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BAYESIANISM IN MATHEMATICS 

INTRODUCTION 

I shall begin by giving an overview of the research programme named in the title 
of this paper. The term 'research programme' suggests perhaps a concerted effort 
by a group of researchers, so I should admit straight away that since I have started 
looking investigating the idea that plausible mathematical reasoning is illuminated 
by Bayesian ideas, I have not encountered in the literature anyone else who has 
thought to develop the views of the programme's founder, the Hungarian mathe
matician, George P61ya. I should further admit that P61ya never termed himself a 
Bayesian as such. Motivation for the programme may, therefore, be felt sorely nec
essary. Let us begin, then, with three reasons as to why one might want to explore 
the possibility of a Bayesian reconstruction of plausible mathematical reasoning: 

(a) To acquire insight into a discipline one needs to understand how its practition
ers reason plausibly. Understanding how mathematicians choose which problems 
to work on, how they formulate conjectures and the strategies they adopt to tackle 
them requires considerations of plausibility. Since Bayesianism is widely consid
ered to offer a model of plausible reasoning, it provides a natural starting point. 
Furthermore, P61ya has already done much of the spadework with his informal, 
qualitative type of Bayesianism. 

(b) The computer has only recently begun to make a serious impact on the way 
some branches of mathematics are conducted. A precise modelling of plausibil
ity considerations might be expected to help in automated theorem proving and 
automated conjecture formation, by providing heuristics to guide the search and 
so prevent combinatorial explosion. Elsewhere, computers are used to provide 
enormous quantities of data. This raises the question of what sort of confirmation 
is provided by a vast number of verifications of a universal statement in an infi
nite domain. It also suggests that statistical treatments of data will become more 
important, and since the Bayesian approach to statistics is becoming increasingly 
popular, we might expect a Bayesian treatment of mathematical data, especially 
in view of its construal of probability in terms of states of knowledge, rather than 
random variables. 

(c) The plausibility of scientific theories often depends on the plausibility of math
ematical results. This has always been the case, but now we live in an era where 
for some physical theories the only testable predictions are mathematical ones. If 
we are to understand how physicists decide on the plausibility of their theories, 
this must involve paying due consideration to the effect of verifying mathematical 
predictions. 
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Now, if one decides to treat plausible and inductive reasoning in the sciences 
in Bayesian terms, it seems clear that one would want to do the same for math
ematics. After all, it would appear a little extravagant to devise a second calcu
lus. In any case, Bayesianism is usually presented by its proponents as capable of 
treating all forms of uncertain reasoning. This leads us to conclude that Bayesian
ism in science requires Bayesianism in mathematics. Once this is accepted, one 
must respond in two ways according to the discoveries one makes while examining 
Bayesianism in mathematics: 

I Bayesianism cannot be made to work for mathematics, therefore Bayesian
ism cannot give a complete picture of scientific inference. 

II Some forms of Bayesianism can be made to work for mathematics, there
fore one of these must be adopted by Bayesian philosophers to give a more 
complete picture of scientific inference. 

The arguments presented in this paper indicate that the antecedent of I is false 
and the antecedent of II true, opening the prospect of an expanded, but modified, 
Bayesianism. 

In this paper there is only space to treat a part of the motivation given above. 
The first two sections question which varieties of the many forms of Bayesianism 
are able to accommodate mathematical reasoning. Many Bayesians hold it as a 
tenet that logically equivalent sentences should be believed with equal confidence 
and any evidence should have an equal impact on their degrees of belief. However, 
such an assumption plays havoc with any attempt to throw light on mathematical 
reasoning. In section 1 I argue that if a Bayesian modelling of plausible reasoning 
in mathematics is to work, then the assumption of logical omniscience must be 
dropped. 

In P6lya's version, we have only the right to specify the direction of change in 
the credence we give to a statement on acquiring new information, not the mag
nitude. However, Edwin Jaynes demonstrated that one of the central grounds for 
this decision on the part of P6lya to avoid quantitative considerations was wrong. 
In section 2 I consider whether there is anything amiss with a quantitative form of 
Bayesianism in mathematics. 

One criticism often made of Bayesian philosophy of science is that it does not 
help very much in anything beyond toy problems. While it can resolve simple 
issues, such as accounting for how observing a white tennis shoe provides no con
firmation for the law 'all ravens are black', it provides no insight into real cases of 
theory appraisal and confirmation. Everything rests on the assignment of priors, 
but how an expert could be considered to go about this is enormously complicated. 
Recognising what is correct in this criticism, I think there is still useful work to be 
done. In section 3 I shall be looking in particular at: reasoning by analogy; choice 
of proof strategy (for automated theorem proving); and, large scale induction (par
ticularly enumerative induction). 
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1 PROBABILITY THEORY AS LOGIC 

In his Mathematics and Plausible Reasoning (P6lya [1954a; 1954b]), P6lya con
siders mathematics to be the perfect domain in which to devise a theory of plau
sible reasoning. After all, where else could you find such unequivocal instances 
of facts satisfying general laws? As a noted mathematician actively engaged in 
research, he delightfully conveys inferential patterns by means of examples of his 
own use of plausible reasoning to generate likely conjectures and workable strate
gies for their proof. Now, such plausible reasoning in mathematics is, of course, 
necessary only because mathematics does not emerge as it appears on the pages 
of a journal article or textbook, that is, in its semi-rigorous deductive plumage. 
Indeed, it is due to the failure of what we might call "logical omniscience", the ca
pacity to know immediately the logical consequences of a set of hypotheses, that 
mathematicians are forced to resort to what might be called a guided process of 
trial and error, not so dissimilar to that employed in the natural sciences. 

In the second of the two volumes mentioned above, P6lya works his account of 
plausible reasoning into a probabilistic mould. While he did not name himself as 
such, we can thus reasonably view P6lya as a member of the Bayesian camp and, 
indeed, as a pioneer who influenced some later prominent Bayesians. Certainly, 
Edwin Jaynes learned from his work, and it is clear that Judea Pearl has read him 
closely. So here we have something of a paradox: plausible mathematical reason
ing, the subject of P6lya's analysis, was an important source of ideas for some of 
the leading figures of Bayesianism, and yet it is necessitated by the fact that people 
involved in this most rigorous branch of knowledge are not able to uphold one of 
the widely held tenets of Bayesianism, namely, that logically equivalent statements 
should receive identical degrees of belief, or alternatively, that tautologies should 
be believed with degree of belief set at 1. 

Logical omniscience comes as part of a package which views Bayesianism as 
an extension of deductive logic, as for example in Howson (this volume). In an
other of its manifestations, we hear from Jaynes the motto 'probability theory as 
logic'. For him: "Aristotelian deductive logic is the limiting form of our rules for 
plausible reasoning, as the robot becomes more and more certain of its conclu
sions" [Jaynes, forthcoming, Ch 2, p. 11].1 Here we are to imagine a robot who 
reasons perfectly in Bayesian terms, handicapped only by the imperfections of its 
data and the incompleteness of the set of hypotheses it is considering. 

We have then a tension when it comes to mathematical reasoning: if Bayesian
ism is to be seen as an extension of deductive logic, in the sense that the premises 
are now not required to be known with certainty, then one should consider the two 
inferential calculi to be similar in as many respects as possible. Since deductive 
logic is held as a regulating ideal, as, for example, when we say: 

( 1) If A is true and A entails B, then B is true, 

1 References to Jaynes are from his unfinished book - Probability Theory: The Logic of Science -
available at http://bayes.wustl.edu.This is soon to appear in print. 
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should we not have 

(2) If Pr(A) = p and A entails B, then Pr(B) ~ p? 

However, making this assumption raises a few problems. For one thing it implies 
that any consequence of a given axiomatised mathematical theory should be be
lieved at least as strongly as that theory. Then, assuming Wiles is correct, to mimic 
the ideal rational agent you must set Pr(Fermat's Last Theorem) no lower than 
Pr(ZFC set theory), indeed no lower than your degree of belief in whichever sys
tem you feel confident can cope with arithmetic. There is of course the question as 
to how one might want to interpret Pr(ZFC set theory), but for statements whose 
logical complexity is the same as that of Fermat's Last Theorem, all one needs is 
the consistency of ZFC for truth to entail proof. And if you were to pitch this at 
0.5, say, then this would provide a minimum for all provable truths of arithmetic, 
along with those of just about any other branch of mathematics, of this logical 
complexity. 

If a mathematician suddenly became endowed with such omniscience, it would 
not be the end of mathematics, there is far more to mathematics than truth and 
provability, but one may safely predict that she would be much in demand. The 
logicistic conceptions of mathematics are accurate enough that the discipline would 
become unrecognisable. Without the sixty years leading up to Wiles' work, we 
would have known that (ZFC is consistent & Fermat's Last Theorem) is logically 
equivalent to (ZFC is consistent). And when finding a proof of a result we knew 
by omniscience to be correct, we could check up on the validity of lemmas rather 
than risk wasting time on false ones. How different a picture we gain from P6lya's 
representation of mathematics as a fallibly practised discipline and as the perfect 
place to investigate inductive and plausible reasoning. 

So logical omniscience is an assumption that we cannot hold on to if we wish 
to investigate plausible reasoning in mathematics, which if P6lya was correct is 
perhaps what the Bayesian should be doing. But what prevents us from drop
ping this assumption? Two of the most common justifications for Bayesianism are 
Cox's theorem and the Dutch Book argument. Cox's theorem merely assumes that 
logical equivalence implies equality of probabilities. On the other hand, Dutch 
Book style arguments or those based on the preference for some linearly valued 
commodity attempt to justify it by claiming that if an agent offers different bet
ting quotients on what are in fact logically equivalent sentences, then stakes can 
be set so that they will necessarily lose. But then isn't it surprising that there are 
many instances in the past where mathematicians have bet? Indeed, in view of the 
definitive way mathematical statements, even universal ones, may be settled, they 
would seem to make at least as good propositions to wager on as statements from 
the natural sciences. 

Surely it is reasonable to prefer a bet on the trillionth decimal digit of 7r being 
between 0 and 8, than one at the same odds on its being 9. If, however, 9 is 
the correct digit, then it follows as a "mere" calculation from one of the series 
expansions for 7r. That is, "7r = 4(1 - 1/3 + 1/5 - 1/7 + ... )" and "7r = 4(1 -
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1/3 + 1/5 -1/7 + ... ) & the trillionth decimal place of 7r is 9" would be logically 
equivalent and so to be believed with the same confidence, and so the second 
bet should be preferred. But, mathematicians spend their working lives making 
decisions on the basis of the level of their confidence in the truth of mathematical 
propositions. We would not want to brand them as irrational for devoting time to 
an attempted proof of their hunch that a certain statement follows from a set of 
assumptions merely because the hunch turns out to be wrong. 

There is a suggestion in the writings of several Bayesians that (2) only holds 
when we come to know about the logical relationship between two propositions. 

Given two propositions A, B it may happen that one is true if and 
only if the other is true; we then say that they have the same truth 
value. This may be only a simple tautology (i.e., A and B are verbal 
statements which obviously say the same thing), or it may be that only 
after immense mathematical labors is it proved that A is the necessary 
and sufficient condition for B. From the standpoint of logic it does not 
matter; once it is established, by any means, that A and B have the 
same truth value, then they are logically equivalent propositions, in the 
sense that any evidence concerning the truth of one pertains equally 
well to the truth of the other, and they have the same implications for 
any further reasoning. 

Evidently, then, it must be the most primitive axiom of plausible rea
soning that two propositions with the same truth-value are equally 
plausible. [Jaynes, forthcoming, Ch. 1, p. 6] (second emphasis mine) 

In this less rigid framework we might say that if A is known by the agent to entail 
B, then she should ensure that she has Pr(B) 2: Pr(A). In other words, we are 
generalising from an interpretation of deductive logic no stronger than: 

(3) 'If I judge A to be true and I judge A to entail B, then I should judge B 
to be true.' 

Opposed to the 'probability as logic' position are the subjectivists, whose number 
include followers of de Finetti. Here the accent is on uncertainty: 

The only relevant thing is uncertainty - the extent of our knowledge 
and ignorance. The actual fact of whether or not the events considered 
are in some sense determined, or known by other people, and so on, 
is of no consequence. [de Finetti, 1974, p. xi] 

Since probability is seen as a measure of an individual's uncertainty, it is no won
der that de Finetti permits non-extreme degrees of belief about mathematical facts, 
even those which are decidable. Indeed, this probabilistic treatment seems to ex
tend to even very accessible truths: 

Even in the field of tautology (i.e. of what is true or false by mere 
definition, independently of any contingent circumstances) we always 



180 DAVID CORFIELD 

find ourselves in a state of uncertainty. In fact, even a single verifi
cation of a tautological truth (for instance, of what is the seventh, or 
billionth, decimal place of 7r, or of what are the necessary or sufficient 
conditions for a given assertion) can turn out to be, at a given moment, 
to a greater or lesser extent accessible or affected with error, or to be 
just a doubtful memory. [de Finetti, 1974, p. 24] 

Presumably then for de Finetti one may be rational and yet have a degree of 
belief in '91 is prime' less than 1. Perhaps you are unsure so you set it to 0.6. If 
so, when I ask you for Pr(7 x 13 = 91) you had better give me an answer no 
greater than 0.4. But then can't I force you to realise that you have an inconsistent 
betting quotient by making you see that 7 x 13 really is the same as 91, or is it 
just a case where I should allow you to alter your betting quotient after this lesson? 
More radically still, should one be expected to know that the correctness of this 
product contradicts the claim that 91 is prime? 

In his article, Slightly More Realistic Personal Probability, Ian Hacking [1967] 
sets out a hierarchy of strengths of Bayesian ism. These strengths he correlates with 
ways of saying whether a statement can be possibly true. At the weaker end we find 
a position he terms 'realistic personalism', where non-zero probabilities will be 
attributed by a subject to any statement not known by them to be false, knowledge 
being taken in a very strict sense: "a man can know how to use modus ponens, can 
know the rule is valid, can know p, and can know p :J q, and yet not know q, simply 
because he has not thought of putting them together" [Hacking, 1967, p. 319]. At 
the stronger end we find logical omniscience and divine knowledge. Now clearly 
the coherence provided by realistic personalism is not enough to equip you for a 
life as a gambler. For instance, it is advisable not to advertise the odds at which 
you would accept either side of a wager on a decidable mathematical proposition 
on a mathematics electronic bulletin board. But Dutch Book arguments do not 
work to prove your irrationality on the grounds that someone may know more than 
you. If they do know more than you, you will lose whether the subject of your bet 
is mathematics, physics or the date of the next general election. 

However, there is a point here: surely you can be criticised for betting on a 
proposition whose truth value you know you could discover with a modicum of 
effort, perhaps by the tap of a single button on the computer in front of you. As 
Hacking points out [Hacking, 1967, pp. 323-4], besides coherence one needs a 
principle which calls on you to maximize expected subjective utility. Information 
acquired for free can only help increase this, and so inexpensive reasoning or in
formation gathering is generally a good thing. But this principle is not needed 
solely by a personalism weaker than that based on logical omniscience. Where 
the presupposition of logical omniscience forces you to reason, and indeed reason 
unreasonably much, it does not require you even to look down to note the colour of 
your socks before you bet on it. Only some principle of expected utility does this. 
But then surely you should allow this principle to be the rationale for your logical 
reasoning as well, rather than relying on the very unreasonable idealisation of log-
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ical omniscience which offers little more by way of advice than to be as perfect a 
mathematician as you can be. 

Even admitting that we should not assume logical omniscience when we con
sider mathematics, it might be thought that this assumption is not too unrealistic 
for other walks of life. After all, doesn't the uncertainty which necessitates plau
sible reasoning in ordinary life and the natural sciences arise for other reasons 
- uncertainty in data, inaccessibility of object of study, incompleteness of back
ground knowledge? You might think that it would count as the least of your wor
ries that your logical and mathematical powers are not quite perfect. Hence, an 
assumption in standard Bayesian treatments of scientific inference that logically 
equivalent sentences should be accorded the same degree of belief. However, in 
many situations in science the uncertainty of mathematical knowledge plays an 
important part, as I have explained in a companion paper, not least in the area of 
mathematical predictions, a phenomenon as yet largely ignored by philosophers, 
where physicists gain confidence that they are on the right track when purely math
ematical conjectures arising from their work turn out to be correct. Plausibility of 
scientific statements depends on uncertain mathematical knowledge. 

To give briefly an indication of this, we hear of the mathematical physicist, 
Edward Witten, that he 

... derived a formula for Donaldson invariants on Kahler manifolds 
using a twisted version of supersymmetric Yang-Mills theory in four 
dimensions. His argument depends on the existence of a mass gap, 
cluster decomposition, spontaneous symmetry breaking, asymptotic 
freedom, and gluiI).o condensation. While none of this is rigorous by 
mathematical standards, the final formula is correct in all cases which 
can be checked against rigorous mathematical computations. [Freed 
and Uhlenbeck, 1995, p. 2] 

Such confirmation increases your confidence in the power of your physical mod
elling. The more surprising the verified mathematical conjecture the greater the 
boost to your confidence. 

It is interesting to wonder why nobody (at least to my knowledge) has taken 
P6lya up on his Bayesianism in mathematics. What is the underlying intuition be
hind the avoidance of a Bayesian treatment of plausible and inductive reasoning 
in mathematics? We can begin to understand what is at stake when we read Mary 
Hesse's claim that ..... since mathematical theorems, unlike scientific laws, are 
matters of proof, it is not likely that our degree of belief in Goldbach's conjecture 
is happily explicated by probability functions." [Hesse, 1974, p. 191]. There are 
two responses to this. First, while it is true that the nature of mathematics is char
acterised like no other discipline by its possession of deductive proof as a means 
of attaining the highest confidence in the trustworthiness of its results, proofs are 
never perfectly secure. Second, and more importantly, what gets overlooked here 
is the prevalence in mathematics of factors other than proof for changing degrees 
of belief. 
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The lack of attention plausible mathematical reasoning has received reflects the 
refusal of most anglophone philosophers of mathematics to consider the way math
ematical research is conducted and assessed. On the basis of this refusal, it is very 
easy then to persist in thinking of mathematics merely as a body of established 
truths. As classical deductive logic may be captured from a probability calculus 
which allows propositions to have probabilities either 0 or 1, the belief that math
ematics is some kind of elaboration of logic and that the mathematical statements 
to be considered philosophically are those known to be right or wrong go hand in 
hand. We could say in fact that mathematics has suffered philosophically from its 
success at accumulating knowledge since this has deflected philosophers' attention 
from mathematics as it is being developed. But one has only to glance at one of 
the many survey articles in which mathematicians discuss the state of play in their 
field, to realise the vastness of what they know to be unknown but are very eager to 
know, and about which they may be thought to have degrees of belief equal neither 
to 0 nor to 1.2 

We shall see in section 3 how mathematical evidence comes in very different 
shapes and sizes. But even remaining with 'proved' or well-established statements, 
although there would appear to be little scope for plausible reasoning, there are a 
number of ways that less than certain degrees of belief can be attributed to these 
results. David Hume described this lack of certainty well: 

There is no Algebraist nor mathematician so expert in his science, as 
to place entire confidence in his proof immediately on his discovery 
of it, or regard it as any thing, but a mere probability. Every time he 
runs over his proofs, his confidence encreases; but still more by the 
approbation of his friends; and is rais'd to its utmost perfection by the 
universal assent and applauses of the learned world. Now 'tis evident, 
that this gradual encrease of assurance is nothing but the addition of 
new probabilities, and is deriv'd from the constant union of causes 
and effects, according to past experience and observation. [Hume, 
1739, pp. 180-I] 

Perfect credibility may be difficult to achieve for proofs taking one of a number 
of non-standard forms, from humanly-generated unsurveyable proofs to computer
assisted proofs to probabilistic proofs. These latter include tests for the primality 
of a natural number, n. Due to the fact that around half of the numbers less than n 
are easily computed "witnesses" to its being composite, if such is the case, a small 
sample can quickly show beyond any set level of doubt whether n is prime. 

While a certain amount of suspicion surrounds the latter type of 'proof', from 
the Bayesian perspective, one can claim that all evidence shares the property that it 

2 I mean to exclude here the immense tracts of totally uninteresting statements expressible in the 
language of ZFC in which one will never care to have a degree of belief. An idea of the plans in 
place for the expansion of (interesting) mathematics can be gleaned from the following claim: 'It is 
clear ... that the set-based mathematics we know and love is just the tip of an immense iceberg of n
categorical, and ultimately w-categorical, mathematics. The prospect of exploring this huge body of 
new mathematics is both exhilarating and daunting.' [Baez and Dolan, 1999, p. 32]. 
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produces changes in some degrees of belief. The absence of any qualitative differ
ence in the epistemic import of different types of proof has recently been noted by 
Don Fallis [1997], who considers many possible ways of distinguishing epistemi
cally between deductive proofs and probabilistic proofs and finds none of them ad
equate. He draws the conclusion, therefore, that there is no such difference. Fallis 
centres his discussion around 'proofs' which involve clever ways of getting strands 
of DNA to react to model searches for paths through graphs, putting beyond rea
sonable doubt the existence or non-existence of such paths. Despite there being 
here a reliance on biochemical knowledge, Fallis still sees no qualitative difference 
as regards the justificatory power of this type of proof. Confidence in mathemat
ical statements is being determined by natural scientific theory. This appears less 
surprising when you consider how complicated, yet well-modelled, configurations 
of silicon can be used to generate evidence for mathematical propositions. 

Fallis's point may be expressed in Bayesian terms as follows. 3 The acceptability 
of a mathematical statement is dependent solely on your rational degree of belief 
in that statement conditionalised on all the relevant evidence. Whatever level you 
set yourself (0.99 or 0.99999) the type of evidence which has led you there is irrel
evant. A ten thousand page proof may provide as much support as a probabilistic 
proof or the non-appearance of a counter-example. To contemplate the reliability 
of a result in a particular field we should think of someone from outside the field 
asking a specialist for their advice. If the trustworthy expert says she is very certain 
that the result may be relied upon, does it matter to the enquirer how the special
ist's confidence arises? This depiction could be taken as part of a larger Bayesian 
picture. The very strong evidence we glorify with the name 'proof' is just as much 
a piece of evidence as is a verification of a single consequence. Bayesianism treats 
in a uniform manner not just the very strong evidence that Fallis considers, but all 
varieties of partial evidence. Let us now see what we are to make of this partial 
evidence. 

2 QUANTITATIVE BAYESIANISM 

P6lya understood plausible inference to be quite different from deductive logic. In 
his eyes [P6Iya, 1954b, pp. 112-116], deductive logic is: 

(a) Impersonal- independent of the reasoner; 

(b) Universal- independent of the subject matter; 

(c) Self-sufficient - nothing beyond the premises is needed; 

(d) Definitive - the premises may be discarded at the end of the argument. 

3He points out (private communication), however, that he is not necessarily committed to a Bayesian 
analysis of his position which assumes that one's rational degree of belief is all that really matters in 
mathematical justification. 
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On the other hand, plausible inference is characterised by the following properties: 

(a) The direction of change in credibility is impersonal, but the strength may be 
personal; 

(b) It can be applied universally, but domain knowledge becomes important for 
the strength of change, so there are practical limitations; 

(c) New information may have a bearing on a plausible inference, causing one 
to revise it; 

(d) The work of plausible inference is never finished as one cannot predict what 
new relevant information may arise. 

One of the principal differences seems to be that in the deductive case nobody re
quires of you that you maximise the set of deductive consequences of what you 
hold to be certain. If you are asked whether you know the truth status of a state
ment, you search about for a proof or disproof of it from what you already know. 
If you find nothing, you just admit your ignorance, and no-one can accuse you 
of anything worse than stupidity if you have overlooked such a proof or disproof. 
We do not go around blaming ourselves for not having known before Wiles that 
Fermat's Last Theorem is provable, even though the resources were in some sense 
available. Deductive logic is there to safeguard you from taking a false step, not 
from omitting to take a correct step. On the other hand, we may use plausible 
inference to argue about the plausibility of any statement based on what we know 
at present.4 The question is how to think about the way we go about arriving at 
degrees of belief on the basis of what we already know. 

It is clear that the strength of a mathematician's belief in the correctness of a 
result has an impact on their practice: Andrew Wiles would hardly have devoted 
seven years to Fermat's Last Theorem had he not had great faith in its veracity. 
No doubt we could give a complicated Bayesian reconstruction of his decision to 
do so in terms of the utility of success, the expected utility of lemmas derived in 
a failed attempt, and so on. For a more simple example, we may give a Bayesian 
reconstruction of the following decision of the French Academy: 

The impossibility of squaring the circle was shown in 1885, but be
fore that date all geometers considered this impossibility as so "prob
able" that the Academie des Sciences rejected without examination 
the, alas!, too numerous memoirs on this subject that a few unhappy 
madmen sent in every year. Was the Academie wrong? Evidently not, 

4Jaynes [forthcoming, Ch. 10, p. 211 has a similar view on the difference between deductive logic 
and probability theory as logic: "Nothing in our past experience could have prepared us for this; it is 
a situation without parallel in any other field. In other applications of mathematics, if we fail to use 
all of the relevant data of a problem, the result will be that we are unable to get any answer at all. But 
probability theory cannot have any such built-in safety device, because in principle, the theory must be 
able to operate no matter what our incomplete information might be". 
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and it knew perfectly well that by acting in this manner it did not run 
the least risk of stifling a discovery of moment. The Academie could 
not have proved that it was right, but it knew well that its instincts did 
not deceive it. If you had asked the Academicians, they would have 
answered: "We have compared the probability that an unknown sci
entist should have found out what has been vainly sought for so long, 
with the probability that there is one madman the more on earth, and 
the latter has appeared to us the greater. [Poincare, 1905, pp. 191-2] 
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These alternatives, being mad and being right, were hardly exhaustive. Leaving 
aside the person's sanity we can contrast the probability that their proof is correct 
with the probability that it is incorrect. 

Pr(proof correct I author unknown, I) = 

Pr(proof correct I author unknown, true, I)·Pr(truelauthor unknown, I) + 
Pr(proof correct I author unknown, false, I)·Pr(falselauthor unknown, I) 

= Pr(proof correct I author unknown, true, I)·Pr(truel I) 

where I is the background knowledge. 
Substituting reasonable estimates of the Academie's degrees of belief will lead 

to a very small value for this last expression because its two factors are small. 
On the other hand, a submitted proof of the possibility of squaring the circle by 
a known mathematician, or a submitted proof of its impossibility by an unknown 
author would presumably have been dealt with more tolerantly. 

Notice that this reconstruction would not seem to require one to go beyond 
vague talk of very high or very low probabilities. By contrast, when it comes to 
offering a betting ratio for the trillionth decimal digit of 7l' being 9, it would seem to 
be eminently reasonable to propose precisely 1110, and yet neither the coherence of 
realistic personalism nor any requirement to maximize expected subjective utility 
imposes this value upon you. What appears to determine this value is some form of 
the principle of indifference based on our background knowledge. With a simple 
grasp of the idea of a decimal expansion we simply have no reason to believe any 
single digit more likely than any other. Those who know a little more may have 
heard that there is no statistical evidence to date for any lack of uniformity in the 
known portion of the expansion, probably rendering them much less likely to be 
swayed in their betting ratio by a spate of 9s occurring shortly before the trillionth 
place. So, unless some dramatic piece of theoretical evidence is found, it seems 
that most mathematicians would stick with the same betting ratio until the point 
when they hear that computers have calculated the trillionth place.5 

The issue to be treated in this section is whether we require a quantitative, or 
even algorithmic, form of Bayesianism to allow us to explicate plausible mathe
matical reasoning, or whether, like P6lya, we can make do with a qualitative form 

5 As of 1999 they had reached the 206 billionth. 
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of it. First, it will be helpful for us to contrast P6lya's position with that of Jaynes. 
For Jaynes, P6lya was an inspiration. Indeed, he 

... was the original source of many of the ideas underlying the present 
work. We show how P6lya's principles may be made quantitative, 
with resulting useful applications. [Jaynes, forthcoming, Ch. 1, p. 3] 

As is well known, Jaynes was at the objectivist end of the Bayesian spectrum. In 
other words, his aim was to establish principles (maximum entropy, transformation 
groups, etc.) applicable in as many situations as possible, in which a reasonable 
being could rationally decide on their prior probabilities. P6lya, on the other hand, 
reckoned that one would have to stay with a qualitative treatment (e.g., if A is anal
ogous to Band B becomes more likely, then A becomes somewhat more likely), 
in that the direction of changes to confidence might be determined but not their 
strength. But Jaynes claimed that this decision was based on a faulty calculation 
made by P6lya when he was considering the support provided to Newton's theory 
of gravitation by its prediction of the existence and location of a new planet, now 
called Neptune. The incorrect calculation occurred when P6lya was discussing the 
boost to confidence in Newtonian gravitation brought about by the observation of 
a previously unknown planet precisely where calculations predicted it to be, based 
on observed deviations in Uranus's orbit. 

P6lya takes Bayes theorem in the form, 

G I ) Pr(Newt. Grav.)·Pr(NeptuneINewt. Grav.) 
Pr(Newt. rav. Neptune = --------"---'-----

Pr(N eptune ), 

where Pr(Neptune) corresponds to a scientist's degree of belief that the proposed 
planet lie in the predicted direction. For the purposes of the calculation, he es
timates Pr(Neptune) in two ways. First, he calculates the probability of a point 
lying within one degree of solid angle of the predicted direction, and arrives at 
a figure of 0.00007615 ~ 1/13100. Second, on the grounds that the new planet 
might have been expected to lie on the ecliptic, he uses the probability of a point 
on a circle lying within one degree of the specified position, yielding a value for 
Pr(Neptune) of 11180. He then argues that Pr(Newtonian Gravitation) must be less 
than Pr(Neptune), otherwise Bayes' theorem will lead to a posterior probability 
greater then 1, but that it is unreasonable to imagine a scientist's degree of belief 
being less than even the larger figure of 11180, since Newtonian Gravitation was 
already well-confirmed by that point. He concludes, "We may be tempted to re
gard this as a refutation of the proposed inequality." [P6Iya, 1954b, p. 132] and 
suggests we return to a safer qualitative treatment. 

However, as Jaynes points out, P6lya's calculations were in fact of the prior to 
posterior odds ratio of two theories: on the one hand, Newtonian gravitation, and 
on the other, a theory which predicts merely that there be another planet, firstly 
anywhere and secondly on the ecliptic. Indeed, from the confirmation, Newtonian 
gravitation is receiving a boost of 13100 or 180 relative to the theory that there is 
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one more planet somewhere. P6lya had forgotten that if Pr(Newtonian Gravitation) 
is already high then so too would Pr(Neptune) be. 

We are told by Jaynes that P6lya realised his mistake and went on to participate 
vigorously in the former's lectures at Stanford University in the 1950s. However, 
P6lya had given several further arguments against quantitative plausible reasoning, 
so even if Jaynes could block this particular argument, one would need to confront 
the others. Reading through them, however, one notes that P6lya is making fairly 
standard points: the incomparability of evidence and conjectures, problems with 
the principle of indifference, etc. 

Could it be that your background predisposes you to adopt a certain type of 
Bayesianism? The physicist relies on symmetry considerations pertaining to the 
mechanisms producing the data, the philosopher of science on vaguer considera
tions of theory evaluation, while the economist must integrate a mass of data with 
her qualitative, quasi-causal understanding of the economy. Are disputes among 
Bayesians like the blind men feeling different parts of an elephant? 

Bayesianism applied to reasoning in the natural sciences appears to fall into two 
rather distinct categories: 

(i) analysis of data from, say, nuclear magnetic resonance experiments or as
trophysical observations; 

(ii) plausible reasoning of scientists by philosophers of science (e.g., [Franklin, 
1986]). 

We may wonder how strong the relation is between them. Rosenkrantz [1977] 
attempted a unified treatment, and he indicates by his subtitle 'Towards a Bayesian 
Philosophy of Science' that a treatment of history and philosophy of science issues 
alongside statistical issues should be 'mutually enriching' [Rosenkrantz, 1977, p. 
xU. 

Jaynes himself was less sure about how far one could take the historical recon
structions of scientific inference down a Bayesian route. After his discussion of 
P6lya's attempt to quantify Neptune discovery he claims: 

But the example also shows clearly that in practice the situation faced 
by the scientist is so complicated that there is little hope of applying 
Bayes' theorem to give quantitative results about the relative status of 
theories. Also there is no need to do this, because the real difficulty of 
the scientist is not in the reasoning process itself; his common sense 
is quite adequate for that. The real difficulty is in learning how to 
formulate new alternatives which fit better the facts. Usually, when 
one succeeds in doing this, the evidence for the new theory soon be
comes so overwhelming that nobody needs probability theory to tell 
him what conclusions to draw. [Jaynes, forthcoming, Ch. 5, p. 17] 

This note occurs in a chapter entitled 'Queer uses of probability', by which he 
intends that at present we have no rational means for ascribing priors. So, despite 
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his professed debt to Mathematics and Plausible Reasoning, we find two poles 
of Bayesianism represented by Jaynes and P6lya. For Jaynes, any rational agent 
possessing the same information will assign identical probability functions. For 
P6lya, two experts with the same training may accord different changes to their 
degrees of belief on discovery of the same fact. One imagines a machine making 
plausible inferences, the other emphasises the human aspect. 

Jaynes: 

P6lya: 

... instead of asking, "How can we build a mathematical model of 
human common sense?" let us ask, "How could we build a machine 
which would carry out useful plausible reasoning, following clearly 
defined principles expressing an idealized common sense? [Jaynes, 
forthcoming, Ch. 1, p. 5] 

A person has a background, a machine has not. Indeed, you can build 
a machine to draw demonstrative conclusions for you, but I think you 
can never build a machine that will draw plausible inferences. [P6Iya, 
1954b, p. 116] 

Perhaps it is the lack of exactitude which steers Jaynes away from modelling 
scientific reasoning. After a lifetime investigating how symmetry considerations 
allow the derivation of the principles of statistical mechanics, it must be difficult 
to adapt to thinking about plausibility in complex situations. 

But if a physicist might be excused, what of a philosopher? John Earman, while 
discussing how a physicist's degrees of belief in cosmological propositions were 
affected by the appearance of General Relativity on the scene, tells us 

But the problem we are now facing is quite unlike those allegedly 
solved by classical principles of indifference or modern variants 
thereof, such as E. T. Jaynes's maximum entropy principle, where 
it assumed that we know nothing or very little about the possibilities 
in question. In typical cases the scientific community will possess a 
vast store of relevant experimental and theoretical information. Us
ing that information to inform the redistribution of probabilities over 
the competing theories on the occasion of the introduction of the new 
theory or theories is a process that is, in the strict sense of the term, 
arational: it cannot be accomplished by some neat formal rules, or, to 
use Kuhn's term, by an algorithm. On the other hand, the process is 
far from irrational, since it is 'informed by reasons. But the reasons, 
as Kuhn has emphasized, come in the form of persuasions rather than 
proof. In Bayesian terms, the reasons are marshalled in the guise of 
plausibility arguments. The deployment of plausibility arguments is 
an art form for which there currently exists no taxonomy. And in view 
of the limitless variety of such arguments, it is unlikely that anything 
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more than a superficial taxonomy can be developed. [Earman, 1992, 
p. 197] 
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This seems a rather pessimistic analysis for a professed Bayesian. Does the 
'limitless variety' of these arguments mean that we should not expect to find pat
terns among them? Despite the talk of their deployment being an 'art form', Ear
man does allow himself to talk about the objective quality of these plausibility 
arguments. Indeed, he claims that: 

Part of what it means to be an "expert" in a field is to possess the 
ability to recognize when such persuasions are good and when they 
are not. [Earman, 1992, p. 140] 

Interestingly, it is P6lya the "expert" in mathematics who believes that it is possible 
to extract the patterns of good plausibility arguments from his field. 

So, out of the three, Jaynes, P6lya and Earman, representatives of three differ
ent types of Bayesianism, it is P6lya who believes one can say something quite 
concrete about plausible reasoning. All realise that plausible reasoning is a very 
complex process. Neither Jaynes nor Earman cannot see a way forward with plau
sible scientific reasoning. This leaves P6lya who gets involved with real cases 
of (his own) mathematical reasoning, which he goes on to relate to juridical rea
soning and reasoning about one's neighbour's behaviour. Is he right to claim that 
mathematics provides a better launch pad to tackle everyday reasoning than does 
science? 

If we want a fourth Bayesian to complete the square, we might look to the com
puter scientist Judea Pearl. Like P6lya, Pearl believes we can formulate the prin
ciples of everyday common sense reasoning, and like Jaynes he thinks Bayesian 
inference can be conducted algorithmically. To be able to do the latter requires 
a way of encoding prior information efficiently to allow Bayesian inference to 
occur. For Pearl [Pearl, 2000], (this volume) humans store their background in
formation efficiently in the form of causal knowledge. The representation of this 
causal knowledge in a reasonably sparse Bayesian network is the means by which 
a machine can be made to carry out plausible reasoning and so extend our powers 
of uncertain reasoning. 

In his earlier work Pearl [1988] expressed his appreciation of P6lya's ideas, 
and yet found fault with his restriction to the elucidation of patterns of plausi
ble reasoning rather than a logic. He considers P6lya's loose characterisation of 
these patterns not to have distinguished beUyeen evidence factoring through con
sequences and evidence factoring through causes. For instance, P6lya asserts that 
when B is known to be a consequence of A, the discovery that B holds makes it 
more likely that A holds. This, however, is a well known fallacy of causal reason
ing. I see that the sprinkler on my lawn is running and that the grass is wet, but 
this does make it more probable to me that it has rained recently even though wet 
grass is a consequence of it having done so. But one need not remain with causal 
stories to reveal this fallacy. A consequence of a natural number being divisible by 
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four is that it is even. I find that a number I seek is either 2 or 6. Although I have 
learnt that it is even, this discovery reduces the probability of its being divisible 
by 4 to zero. Essentially, what P6lya overlooked was the web-like nature of our 
beliefs, only departing from patterns involving two propositions when he consid
ered the possibility of two facts having a common ground. In Bayesian networks, 
converging arrows are equally important but must be treated differently. 

It remains to be seen whether the techniques of Bayesian networks may il
luminate scientific inference. Now we shall turn our attention to examine what 
Bayesianism has to say about certain aspects of mathematical reasoning. 

3 WHAT MIGHT BE ACHIEVED BY BAYESIANISM IN MATHEMATICS 

Varieties of mathematical evidence may be very subtle, lending support to Earman 
and Jaynes' scepticism. P6lya [1954b, p. 11ll himself had the intuition that two 
mathematicians with apparently similar expertise in a field might have different 
degrees of belief in the truth of a result and treat evidence for that result differ
ently. Even though each found a consequence of the result equally plausible, the 
establishment of this consequence could have an unequal effect on their ratings of 
the likelihood of the first result being correct. The complex blending of the various 
kinds of evidence experienced through a mathematician's career would explain the 
differences in these reactions, some of which might be attributable to aspirations 
on the part of each of them either to prove or disprove the theorem. But P6lya 
goes further to suggest that such differences of judgement are based on "still more 
obscure, scarcely formulated, inarticulate grounds" [P6Iya, 1954b, p. 111]. 

Such appeals to the inexpressible, or at least to the imprecisely expressed, are 
not at all uncommon. For example, the mathematician Sir Michael Atiyah asserts 
that 

... it is hard to communicate understanding because that is something 
you get by living with a problem for a long time. You study it, perhaps 
for years. You get the feel of it and it is in your bones. [Atiyah, 1984, 
p.305] 

Such comments may have been devised by mathematicians to give an air of 
mystery to their practice. A sceptic could point out that doctors have done like
wise in the past by alleging that diagnosis requires some profound intuitive faculty 
of divination, an attractive image shattered by the successful construction of ex
pert systems which have shown physicians to be replaceable in some situations, 
by machines using propositionally encoded evidence. However, the success of 
artificial intelligence in some areas of medical diagnosis may be contrasted with 
the extreme difficulty in getting computers to do anything that might be termed 
creative in mathematics.6 The essential point does not concern whether or not 

6 A possible exception is the recent successful automated solution of the Robbins problem (see 
http://www.mcs.anl.gov/~mccunel). drawn to my attention by Don Fallis. 
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mathematicians in fact rely on non-propositional knowledge, so much as whether 
there might be something about this type of knowledge which is indispensable to 
doing mathematics. 

Certainly, evidence for the correctness of a statement may be very subtle. It may 
even arise through an experience of failure. In [Corfield, 1997] I pointed out the 
inaccuracy on Lakatos's part of his notion of lemma-incorporation, the idea that 
faulty proofs are generally repaired by some simple insertion of a lemma. As I 
explained there, while proving the so-called 'duality theorem' Poincare had come 
to realise that an assumption he was making about the way differential manifolds 
intersect was invalid in general. However, he still believed that the general strat
egy could be made to work of constructing for a given set of manifolds of equal 
dimension a manifold of complementary dimension which intersected each of the 
members of the set exactly once. He just needed to have the intersections occur in 
a more controlled fashion. One can only guess how this experience impacted on 
his degree of belief in the duality theorem. It is quite probable that even though the 
initial proof was found to be wrong, the experience of near success with a variant 
of a strategy gave him hope that another variant would work. It must also happen, 
however, that mathematicians are discouraged by such setbacks. 

Evidence can also involve the non-discovery of something as Sherlock Holmes 
well knew when he built his case on the observation of a dog that did not bark. 
The classic example of the unsurveyable human-generated kind of proof at the 
present time is the proof of the classification of finite simple groups into 5 infinite 
families and 26 sporadic outsiders. How does one's degree of belief in this result 
depend on such potentially flawed lengthy evidence? Fallis [1997] has Gorenstein, 
the driving force behind the collective proof, confessing that confidence is boosted 
less by the proof itself than by the fact that no other such groups have been found. 
Similarly, remarks are often to be heard concerning the consistency of ZFC that 
one would have expected to have encountered a contradiction by now. 

We should also remember that evidence for mathematical propositions comes 
from sources which have only recently become available. The use of computers 
to fill in the gaps of human proofs has become acceptable, but computers are used 
in many other ways in mathematics. For example, they provide evidence for con
jectures via calculations made on samples, and they produce visual evidence in 
dynamical systems theory, as in the drawing of attractors or power spectra. Re
liance on computer evidence raises some novel issues. Oscar Lanford is attributed 
with pointing out that 

... in order to justify a computer calcUlation as part of a proof ... , you 
must not only prove that the program is correct (and how often is 
that done?) but you must understand how the computer rounds num
bers, and how the operating system functions, including how the time
sharing system works. [Hirsch, 1994, p. 
188] 

Moreover, if more than one piece of computer evidence is being considered, 



192 DAVID CORFIELD 

how do we judge how similar they are for conditionalising purposes? This would 
require one to know the mathematics behind any similarities between the algo
rithms utilised. 

It is clear then that any account of mathematical inference will require a very 
expressive language to represent all the various forms of evidence which impact on 
belief in mathematical propositions. The Bayesian wishing to treat only proposi
tions couched in the language of the object level might hope to be able to resort to 
Jeffrey conditionalisation, but this comes at the price of glossing over interesting 
features of learning. Concerning scientific inference, Earman [1992, pp. 196-
8] asserts that many experiences will cause the scientist to undergo non-Bayesian 
shifts in their degrees of belief, i.e., ones unaccountable for by any form of algo
rithmic conditionalisation. These shifts, the resetting of initial probabilities, are 
very common, he claims, arising from the expansion of the theoretic framework or 
from the experience of events such as "[n]ew observations, even offamiliar scenes; 
conversations with friends; idle speculations; dreams ... " [Earman, 1992, p. 198]. 
One might despair of making any headway, but taking P6lya as a guide we may 
be able to achieve something. While recognising that making sense of plausible 
reasoning in mathematics will not be easy, I believe that three key areas of promise 
for this kind of Bayesianism in mathematics are analogy, strategy and enumerative 
induction. 

3.1 Analogy 

Before turning to a probabilistic analysis of plausible reasoning in the second vol
ume of Plausible Reasoning, P6lya had devoted the first volume [1954a], as its 
subtitle suggests, to the themes of analogy and induction. Analogies vary as to 
their precision. When vague they contribute to what he called the general at
mosphere surrounding a mathematical conjecture, which he contrasts to pertinent 
clear facts. While verifications of particular consequences are straightforwardly 
relevant facts, the pertinence of analogical constructions may be hard to discern 
precisely. Nevertheless, mathematicians, succh as Gian-Carlo Rota, take them to 
be vitally important: 

The enrapturing discoveries of our field systematically conceal, like 
footprints erased in the sand, the analogical train of thought that is the 
authentic life of mathematics. [Kac et al., 1986, p. ix] 

Let us illustrate this with an example. At the present time the vast majority of 
mathematicians have a high degree of belief in the Riemann Hypothesis. Recall 
that the Riemann zeta function is defined as the analytic continuation of ((8) = 
~n-s summed over the natural numbers, and that the hypothesis claims that if 
8 is a zero of ((8), then either 8 = -2, -4, -6, ... , or the real part of 8 equals 
112. Many roots have been calculated (including the first 1.5 billion zeros in the 
upper complex plane along with other blocks of zeros), all confirming the theory, 
but despite this "overwhelming numerical evidence, no mathematical proof is in 
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sight." [Cartier, 1992, p. 15]. As Bayesians have explained, there are limits to 
the value of showing that your theory passes tests which are conceived to be very 
similar. If, for example, a further 100 million zeros of the zeta function are found 
to have their real part equal to 112, then little change will occur in mathematicians' 
degrees of belief, although a little more credibility would be gained if this were true 
of 100 million zeros around the 1020 th, which is precisely what has happened. 

In this example the clear facts making up the numerical evidence can lend only 
limited credence by themselves. After all, there are 'natural' properties of the natu
ral numbers which are known to hold for exceedingly long initial sequences. What 
counts in addition beyond evidential facts, however numerous, is the credibility 
of stronger results, general consequences and analogies. Indeed, if an analogy is 
deemed strong enough, results holding for one side of it are thought to provide 
considerable support for their parallels. Concerning the Riemann conjecture (RC), 
we are told that: 

There is impressive numerical evidence in its favour but certainly the 
best reason to believe that it is true comes from the analogy of number 
fields with function fields of curves over finite fields where the ana
logue ofRC has first been proved by A. Weil. [Deninger, 1994, p. 
493] 

This analogy7 was postulated early in this century as a useful way of providing 
a halfway house across an older analogy, developed by Dedekind and Weber, from 
algebraic number fields to function fields over the complex numbers. However, 
the translation techniques between the three domains have still not been perfected. 
The more geometric side of the analogy Deninger mentions was able to absorb 
cohomological techniques, allowing Weil to prove the Riemann hypothesis ana
logue in 1940. An extraordinary amount of effort has since been expended trying 
to apply cohomology to number theory (Weil, Grothendieck, Deligne, etc.) with 
the establishment of the standard Riemann hypothesis as one of its aims. 

How should we judge how analogous two propositions, A and B, are to each 
other? For P6lya [1954b, p. 27] it correlates to the strength of your "hope" for a 
common ground from which they both would naturally follow. Increase in con
fidence in A will then feed up to the common ground, H, and back down to B. 8 

If analogy is to be treated anywhere, I believe mathematics will provide a good 
location, since there are plenty of excellent examples to be found there. In P6lya's 
principal example, Euler noticed that the function sin x/x resembles a polynomial 
in several respects: it has no poles; it has the right number of zeros, which do not 
accumulate; it behaves symmetrically at ±oo. On the other hand, unlike a poly
nomial, sin x/x remains bounded. Even with this disanalogy, it seemed plausible 
that polynomials and sin x/x would share other properties. One notable feature 
of complex polynomials is that anyone of them may be expressed as a product 

7See also [Katz and Samak, 1999], in particular the table on page 12. 
8Notice here the flavour of a Bayesian network: H pointing to both A and B. 
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of factors of the form (1 - x/root), taken over all of its roots. Might this prop
erty also apply to sin X/X? Well, the roots of this function are ±11", ±211", ±311", ... , 
suggesting that we should have 

Si:X = (1 - ;:) (1 - 4:2) (1 - ::2 ) ... , 
On the other hand, expanding the function as a Taylor series, we have 

sinx/x = 1- x2/6 + x4 /120 - ... 

Equating coefficients of x 2 suggests then that 

1 + 1/4 + 1/9 + 1/16 + ... = 11"2/6. 

Even after checking this sum to several decimal places Euler was not absolutely 
confident in the result, but he had in fact solved a famous problem by analogical 
reasoning. 

It might be that what is happening here is something similar to what Pearl 
[2000] has termed the "transfer of robust mechanisms to new situations". We have 
a mechanism that links factorisation of a function to its zeros. We find it applies for 
complex polynomials and wonder whether it may be extended. Features of poly
nomials that may be required in the new setting are that they have the right number 
of zeros, they remain bounded on compact sets, they behave similarly at ±oo. 
Might the mechanism be expected to work for a non-polynomial function possess
ing these features, such as sin x/x? What if you force the variable measuring the 
number of roots to be infinite? We may find it hard to estimate quantitatively the 
similarity between a function like sin x/x and a complex polynomial, but it is clear 
that tanx / x or exp x are less similar, the former having poles, the latter having no 
zeros and asymmetric behaviour at ±oo, and indeed the mechanism does fail for 
them. 

In this case, once the realisation that an analogy was possible, it didn't cost 
much to work through the particular example. Euler hardly needed to weigh up 
the degree of similarity since calculations of the sum quickly convinced him. How
ever, to develop a general theory of the expansion of complex functions did require 
greater faith in the analogy. This paid off when further exploration into this mecha
nism allowed mathematicians to form a very general result concerning entire com
plex functions, providing the "common ground" for the analogues. 

3.2 Strategy 

Moving on now to strategy, the title of Deninger's paper-Evidence for a Coho
mological Approach to Analytic Number Theory-is also relevant to us. His aim 
in this paper is to increase our degree of belief that a particular means of thinking 
about a field will lead to new results in that field. This is a question of strategy. 
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At a finer level one talks of tactics. Researchers from the AI community working 
on automated theorem proving, have borrowed these terms. One tactic devised by 
Larry Wos [Wos and Pieper, 1999] involves thinking in terms of how probable it is 
that the computer can reach the target theorem from a particular formula generated 
from the hypotheses during the running of the programme. This tactic takes the 
form of a weighting in the search algorithm in favour of formulas which have a 
syntactical form matching the target. 

Elsewhere, researchers in Edinburgh are interested in the idea of the choice of 
tactics [Bundy, 1999]. Thereis an idea oflikening mathematics to a game of bridge 
where the mathematician, like the declarer, has some information and a range of 
strategies to achieve their goal (finesse, draw trumps, squeeze). Of course, there is 
a difference. In bridge, you are in the dynamic situation where you cannot tryout 
every strategy, as the cards get played. This forces you to pay very close attention 
to which tactics have the best chance of working. In mathematics, on the other 
hand, with a computer it does not cost you much to try things out, although one 
does risk combinatorial explosion. At present, probabilities are being used for their 
computer bridge player, they are not yet being used for their automated theorem 
prover. While the computer has a small repertoire of syntactical tactics (rippling, 
resonance, heat, etc.) there is less need for an assessment of the chance of each 
working, but presumably the number of proof techniques will grow. 

These automated proof strategies are at present syntactically based. Naturally, 
semantic considerations play the dominant role for human mathematician. P6lya 
was active in this area too. To give a brief flavour of his ideas, if when planning 
to solve a problem, any of the following should increase your confidence in your 
plan [P6lya, 1954b, pp. 152-153]; 

• Your plan takes all relevant information into account. 

• Your plan provides for a connection between what is known and what is 
unknown. 

• Your plan resembles some which have been successful in problems of this 
kind. 

• Your plan is similar to one that succeeded in solving an analogous problem. 

• Your plan succeeded in solving a particular case of the problem. 

• Your plan succeeded in solving a part of the problem. 

3.3 Enumerative induction 

Besides the incorrect Bayesian calculation of the confirmation provided by the 
observation of Neptune, P6lya does resort to a quantitative sketch in another place 
[P6lya, 1954b, pp. 96-71. Here he outlines how one might think through the 
boost to the credibility of Euler's formula for a polyhedron (vertices - edges + 
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faces = 2) known to hold for some simple cases, when it is found to be true of 
the icosahedron. (12 - 30 + 20 = 2). His approach is to reduce the problem to 
the chances of finding three numbers in the range 1 to 30 with the property that 
the second is equal to the sum of the other two, i.e., (V - 1) + (F - 1) = E. 
The proportion of these triples is around 1 in 60, providing, he argues, a boost of 
approximately 60 to the prior probability of Euler's conjecture. Here again we see 
the same problem that Jaynes located in the Neptune calculation. The ratio of the 
likelihood of the Euler conjecture compared to that of its negation is 60. 

In any case P6lya's construction can only be viewed as sketchy. It is not hard to 
see that the number of edges will always be at least as great as one and a half times 
the number of faces or the number of vertices. (For the latter, for example, note 
that each edge has two ends, but at least three of these ends coincide at a vertex). 
Thus one should have realised that there are further constraints on the possible 
triples and hence that the likelihood ratio due to the evidence for the Euler formula 
should have been in comparison to better informed rival conjecture, and so not so 
large. But the interesting point is that P6lya goes on to say that: 

If the verifications continue without interruption, there comes a mo
ment, sooner or later when we feel obliged to reject the explanation 
by chance. [P6Iya, 1954b, p. 97] 

The question then arises as to whether one is justified in saying such a thing on 
the basis of a finite number of verifications of a law covering an infinite number of 
cases. This will hinge on the issue of the prior probability of such a law. 

Now, consider Laplace's rule of succession. If you imagine yourself drawing 
with replacement from a bag of some unknown mixture of white and black balls, 
and you have seen m white balls, but no black balls, the standard use of the prin
ciple of indifference suggests that the probability that the next n will be positive 
is 

(m + 1)/(m + n + 1). 

As n ~ 00, this probability tends to zero. In other words, if verifying a mathemat
ical conjecture could be modelled in this fashion, no amount of verification could 
help you raise your degree of belief above zero. 

This accords with the way Rosenkrantz [1977] views the situation. He considers 
the particular case of the twin prime conjecture: that there are an infinite number 
of pairs of primes with difference 2. He mentions that beyond the verification of 
many cases, there are arguments in analytic number theory which suggest that you 
can form an estimate for the number of twin primes less than n and show that it 
diverges. He then continues: 

Now if Popper's point is that no examination of 'positive cases' could 
ever raise the probability of such a conjecture to a finite positive value, 
I cannot but agree. Instances alone cannot sway us! But if his claim is 
that evidence of any kind (short of proof) can raise the probability of a 
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general law to a finite positive value, I emphatically disagree. On the 
cited evidence for the twin prime conjecture, for example, it would 
seem to me quite rational to accept a bet on the truth of the conjecture 
at odds of, say 100: 1, that is to stake say $ 100 against a return of $ 
10000 should the conjecture prove true. [Rosenkrantz, 1977, p. 132] 
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So for Rosenkrantz, with no background knowledge, the principle of indiffer
ence forces a universal to have zero, or perhaps an infinitesimal (something also 
considered by P6Iya), prior probability. However, other considerations may deter
mine a positive probability. 

Subject-specific arguments usually underlie probability assessments 
in mathematics. [Rosenkrantz, 1977, p. 90] 

In support of this view, returning to the Euler conjecture, we should note that there 
was background knowledge. For polygons, it is a trivial fact that there is a linear 
relation between the number of vertices and the number of edges, namely, V = E. 
Hence, a simple linear relation might be expected one dimension higher. 

Is it always this kind of background knowledge which gives the prior probabil
ity of a conjecture a 'leg-up'? Do we ever have a situation with no background 
knowledge, i.e., where a general atmosphere is lacking? Consider the case of John 
Conway's 'Monstrous Moonshine', the conjectured link between the j-function 
and the monster simple group. The j-function arose in the nineteenth century from 
the study of the parameterisation of elliptic curves. It has a Fourier expansion in 
q = exp(27l'iT): 

jeT) = l/q + 744 + 196884q + 21493760q2 + 864299970q3 + ... 

One day while leafing through a book containing this expansion, a mathemati
cian named John Mackay observed that there was something familiar about the 
third coefficient of this series. He recalled that 196,883 was the dimension of the 
smallest non-trivial irreducible representation of what was to become known as 
the monster group, later confirmed to be the largest of the 26 sporadic finite simple 
groups. Better still, adding on the 1 dimension of the trivial representation of the 
monster group results in equality. 

In view of the very different origins of these entities, the j-function from nine
teenth century work on elliptic curves and the monster group from contemporary 
work in finite group theory, if one had asked a mathematician how likely she 
thought it that there be some substantial conceptual connection between them or 
common ground explaining them both, the answer would presumably have been 
"vanishingly small". In Bayesian terms, Pr(connection! numerical observation) is 
considerably greater than Pr(connection), but the latter is so low that even this un
likely coincidence does not bolster it sufficiently to make it credible. Naturally, 
McKay was told that he was 'talking nonsense'. He then went on, however, to ob
serve that the second nontrivial representation has dimension 21296876. A quick 
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calculation revealed that the fourth coefficient of the j-function could be expressed 
as: 21493760 = 21296876 + 196883 + 1. In fact every further coefficient of the 
j-function turns out to be a simple sum of the dimensions of the monster's rep
resentations. At this point the question of whether there is some connection has 
been all but answered-it has become a near certainty. Conway challenged the 
mathematics community to resolve this puzzle. 

Fourier expansion in q = exp(27rir): 

j(r) = l/q + 744 + 196884q + 21493760q2 + 864299970q3 + ... 

196884 196883 + 1 
21493760 21296876 + 196883 + 1 
864299970 842609326 + 21296876 + 196883 + 196883 + 1 + 1 

The answer eventually arrived through a construction by Richard Borcherds, a 
student of Conway, which earned him a Fields' Medal. Borcherds managed to spin 
a thread from the j-function to the 24-dimensional Leech lattice, and from there to 
a 26-dimensional space-time inhabited by a string theory whose vertex algebra has 
the monster as its symmetry group. 

So why does the monster group-j-function connection become so likely by the 
time you have seen three or four of the sums, even with a minuscule prior, when 
other inductions are less certain after billions of verifications? Would we find 
consensus on how the number of instances affects one's confidence? Surely most 
people would agree that it was a little reckless on Fermat's part to conjecture pub
licly that 22n + 1 is prime after verifying only 5 cases (and perhaps a check on 
divisibility by low primes for the sixth). 

n 01234 5 
22n + 1 3 5 17 257 65537 4294967297 = 641 x 6700417 

Is it possible to use Bayes' theorem, even merely suggestively? 
Let us return to the case of the Riemann hypothesis (RH). If we have a prior 

degree of belief for RH, how can 1.5 billion verifications affect it? Surely they 
must, but then is there some asymptotic limit? One might want to factor the RH as 
follows 

Pr(RH I Data) = Pr(RHlp = 1, Data)· Pr(p = IIData), 

where p denotes the limiting proportion, if this exists, of the zeros that lie on the 
line, taking the zeros in the order of increasing size of modulus. 

For the second factor we might then have started with a prior distribution over 
p according to the weighted sum of the exhaustive set of hypotheses about p: non
convergentp; p in [0, 1);p = 1. Then if one can imagine some element of inde
pendence between the zeros, e.g., the fact that the nth zero lies on the line provides 
no information on the (n + l)th, then the confirmation provided by the 1.5 billion 
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zeros should push the posterior of p = 1 to take up nearly all the probability ac
corded to convergent p. This kind of assumption of independence has been used 
by mathematicians to make conjectures about the distribution of primes, so may 
be appropriate here. We might also consider that 1.5 billion positive instances pro
vides an indication that p is convergent. Again, however, this consideration would 
depend on experience in similar situations. 

For the first factor, out of all the functions you have met for which their zeros 
have held for a large initial section and the proportion of cases is 1, you are won
dering what proportion are universally true. It is clear, then, that again much would 
depend on prior experience. For example, something that would be kept in mind 
is that the function 7l'(x) , defined as the number of primes less than x, is known 
to be less than a certain function, denoted Ii (x), up to 1012 , and that there is good 
evidence that this is so up to 1030 . But it is known not to hold somewhere before 
10400 . Indeed, there appears to be a change close to 1.4 x 10316 . 

Returning finally to 'Monstrous Moonshine', perhaps we should look harder 
for a reliance on background knowledge. First, it is worth remembering that the 
dimensions of the monster group's representations and the coefficients of the j
function were not 'made up'. They come from 'natural' mathematical considera
tions. Imagine in the monstrous moonshine case if the two sides were not 'inter
esting' entities or that you knew for a fact that these numbers were randomly gen
erated, wouldn't you take more convincing? Similar considerations are discussed 
by Paris [Paris et al., 2000], who wish to justify some 'natural' prior distribution 
of probability functions over n variables . 

. . . what in practice I might claim to know, or at least feel justified 
in believing, is that the data I shall receive will come from some real 
world 'experiment', some natural probability function; it will not sim
ply have been made up. And in this case, according to my modeling, 
I do have a prior distribution for such functions. [Paris et al., 2000, p. 
313] 

Evidence for the fact that background knowledge is coming into play in this 
case is provided by the fact that on presentation of the example to an audience of 
non-mathematicians they found the numerical coincidences not at all convincing. 
Despite the fact that a mathematician has no knowledge of a reason for a connec
tion between these two mathematical entities, some slight considerations must play 
a role. Indeed, what seemed to disappoint the non-mathematicians was the need to 
include mUltiples of the dimensions of the irreducible representations. A mathe
matician, on the other hand, is well aware that in general a group representation is 
a sum of copies of irreducible ones. For example, the right regular representation, 
where the group acts on a vector space with basis its own elements, is such a sum 
where the number of copies of each irreducible representation is equal to its di
mension. Behind the addition of dimensions are sums of vector spaces. Second, a 
mathematician would know that the j-function arises as a basic function, invariant 
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under the action of the modular group. This offers the possibility that group theory 
might shed some light on the connection. 

4 CONCLUSION 

We have covered a considerable stretch of ground here. Clearly much work re
mains to be done on P6lya's research programme, but I think we can allow our
selves a little more optimism than Earman. I have isolated the following areas as 
potentially useful to study in a Bayesian light: (1) Analogy; (2) Strategy choice; 
and, (3) The use of large computations to increase plausibility of conjectures. 
Elsewhere I shall consider two additional areas: (4) Mathematical predictions in 
physics; and, (5) The use of stochastic ideas in mathematics (random graphs, ran
dom matrices, etc.). It is important to note that we need not necessarily arrive 
at some quantitative, algorithmic Bayesian procedure to have made progress. If 
Bayesianism in mathematics suggests interesting questions in the philosophy of 
mathematics, then I think we can say that it has served its purpose. 

Department of Philosophy, King's College London. 
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