spelke, 2008; Lipton & 
Spelke, 2006; Sarnecka & Wright, 2013). In general, practice counting 
provides CP-knowers the opportunity to notice how a one-to-one pro-
cedure like counting produces similar or different results. Such experi-
ences might help children converge on the use of a similar non-symbolic 
procedure for assessing the equality of sets. In other words, simple 
learned procedures may form the basis for creating models that allow 
children to discover the principles that these procedures instantiate. 

While our findings suggest that reasoning about exact equality may 
emerge through learning how counting is used to generate sets, there are 
several limitations to the studies described here that raise alternative 
explanations. First, it is possible that some proportion of the set- 
matching failures we report in both subset- and CP-knowers arise from 
performance demands that mask an otherwise mature understanding of 
one-to-one correspondence. Although the set-matching task is designed 
to be minimally demanding, children still had to visually saccade across 

both ponds, remember which fish they had already paired off, and co-
ordinate the retrieval and arrangement of new fish; it is possible that 
even a child who has learned to count and has acquired a non-symbolic 
set partitioning strategy based on this might still struggle to implement 
such a procedure due to limits in working memory. Second, although we 
attempted to highlight the numerical nature of the task in Study 2, it is 
still possible that some children may not have fully understood the task, 
perhaps because they did not understand what was meant by a request to 
provide “the same exact number.” Likewise, although Study 3 found that 
highlighting the importance of equitable resource allocation in a 
collaborative game did not help children generate exact matches, it is 
possible that a context in which children share their own more valuable 
resources, instead of allocating symbolic resources to third parties, could 
provide the requisite motivation. Finally, although our modeling 
approach provides some preliminary evidence that CP-knowers’ 

increased accuracy relative to subset knowers reflects a shift towards 
one-to-one procedures, larger datasets can both refine this model (e.g., 
by allowing us to compute individual-level COV values) and provide 
additional empirical tests of its validity. 

Together, our results point to a new direction in the study of the 
relation between symbolic representations and the ability to reason 
about exact equality. First, the finding that this ability may emerge 
gradually after learning to count indicates that the most fruitful future 
studies may not lie in studies of innumerate groups who completely lack 
a symbolic number system, or have only a few number words. Instead, 
this question may be better tested in children from diverse numerate 
cultures which vary along more dimensions of numeracy (such as 
exposure to counting or the structure of the count list; Almoammer et al., 
2013; Jara-Ettinger et al., 2017; Schneider et al., 2021). Second, our 
results suggest that such work should not only focus on changes in the 
ability to reason about exact equality before and after acquisition of the 
cardinal principle, but also on learning unfold after the acquisition of the 
cardinal principle, as children gain additional experience deploying 
counting procedures. Such investigations may provide insights not only 
on the ontogenesis of exact number concepts, but also on processes by 
which children extract conceptual knowledge from procedural routines. 

Acknowledgements 

We gratefully acknowledge the families of our participants, as well as 
the research assistants who collected data for these tasks. This work was 
supported by the National Science Foundation [DRL-2000827; DGE- 
1321851]. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cognition.2021.104952. 

References 
Almoammer, A., Sullivan, J., Donlan, C., Marušič, F., O’Donnell, T., & Barner, D. (2013). 
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technology: Evidence from Pirahã language and cognition. Cognition, 108(3), 
819–824. 

Frank, M. C., Fedorenko, E., Lai, P., Saxe, R., & Gibson, E. (2012). Verbal interference 
suppresses exact numerical representation. Cognitive Psychology, 64(1–2), 74–92. 

Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung 
über den Begriff der Zahl. w. Koebner. 

Frydman, O., & Bryant, P. (1988). Sharing and the understanding of number equivalence 
by young children. Cognitive Development, 3(4), 323–339. 

Frye, D., Braisby, N., Lowe, J., Maroudas, C., & Nicholls, J. (1989). Young children’s 
understanding of counting and cardinality. Child Development, 1158–1171. 

Fuson, K. C. (1988). Children’s counting and concepts of number (Springer Science & 
Business Media). 

Fuson, K. C., Lyons, B. G., Pergament, G. G., Hall, J. W., & Kwon, Y. (1988). Effects of 
collection terms on class-inclusion and on number tasks. Cognitive Psychology, 20(1), 
96–120. 

Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and conservation 
of numerical equivalence. Child Development, 91–97. 

Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. 
Cognition, 44(1–2), 43–74. 

Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to 
integers. Trends in Cognitive Sciences, 4(2), 59–65. 

Garegae, K. G., & Lekoko, R. N. (2006). Intuitive mathematical knowledge as an essential 
aspect of contemporary adult learning: A case of women street vendors in the city of 
Gaborone. Literacy and Numeracy Studies, 15(1), 61–77. 

Gelman, R. (1969). Conservation acquisition: A problem of learning to attend to relevant 
attributes. Journal of Experimental Child Psychology, 7(2), 167–187. 

Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? 
Trends in Cognitive Sciences, 9(1), 6–10. 

Gelman, R., & Gallistel, C. R. (1978). The Child’s understanding of number. Cambridge, 
MA: Harvard University Press.  

Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. 
Science, 306(5695), 496–499. 

Hamamouche, K., Chernyak, N., & Cordes, S. (2020). Sharing scenarios facilitate division 
performance in preschoolers. Cognitive Development, 56, 100954. 

Hatano, G., Miyake, Y., & Binks, M. G. (1977). Performance of expert abacus operators. 
Cognition, 5(1), 47–55. 

Heck, R. G. (2000). Cardinality, counting, and equinumerosity. Notre Dame Journal of 
Formal Logic, 41(3), 187–209. 

Hume, D. (1739/2003). A treatise of human nature. Courier Corporation.  
Ifrah, G. (2000). The universal history of numbers. London: Harvill.  
Izard, V., Streri, A., & Spelke, E. S. (2014). Toward exact number: Young children use 

one-to-one correspondence to measure set identity but not numerical equality. 
Cognitive Psychology, 72, 27–53. 

Jara-Ettinger, J., Piantadosi, S., Spelke, E. S., Levy, R., & Gibson, E. (2017). Mastery of 
the logic of natural numbers is not the result of mastery of counting: Evidence from 
late counters. Developmental Science, 20(6), Article e12459. 

Kay, P., & Kempton, W. (1984). What is the Sapir-Whorf hypothesis? American 
Anthropologist, 86(1), 65–79. 

Kifleyesus, A. (2009). Jeberti women Traders’ innumeracy. Its impact on commercial 
activity in Eritrea. L’Homme. Revue française d’anthropologie, 189, 49–80. 

Laurence, S., & Margolis, E. (2007). Linguistic determinism and the innate basis of 
number. The Innate Mind, 3, 139–169. 

LeFevre, J. A., Polyzoi, E., Skwarchuk, S. L., Fast, L., & Sowinski, C. (2010). Do home 
numeracy and literacy practices of Greek and Canadian parents predict the 
numeracy skills of kindergarten children? International Journal of Early Years 
Education, 18(1), 55–70. 

Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural 
number concepts. Trends in Cognitive Sciences, 12(6), 213–218. 

Leslie, A. M., Xu, F., Tremoulet, P. D., & Scholl, B. J. (1998). Indexing and the object 
concept: Developing what and where systems. Trends in Cognitive Sciences, 2(1), 
10–18. 

Lipton, J. S., & Spelke, E. S. (2006). Preschool children master the logic of number word 
meanings. Cognition, 98(3), B57–B66. 

Markman, E. M. (1979). Classes and collections: Conceptual organization and numerical 
abilities. Cognitive Psychology, 11(4), 395–411. 

Mattessich, R. (1987). Prehistoric accounting and the problem of representation: On 
recent archeological evidence of the middle-east from 8000 BC to 3000 BC. The 
Accounting Historians Journal, 14(2), 71–91. 

McGarrigle, J., & Donaldson, M. (1974). Conservation accidents. Cognition, 3(4), 
341–350. 

Mehler, J., & Bever, T. G. (1967). Cognitive capacity of very young children. Science, 158 
(3797), 141–142. 

Mix, K. S. (1999). Similarity and numerical equivalence: Appearances count. Cognitive 
Development, 14(2), 269–297. 

Muldoon, K., Lewis, C., & Freeman, N. H. (2003). Putting counting to work: Preschoolers’ 

understanding of cardinal extension. International Journal of Educational Research, 39 
(7), 695–718. 

Negen, J., & Sarnecka, B. W. (2009). Young children’s number-word knowledge predicts their 
performance on a nonlinguistic number task. 

Negen, J., & Sarnecka, B. W. (2015). Is there really a link between exact-number 
knowledge and approximate number system acuity in young children? British Journal 
of Developmental Psychology, 33(1), 92–105. 

Ng, R., Heyman, G. D., & Barner, D. (2011). Collaboration promotes proportional 
reasoning about resource distribution in young children. Developmental Psychology, 
47(5), 1230. 

Owens, K., & Lean, G. (2018). Body-part tally systems. In History of number (pp. 61–72). 
Cham: Springer.  

Piaget, J. (1953). The origin of intelligence in the child. New Fetter Lane, New York: 
Routledge & Kegan Paul.  

Piaget, J. (1965). The Child’s conception of number. New York: W. W. Norton & Company, 
Inc.  

Piantadosi, S. T., Jara-Ettinger, J., & Gibson, E. (2014). Children’s learning of number 
words in an indigenous farming-foraging group. Developmental Science, 17(4), 
553–563. 

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in 
an Amazonian indigene group. Science, 306(5695), 499–503. 

Rakoczy, H., Kaufmann, M., & Lohse, K. (2016). Young children understand the 
normative force of standards of equal resource distribution. Journal of Experimental 
Child Psychology, 150, 396–403. 

Rose, S. A., & Blank, M. (1974). The potency of context in children’s cognition: An 
illustration through conservation. Child Development, 499–502. 

Russac, R. J. (1978). The relation between two strategies of cardinal number: 
Correspondence and counting. Child Development, 728–735. 

Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children 
must learn and when they learn it. Cognition, 108(3), 662–674. 

Sarnecka, B. W., & Gelman, S. A. (2004). Six does not just mean a lot: Preschoolers see 
number words as specific. Cognition, 92(3), 329–352. 

Sarnecka, B. W., & Wright, C. E. (2013). The idea of an exact number: Children’s 
understanding of cardinality and equinumerosity. Cognitive Science, 37(8), 
1493–1506. 

Saxe, G. B. (1981). Body parts as numerals: A developmental analysis of numeration 
among the Oksapmin in Papua New Guinea. Child Development, 306–316. 

Schaeffer, B., Eggleston, V. H., & Scott, J. L. (1974). Number development in young 
children. Cognitive Psychology, 6(3), 357–379. 

Schmandt-Besserat, D. (1992). Before writing, vol. I: From counting to cuneiform. 1. 
University of Texas Press.  

Schneider, R. M., Sullivan, J., Guo, K., & Barner, D. (2021). What counts? Sources of 
knowledge in children’s acquisition of the successor function. Child Development, 92 
(4), e476–e492. 

R.M. Schneider et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0050
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0050
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0050
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0055
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0055
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0055
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0060
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0060
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0065
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0070
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0070
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0075
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0075
https://doi.org/10.1037/dev0000196
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9049
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9049
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9049
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0085
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0085
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0085
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0090
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0090
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0095
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0095
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0100
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0100
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0100
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0105
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0105
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0105
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0110
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0110
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0115
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0115
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0115
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0120
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0120
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0125
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0125
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0130
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0130
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0135
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0135
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0140
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0140
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0145
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0145
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0150
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0150
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0155
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0155
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0155
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0160
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0160
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0165
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0165
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0170
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0170
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0175
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0175
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0180
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0180
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0185
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0185
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0185
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0190
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0190
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0195
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0195
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0200
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0200
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0205
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0205
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0205
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0210
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0210
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0215
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0215
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0220
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0220
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0225
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0225
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9050
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9050
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0230
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0230
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0235
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0235
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9048
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9040
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0240
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0240
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0240
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0245
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0245
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0245
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0250
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0250
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0255
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0255
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0260
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0260
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9038
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9038
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9038
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9038
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0265
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0265
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0270
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0270
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0270
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0275
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0275
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0280
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0280
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0285
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0285
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0285
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0290
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0290
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0295
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0295
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0300
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0300
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0305
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0305
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0305
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0310
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0310
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0315
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0315
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0315
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9043
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9043
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9043
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0320
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0320
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0325
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0325
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0330
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0330
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0335
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0335
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0335
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0340
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0340
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9042
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9042
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf9042
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0345
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0345
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0350
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0350
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0355
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0355
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0360
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0360
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0365
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0365
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0365
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0370
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0370
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0375
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0375
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0380
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0380
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0385
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0385
http://refhub.elsevier.com/S0010-0277(21)00375-9/rf0385


Cognition 218 (2022) 104952

19
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