
The LEGO Counting Problem

Søren Eilers

Abstract. We detail the history of the problem of deciding how many ways one may combine

n 2 × 4 LEGO bricks, and explain what is known—and not known—about the related question

of how these numbers grow with n.

1. HISTORICAL BOUNDS. For decades, the LEGO Company (since 2005: The

LEGO Group) would state in promotional material that six of the company’s iconic

2 × 4 bricks could be combined in 102981500 ways if they had the same color. The

author coincidentally became aware that this number was incorrect in 2003, and in

2004 computed the correct number which is almost 9 times larger. It is a key purpose of

this note to explain how the correction was obtained, but let us first discuss the history

of the problem as indeed this is highly instructive for understanding its solution.

With the help of the LEGO Group Archive, the number 102981500 has been traced

back to 1974. It appeared in two short notes ([6],[5]) in the company’s newsletter as

an example of the use of the formula

tn = 22

n−2∑

i=0

46i · 2n−2−i + 2n−1, (1.1)

which was found by Jørgen Kirk Kristiansen, a chemical engineer working in the com-

pany labs who is also the grandson of the founder of the LEGO Group. Mr. Kristiansen

was fully aware that he did not count all possible buildings and stated so explicitly in

the note, explaining that building number 3 in Figure 1 is not counted, whereas build-

ings 1 and 2 are.

In fact, formula (1.1) gives a completely correct—but, as we shall see, unnecessarily

complicated—description of the number of buildings of maximal height, counted in

the sense we will describe below. Moreover, the values

t2 = 24, t3 = 1060

were correctly computed this way. Precisely how and when this happened remains

unclear, but over the course of the years it was forgotten that (1.1) was only intended as

a lower bound of the number of buildings, and hence the number 102981500, which

is t6 − 4, was presented as the exact number of buildings in the LEGO Company’s

official communication, for instance in the 2004 company profile along with other

“LEGO facts and figures” such as

It would take 40,000,000,000 LEGO bricks stacked on top of each other to
reach from the Earth to the Moon

http://dx.doi.org/10.4169/amer.math.monthly.123.5.415
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Figure 1. Illustrations from [6], [5]. (a) Three buildings. (b) a2 = 24.

and

On average each person on Earth owns 52 LEGO bricks.

To avoid more misunderstandings, let us be very precise about what we are intend-

ing to count. We fix the dimensions b × w with b ≤ w of a brick in the LEGO product

range and count all buildings that are contiguous. By contiguous we mean that any

brick B0 is connected to any other brick B ′ in the sense that there is a number ℓ ≥ 0

and bricks B1, . . . , Bℓ so that B0 is attached to B1, B1 is attached to B2, etc., and Bℓ is

attached to B ′. We only consider buildings in which all bricks are placed with top and

bottom parallel to the XY -plane and with two of its sides parallel to the X -axis, and

identify buildings which may be obtained from each other by translations in all of R3

or rotations in the XY -plane. Thus, in Figure 2 the configuration (a) is not counted, and

the two configurations (b) and (c) are counted as one. We denote by ab×w
n the number
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(a) (b) (c)

Figure 2. (a) Not counted. (b) and (c) Counted as one.

of such (equivalence classes of) buildings which can be obtained by n b × w bricks,

and abbreviate an = a2×4
n .

As we shall see below, apart from the decision to only consider buildings where

all sides are parallel or perpendicular, it is of little mathematical consequence which

conventions are used, but let us convince ourselves that we are using the same con-

ventions as Mr. Kristiansen. Indeed, as observed in [6], there are 46 different ways to

place one brick on top of another when the lower one is fixed, and 2 of these are self-

symmetric after a rotation by 180◦, whereas the remaining 44 buildings come in pairs

defining 22 different buildings in our sense. Thus, as illustrated in Figure 1 (with the

symmetric buildings colored white) there are exactly 24 different buildings with two

bricks. Furthermore, it is now clear that when we fix one brick and place the remaining

n − 1 bricks on top of each other, we have a total of 46n−1 different choices for doing

so. To obtain a building which is invariant under a rotation by 180◦, we must choose

one of the two exceptional configurations at every level, so 2n−1 of these choices lead

to unique self-symmetric buildings, whereas the remaining choices come in pairs. In

total, the number of buildings of height n become

tn =
1

2
(46n−1 − 2n−1) + 2n−1 =

1

2
(46n−1 + 2n−1), (1.2)

which is consistent with (1.1), since

n−2∑

i=0

46i · 2n−2−i = 2n−2

n−2∑

i=0

23i = 2n−2 23n−1 − 1

23 − 1
.

Let us digress a bit to note that the numbers 24, 1060, and 102981500 had in fact

been a matter of contention at the LEGO Company in the early 1990’s. When an exhi-

bition “The Art of LEGO” was prepared at London’s Science Museum, the head of the

LEGO Company in the United Kingdom, Clive Nicholls, got interested in the problem

and made the point that since any child would create 46 different configurations when

asked to build all possible buildings with two bricks, LEGO should communicate the

higher numbers 46, 462 = 2116 and 465 = 205962976 instead. Apart from seeing no

reason to undersell LEGO’s versatility, Mr. Nicholls had the further point that since

any LEGO brick has the company logo printed in fine print inside each stud, it is in

fact possible to distinguish a brick from its 180◦ rotation.

Mr. Nicholls got an answer from the very top of the organization ([8]), formulated

by board member Per Sørensen:
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The science of form is called morphology. It includes the concept of isomor-
phism—in this case, the ability of two or more objects to assume the same shape.
All objects are isomorphous which by rotation in three-dimensional space and/or
enlargement or reduction can be made to have the same shape. [...] An eight-stud
LEGO element is isomorphous with an eight-stud DUPLO element, and white
and red eight-stud bricks are also isomorphous with each other. [...] When the
elements are isomorphous with each other, variations in which Element I is fitted
on top of Element II are not morphologically different from variations in which
Element II is fitted on top of Element I—even though, in purely physical terms
they are of course different, because (whatever the people in the moulding shop
may say) two elements are not the same. If the LEGO logo on the studs is turned
one way or the other, this is—morphologically speaking—uninteresting, because
it can be regarded as an unintentional difference and thus insignificant in terms
of the morphological nature of the object.

Clive Nicholls had two words for that: “Morphology, schmorphology,” and after

a long tirade in the company newsletter, he threatened to leave the LEGO Company

for the then archenemy TYCO, a subsidiary of Mattel, if the board did not revise the

numbers. On a conciliatory note, Mr. Sørensen closed the discussion as follows: I
propose that in the future, we answer the question in the same way that Rolls Royce
answers questions about horse power: enough!

Before moving on to a discussion of how to find an by use of computers, note that

we at least now have a2 = 24 and the lower bound an ≥ tn which tells us that an grows

at least as fast as exponentially with base 46. In order to get any sort of theoretical

handle on this problem, we need to complement this observation with an upper bound
of the same nature. Finding such an upper bound would presumably be anathema to the

communications division of LEGO Group, and since it is actually a good deal harder

than providing a lower bound, it seems rather safe to assert that this was attempted for

the first time by the author. Incidentally, the solution given in joint work with Durhuus

([3]) draws on another idea perfected by the LEGO Group: The building instructions.

To obtain a useful upper bound for an , valid for any n, we will use the approach

that any building can be created by a set of instructions, and then count the possible

instructions instead of the buildings themselves. To be able to implement such an

overcounting strategy, however, we need to work with building instructions of a less

immediate nature than what the average LEGO user would prefer. For n ≥ 2 we will

say that a map

ϕ : {1, 2, . . . , 16n − 24} → {−8, −7, . . . , 7, 8}

is an instruction when ϕ(i) �= 0 for precisely n − 1 values of i .

To use such an instruction, we enumerate the studs of the brick 1, . . . , 8 starting in

the top left corner and working left to right from the top row. First take one brick and

call it brick 1. Then read ϕ(1), . . . , ϕ(8) from left to right to specify what to build on

top of brick 1 as follows. If ϕ(1) > 0, take another brick and place it parallel to brick

1 with hole ϕ(1) on top of stud 1. If ϕ(1) < 0, take a brick and place it orthogonally,

rotated +90◦, to brick 1 with hole −ϕ(1) on top of hole 1. In both cases, give the new

brick the number 2. If ϕ(1) = 0, do nothing. Then proceed to read ϕ(2) to see what,

if anything, to place on stud 2, and so on until ϕ(8). Enumerate the bricks as they

are introduced. When n > 2, similarly interpret ϕ(9), . . . , ϕ(16) as an instruction of

which bricks, if any, to place on top of brick 2, and ϕ(17), . . . , ϕ(24) as instruction for

what to place underneath brick 2, reading this time ±ϕ(i) as a specification of a stud

to be placed in a hole, and continue this way to the end of the instruction.
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Figure 3. Building instructions, 1965. (Used with permission. c©2015 The LEGO Group.)

See Figures 4(a) and (b) for two examples of instructions defining buildings we

are attempting to count. We note, however, that two things can go wrong when one

attempts to follow such instructions—as in Figure 4(c) the bricks specified can collide,

and as in Figure 4(d) we may encounter a situation where no brick number ℓ + 1

has been introduced when we have reached the end of the specifications of what to

place on bricks 1, . . . , ℓ. We also note that in most situations, there are many different

instructions leading to the same building.

But since, just as is the case for LEGO Group building instructions (cf. Figure 3),

there is obviously an instruction which will create any given building among the ones

we are aspiring to count, the number of instructions is larger than the number of build-

ings. And we can count the instructions as

(
16n − 24

n − 1

)
16n−1,

since the binomial coefficient enumerates the number of possible positions of nonzero

values and 16n−1 enumerates the number of choices for the nonzero entries. To

avoid the computational complexity of computing binomial coefficients, appealing to

Stirling’s formula one can see that these numbers grow no faster than (1617/1515)n−1

≃ 674.02n−1. In fact, we will always have that the number of instructions, and hence -
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(a) (b)

(c) (d)

Figure 4. Instructions and resulting buildings

an , - is bounded by un = 675n−1. Thus an grows at most as fast as exponentially with

base 675.

In conclusion, we may now say with certainty that the number of ways to combine

six 2 × 4 bricks lies somewhere between 102981504 and 6755 = 140126044921875.

To narrow it down we need to use a computer.

2. COUNTING WITH COMPUTERS. In 2011, the author was made aware that

he was not the first to try to remedy that the numbers provided by LEGO Company

were only covering a subset of all buildings. On the LEGO user group’s electronic

discussion forum LUGnet, a user already in 2002 posted the argument leading to (1.2),

and added:

There remains the problem for the case where the solid is not necessarily an
n-story building. I only have a result 1560 for n = 3 using a computer. I think it
is computable until n = 5 or 6.
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n a
n

1 1

2 24 Kristiansen 1974

3 1560 Anonymous 2002

4 119580 Eilers 2004

5 10166403 Eilers 2004

6 915103765 Eilers 2004

7 85747377755 Abrahamsen-Eilers 2006

8 8274075616387 Abrahamsen-Eilers 2006

9 816630819554486 Nilsson 2012

Figure 5. Known values of an (A112389 of [7])

As indicated in Figure 5, the prediction on how far an was computable was a bit

on the pessimistic side, but the claim that a3 = 1560 is correct. And the anonymous1

LEGO enthusiast was certainly hitting the nail on the head by predicting that issues

concerning efficiency of computation would come up.

We have already touched upon such issues; indeed the main reason for finding our

revised formula (1.2) superior to the original (1.1) is that it is faster to compute, and

apart from our desire to provide an upper bound of the same nature as the lower bound,

we emphasized the feature that 675n−1 was efficiently computable also for large n.

Indeed, even though the numbers tn and un grow quickly as n increases, we may use

logarithms, successive squaring, or other standard computational methods, to compute

the numbers at an expense in time which grows at worst as a linear expression in n, or,

- which is the same, - as a linear expression in the number of digits in the computed

numbers.

But when it comes to computing an , we do not know of any method which does

not require us to go through, one at a time, a large part of the possible configurations,

and since the number of buildings grows exponentially with n, so does the time con-

sumption. The first attempt by the author, naively going through all possible buildings

saving time only by employing our conventions of identification, could compute up to

a6 = 915103765. That number, which the LEGO Group in short order accepted and

helped disseminate widely, was the main goal of the initial investigations, but comput-

ing it required almost a week’s computing time on a laptop, and hence there was little

hope to compute beyond n = 6.

The situation was improved somewhat in joint work with Abrahamsen ([2]), who

among many other things made the observation that it is more efficient to count closer

to Mr. Nicholls’ convention, fixing a brick and then counting all buildings containing

this brick at its base level. One issue, then, that perhaps Mr. Nicholls had not con-

sidered, is that when the base level contains more than one brick arranged with its

long side parallel to the base brick, say k such bricks, then every configuration will

be counted k times even if one does not allow identifications by rotations, but only by

translations. But taking this into account, and keeping track also of which buildings

are symmetric after rotations, we may compute an by

an =
n∑

m=1

c(n, m) + c180(n, m) + 2c90(n, m)

2m
,

1The author of the post has been identified, but prefers to remain anonymous.
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where c(n, m) is the number of configurations with n bricks containing the base brick

in its bottom level, so that there are m bricks in the lower level, and where c180(n, m)

and c90(n, m) count those that are symmetric after rotations by 180 and 90 degrees in

the XY -plane as indicated.

However, it is obviously unnecessarily inefficient to work our way through all build-

ings this way, since (1.1) allows us to quickly count all the buildings of maximal height.

Let’s elaborate on the idea implicit in Mr. Kristiansen’s computation. Whenever we

know that there is only one single brick in some layer of the building, we can compute

the number of possibilities by multiplication of the number of possibilities of what to

put below and the number of possibilities of what to put on top. We may speed up

the computations substantially by defining c(n, m) as the number of buildings with

n bricks, m of which are in the bottommost level, which are fat in the sense that at

every level above the bottommost, there are at least two bricks. Also, define c(n) as

the number of buildings with n + 1 bricks so that there is one brick each in the topmost

and bottommost level, and two or more in any other level. For instance, building 3 in

Figure 1 is one of the buildings counted by c(5). It is elementary, but tedious, to verify

then that

an =
n∑

m=2

c(n, m) + c180(n, m) + 2c90(n, m)

2m
(2.3)

+
1

2

n−1∑

ℓ=0

∑

m1+m2+k1+···+kℓ=n+1

[
c(m1, 1)c(m2, 1)c(k1) · · · c(kℓ)

+ c180(m1, 1)c180(m2, 1)c180
(k1) · · · c180

(kℓ)
]
.

Formula (2.3) looks rather formidable, but has several mitigating features. First, we

note that since the 2 × 4 brick is not itself invariant under a rotation by 90◦, it takes

at least 4 bricks (two with the long side parallel to the X -axis, two with the long

side parallel to the Y -axis) to create a layer which is invariant under such a rotation,

and hence c90(n, m) = 0 unless 4 divides both m and n—the first nonzero value is

c90(8, 4) = 244. Second, since c(n, m) = 0 when n ≤ m + 2 (unless n = m = 1) and

since c(2) = 0, the expressions reduce substantially for small n. Indeed, we rediscover

a2 =
1

2

(
c(1) + c180

(1)
)

= t2

and find

a3 =
1

2

(
c(1)2 + 2c(3, 1) + c180

(1)2 + 2c180(3, 1)
)
,

a4 =
1

4

(
c(4, 2) + c180(4, 2)

)
+

1

2

(
c(1)3 + 2c(3, 1)c(1) + c(3) + 2c(4, 1)

+ c180
(1)3 + 2c180(3, 1)c180

(1) + c180
(3) + 2c180(4, 1)

)
,

where all of the necessary constants are listed in Figure 7.

The point of (2.3) is of course that the number of fat buildings grows slower than

the total number of buildings. This helps, but it doesn’t help a whole lot, since to this

day we know of no way to avoid more or less individually counting the fat buildings.

Thus, the time needed to compute an is at least as large as a number proportional to
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Figure 6. c180(4, 1) = 8

Figure 7. Some basic counts

c(n − 1), and these numbers can be proven (as we will see below) to grow at least

exponentially with base
√

1248 ≃ 35.3. Thus, unless a better way is found to count fat

buildings, the computation time needed to compute an will grow exponentially with

a prohibitively large base. The author does not believe it can be done in polynomial

time, but has no formal evidence for such a claim.

The concrete programs used in [2] (see [1] for more details) could compute a6

in about 5 minutes, but with an increase in computing times of around 100 for each

additional brick, finding a8 took about 500 CPU hours and finding a9 was projected

to take more than 5 CPU years. Thus the author was rather awed when approached in

2012 by Johan Nilsson, a Swedish mathematician then based in Germany, who could

not only supply a9 but had also independently verified a1, . . . , a8.

Dr. Nilsson’s approach was to parallelize the problem. The algorithms used in the

author’s computations do not lend themselves well to such an approach, but Nilsson

had the brilliant idea of running through all instructions instead, one at a time, checking

which gave rise to buildings. Dividing the universe of instructions evenly among a

large number of computers at the Department of Mathematics at the University of

Bielefeld, which were working on the problem when otherwise idle, Nilsson could

obtain a9 in a matter of months.

3. THE GROWTH CONSTANT. The most efficient way of communicating the ver-

satility of the 2 × 4 brick, rather than a sequence of individual counts, would be via

the growth constant h defined so that

an ≈ k · hn.

Such growth constants are ubiquitous in asymptotic combinatorics and are key con-

cepts in applications, measuring capacity in contexts of information theory or com-

puter science, or entropy in contexts of physics.

That such a constant h is defined is nontrivial and requires some interpretation of

what we mean by “≈.” Of course if we knew that an+1/an converged as n → ∞, the

limit would be an excellent candidate, but although this is in all likelihood the case,
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the author knows of no way of proving it. Instead, which is nearly as useful, we may

use our upper bound to prove that n
√

an converges by the following lemma.

Lemma 3.1. [3] limn→∞ log an/n exists.

Proof: We note first that

lim
n−→∞

log an

n
= lim

n−→∞

log c(n, 1)

n
(3.4)

in the sense that if one limit exists, so does the other. Note that since we have found

that log an ≤ log un = (n − 1) log 675, the sequence log an/n is bounded. Our claim

(3.4) follows immediately by the inequalities

an−1 ≤ c(n, 1) ≤ 2an.

The leftmost inequality follows by mapping each equivalence class of configurations

with n − 1 bricks to a representative placed on top of a fixed base brick and noting

that this map is injective. The rightmost follows by mapping each configuration to an

equivalence class and noting that this map is at most 2 − 1.

Letting Cn denote the set of buildings counted by c(n, 1), one sees that c(n +
m, 1) ≥ c(n, 1)c(m, 1) by noting that an injective map from Cn × Cm to Cm+n is defined

by placing the base brick of the element of Cm somewhere on the top layer of the ele-

ment of Cn . Hence, log c(n, 1) is a superadditive sequence, and appealing to Fekete’s

lemma, log c(n, 1)/n converges to supn∈N log c(n, 1)/n in [0, ∞]. But we have seen

that the limit is finite; indeed it is less than log 675. �

Taking exponentials, we set

h = lim
n→∞

n
√

an = lim
n→∞

n
√

c(n, 1),

noting in particular that when we focus on h rather than individual counts, Mr.

Nicholls’ protests become completely inconsequential. Convincing ourselves that

upper bounds ub×w
n = (sb×w)n for any dimensions can be obtained by counting instruc-

tions, we see further that

hb×w = lim
n→∞

n

√
ab×w

n

makes sense for any choice of dimension b × w. Thus, we have an extremely efficient

measure of the versatility of each brick in the LEGO product line, which can mean-

ingfully be compared among themselves, and to other such measures. But before we

can ask the LEGO Group to start saying something like

Already have a lot of 2 × 4 LEGO bricks? Buy one more and have the number
of buildings you can create multiplied by h!

we have to face up to the task of computing, or at least estimating, such numbers h.

Our lower and upper bounds tell us that 46 ≤ h ≤ 675, leaving a lot of room for

improvement. The first step is to scrutinize our definition of instructions with the aim

of reducing the upper bound. For instance, since 38 of the 46 ways to place one brick

on top of another involves more than one stud, we can avoid some redundance by
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distributing the positions evenly with at most 6 choices for each stud. Furthermore,

one can use that one stud (or one hole) has already been spoken for when placing all

bricks except the first to reduce the number of possible choices on the side which has

already been in use from 46 to 30. One checks that 30 positions can be distributed

evenly on 5 studs, leading to

(
(8 + 5)n − (8 + 5 + 5)

n − 1

)
6n−1

instructions, and the ensuing estimate

h ≤ (1313/1212) · 6 < 204.

Adapting much more advanced methods developed in the context of enumerating poly-

ominoes ([4]), it was proved in [3] that h < 177.

The lower bound can be improved somewhat by appealing to the concept of gener-
ating functions. Organizing the individual counts into a power series

A(z) =
∞∑

n=1

anzn = 46z + 1560z2 + 119580z3 + · · ·

we see by the root criterion that the sum converges in [0, 1/h) and diverges in

(1/h, ∞). Using standard methods from the theory of generating functions, (2.3)

translates to

A(z) =
∞∑

m=2

Cm(z) + C180
m (z) + 2C90

m (z)

m
+

C1(z)
2

2z(1 − C(z))
+

C180
1 (z)2

2z(1 − C
180

(z))

with functions Cm, C180
m , C90

m , C, C
180

defined from constants c(n, m), c180(n, m),

c90(n, m), c(n), and c180
(n) in the same way that we defined A from an . Moreover,

since all of these functions must converge on [0, 1/h), since c(n, m), c180(n, m),

c90(n, m) < an , and since c(n), c180
(n) ≤ c(n, 1), we may conclude (after a little more

work) that A(z) diverges at 1/h as a result of division by zero:

C(1/h) = 1. (3.5)

More precisely, h is the reciprocal of the smallest solution to C(x) = 1 on [0, 1]. We

know, as recorded in Figure 7,

C(x) ≥ 46x + 74130x3 + 867346x4

on [0, 1], so solving for x we obtain that h > 66. Using more values of c(n), the last

being

c(9) = 2067477693115

as computed by Nilsson, and the general estimate c(n + 2) > 1248c(n), we may show

(as in [3]) that h > 81.

But it remains a sad fact, not for want of trying, that this is the best the author

has been able to do, and hence the ambitions for using growth constants to gauge and
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compare the versatility of different brick sizes is largely unrealized. For instance, we

can create upper bounds by counting instructions to see that both h1×2 and h2×2 are less

than 81, and hence prove the nonsurprising fact that the 2 × 4 brick is more versatile

than both the 1 × 2 and the 2 × 2 brick. But because of overlaps between the intervals

in which we know that h1×2 and h2×2 must be contained, we are not able to say with

certainty which of these bricks is more versatile. By comparing a1×2
n

1, 4, 37, 375, 4493, 56848, 753536, 10283622, 143607345

to a2×2
n

1, 3, 31, 412, 6435, 106108, 1825803, 32320892, 584956651

for n ∈ {1, . . . , 9} it appears that the 2 × 2 brick is superior.

Although it felt a bit like acknowledging defeat, we in [3] took to heuristic estima-

tion of h by the standard method of fitting a straight line to a semilogarithmic plot. The

best fit to our observations a1, . . . a8, however, gave the value ĥ ≈ 74.8 which was not

consistent with our lower bounds, indicating that we had too few observations for such

an approach. In [2] we consequently applied Monte Carlo methods, estimating an by

drawing instructions at random, seeing how often they gave rise to actual buildings to

estimate a9, . . . , a20, to arrive at ĥ ≈ 117.

This remains the author’s best guess, but of course it should be taken only for what it

is: a guess. For instance, we now know that our estimate a9 ≈ 7.94 × 1014, obtained 5

years before Nilsson provided the exact value, was almost 3% too low. Imprecisions of

this nature can be expected to cancel out, but this leaves the real problem that we have

no way of knowing how well the growth of a1 . . . , a20 predicts the true value of h.
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