
A Promising Path Towards
Autoformalization and General Artificial

Intelligence

Christian Szegedy(B)

Google Research, Mountain View, CA, USA
szegedy@google.com

Abstract. An autoformalization system is an AI that learns to read
natural language content and to turn it into an abstract, machine ver-
ifiable formalization, ideally by bootstrapping from unlabeled training
data with minimum human interaction. This is a difficult task in gen-
eral, one that would require strong automated reasoning and automated
natural language processing capabilities. In this paper, it is argued that
autoformalization is a promising path for systems to learn sophisticated,
general purpose reasoning in all domains of mathematics and computer
science. This could have far reaching implications not just for mathemat-
ical research, but also for software synthesis. Here I provide the outline
for a realistic path towards those goals and give a survey of recent results
that support the feasibility of this direction.

1 Introduction

Today, AI systems are able to learn solving tasks that used to be thought of
taking uniquely human capabilities until recently: computer vision [46], gener-
ating artistic images [13], music [21], mastering the game of go [43], discovering
novel drugs [15] and performing symbolic integration [31], to name just a few.
These and many other domains seemed to require uniquely human intuition and
insight, but were transformed by deep learning in the past few years. While
progress has been extremely impressive in those areas, each particular solution
addresses a relatively narrow use case. On the other hand, general reasoning
still seems a uniquely human feat and many [20] would argue that creating AI
agents with general reasoning capabilities equaling to those of humans would
take decades, maybe centuries, if possible at all.

This invited paper argues that in the coming years we will see automated
systems to rival humans in general reasoning and the fastest path to achieve this
is by creating automated mathematical reasoning systems via autoformalization.

Here, I give an overview of the hurdles involved, a realistic path ahead and
indications on the feasibility of that path.

Mathematics is the discipline of pure reasoning. Mathematical reasoning is
not about mathematics per se, it is about reasoning in general. Whether to verify

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-53518-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_1

4 C. Szegedy

the correctness or resource use of a computer program or to derive the conse-
quences of a physical model, it is all mathematical reasoning, as long as it is
based on fully formalized premises and transformation rules. Some tasks may
require such a large number of logical steps that humans find it impossible to
check them manually, but often they are easily solved by SAT-solvers [5] – pro-
grams whose sole goal is to decide if a Boolean expression can ever evaluate to
true.

For certain classes of expressions, like those that occur frequently in chip
design, SAT solvers work remarkably well [10]. An extreme demonstration of
their power is their use in the computer generated proof of a previously unsolved
famous conjecture in mathematics [25] – the Boolean Pythagorean triples prob-
lem. The final proof was 200 terabytes long.

However, SAT-solvers cannot verify statements about infinitely many cases.
For example, they can’t even verify that the addition of integer numbers is com-
mutative. There are automated theorem provers (ATPs [11]) for finding moder-
ately difficult proofs in first order logic that can deal with such problems. Proof
automation via “hammers” [6,27] is also applied for higher order logic as well
in the context of interactive theorem proving. Most existing proof automation is
based on hand engineered heuristics, not on machine learning and is not capable
of open-ended self-improvement.

Mathematical reasoning is just reasoning about anything specified formally.
Reasoning about anything formal could be a powerful general tool. If we want to
create an artificially intelligent system and demonstrate its general intelligence,
it should be able to reason about any area of mathematics or at least it should
be able to learn to do so given enough time. If it succeeds in practice, then we
can be convinced that it is likely that it will be able to learn to cope with any
scientific discipline as far as it can be formalized precisely.

Human mathematics consists of a large variety of loosely connected domains,
each of them having its own flavor of proofs, arguments and intuition. Human
mathematicians spend years studying just to become experts in a few of those
domains. An artificial system engineered to produce strong results in a particular
area is not a “general purpose” reasoning engine. However, if a system demon-
strates that it can learn to reason in any area it is exposed to, then that would
be a convincing demonstration of artificial general intelligence.

Therefore it is natural to ask: Will we ever arrive at the point where an AI
agent can learn to do reasoning as well as the best humans in the world in most
established domains of mathematics.

2 What is (Auto-)formalization?

The task of formalization is to turn informal descriptions into some formally
correct and automatically checkable format. Examples of mathematical formal-
ization include the formal proofs of the Kepler conjecture [22], the Four-Color
theorem [16] and the Feit-Thompson theorem [17]. These formalization works
required a lot of human effort. For example the formalization of the Kepler con-
jecture took over 20 man-years of work. The aim of autoformalization would be

A Promising Path Towards Autoformalization and General AI 5

to automate such efforts and scale them up to process large chunks of existing
mathematics in a fully automated manner.

More generally, “formalization” can refer to any process that takes an infor-
mal description for input and produces machine executable code. By this defi-
nition, formalization covers both programming and mathematical formalization.
This generalized notion is also justified because computer verifiable proofs are in
fact programs to feed some minimalistic verification kernel. For example, most
proof assistants are complete programming languages that allow for running
arbitrary programs while guaranteeing the correctness of the produced proofs.

Complex mathematics is especially time consuming to formalize by humans.
Therefore, it is highly unlikely that a significant portion of mathematics will be
formalized manually in the coming decades. Could formalization be ever auto-
mated completely? The ideal solution could process natural language text fully
automatically, with minimal intervention from the user.

We call an automated system that is capable of automatically formalizing
significant portions of mathematics from a natural language input and verifying
it automatically an autoformalization system.

3 Why is Autoformalization Essential?

Is targeting autoformalization a prerequisite for training – and evaluating – AI
systems for general purpose reasoning?

As was argued in the introduction, all formalizable reasoning can be viewed
as mathematical in nature. Conversely, general purpose reasoning systems should
be able to learn to reason about any domain of mathematics and should be able
to discover new mathematical domains when needed or useful for another task.

Avoiding autoformalization (interpreting natural language text and commu-
nicating in natural language) would seem to simplify the engineering of formal
reasoning systems. However, evaluating a highly sophisticated, general purpose,
automated mathematical reasoning system without natural language communi-
cation capabilities would raise several problems:

1. Training and evaluation of a purely formal system would require a wide range
of formalized statements. Creating a large corpus of diverse and correct for-
malized statements is a daunting task in and of itself.

2. Any human interaction with our system would be by formal inputs and out-
puts. If the system is trained by automated exploration and develops its own
web of definitions (about which it does not need to communicate in natural
language), it will resemble alien mathematics that is very hard to decipher
and interpret by humans.

3. Every time the system needs to be applied to a new application domain, it
would require full-blown manual formalization of that domain. This would
limit its usefulness significantly.

Training a strong mathematical reasoning system without autoformalization
might be still possible if one could develop a concise, well defined notion of

6 C. Szegedy

“interestingness” that is used as the objective for open-ended exploration. How-
ever it would be very hard to communicate with such a system as it would not
be able to communicate in terms of human mathematics. Furthermore, “inter-
estingness” and “usefulness” of mathematical statements and theories are not
easy to capture formally. It is hard to decide whether some mathematical area
will ever have external applications or would provide insights for other domains
down the line. Usefulness is highly contextual. There is no known way to guide
a search process automatically towards useful theorems and notions in an open
ended manner.

Since only a tiny portion of human mathematics is formalized currently, the
only way for utilizing a significant fraction of accumulated human mathemati-
cal knowledge is by processing it from natural language. Therefore, the safest
option is to use the entirety of human mathematics as a basis for training and
benchmarking.

It could be easier to engineer and train an AI agent that can reason and
formalize at the same time than designing one for just reasoning or just for
formalization alone if one manages to initiate a positive feedback loop between
reasoning abilities and formalization capabilities. Improving one aspect (trans-
lation or reasoning) of the system helps collecting new training data for the
other:

– Improved reasoning allows for filling in larger holes in informal arguments,
allows for translating and interpreting inputs specified more informally.

– Improved informal to formal translation expands the amount of data to guide
mathematical exploration.

4 Potential Implications of Successful Autoformalization

Autoformalization is not just a challenge: successful autoformalization would
represent a breakthrough for general AI with significant implications in various
domains.

Autoformalization would demonstrate that sophisticated natural language
understanding between humans and AI is feasible: machines could communicate
in natural language over ambiguous content and use it to express or guide internal
experiences. It would serve as a clear demonstration that natural language is a
feasible communication medium for computers as well.

By nature, autoformalization would have immediate practical implications
for mathematics. Initially, a strong autoformalization system could be used for
verifying existing and new mathematical papers and would enable strong seman-
tic search engines.

In the more general sense of formalization, a solution to autoformalization
could give rise to programming agents that turn natural language descriptions
into programs. Since programming languages can be formalized completely, rea-
soning systems trained on mathematical formalization could be fine-tuned for the
task of creating algorithms in specific programming languages. By formalizing

A Promising Path Towards Autoformalization and General AI 7

domain level knowledge, the system could learn to produce code from natu-
ral language input. Such reasoning systems should be able to create the formal
specification of the task, the executable code and correctness proof of the newly
designed algorithm, all at the same time.

Furthermore, this would give rise to strong and flexible general purpose rea-
soning engines that could be integrated into AI applications, combining reasoning
with perception. This could be used to infuse strong reasoning capabilities into
other AI systems and serve as a basis for a wide range of such applications (for
example semantic search, software synthesis and verification, computer aided
design, etc.).

5 Hurdles of Autoformalization

Designing and implementing a strong autoformalization system is a difficult
undertaking and is subject to several current research efforts. Let us start with
the outline of some straighforward attempt at its construction and analyze its
most likely failure modes. We assume a system based on the following two
components:

1. A reasoning engine (theorem prover),
2. a translation component for translating informal (natural language) state-

ments into formal statements.

The translation component could generate multiple formal candidate state-
ments in the context of the previously formalized statements and definitions. The
system is successful if it creates formal translations for a substantial fraction of
the informal statements after a reasonable number of attempts. (The automated
verification of the correctness of translation remains a fuzzy, practical question
that is subject to ongoing research, however.)

The first problem with mathematical formalization is that it requires at least
some initial core formalization data-sets with a significant amount of parallel
corpus in formalized and informal mathematical content. One limiting factor is
the cost and effort of generating this seed corpus of translations.

Once we have a somewhat working “seed” translation model, one can try
bootstrapping and training the system by generating several candidate transla-
tions of mathematical statements and trying to prove/refute each of them until
we find a formalization that is correct, but not trivial. This means that we can
see at least four major potential failure modes:

1. The seed formalization system is too weak to initiate a feedback loop that
can open-endedly improve itself.

2. The system might start to generate mistranslations for further training of the
translation model, entering a feedback loop of increasingly worse translations.

3. Translation gets stuck: it would generate a lot of incorrect statements that
are never verified; and the system stops to improve.

8 C. Szegedy

4. The translation never crosses domain boundaries: it formalizes significant
parts of some domain, but never succeeds in generalizing to new domains;
and the training gets stuck after formalizing limited parts of the corpus.

Natural language is context dependent: it might contain hidden assumptions
in far away parts of the text which are impossible to find without a thorough
search. For example, papers tend to refer to text books for “basic terminology”.
The formalization system would need to look up the textbook and mine it for
all the subtleties of its definitions and verify that those definitions are consistent
with those in the repository of the formal system. If not, then the system would
need to create new formal definitions that match those in the paper. Moreover,
the paper itself might use inconsistent notations: “abuses of language”. Addi-
tionally, it might just have plain errors obvious to the human reader. Therefore
a straightforward translation attempt is not a robust solution and is unlikely to
work in practice.

6 A Proposed Path to Autoformalization

It is hard to anticipate solutions of the potential problems from the previous
section. Still, one can aim at designing a system that has a plausible chance of
being bootstrapped without getting stuck or misguided.

Instead of direct translation, we propose to rely on a combination of explo-
ration and approximate translation. By “approximate translation”, we mean
that the translation model does not produce concrete formal transcriptions but
approximate embedding vectors thereof. These are then used as guides for an
exploration algorithm as the following diagram shows:

Informal content T Approximate Embeddings T’

Formalized Corpus D

Embedding

Guiding exploration

Form

Exploration

The first technical issue concerns the input format of informal mathematical
content (i.e. mathematical papers and text books). A textual representation
could work well for use cases that do not require the understanding of formulas,
diagrams and graphs. However, mathematical content often uses a lot of formulas
and diagrams. Geometric illustrations play a role in informing the reader as well.
The safest path seems to rely on images instead of textual representation. While
this puts more burden on the machine learning part of the system, it can reduce
the engineering effort significantly.

Let S denote the set of syntactically correct formal mathematical statements
in some formalization environment (e.g. HOL Light). By S′, we denote those
statements with a formal proof already present in our database. C is the set

A Promising Path Towards Autoformalization and General AI 9

of possible forward reasoning rules called “conversions”. C consists of partial
functions with signature c : S′∗ −→ S, that given a sequence s of true statements
in S′ it either generates a new true statement c(s) or it just fails. Our system
will rely on a few deep learning models:

– An embedding model eθ : S −→ R
n that embeds formal mathematical state-

ments as low dimensional vectors.
– An approximate translation model aξ : Rk×l −→ R

n, that outputs an approx-
imate embedding of the formal translation of the informal input statement
(given as a picture).

– An exploration guidance model gη : S × R
n × R

n −→ [0, 1]C × [0, 1]. This
model acts as a premise selection model, combined with a conversion type
prediction, assuming a finite number of possible conversions. fη(s, t, p) which
takes a formal statement s, a target embedding t and the embedding for
additional conversion parameters and predicts probabilities for the best con-
version steps [0, 1]C and conversion parameter list p at the same time. The
exact working of such models is described in [4].

For technical simplicity, we made the simplifying assumption that statements
and input images are represented by fixed dimensional vectors, but this is not
essential and could be easily changed. The parameters of the deep learning mod-
els eθ, aξ and gη are trained in lock step as described below.

The system is designed to learn to explore the set of true statements while
this exploration is guided by a set of target embeddings. These target embedding
vectors are produced by translation model aξ. During the process, we maintain
the following data sets:

– A fixed set of informal target content T ⊆ R
k×l in raw image format. (The

pages containing the statements and definitions we are aiming to formalize.)
– The image of T ′

ξ of T under the approximate translation model: {aξ(t)|t ∈
T} ⊆ R

n. (The predicted embeddings of the informal statements on the formal
side.)

– A set of already explored mathematical statements D ⊆ S′ of true and proven
statements,

– The embeddings of the explored mathematical statements: D′
θ = {eθ(s)|s ∈

D} ⊆ R
n.

Our goal is to find a subset of D′ ⊆ D, whose image under eθ aligns well with
T ′. If our translation model is reasonably good, then true – but non-trivally true
– translations are likely to correspond to their informal description. We train all
the models simultaneously while we update the datasets T ′, D and D′ as we go.

The goal of embedding model eθ is to map semantically similar statements
to vectors that are close. One can train such models in some supervised, end-to-
end manner for one or multiple concrete semantic tasks. For example, the model
could embed statements in order to predict whether the statement is useful for
proving another specified statement, cf. [1] and [4]. Another related semantic
task is that of reasoning in latent space [33], in which the model is trained to
perform approximate rewrite operations in the embedding space.

10 C. Szegedy

For processing the natural language input, our computer vision model aξ

predicts aξ(p) = eθ(t(p)), where t(p) stands for the hypothesized formalization
of page p. Since eθ is assumed to be an embedding model that reflects semantic
similarity, t can be multi-valued, reflecting that there are several correct formal
translations of the same informal statement, the embedding vectors of which are
expected to cluster in R

n.
In order to create a feedback loop between training θ and ξ, we maintain a

set of proved theorems, a large set of informal statements P and translations
Tξ = {aξ(p)|p ∈ P} of approximate translations of informal statements. To
generate the training data for training, we run guided exploration by sampling
forward reasoning steps using another deep neural network gη starting from
our already proved theorems with the goal of getting close to as many of the
approximate translated embeddings Tξ as possible. For this purpose, η is trained
via reinforcement learning in which the reward is based on the negative mini-
mum distance to the closest target embedding vector. The guidance model gη

samples both conversions and conversion parameters (“premises” used for the
conversion). Note that gη can be trained while circumventing the sparse reward
problem: even if we do not get close to any of our original targets, we can pretend
that the embedding of the statement we arrived at was our original goal from
the start. This idea is known as hindsight experience replay [2].

Once our guided search finds enough statements that match some of the
prescribed embeddings in Tξ, we would check that they are non-trivially true
and use them as verified translations for retraining aξ. As we proceed, we can
incrementally train eθ and gη as well. For example eθ could be trained by analyz-
ing the dependency structure of the explored statements (the tactic parameters
that led to the new statement), while gη is trained using reinforcement learning
utilizing the rewards collected during exploration.

The main advantage is that this system is expected to be more robust to
errors and incomplete inputs: if exploration is powerful enough, then it can work
even if we fail to translate some of the statements properly. Also, if formaliza-
tion gets stuck, the system can just relax the distance with which it accepts
formalization attempts in the embedding space, still producing valid theories
that might not exactly correspond to the informal corpus.

Also the system should be able to generalize to completely new domains more
easily, as exploration is more likely to be efficient in the early stages. This can
bootstrap the easy parts of the system and can prime the translation model and
later exploration so that it can continue bootstrapping successfully.

7 Further Ideas and Considerations

The previous section has given a rough outline of a system that could bootstrap
itself for mathematical reasoning via autoformalization. Here we consider addi-
tional details that are less critical but helpful for engineering a system described
in Sect. 6.

A Promising Path Towards Autoformalization and General AI 11

7.1 Choice of Foundation and Framework

Traditionally, many people would argue that the choice of the right framework
and foundation is crucial for the success of a formalization project. For human
users of interactive proof assistants the right framework can affect the pro-
ductivity of formalization, but generally these effects are hard to quantify and
there had been several types of logical foundations and frameworks that have
been applied successfully in large scale formalization efforts: Mizar [38], HOL
Light [23], HOL4 [45], Isabelle [53], Coq [7], Metamath [37] and Lean [8]. We
have only listed proof assistants that have demonstrated a significant amount of
successful formalization efforts: tens of thousands of theorems, some of them of
great complexity.

A few considerations apply when it comes to automatically formalizing from
natural language. Theorem libraries based on purely constructive non-classical
logic might have a significant mismatch with most mainstream mathematical
text for non-constructive mathematical objects. Also it is useful if the proof
assistant can be extended easily with new high level algorithms (new “tactics”,
for example). Engineering efforts required to interface with external libraries,
especially machine learning systems is a point of consideration, too.

One last concern is the expressiveness of the logic. Although first order logic
is generally capable of expressing the Zermelo-Fraenkel axiom system, it requires
maintaining axiom schemes which is a handicap. Based on these considerations,
higher order logic based systems with large theorem libraries (HOL, Isabelle,
Coq, Lean) seem to be best suited to be the foundation of an autoformalization
system.

7.2 Unsupervised Pretraining Tasks

Self-supervised pretraining might become an enabling factor for autoformaliza-
tion system. BERT [9] style pretraining for both formal and informal corpora
can pave the way, but formal content allows for much more creativity and pos-
sibility for pretraining models, these include training “skip-tree” models that
generate missing trees from their context. This task subsumes a lot of other
logical reasoning tasks
1. Skip-tree: removing some random or strategically selected subtree and predict

the whole missing subtree.
2. Type inference model: Learn to do (partial) type inference of formulas.
3. Predicting the embedding or the text of possible useful lemmas that could

help proving the statement.
4. Predicting the result (embeddings) of rewrites.
5. Predicting substitutions or inductive invariants.
6. Given a subtree, predict the containing tree.
7. Rewrite a formula with a sequence of rewrites, try to predict the sequence of

rewrites that has lead to the result.

Prior work also includes predicting the symbolic integral of expressions [31] and
predicting how general mathematical statements behave under rewrites in the
latent space [33].

12 C. Szegedy

7.3 Additional Technical Considerations

For the neural representation of formal content, the network architecture has a
significant effect on the performance of the reasoning system. Currently, deep
graph embedding networks [40,52] with node-sharing do best, however trans-
former networks [51] have yielded breakthrough on formal integration [31],
recently.

Our main approach is based on forward exploration. Aligning the result of
forward exploration with the target statement might require reverse (goal ori-
ented) proof search, however. As most research is done on reverse proof search
e.g. [4,26,55], integrating with such methods is likely a useful idea and a fruitful
engineering direction.

As described in the Sect. 6, we need to filter out translation candidates that
are incorrect, trivial or uninteresting. The first criterion is clear: we do not expect
wrong statements to be correct formalization candidates. It is harder to discard
candidate translations that are trivially true (e.g. due to too general assumptions
or other translation errors). This could be identified by observing the hardness of
proving statements. Also, if a statement is overly long, or has a lot of redundant
subtrees, then it is highly unlikely to come from formalizing human content. The
usefulness of the produced statements should give another strong indication of
good translations.

Curriculum learning is a promising way of learning to find longer proofs. A
remarkable result demonstrating the power of strong curriculum is [61] in which
they trained a reinforcement learning system to find proofs consisting of several
thousand elementary proof-steps without any search, just by letting the policy
network predict them in a single run.

Tactics in proof assistants are subroutines that perform complicated algo-
rithms in order to produce long chains of arguments about the correctness of
certain formulas. Examples of existing tactics include the application of SAT-
solvers or first order automated provers to prove statements that require simple
logical reasoning, but they can be as complex as using Gröbner bases of ILP
solvers to reason about polynomial equations or linear systems of Diophantine
inequalities. Given the complexity of such algorithms, it is unlikely that one
could synthesize a general purpose computer algebra system from scratch ini-
tially. However, the vast majority of sophisticated human mathematics was dis-
covered without the aid of computer programs, so we can hope that matching the
performance of human mathematicians could be achieved without synthesizing
complicated tactics.

For refutation and counterexample generation, it might be important to find
substitutions into statements that provide a refutation of that statement. In
general it is a promising research direction to use deep learning based models to
embed not just the syntactic form of formulas, but also some experience stream
associated with experimentation with the statements.

One difference between theorem proving and game playing engines is the
much wider breadth of mathematics. For neural network based systems, this
might mean that it could require very large neural networks to distill all the

A Promising Path Towards Autoformalization and General AI 13

skills required to cope with all areas of mathematics at once. One could try to
cope with that by utilizing mixture of expert models [58]. However, their fixed
gating mechanism and rigid model architectures are relatively hard to extend.
More flexible are multi-agent architectures using artificial market mechanisms
that allow arbitrary agents to bet on the status of mathematical conjectures
while the agents are rewarded for correct predictions, proving theorems formally
and for introducing interesting new conjectures. The above direction opens a
large box of interesting mechanism design [39] questions. [12] proposes that a
betting market based multi-agent system under resource constraints is useful for
assigning consistent probability values to mathematical statements. This could
give some theoretical backing and guidance towards such solutions.

8 Short History of Autoformalization

The idea of autoformalization was first presented in 1961 by John McCarthy [36].
Another early attempt was the 1990 doctoral thesis of Donald Simons [44]. A
first thorough study was performed in the 2004 doctoral thesis of Claus Zinn [60].
These works did not result in even partially practical solutions.

Josef Urban started to work on the topic in the early 2000s. He devised a
first large scale benchmark for reasoning in large theories [48], motivated by the
insight that reasoning in the presence of a large knowledge base of mathemat-
ical facts is a critical component in any autoformalization system. In 2007, he
published the pioneering MaLARea [50] system for reasoning in large theories.
From then on, with Cezary Kaliszyk they have been spearheading the research
on reasoning in large theories and autoformalization [28,29].

9 Indications of Feasibility

Given the great complexity and breadth of the problem, it is justified to ask why
is autoformalization even considered as a realistic goal in the short term – that
is, within years. This section tries to give heuristic arguments for the feasibility
of this task by methods that are either known or are on a clear improvement
trajectory.

The success of autoformalization hinges on solving two difficult-looking tasks:

1. General purpose symbolic reasoning
2. Strong natural language understanding

The thesis of this paper is that deep learning will enable the advancement of both
of those areas to the extent that is necessary for human level formalization and
reasoning performance in the coming years. Let us review their recent progress in
separation with the focus of exploring how they could enable autoformalization.

14 C. Szegedy

9.1 Search and Reasoning

Recently, it has been demonstrated by AlphaZero [42] that the same relatively
simple algorithm based on Monte Carlo tree search (MCTS) [30] and residual
convolutional networks [24] could achieve higher than human performance in
several two-person games: go, chess and shogi, by self-play alone, utilizing the
same algorithm for each of those games, without learning on any human expert
games at all. Effectively, AlphaZero was able to rediscover all of the important
chess, go and shogi knowledge in a few days that took human players centuries
to discover.

However, mathematical reasoning differs from game playing in many respects:

1. The impossibility of self play: If open ended exploration is considered as
an alternative, it is to decide what to explore. The lack of self play makes
automated curriculum learning much harder for theorem proving.

2. Large, indefinitely growing knowledge base, resulting in a virtually infinite
action space.

3. Very sparse reward: In the case of theorem proving, it is very hard to assign
reward to failed proof attempts.

4. The diversity of mathematical knowledge: by nature, two-player games are
very coherent, since each player has to be able to answer any move by any
other player. Mathematics consists of wide range of loosely connected disci-
plines and it takes a lot of human experts to cover each of them.

DeepMath was the first attempt for applying deep learning at premise selec-
tion for the Mizar corpus [49] via convolutional networks and it yielded some
initial improvements for this task. Also theorem prover E was improved by inte-
grating neural network guidance [35]. In 2017, TacticToe [14], has demonstrated
that tactic based higher order theorem proving via machine learning (even with-
out the use of deep learning) is possible.

More recently the DeepHOL system [4] gave further demonstration of the
power of deep learning in the more general case: for higher order logic and
in the presence of a large knowledge base of premises to be used. However,
formulas can be best described as graphs, suggesting the use of graph neural
networks, which was suggested first in [52] and then yielded significant gains
(40% relative increase in success rate) on the HOList benchmark in the end-to-
end proving scenario [40]. DeepHOL-Zero [3] has demonstrated that relatively
simple exploration heuristic allows for bootstrapping systems that can learn to
prove without existing human proof logs to train on. While the proofs created
by the above systems are very short, [61] demonstrates successfully, that with
the right curriculum, in their limited setting, it is possible to train models that
create proofs of several thousand steps without error.

9.2 Natural Language Processing and Understanding

Since 2017, natural language processing went through a revolution similar to that
of computer vision, due to new neural model architectures, especially transformer

A Promising Path Towards Autoformalization and General AI 15

networks [51] and large scale self-supervised training on vast corpora [9,41,56].
This has spurred fast advances in machine translation and language understand-
ing. On some of the benchmark, this has resulted in human or close to human
performance, for example on SQuAD 1.0 [57]. However this has lead to devel-
opment of improved benchmarks to target the common weak points of those
algorithms. Progress is still strong in this domain: improved model architectures
and better tasks on larger corpora have yielded significant gains at a steady
pace. On the analogy with computer vision, one can also foresee that natural
architecture search will give rise to further advances in this field as well. Aut-
oformalization systems can leverage all those advances for stronger translation
models from natural language to the embedding space of formal statements.

9.3 Overview

Here is a short overview of the factors that support the potential success of
autoformalization in the coming years:

1. The success of deep learning infused search in two person games, especially
AlphaZero [42] style Monte Carlo tree search [30].

2. The demonstrations of the usefulness of deep learning in automated reason-
ing: premise selection [1] and proof guidance [4,35,40]

3. The demonstration that automated proof search can be learned without
imitation [3].

4. The fast progress and success of neural architectures for formal and natural
language content, especially graph neural networks [40,52,54] and transform-
ers [51] for symbolic mathematics [31].

5. The success of imposing cyclic translation consistency [59] in image genera-
tion and unsupervised translation [32] give strong indications that autofor-
malization could be bootstrapped using very limited set of labeled pairs of
formalized theorems.

6. The success of hindsight experience replay [2] to address the sparse reward
problem for robotics applications.

7. The quick pace of progress in natural language processing via large, deep net-
work models, and large scale self-supervised pretraining. Impressive results
in several translation and natural language understanding benchmarks [34].

8. Generative neural models improve at a fast pace and yield impressive result
in a wide range of domains from image generation to drug discovery.

9. Multi-agent system with agents specialized in different domains [12] could
give a rise to open-ended self-improvement.

10. Automated optimization of neural architectures via neural architecture
search [47,62] and other automated methods [19].

11. Computational resources available for deep learning purposes are still
expanding quickly and are getting cheaper. For example, as of July 2019,
Google’ TPUv3 based pods can deliver over 100 petaFLOPS performance
for deep learning purposes [18].

16 C. Szegedy

10 General Summary and Conclusions

We have argued in this paper that:

1. Autoformalization could enable the development of a human level mathe-
matical reasoning engine in the next decade.

2. The implementation of autoformalization presents significant technical and
engineering challenges.

3. Successful implementation of mathematical reasoning (theorem proving) and
autoformalization has many implications that go far beyond just transform-
ing mathematics itself and could result in the creation of a general purpose
reasoning module to be used in other AI systems.

4. A reasoning system based purely on self-driven exploration for reasoning
without informal communication capabilities would be hard to evaluate and
use.

5. It is easier to engineer and bootstrap a system that learns to perform both
formalization and reasoning than either task in separation.

6. It seems easier to create a formalization system from image than text data.
7. A näıve, direct translation approach for autoformalization would be brittle,

hard to engineer and unlikely to work.
8. Combining approximate formalization (predicting embedding vectors instead

of formulas) and guided exploration is a more promising direction to auto-
formalization than direct translation.

9. Deep Learning should be crucial for open ended improvement and reaching
human level reasoning and formalization performance.

10. Recent progress in neural architectures, language modelling, self- and semi-
supervised training, reinforcement learning, automated neural architecture
search, and AI driven theorem proving paves the way for strong automated
reasoning and formalization systems.

Acknowledgements. My warmest thanks go to my close collaborators and colleagues
Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, Francois Chollet, Alex Alemi, Stew-
art Wilcox, Niklas Een, Geoffrey Irving, Victor Toman and Aditya Paliwal for their
contributions towards the goals sketched here. I am also indebted to Josef Urban and
Cezary Kaliszyk for their pioneering work and selflessly sharing their vision and exper-
tise and also for their collaboration on this area. I am also thankful to Ilya Sutskever,
Henryk Michalewski, Daniel Huang, Quoc Le, Dániel Varga, Zsolt Zombori, Adrián
Csiszárik for their feedback and valuable discussions on this topic. I would like to
thank to Jay Yagnik, Rahul Sukthankar, Ashok Popat, Rif Saurous, Jeff Dean and
Geoffrey Hinton for their support of deep learning based reasoning work at Google. I
am grateful to Péter Szoldán, Christoph Benzmüller and Bruce Miller for proofreading
the manuscript.

A Promising Path Towards Autoformalization and General AI 17

References

1. Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: Deepmath -
deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von
Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, Barcelona, Spain, 5–10 December 2016, pp. 2235–2243 (2016)

2. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural
Information Processing Systems 30 (NIPS 2017), pp. 5048–5058 (2017)

3. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C.: Learning to reason in large the-
ories without imitation. arXiv preprint arXiv:1905.10501 (2019)

4. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an envi-
ronment for machine learning of higher-order theorem proving. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, Proceedings of Machine Learning Research, Long
Beach, California, USA, 9–15 June 2019, vol. 97, pp. 454–463. PMLR (2019)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016)

7. The Coq Proof Assistant. http://coq.inria.fr
8. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean

theorem prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Long and Short Papers), vol. 1, pp.
4171–4186 (2019)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

11. Fitting, M.: First-order Logic and Automated Theorem Proving. Springer, New
York (2012). https://doi.org/10.1007/978-1-4612-2360-3

12. Garrabrant, S., Benson-Tilsen, T., Critch, A., Soares, N., Taylor, J.: Logical induc-
tion. arXiv preprint arXiv:1609.03543 (2016)

13. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neu-
ral networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2414–2423. IEEE
Computer Society (2016)

14. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–
12 May 2017, EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017)

15. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform.
35(1), 3–14 (2016)

16. Gonthier, G.: Formal proof-the four-color theorem. Not. AMS 55(11), 1382–1393
(2008)

http://arxiv.org/abs/1905.10501
https://doi.org/10.1007/3-540-49059-0_14
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-1-4612-2360-3
http://arxiv.org/abs/1609.03543

18 C. Szegedy

17. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

18. Google’s scalable supercomputers for machine learning, Cloud TPU Pods, are now
publicly available in beta. https://bit.ly/2YkZh3i

19. Gordon, A., et al.: MorphNet: Fast & simple resource-constrained structure learn-
ing of deep networks. In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1586–
1595. IEEE Computer Society (2018)

20. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., Evans, O.: When will AI exceed
human performance? evidence from AI experts. J. Artif. Intell. Res. 62, 729–754
(2018)

21. Hadjeres, G., Pachet, F., Nielsen, F.: DeepBach: a steerable model for Bach chorales
generation. In: Proceedings of the 34th International Conference on Machine Learn-
ing, vol. 70, pp. 1362–1371. JMLR (2017)

22. Hales, T., et al.: A formal proof of the Kepler conjecture. In: Forum of Mathematics,
Pi, vol. 5. Cambridge University Press (2017)

23. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016)

25. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

26. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: a learning environment
for theorem proving. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

27. Kaliszyk, C., Urban, J.: HOL (y) hammer: online ATP service for HOL light. Math.
Comput. Sci. 9(1), 5–22 (2015)

28. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (Rough
Diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227–233.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 15

29. Kaliszyk, C., Urban, J., Vyskocil, J.: System description: statistical parsing of
informalized Mizar formulas. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D.,
Ida, T., Watt, S.M., (eds.) 19th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania, 21–24
September 2017, pp. 169–172. IEEE Computer Society (2017)

30. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

31. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: 8th Inter-
national Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, 26–30 April 2020. OpenReview.net (2020)

32. Lample, G., Conneau, A., Denoyer, L., Ranzato, M.: Unsupervised machine trans-
lation using monolingual corpora only. In: 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018,
Conference Track Proceedings. OpenReview.net (2018)

https://doi.org/10.1007/978-3-642-39634-2_14
https://bit.ly/2YkZh3i
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-22102-1_15
https://doi.org/10.1007/11871842_29

A Promising Path Towards Autoformalization and General AI 19

33. Lee, D., Szegedy, C., Rabe, M.N., Loos, S.M., Bansal, K.: Mathematical reasoning
in latent space. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)

34. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

35. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May
2017, EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)

36. McCarthy, J.: Computer programs for checking mathematical proofs. In: A Paper
Presented at the Symposium on Recursive Function Theory, New York, April 1961

37. Megill, N.: Metamath. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 88–95. Springer, Heidelberg (2006). https://doi.org/
10.1007/11542384 13

38. The Mizar Mathematical Library. http://mizar.org
39. Nisan, N., et al.: Introduction to mechanism design (for computer scientists). Algo-

rithmic Game Theor. 9, 209–242 (2007)
40. Paliwal, A., Loos, S., Rabe, M., Bansal, K., Szegedy, C.: Graph representations for

higher-order logic and theorem proving. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12 February 2020.
AAAI Press (2020)

41. Peters, M.E., et al.: Deep contextualized word representations. In: Walker, M.A.,
Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, 1–6 June 2018,
(Long Papers), vol. 1, pp. 2227–2237. Association for Computational Linguistics
(2018)

42. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

43. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

44. Simon, D.L.: Checking number theory proofs in natural language. Ph.D thesis
(1990)

45. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

46. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June
2015, pp. 1–9. IEEE Computer Society (2015)

47. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neu-
ral networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, Long Beach, Califor-
nia, USA, 9–15 June 2019, Proceedings of Machine Learning Research, vol. 97, pp.
6105–6114. PMLR (2019)

48. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buch-
berger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36469-2 16

49. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/11542384_13
https://doi.org/10.1007/11542384_13
http://mizar.org
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/3-540-36469-2_16

20 C. Szegedy

50. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories.
In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Work-
shop on Empirically Successful Automated Reasoning in Large Theories, Bremen,
Germany, 17th July 2007, CEUR Workshop Proceedings, vol. 257. CEUR-WS.org
(2007)

51. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp.
5998–6008 (2017)

52. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems 30
(NIPS 2017), pp. 2786–2796 (2017)

53. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

54. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. In: IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–21 (2020)

55. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, Long Beach, California,
USA, 9–15 June 2019, Proceedings of Machine Learning Research, vol. 97, pp.
6984–6994. PMLR (2019)

56. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet:
generalized autoregressive pretraining for language understanding. In: Wallach,
H.M., et al. (eds.) Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
Canada, Vancouver, BC, 8–14 December 2019, pp. 5754–5764 (2019)

57. Yu, A.W., et al.: QANet: combining local convolution with global self-attention
for reading comprehension. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference
Track Proceedings. OpenReview.net (2018)

58. Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE
Trans. Neural Networks Learn. Syst. 23(8), 1177–1193 (2012)

59. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26
July 2017, pp. 2223–2232. IEEE Computer Society (2017)

60. Zinn, C.: Understanding informal mathematical discourse. Ph.D thesis, Institut für
Informatik, Universität Erlangen-Nürnberg (2004)

61. Zombori, Z., Csiszárik, A., Michalewski, H., Kaliszyk, C., Urban, J.: Towards find-
ing longer proofs. arXiv preprint arXiv:1905.13100 (2019)

62. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

https://doi.org/10.1007/978-3-540-71067-7_7
http://arxiv.org/abs/1905.13100

	A Promising Path Towards Autoformalization and General Artificial Intelligence
	1 Introduction
	2 What is (Auto-)formalization?
	3 Why is Autoformalization Essential?
	4 Potential Implications of Successful Autoformalization
	5 Hurdles of Autoformalization
	6 A Proposed Path to Autoformalization
	7 Further Ideas and Considerations
	7.1 Choice of Foundation and Framework
	7.2 Unsupervised Pretraining Tasks
	7.3 Additional Technical Considerations

	8 Short History of Autoformalization
	9 Indications of Feasibility
	9.1 Search and Reasoning
	9.2 Natural Language Processing and Understanding
	9.3 Overview

	10 General Summary and Conclusions
	References

