
The Misfortunes of a Trio
of Mathematicians Using

Computer Algebra Systems.
Can We Trust in Them?

Antonio J. Durán, Mario Pérez, and Juan L. Varona

Introduction

Nowadays, mathematicians often use a computer

algebra system as an aid in their mathematical

research; they do the thinking and leave the tedious

calculations to the computer. Everybody “knows”

that computers perform this work better than

people. But, of course, we must trust in the results

derived via these powerful computer algebra

systems. First of all, let us clarify that this paper is

not, in any way, a comparison between different

computer algebra systems, but a sample of the

current state of the art of what mathematicians

can expect when they use this kind of software.

Although our example deals with a concrete system,

we are sure that similar situations may occur with

other programs.

We are currently using Mathematica to find

examples and counterexamples of some mathemat-

ical results that we are working out, with the aim

of finding the correct hypotheses and eventually

constructing a mathematical proof. Our goal was

to improve some results of Karlin and Szegő [4]

related to orthogonal polynomials on the real

line. The details are not important; this is just an

example of the use of a computer algebra system

Antonio J. Durán is professor of mathematics at Universidad

de Sevilla (Spain). His email address is duran@us.es.

Mario Pérez is professor of mathematics at Universidad de

Zaragoza (Spain). His email address is mperez@unizar.es.

Juan L. Varona is professor of mathematics and computa-

tion at Universidad de La Rioja (Spain). His email address is

jvarona@unirioja.es.

This work was partially supported by grants MTM2012-

36732-C03-02, MTM2012-36732-C03-03 (Ministerio de

Economía y Competitividad), FQM-262, FQM-4643, FQM-

7276 (Junta de Andalucía) and Feder Funds (European

Union).

DOI: http://dx.doi.org/10.1090/noti1173

by a typical research mathematician, but let us

explain it briefly. It is not necessary to completely

understand the mathematics, just to realize that it

is typical mathematical research using computer

algebra as a tool.

Our starting point is a discrete positive measure

on the real line, µ =
∑

n≥0Mnδan (where δa denotes

the Dirac delta at a, and an < an+1) having

a sequence of orthogonal polynomials {Pn}n≥0

(where Pn has degree n and positive leading

coefficient). Karlin and Szegő considered in 1961

(see [4]) the l × l Casorati determinants

(1) det













Pn(ak) Pn(ak+1) . . . Pn(ak+l−1)
Pn+1(ak) Pn+1(ak+1) . . . Pn+1(ak+l−1)

.

.

.
.
.
.

.

.

.
.
.
.

Pn+l−1(ak) Pn+l−1(ak+1) . . . Pn+l−1(ak+l−1)













,

n, k ≥ 0.

They proved that, under the assumption that l

is even, these determinants are positive for all

nonnegative integers n, k. Notice that the set of

indices {n,n+ 1, . . . , n+ l− 1} for the polynomials

Pn consists of consecutive nonnegative integers.

We are working out an extension of this remarkable

result for more general sets of indices F than those

formed by consecutive nonnegative integers. We

have some conjectures that we want to prove or

disprove.

We have not been able to prove our conjectures

yet, and, as far as we can see, this task seems

to be rather difficult. On the other hand, just in

case our conjectures are wrong, we have been

trying to find counterexamples with the help of

our computer algebra system. Eventually we hope

these experiments can shed some light on the

problem as well.

We have then proceeded to construct orthogonal

polynomials with respect to discrete positive

November 2014 Notices of the AMS 1249



measures (involving only a finite number of Dirac

deltas, which is actually not a restriction for

our conjectures) by means of their moments.

Fixing a set of indices F = {f1, . . . , fl}, fi < fi+1,

for the polynomials Pn, we have evaluated the

determinants

(2) det













Pf1(ak) Pf1(ak+1) . . . Pf1(ak+l)

Pf2(ak) Pf2(ak+1) . . . Pf2(ak+l)
...

...
...

...

Pfl (ak) Pfl (ak+1) . . . Pfl (ak+l)













for a large range of k, looking for some negative

value.

To avoid the usual problems with floating point

arithmetic (rounding, truncating, instability), we

construct all our examples with integers. By taking

integers as the values of an and the mass pointsMn

of the measure and using a suitable normalization

of the orthogonal polynomials Pn, we find that only

integers are involved in (2). Thus the computations

should be routine for a computer algebra system,

and one should be able to completely trust in

the results. We have also introduced random

parameters (also integers, of course) to easily

perform many experiments.

With the help of Mathematica, one of us found

some counterexamples to our conjectures. Fortu-

nately, another one of us was using Maple and,

when checking those supposed counterexamples,

found that they were not counterexamples at all.

After revising our algorithms from scratch, we

concluded that either the computations performed

with Mathematica or the computations performed

with Maple had to be wrong. Things started to

become clear when the colleague using Mathemat-

ica also found some “counterexamples” to the

above-mentioned result of Karlin and Szegő for

the case in (1) and, even more dramatically, his

algorithm yielded different outputs given the same

inputs. Our conclusion was that Mathematica was

computing incorrectly. However, our mathematical

problem (and our algorithm) was too complicated

to convince anybody that Mathematica was making

mistakes when calculating with integers.

Isolating the Error

In attempting to isolate the computational problem,

we finally realized that, in some circumstances,

Mathematica (version 9.0.1 at that time) makes

some strange mistakes when computing determi-

nants whose entries are large integers. Errors do

not always occur—only in some cases. Even worse,

given the same matrix, the determinant function

can give different values! This resembles the well-

known Pentium division bug discovered by Thomas

Nicely in 1994, which only affected certain kinds of

numbers. But it seems Mathematica is a black box

even darker that the internals of a microprocessor,

so it is difficult to try to understand what kinds of

numbers are affected by the Mathematica bug that

we are describing.

Instead, we have devised a method to easily

generate matrices with large integer entries whose

determinants are clearly erroneously evaluated

by Mathematica. This method can be described

without referring to the mathematical problem

which motivates it. As the error does not always

arise, we developed a procedure to randomly

generate these matrices. First, we generate a

random 14× 14 matrix whose entries are integers

between −99 and 99:

basicMatrix = Table[Table[RandomInteger

[{-99, 99}], {i, 1, 14}], {j, 1, 14}]

To obtain larger integers, we multiply every column

by some power of 10. This is equivalent to

multiplying by a diagonal matrix; for instance, we

take

powersMatrix = DiagonalMatrix[{10ˆ123,

10ˆ152, 10ˆ185, 10ˆ220, 10ˆ397, 10ˆ449,

10ˆ503, 10ˆ563, 10ˆ979, 10ˆ1059, 10ˆ1143,

10ˆ1229, 10ˆ1319, 10ˆ1412}]

To avoid getting only integers ending in many

zeroes, we add a small random matrix given by

smallMatrix = Table[Table[RandomInteger

[{-999, 999}], {i, 1, 14}], {j, 1, 14}]

Then, we take

bigMatrix = basicMatrix.powersMatrix

+ smallMatrix

(in Mathematica notation, the dot . is used to

denote the product of matrices). Now we compute

the determinant twice:

a = Det[bigMatrix];

b = Det[bigMatrix];

Surprisingly, we quite often find that a and b

contain different values! This is easily observed by

checking whether a==b, which quite often returns

False or by visually comparing their numerical

approximations N[a] and N[b].

Let us see an instance of a real execution of

these procedures: with the matrices that appear

in Figure 1 we got N[a] = −3.263388173990166 ·

109768 and N[b] = −8.158470434975415 · 109768

and, executing the same program repeatedly, other

values different from these. None of these values

is the correct one, because the determinant of

bigMatrix is, approximately, 1.95124219131987·

109762.

We have found this erroneous behavior in

Mathematica version 8 (released on November 15,

2010) up to version 9.0.1 (the latest version

when the above-mentioned experiments were done

and the first version when this manuscript was

submitted), both under Mac and Windows. It seems

1250 Notices of the AMS Volume 61, Number 10



basicMatrix =































−32 69 89 −60 −83 −22 −14 −58 85 56 −65 −30 −86 −9
6 99 11 57 47 −42 −48 −65 25 50 −70 −3 −90 31

78 38 12 64 −67 −4 −52 −65 19 71 38 −17 51 −3
−93 30 89 22 13 48 −73 93 11 −97 −49 61 −25 −4

54 −22 54 −53 −52 64 19 1 81 −72 −11 50 0 −81
65 −58 3 57 19 77 76 −57 −80 22 93 −85 67 58
29 −58 47 87 3 −6 −81 5 98 86 −98 51 −62 −66
93 −77 16 −64 48 84 97 75 89 63 34 −98 −94 19
45 −99 3 −57 32 60 74 4 69 98 −40 −69 −28 −26
−13 51 −99 −2 48 71 −81 −32 78 27 −28 −22 22 94

11 72 −74 86 79 −58 −89 80 70 55 −49 51 −42 66
−72 53 49 −46 17 −22 −48 −40 −28 −85 88 −30 74 32
−92 −22 −90 67 −25 −28 −91 −8 32 −41 10 6 85 21

47 −73 −30 −60 99 9 −86 −70 84 55 19 69 11 −84































,

smallMatrix =































528 853 −547 −323 393 −916 −11 −976 279 −665 906 −277 103 −485
878 910 −306 −260 575 −765 −32 94 254 276 −156 625 −8 −566
−357 451 −475 327 −84 237 647 505 −137 363 −808 332 222 −998
−76 26 −778 505 942 −561 −350 698 −532 −507 −78 −758 346 −545
−358 18 −229 −880 −955 −346 550 −958 867 −541 −962 646 932 168

192 233 620 955 −877 281 357 −226 −820 513 −882 536 −237 877
−234 −71 −831 880 −135 −249 −427 737 664 298 −552 −1 −712 −691

80 748 684 332 730 −111 −643 102 −242 −82 −28 585 207 −986
967 1 −494 633 891 −907 −586 129 688 150 −501 −298 704 −68
406 −944 −533 −827 615 907 −443 −350 700 −878 706 1 800 120

33 −328 −543 583 −443 −635 904 −745 −398 −110 751 660 474 255
−537 −311 829 28 175 182 −930 258 −808 −399 −43 −68 −553 421
−373 −447 −252 −619 −418 764 994 −543 −37 −845 30 −704 147 −534

638 −33 932 −335 −75 −676 −934 239 210 665 414 −803 564 −805































Figure 1. Examples of matrices basicMatrix and smallMatrix.

that it does not affect versions 6 and 7, at least in

the same range of numbers.

We reported the bug on October 7, 2013,

(reference CASE:303438), receiving a kind answer

from Wolfram Research Inc.:

It does appear there is a serious mistake on

the determinant operation you mentioned.

I have forwarded an incident report to

our developers with the information you

provided.

We are always interested in improving

Mathematica, and I want to thank you for

bringing this issue to our attention. If you

run into any other behavior problems, or

have any additional questions, please don’t

hesitate to contact us.

By June 2014, nothing had changed. We had

received similar replies in the past, when one of us

reported other bugs (for instance, but not limited

to, some of those explained in [2]), none of which

were fixed in the next release. So, all we could do

was wait.

On June 29, 2014, Mathematica version 10

was released, and we1 quickly tried to check if

the problem had been fixed. On the webpage

http://www.wolfram.com/mathematica/new-

in-10/ nothing is mentioned regarding the

correction of errors, and we have received no

additional feedback on our bug report.

The bug is still present in this new release.

Actually, the short description of the previous

section based on random matrices no longer shows

the bug, but it still has consequences on our

experiments with integer matrices as in (2). We

1and the reviewers of the first version of this paper.

have found examples of matrices of polynomi-

als with integer coefficients evaluated at integers

whose determinants are wrongly computed by

Mathematica version 10. Again, when the same

determinant is evaluated twice, different answers

are quite often obtained. For the sake of brevity,

we do not include these examples here, but if

the reader2 is interested, some notebooks that

clearly show the bug in Mathematica 10, to

which Mathematica 7 seems to be immune, can

be downloaded at http://www.unirioja.es/cu/

jvarona/downloads/notebooksDetM10M7.zip.

Other Examples of Wrong Computations

Of course, there are many more examples of wrong

computations done by a computer algebra package.

Many of them can be found in Internet forums or

distribution lists.

One typical example with Mathematica is the

computation of a real integral that generates a

complex result, which is clearly impossible. For

instance, in Mathematica notation (and where //N

serves to show the numerical value after computing

the integral in a symbolic way), we get that

Integrate[Sqrt[(2t)ˆ2 + (4 - 3tˆ2)ˆ2],

{t, 0, 2}] // N

is 0.881679+1.17073i, although (2t)2+(4−3t2)2 >

0 for 0 ≤ t ≤ 2.

Another example of a wrong computation of an

integral is

Integrate[Exp[-p*t]*(Sinh[t])ˆ3, {t, 0,

Infinity}]

2or the vendors of Mathematica.

November 2014 Notices of the AMS 1251



In this case, Mathematica provides the answer

6/(9 − 10p2 + p4) conditioned to 0 < Re(p) < 1

and Im(p) = 0. This is obviously wrong, because

for real p, the integral is convergent only when

p > 3. Let us also consider the following integral

(we thank one of the reviewers for this example):

Integrate[Integrate[Abs[Exp[2*Pi*I*x]

+ Exp[2*Pi*I*y]], {x, 0, 1}], {y, 0, 1}]

Both Mathematica and Maple return zero as the

answer to this calculation. Yet this cannot be

correct, because the integrand is clearly positive

and nonzero in the indicated region.

Finally, let us see an example that is not an

integral, but rather involves the Wigner 3-j symbols

which appear in quantum mechanics. Mathematica

asserts that

ThreeJSymbol[{r, 0}, {s+1, 0}, {s, 0}]

is 0, but it computes

ThreeJSymbol[{1, 0}, {2, 0}, {1, 0}]

as
√

2/15, which is a contradiction.

Nowadays we cannot avoid this kind of problem,

and we must be aware of them. Any mathematical

study that reports computational results should

dedicate some effort to explain why the authors

have faith in the results. For instance, verifying that

the computation was performed in two different

ways (with two different systems, both numerically

and symbolically,…) and the results agreed.

At the same time, while mathematicians must

be aware of the potential problems with computer

algebra systems, developers should collaborate to

avoid them, and this is far from being the actual

situation. Many researchers experience consider-

able frustration in dealing with such problems.

Often there is no clear way to communicate such

difficulties, and if one does persist in contacting the

vendor, one often receives no feedback or follow-up

response. This clearly should be improved.

In addition, if a researcher with programming

expertise tries to understand what is happening,

another problem arises: not all mathematical

software packages are open so that one can “look

under the hood”, and this complicates our efforts

to figure out what is going on when a wrong

computation appears.

Conclusions

We have been using Mathematica as a tool in our

mathematical research. All our computations with

Mathematica have been symbolic, involving only

integers (large integers, about 10 thousand digits

long) and polynomials (with degree 60 at most),

so no numerical rounding or instability can arise

in them, and we completely trusted the results

generated by Mathematica. However, we have

obtained completely erroneous results. Perhaps

someone may think that this was an esoteric error,

without real relevance, because large integers do

not appear in real life. This is not the case, because

large integers are commonly used, for instance,

in cryptography, where everything should work

without serious errors. We have also briefly pointed

out some other wrong computations that are clear

to any mathematician. How then can we trust in

computer algebra systems?

We know that it is very difficult to avoid

errors in nontrivial programs and a considerable

effort is necessary to check them. Commercial

computer algebra systems are black boxes, and

their algorithms are opaque to the users (and of

course, also the source code), which certainly does

not contribute to avoiding errors. This makes it

difficult to apply modern techniques of software

verification to these kinds of systems (for an

example of verification in the context of an open

source computer algebra system, see [5]). Moreover,

lists of known bugs of computer algebra systems

should be made available to the users; this is

standard in free software but an anathema for

commercial packages.

Having made this criticism, let us stress that soft-

ware systems have proved very useful to research

mathematicians. Some well-known instances are

the proof of the four-color problem by Kenneth

Appel and Wolfgang Haken [1] and the Kepler

conjecture by Thomas Hales [3]; less well known is

the recent success of the mathematical software

Kenzo in detecting an error in a published mathe-

matical theorem (see [6]). Software bugs should not

prevent us from continuing this mutually beneficial

relationship in the future. However, for the time

being, when dealing with a problem whose answer

cannot be easily verified without a computer, it is

highly advisable to perform the computations with

at least two computer algebra systems.

References
[1] K. Appel and W. Haken, The solution of the four-color-

map problem, Sci. Amer. 237 (1977), 108–121.

[2] Ó. Ciaurri and J. L. Varona, How reliable are computer

calculations? (Spanish), Gac. R. Soc. Mat. Esp. 9 (2006),

483–514.

[3] T. C. Hales, A proof of the Kepler conjecture, Ann. of

Math. (2) 162 (2005), 1065–1185.

[4] S. Karlin and G. Szegő, On certain determinants whose

elements are orthogonal polynomials, J. Analyse Math.

8 (1960/1961), 1–157.

[5] L. Lambán, J. Rubio, F. J. Martín-Mateos, and J. L.
Ruiz-Reina, Verifying the bridge between simplicial

topology and algebra: The Eilenberg-Zilber algorithm,

Log. J. IGPL 22 (2014), 39–65.

[6] A. Romero and J. Rubio, Homotopy groups of sus-

pended classifying spaces: An experimental approach,

Math. Comp. 82 (2013), 2237–2244.

1252 Notices of the AMS Volume 61, Number 10


