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Language gives humans extraordinary cognitive abili-
ties, but its role in numerical cognition remains unre-
solved. Studies of human infants and nonhuman animals 
have shown that at least some numerical abilities do 
not depend on language. Babies, monkeys, and even 
invertebrates can make precise distinctions between 
small quantities without counting (up to about four; 
Feigenson et al., 2004; Pahl et al., 2013) and can rapidly 
distinguish the numerosities of larger sets, although 
only roughly (Cheyette & Piantadosi, 2020; Dehaene, 
1997; Dehaene et  al., 1998). Whereas the ability to 
represent small exact and large approximate numbers 
is consistent across species, the ability to represent 
larger numbers exactly (e.g., exactly seven) appears to 
be unique to humans (Dehaene, 1997; cf. Brannon, 
2005) and is often attributed to language (Bloom, 1994; 
Carey & Barner, 2019; Chomsky, 1988). Specifically, 
predominant accounts posit that the structure of the 
verbal count list (e.g., “one, two, three . . .”), which 
children learn to recite long before they understand the 

meanings of the number words (Davidson et al., 2012; 
Sarnecka et  al., 2015; Wynn, 1992), allows them to 
discover the logic of numbers by induction (Bloom, 
1994; Carey, 2004, 2009; Piantadosi et al., 2012; Spelke, 
2003; cf. Butterworth et al., 2008; R. Gelman & Gallistel, 
2004; Leslie et al., 2008).

This account draws support from studies of isolated 
groups with few or no words for exact quantities.  
Specifically, two indigenous groups in the Brazilian  
Amazon—the Pirahã and the Mundurukú—have no 
words denoting large exact quantities (and in the case 
of the Pirahã, no words for any exact quantity, not even 
“one”; Frank et al., 2008; Pica et al., 2004). To test large 
exact number concepts in such groups without using 
number words, researchers have used simple numerical 
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Abstract

Previous findings suggest that mentally representing exact numbers larger than four depends on a verbal count 
routine (e.g., “one, two, three . . .”). However, these findings are controversial because they rely on comparisons 
across radically different languages and cultures. We tested the role of language in number concepts within a single 
population—the Tsimane’ of Bolivia—in which knowledge of number words varies across individual adults. We used 
a novel data-analysis model to quantify the point at which participants (N = 30) switched from exact to approximate 
number representations during a simple numerical matching task. The results show that these behavioral switch 
points were bounded by participants’ verbal count ranges; their representations of exact cardinalities were limited to 
the number words they knew. Beyond that range, they resorted to numerical approximation. These results resolve 
competing accounts of previous findings and provide unambiguous evidence that large exact number concepts are 
enabled by language.
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tasks that require only behavioral responses, often on 
sets of physical objects (e.g., seven pebbles; Fig. 1). 
Pirahã and Mundurukú adults perform well on these 
tasks only up to about four objects; for larger cardinali-
ties, they are unable to reproduce the number of objects 
in a set exactly, relying instead on approximation (Frank 
et al., 2008; Gordon, 2004; Pica et al., 2004). A similar 
pattern has been found in Nicaraguan Homesigners, a 
group of congenitally deaf adults whose language lacks 
a count routine (Spaepen et al., 2011). In sum, people 
without words for large exact numbers seem unable to 
represent cardinalities larger than four, leading some 
scholars to conclude that the verbal count list “enable[s] 
exact enumeration” (Gordon, 2004, p. 498).

However, these findings are difficult to interpret 
(e.g., Butterworth et al., 2008; Gleitman & Papafragou, 
2013), in part because they rely on comparisons across 
languages and cultures. Groups without exact number 
words (such as the Pirahã) are compared, if only implic-
itly, with groups that have productive counting systems 
(such as U.S. Americans). Of course, isolated groups 
differ radically from Western, educated, industrialized, 
rich, and democratic (WEIRD; Henrich et  al., 2010) 
groups in many ways besides their knowledge of num-
ber words (e.g., Everett, 2009), and any of these differ-
ences could account for the observed difference in 
numerical cognition (R. Gelman & Butterworth, 2005; 
Spaepen et  al., 2011). For example, some scholars 
suggest that the Pirahã failed to make exact numerical 
matches of large sets because they were simply  
“indifferent to exact numerical equality” (R. Gelman &  
Gallistel, 2004, p. 442; also see Laurence & Margolis, 
2007; Spaepen et al., 2011), perhaps because “keeping 
track of large exact quantities is not critical for getting 
along in Pirahã society” (Casasanto, 2005, p. 1721). 
Indeed, whereas quantification is prized in WEIRD cul-
tures, unindustrialized groups such as the Pirahã do not 
track chronological age, use currency, or have units of 
measurement (Cooperrider & Gentner, 2019; Diekmann 
et al., 2017; Everett, 2009). Cross-cultural comparisons 
cannot in principle distinguish whether large exact 
number concepts depend on a verbal count routine or 
on other aspects of language and culture.

Even if these studies had clearly established a causal 
role for language in large exact number concepts, it 
would remain unclear what role that is. Some accounts 
posit that the verbal count list is instrumental both for 
inducing the principles of number (e.g., Hume’s prin-
ciple; Carey & Barner, 2019; Schneider & Barner, 2020) 
and for using those principles to construct representa-
tions of specific cardinalities (e.g., exactly seven; Carey, 
2004). Alternatively, the verbal count list may be neces-
sary for inducing the logic of number only, which 

people could then use to enumerate large sets whether 
or not the corresponding verbal symbols were available 
to them. Previous cross-cultural studies were not able 
to distinguish between these possibilities because they 
tested numerical abilities only at the extremes; the 
numerical abilities of the Pirahã (or any group without 
large exact number words) could reflect a lack of the 
requisite number principles, number words, or both.

Some studies have tested the role of number words 
in large exact number concepts without comparing lan-
guage groups but have found mixed results. In a group 
of undergraduate students, verbal interference impaired 
performance on some numerical tasks more than on a 
spatial control task, suggesting a functional role for lan-
guage in representing large exact numbers (Frank et al., 
2012). However, despite verbal interference, participants 
performed well on two other tests of large exact number 
representations, including the orthogonal-matching task, 
complicating interpretation of the results. In another 
study, U.S. children overwhelmingly failed to make exact 
numerical matches of large sets, but they were also 
imprecise in a task that required only one-to-one match-
ing of objects (Schneider & Barner, 2020). In sum, find-
ings of previous studies do not clearly establish whether 
or how large exact number concepts are shaped by 
language.

Here, we addressed these inferential challenges by 
testing the relationship between number words and 

Statement of Relevance

Animal species share some basic numerical 
abilities, but only humans can reason about exact 
numbers such as seven or 42. What allows us to 
accomplish this extraordinary cognitive feat? 
Here, we tested the role of language in number 
concepts among the Tsimane’, an indigenous 
group whose adults vary in their knowledge of 
number words. We found that this linguistic 
knowledge placed an upper bound on participants’ 
ability to mentally represent exact quantities; 
participants correctly matched the number of 
objects in (unlabeled) sets only when that number 
was within their highest verbal count. For larger 
sets, they had no way of representing exactly how 
many objects they saw. This finding provides the 
clearest evidence to date that number words play 
a functional role in people’s ability to represent 
exact quantities larger than four and supports the 
broader claim that language can enable new 
conceptual abilities.
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number concepts in the Tsimane’, a group of unindus-
trialized farmer-foragers indigenous to the Bolivian 
Amazon (Huanca, 2008). Unlike other isolated popula-
tions, the Tsimane’ have a fully productive system of 
number words in their language. Yet unlike adults in 
WEIRD cultures, Tsimane’ adults exhibit considerable 
variation in their knowledge of the verbal count list; 
many Tsimane’ adults can count indefinitely, but some 
do not know words above 10, others falter at 12, and 
so on. This variability allowed us (a) to compare verbal 
and numerical abilities across individuals, rather than 

across groups, and (b) to do so at many intermediate 
levels, not just at the extremes. To determine which 
large numbers participants could represent exactly, and 
which numbers they could only approximate, we used 
a novel statistical analysis to model participants’ behav-
ioral responses in a numerical matching task. This 
model used the known psychophysical properties of 
numerical estimation to determine the set size at which 
participants switched from exact to approximate num-
ber representations. By comparing this switch point 
with participants’ highest verbal counts, we tested 
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Fig. 1. Paradigm and results from the matching tasks. In the parallel-matching task (top left), the experimenter presented a sample 
array of objects (sets of 3, 4, 5, 10, and 15 white pebbles) in a lateral line, and participants arranged response items (glass pebbles) 
parallel to each item in the sample array. This task required participants to use one-to-one correspondence to numerically match the 
number of objects in the sample array. In the orthogonal-matching task (top right), the sample array was arranged in a line extending 
away from the participant, and participants arranged their response arrays in a line that was orthogonal to the sample array. Correct 
matching required participants to represent the cardinality of the sets (of 4 to 25 white pebbles). The graphs show the number of 
numerical matches and mismatches made by low counters to each sample array in each task.
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whether people need a system of number symbols 
(such as those in the verbal count list) in order to rep-
resent large exact numbers. If they do (Carey, 2009; 
Spelke, 2003), then we should find not only that these 
abilities are correlated but also that one systematically 
exceeds the other; participants’ highest verbal counts 
should place an upper bound on their numerical rep-
resentations. Alternatively, if number words are neces-
sary for discovering the logic of number but not for 
deploying it (or not at all; e.g., Butterworth et al., 2008; 
Leslie et al., 2008), then participants’ numerical repre-
sentations should sometimes exceed their verbal count 
ranges. Unlike in previous studies, here the relationship 
between verbal counting and numerical reproduction 
cannot be attributed to broad cultural or linguistic dif-
ferences because our participants shared the same cul-
ture and language and, in many cases, lived in the same 
small community.

Method

Participants

All participants gave verbal informed consent before 
participating in the study, which was approved by the 
institutional review board at University of California, 
Berkeley. As part of an initial questionnaire, participants 
were asked to count aloud as high as they were able, 
starting at one, in whatever language they preferred 
(i.e., Tsimane’ or Spanish). Participants who faltered in 
their count routine for numbers below 20 were selected 
for the low-counter group (n = 15; mean age = 48.73 
years, SEM = 4.34, mean schooling = 0.2 years, SEM = 
0.11), and those who counted past 40 were selected for 
the control group of high counters (n = 15; mean age = 
32.87 years, SEM = 4.52, mean schooling = 4.00 years, 
SEM = 0.65). The sample size was determined by the 
number of participants we encountered during our lim-
ited time in the field who qualified as low counters (with 
a maximum of 20). After this initial selection, we tested 
participants’ count ranges using a pebble-counting task, 
described below.

Pebble-counting task

Participants were presented with a pile of glass pebbles 
(30 for low counters, 40 for high counters) on the test-
ing table. Starting with the pebbles on their left side, 
participants moved them one at a time to the right while 
counting each one aloud in the language of their choos-
ing.1 After they stopped counting, participants were 
asked how many pebbles there were in the counted 

set. The experimenters and translator noted any count-
ing errors. With three exceptions, participants per-
formed this task twice, once before and once after 
completing the matching tasks. We used the higher of 
the two counts as participants’ highest verbal count.

Numerical matching tasks

Participants then performed two nonverbal number 
tasks in which they were asked to make arrays with the 
same number of objects that they saw in a sample array. 
In the parallel-matching task, the experimenter pre-
sented a sample array of objects (in a lateral line) for 
each trial, and participants arranged their response items 
parallel to each item in the sample array (see Fig. 1, top 
left; see the Supplemental Material available online for 
details). Because the sample and response arrays were 
parallel, participants could use one-to-one correspon-
dence to perform the match in this task, spatially align-
ing each object in their response array with an object 
in the sample array without representing the cardinality 
of either set. For this reason, the parallel-matching task 
does not test representations of large exact numbers. 
Rather, success on this task suggests understanding of 
exact numerical equivalence: For two sets to be equal 
in number, every element in each set must correspond 
to an element in the other set (Hume, 1739/1978; Jara-
Ettinger et  al., 2017; Schneider & Barner, 2020). This 
task also functioned as a comprehension check, ensur-
ing that participants understood the mechanics of these 
numerical reproduction tasks. Participants correctly pro-
duced a parallel match for each of five sample arrays 
(N = 3, 4, 5, 10, and 15 pebbles) and then advanced to 
the orthogonal-matching task.

In the orthogonal-matching task, the sample arrays 
were arranged sagittally in a line extending away from 
the participant. Participants arranged their response 
arrays laterally (as in the parallel-matching task), in a 
line that was orthogonal to the sample array (Fig. 1, 
top right; see the Supplemental Material for details). 
Unlike the parallel-matching task, this task precluded 
spatially aligning sample and response arrays, and 
therefore required participants to represent the cardi-
nality of each set. However, it is minimally demanding 
on participants’ numerical abilities: Participants were 
not asked to perform any arithmetic operations, and 
because sample and response arrays remained visible 
throughout each trial, they could inspect them indefi-
nitely before finalizing their responses (which were 
unspeeded). In a series of practice trials, all participants 
correctly performed orthogonal matches for sets of size 
3, 4, and 5 (with feedback) before advancing to the 
critical trials.
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In critical trials, participants received no feedback 
about their performance. For high counters, the first 
critical trial was a sample array of 10 objects. For low 
counters, the first critical trial was a sample array with 
two fewer objects than the participant’s highest verbal 
count. From this starting point, we followed a predefined 
staircasing procedure (i.e., +2 for correct, −1 for incor-
rect) to determine the size of each sample array until 
participants (a) produced three incorrect response arrays 
for sample arrays of the same number (e.g., samples with 
15 objects), (b) correctly matched three arrays number-
ing 20 or more, or (c) completed 20 critical trials.

Psychophysical model of numerical 

abilities

To evaluate the limits of participants’ exact numerical 
representations, we analyzed their distribution of 
responses using a generative Bayesian data analysis  
(A. Gelman et al., 2014). This model formalized a pro-
cess in which participants use an exact system (with 
constant error) for smaller sets and an approximate 
system (with scalar variability) for larger sets. The num-
ber at which participants switched from exact to 
approximate representations is the participant’s switch 

point, our dependent measure.
Formally, for the exact system (i.e., numbers below 

the switch point) we assumed that participants responded 
from a Cauchy(µlow + n, σlow) distribution, where n is 
the number of objects in the sample set, and µlow and 
σlow are location and scale parameters (so that µlow ≈ 0 
means that responses are centered on the true value n, 
and σlow ≈ 0 means that responses cluster tightly around 
the mode µlow + n). A Cauchy distribution was used 
because errors in the exact system likely reflect inat-
tention or confusion, and estimation of this distribution 
is robust to outliers. For the approximate system, we 
assumed a standard model of approximate-number psy-
chophysics (Dehaene, 2011) where participants respond 
according to the distribution normal(n, wi × n), where 
wi is a Weber ratio parameter that varies by individual. 
Putting these together, the model assumes that when 
shown a sample of n objects, participant responses r 
follow
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where si is the switch point of the ith participant. In 
addition, we included a hierarchical model for 

participant Weber ratios wi, in which wi ~ normal(µW 
and σW) was constrained to be positive, meaning that 
we partially pooled participant estimates of Weber frac-
tions. We put a uniform prior on si between 1 and 40,2 
a standard normal prior on µlow, and exponential(1) 
priors on σlow, µW, and σW (see the Supplemental Mate-
rial for details).

This model allowed us to infer the likely distribution 
of switch-point values si from participants’ pattern of 
behavioral responses while accounting for the uncer-
tainty inherent both in exact enumeration (i.e., a noise 
parameter for low numbers, shared across participants) 
and in numerical approximation (i.e., a Weber ratio 
fitted to each participant).

Results

Whereas high counters counted to 40 without error on 
both trials, low counters’ highest verbal counts ranged 
from 6 to 20 (M = 12.6) and often differed across the 
two trials (mean absolute difference = 2.0).

Parallel matching

In the parallel-matching task, high counters performed 
at ceiling, correctly matching each of the sample sets 
(N = 3, 4, 5, 10, 15 pebbles) on their first attempt. Low 
counters were 85% accurate on their first attempts and 
70% accurate on sets larger than five (i.e., 10 and 15). 
With one exception, their incorrect responses were 
within two of the correct number (see Fig. 1, bottom 
left), and no participant made more than two errors. 
When participants did make an error, they then showed 
100% accuracy on their second attempt, fully recon-
structing the response set without feedback about the 
magnitude or direction of their error.

Orthogonal matching

Participants were less accurate in the orthogonal- 
matching task (M = 51% correct) than in the parallel-
matching task (M = 93% correct), even for the same 
cardinalities (56% correct for sets of 3, 4, 5, 10, or 15; 
see Fig. 1, bottom right).

The model estimated a mean Weber ratio of 0.13, 
consistent with Weber ratios found in studies of numeri-
cal estimation in adults (Piazza et al., 2004; Pica et al., 
2004), including Tsimane’ adults (Gibson et al, 2017). 
The noise for low numbers was estimated to have a 
mean (µlow) of –0.14 and a standard deviation (σlow)  
of 0.14.

The critical question is how participants’ switch 
points were related to their verbal counting abilities. 
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Figure 2 (left) shows estimated switch points as a func-
tion of participants’ highest verbal counts, and Figure 3 
shows the data for each individual low counter. (Because 
high counters’ switch-point data were less informative 
on their own, owing to potential ceiling effects, their 
individual plots can be seen in the Supplemental Mate-
rial.) Although analysis of the response data was con-
ducted blind to participants’ counting abilities, it inferred 
markedly different switch points for low and high coun-
ters solely on the basis of their numerical matching 
responses. Whereas switch points among the low coun-
ters averaged less than seven and never exceeded 11, 
the average switch point among the high counters  
was more than 28, t p( . ) . , .17 47 11 01 0001= < .3 The high-
est verbal count reliably predicted the switch point 
above and beyond any effect of formal education: 
Higher counters had higher switch points, b = 0.55, 
SEM t p= = <0 01 26 5 48 0001. , ( ) . , . . This relationship also 
held for participants with no education: The highest 
verbal count reliably predicted the switch point even 
when we analyzed only those participants with no for-
mal education (i.e., 12 low counters and two high coun-
ters), β = = = =0 40 0 15 12 2 67 02. , . , ( ) . , .SEM t p  (all tests 
were two-sided).

Importantly, participants’ counting abilities and 
matching abilities were related beyond simple correla-
tion: Low counters’ switch points fell at or below their 
highest verbal count (i.e., below the diagonal dotted 
line) with only one exception, as shown in Figure 2 
(left). According to Pearson χ2 tests, this ratio (i.e., 
above:below) differed significantly from chance, χ2(1, 
N = 15) = 9.60, p = 002. Note that, in principle, data 
points could fall below the line simply because of a 
floor effect, in which participants showed low switch 
points independent of their counting abilities. However, 
this possibility is unlikely to explain our results, for two 
reasons. First, our switch-point estimates varied widely 
on the basis of participants’ numerical matching perfor-
mance alone, demonstrating the sensitivity of our tests. 
Second, in a further test of this possibility, we conducted 
a permutation test in which we randomized the pairings 
of participants’ highest verbal counts and switch points. 
This procedure respects the marginal distribution of 
each variable and therefore allowed us to evaluate what 
proportion of data points we should expect to fall below 
the line by chance (i.e., if verbal counting performance 
and numerical matching performance were statistically 
independent). In 10,000 permuted samples, the number 
of participants whose switch points exceeded their high-
est counts was 7.72 on average and was never as small 
or smaller than the number we observed (i.e., one), 
indicating that the observed pattern is extremely unlikely 
to have occurred by chance (p < .001).

Figure 2 (right) shows the probability that low coun-
ters’ switch points exceeded their highest verbal counts, 
calculated using each participant’s distribution of 
switch-point estimates. With one exception, these 
switch points were below the 50% threshold (M = 
11.96%), indicating that they were likely within partici-
pants’ verbal count range. For numbers beyond their 
highest verbal count, low counters’ responses were on 
average seven times more likely to reflect an approxi-
mate system than an exact system.

In addition to our generative model, we also used a 
simple behavioral criterion to evaluate participants’ 
highest match: the number at which they failed to pro-
duce an exact match three times (i.e., three numerical 
mismatches, which also served as one of our stopping 
criteria during testing). Given the staircase procedure 
we used for testing, producing three numerical mis-
matches on sets of N required a combination of failing 
on sets of N + 1 and succeeding on sets of N − 2. We 
therefore defined the highest match as two less than 
the number at which participants produced three mis-
matches. This alternative measure was highly correlated 
with participants’ switch points as estimated by the 
model, R t p2 67 11 2 97 01= = =. , ( ) . , . . Although these two 
measures were often identical (see Fig. 3), the highest 
match was on average higher than estimated switch 
points (mean difference = 1.77) and therefore provides 
a more conservative estimate of participants’ numerical 
reproduction abilities. Nevertheless, this alternative 
measure showed the same relationship to the highest 
count as the switch-point estimates from our model: 
With one exception, participants’ highest matches were 
at or below their highest verbal counts (see red circles 
in Fig. 2, left, and dashed red lines in Fig. 3), and this 
ratio differed significantly from chance, χ2(1, N = 13) = 
7.69, p = .006. Low counters’ verbal count range reliably 
predicted their highest match, t p( ) . , .11 2 44 03= = . This 
alternative measure also revealed the same difference 
between groups: Whereas the highest match for low coun-
ters (by this criteria) was below 10 on average (and was 
always below 15), no high counter produced three mis-
matches on any number we tested; rather, they all suc-
ceeded to make exact numerical matches into the 20s.4

Discussion

In a group of Tsimane’ adults, the ability to represent 
exact numbers was limited to the part of the verbal count 
list they had mastered. Using a generative model of their 
responses, we found that participants with a limited 
verbal count range could reliably match the numerosity 
of sets only within this verbal range; for larger numbers 
of objects, they overwhelmingly failed to make exact 
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Fig. 2. Overview of results. The graph on the left shows participants’ estimated switch points as a function of their highest verbal 
counts, separately for low counters (red shapes) and high counters (blue shapes). The switch point is defined as the number at which 
participants switched from exact to approximate number representations. Diamonds indicate median estimates, and error bars indicate 
50% confidence intervals. Red circles show results from an alternative measure of highest numerical match that was based on the set 
size at which participants produced three mismatches. The graph on the right shows the probability that low counters’ switch points 
exceeded their highest verbal counts. Above the dashed line, participants’ switch points likely exceeded their verbal count range; below 
the dashed line, they likely did not.
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(based on the set size at which they produced three numerical mismatches). Shaded regions are beyond the participant’s verbal count range.

matches (by two measures), relying instead on numeri-
cal approximation. Numerical matching abilities also 
improved with verbal counting abilities: Participants who 

showed no upper bound on their verbal count range 
also showed no upper bound on their numerical match-
ing abilities.
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These findings clarify the role of language in number 
concepts in three ways. First, unlike other isolated 
groups, our Tsimane’ participants succeeded in repre-
senting some cardinalities above 4. This success shows 
that even low counters were not “indifferent to exact 
numerical equality” (R. Gelman & Gallistel, 2004, p. 442) 
but rather were attuned to it in both in the orthogonal 
and parallel-matching tasks (in which they succeeded 
for sets as large as 15). Yet despite this sensitivity to exact 
number (and the availability of alternative matching strat-
egies), participants were unable to represent cardinalities 
beyond their verbal range, even for sets smaller than 10.

Second, the differences in conceptual abilities that we 
observed cannot reflect broad differences across groups, 
as our participants shared a common language and cul-
ture. In principle, the correlation between participants’ 
numeric abilities could reflect differences in their formal 
education. However, the highest count reliably predicted 
the highest numerical match when we controlled for 
differences in education and when we analyzed only the 
participants with no formal schooling at all. Therefore, 
this relationship cannot easily be attributed to differences 
in language, culture, or formal education.

Finally, whereas previous studies have shown cross-
cultural correlations between verbal counting abilities 
and numerical reproduction abilities, our inferences did 
not rely on correlation. Rather than simply asking whether 
one ability predicts the other ability, we also asked 
whether one ability systematically exceeds the other, 
allowing us to assess the causal relationship between 
them. In principle, people could represent “an unbounded 
set of discrete values” as needed (Leslie et  al., 2007,  
p. 132) once they are equipped with the logic of large 
exact numbers, whether by experience or by a “preverbal 
counting mechanism” (Gallistel & Gelman, 1992, p. 43). 
If so, then low counters’ numerical matching ranges 
should have systematically exceeded their verbal count-
ing ranges. We found the opposite pattern, providing the 
strongest evidence to date that number words play a 
functional role in representing large exact numbers 
(Carey, 2004, 2009; Carey & Barner, 2019; Le Corre & 
Carey, 2007; Piantadosi et al., 2012; Spelke, 2003) and 
that this role is not all or nothing. Rather, the ability to 
represent large exact numbers depends critically on the 
availability of the corresponding (verbal) symbols. In this 
way, the verbal count list may serve not only in the induc-
tion of numerical principles but also in their use.5

In interpreting the findings in the Pirahã, Mundurukú, 
and other isolated groups, some researchers have  
characterized the verbal count list as a “cognitive technol-
ogy” (Frank et al., 2008, p. 819; also see Frank & Barner, 
2012), one of many “cultural tools” (Dehaene, 2011, p. 263)  

for representing number. Although these descriptions 
may be compelling, they do little to clarify whether a 
verbal count list is necessary for representing large exact 
numbers. Some scholars have argued that just as a bicy-
cle is useful but not necessary for transportation, “using 
words to name exact numerosities is useful but not 
necessary” (Butterworth et al., 2008, p. 13182) for rep-
resenting large exact numbers, providing an efficient way 
to encode numerical information that “complements, 
rather than alter[s] or replac[es], nonverbal representa-
tions” (Gleitman & Papafragou, 2013, p. 515). If such 
nonverbal representations of large exact numbers exist 
(e.g., Butterworth et al., 2008; Leslie et al., 2008), they 
had no effect on the numerical abilities of our participants 
(or of the Pirahã, Mundurukú, or Nicaraguan Home-
signers), none of whom showed any sign of “alternative 
representational strategies” (Gleitman & Papafragou, 
2013, p. 520). Rather, if the verbal count list is a cognitive 
technology, it is one that not only facilitates large exact 
number representations but also enables them, allowing 
people to maintain precise numerical information over 
time and space (Frank et al., 2008).

Beyond theories of numerical cognition, these find-
ings also bear on a broader debate about the role of 
language in cognition (Fodor, 1975; Hume, 1748/2000; 
Bowerman & Levinson, 2001; Lupyan, 2016; Sapir, 1929; 
Whorf, 2012). Linguistic-relativity effects have been 
reported in a variety of domains, including color (Forder 
& Lupyan, 2019; Regier & Kay, 2009), time (Gijssels & 
Casasanto, 2017), musical pitch (Dolscheid et al., 2013), 
and spatial reasoning (Majid et al., 2004). However, the 
idea that language shapes thought remains controver-
sial (Gleitman & Papafragou, 2013; McWhorter, 2014; 
Pinker, 1994), in part because there are many versions 
of the Whorfian hypothesis (Casasanto, 2016; Kay & 
Kempton, 1984). In a strong version of the hypothesis, 
language not only can change conceptual representa-
tions but also can enable new ones (Casasanto, 2016; 
R. Gelman & Butterworth, 2005). The present results 
reveal such an effect in the domain of number, where 
language appears to enable representations of exact 
cardinalities larger than four. To be clear, language may 
not be the only external symbol system that can enable 
large exact number concepts (and not all known num-
ber words are precisely represented; Landy et al., 2013). 
For example, finger counting (Bender & Beller, 2012), 
body-part counting (Saxe, 1981), and abacus use (Frank 
& Barner, 2012) may also support the development and 
elaboration of such concepts (Overmann, 2018; Wiese, 
2003). Whatever set of symbols people use, their ability 
to represent large exact numbers extends only as far 
as their mastery of those symbols.
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Notes

1. Both Tsimane’ and Spanish have recursive, base-10 counting 
systems. Unlike in English and Spanish, which have irregular 
constructions such as “eleven” (11) or “trece” (13), Tsimane’ 
number words are regular throughout the teens (e.g., ten-one, 
ten-two, ten-three). Some participants used a mixture of both 
languages (e.g., starting in Tsimane’ for the lower numbers and 

then switching into Spanish for the higher numbers), whereas 
other participants used only one language to count.
2. Our model requires s to have an upper bound, which we 
set to the largest number of objects tested (i.e., 40 objects in 
our test of high counters’ verbal count range). This provided 
a conservative estimate of high counters’ switch points, which 
may be much higher (or unbounded), and allowed us to test 
the sensitivity of these estimates to differences in numerical 
matching performance.
3. High counters’ switch points were estimated on the basis of 
the range of tested values. Their true switch points (and verbal 
count ranges) are likely much higher and may be unbounded. 
Therefore, the difference in switch points we observed between 
groups is likely an underestimate of the true difference.
4. Two of the 15 low counters did not fail three times on the 
same number within 20 critical trials, and so their data do not 
appear in Figures 2 or 3.
5. The availability of a verbal count list may be necessary but 
not sufficient for representing large exact numbers, as evidenced 
by the large gap between some participants’ highest count and 
highest match.
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