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PERSONAL GLIMPSE 

How I Was led to the Frequency Approach 
R. W. Hamming 
Department of Computer Science, Naval Postgraduate School, Monterey, California 93943 

Probably the first necessary step in adopting the 
frequency approach to numerical analysis is to realize 
that there are serious defects in the polynomial ap- 
proach. I will give a few examples of these, more or 
less in the order that they came to my attention. 

In 1945 while in the computer group at Los Alamos 
I discovered that the classical Simpson’s iterated for- 
mula for numerical integration makes no statistical 
sense. If you think of the integration of a function 
y (1~) from 0 to 1 as computing the average value of the 
function in that interval, then the iterated formula is 

[Y(O) + 4Y(h) + 2Y(2h) + 4YC3h) 

+ 2y(4h) + - - - +y(2nh)]/3n 

(where n is the number of double intervals used). But 
to believe that a sample of the integrand at one point 
around the middle of the range is twice as important 
as the adjacent values is nonsense! Thus, although the 
formula may be impeccably right in a mathematical 
sense, it fails to pass the reasonable statistical test of 
common sense. 

In Scarborough’s classic book (of many editions) 
he derived the error term for each polynomial inter- 
polation formula as if it were different in each case, 
yet it was obvious to me that from the same sample 
points you get a unique interpolation formula 
(though the form of writing may involve different 
function values and assorted differences), and hence 
the error term depends only on the sample points used 
and not on the form in which it is written (of course 
within round-off errors). Therefore I was led to think 
in terms of classes of formulas rather than in terms of 
the isolated ones which filled the texts at that time. 
Furthermore it was clear to me that what we were 
computing at Los Alamos had very little to do with 
interpolation. 
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The next event that I recall occurred when I was 
teaching a night class in numerical methods. (How 
better to learn the topic than to teach it?) I was end- 
ing the lecture with the problem of finding the deriva- 
tive to a set of data and I said, following the text book, 
“You find the interpolating polynomial, differentiate 
it, and evaluate the derivative at a sample point.” 
Even as I spoke I realized the utter stupidity of what I 
was saying-at a sample point the interpolating poly- 
nomial is almost certainly crossing the function, and 
a worse point to evaluate a derivative could hardly be 
found! The bell saved me, but during the hour’s drive 
home I had time to meditate on the mathematically 
correct but, nevertheless, idiotic result. It also became 
clear to me in the same course that the Weierstrass 
theorem on the approximation of functions bypolyno- 
mials both was irrelevant and produced unbelievably 
high degree polynomials. Thus I finally realized that 
many of the classical numerical methods are plain 
silly. 

It was somewhere around this time that I found 
that the (ideal) mathematical result that the powers 
of x are linearly independent over any interval (and 
over n + 1 points up to the nth power of x) , while true, 
is false in the presence of “noise” (round-off errors), 
and it fails for even moderate degree polynomials. 
You can find this in Lanczos’ Applied Analysis, if not 
for yourself (as I did). In a sense Hilbert’s matrix 
underlines this fact clearly. This is the reason, I be- 
lieve, that practical numerical methods for integrat- 
ing differential equations seldom go above fifth order. 

My next adventure came when I was using Milne’s 
method for integrating ordinary differential equa- 
tions (which I inherited and took over without benefit 
of careful thought) and found that it was unstable in 
some situations! A very careful reading of Milne’s two 
books showed that he never even hinted that his 



method was unstable, although he observed that a 
certain method was unstable. I was in a desperate situ- 
ation from which I could not withdraw without a great 
loss of face. How about using the Adams-Bashforth 
method? Well, I was not going to do that until I un- 
derstood things a lot better than I did, and that 
meant, at least to me, that I had to create a general 
theory in which both methods occurred as special 
cases. 

It was at about this time that I developed what I call 
the direct method. You write down the formula (a lin- 
ear form) with m unknown coefficients using the sam- 
ples of the function you are prepared to use. Then you 
make the formula exact for 1, x, . . . ,x~-‘, and since it 
is linear it will be exactly true for any polynomial of 
degree (m - 1). If there is an interpolating polyno- 
mial, then the resulting formula will be the same as if 
you found the interpolating polynomial and did the 
corresponding operation on it. For example, to derive 
Simpson’s formula we are given the three function 
valuesy(-l),y(O),andy(l).Thuswewrite 

s 

1 

f(r)dx = uy(-1) + by(O) + cy(1) 
-1 

and require that this be exactly true for the functions 
1, x, and x2. We get: 

Function LHS RHS 

ify = 1: 2 = a + b + c 
ify = x: 0 = -(/, + c 
if y = x2: 2/3 = a + c 

Solving these equations we get Simpson’s coefficients 
directly and with a lot less effort than with the classi- 
cal method of first finding the interpolating polyno- 
mial. To repeat the argument, if the formula is exact 
for any polynomial of a given degree, then it must be 
true for the particular polynomials which are the 
powers of x. And if it is true for the individual powers, 
it must be true for any linear combination of them. It 
was only much later that I realized the lack of perfect 
equivalence of the two methods; there might be no 
interpolating polynomial but there might still be a 
corresponding formula! 

I used this method to obtain the family of integra- 
tion formulas for differential equations. I wrote down 
the form, using the data I planned to use, then made 
the formula exact for the corresponding powers of x, 
but saved a couple of coefficients for stability and 
round-off properties that I deemed to be important. 
Thus I was led to two parameter families of predictor 
and corrector formulas for integrating ordinary dif- 
ferential equations, and could study the matter of sta- 

bility and round-off of the whole family. I could then 
better understand what I was doing when I picked a 
particular method for solving ordinary differential 
equations. 

Now it should be clear, and I must emphasize this 
point, that in use one formula differs from another 
only by the numerical values of the coefficients used 
and does not affect the amount of arithmetic the ma- 
chine must do, save when you can get 0 coefficients 
and therefore save one or more multiplications and 
additions. Thus I found suitable integration formulas 
and emerged with my personal pride and a published 
paper. 

This is perhaps the point at which it is necessary to 
explain equally spaced sampling and the technical 
words “band-limited functions.” We almost always 
use equally spaced samples, and it is convenient to 
think of the sampling rate as the unit of time-thus 
problems sampling in microseconds and problems 
sampling in years are brought to a common basis. 
Now the sampling theorem states that you need two 
samples for the highest frequency present, and this is 
often known as the Nyquist rate. Thus the highest 
frequency is one-half a cycle per unit of time. The 
simple reason behind this is the pair of trigonometric 
identities 

cos 7r( 1 + a)t - cos 7r(l - a)t = -2 sin 7rt sin 7rat. 

At the unit sampling rate, sin an = 0 and the higher 
frequency ( 1 + a) has the same sample values as the 
lower frequency ( 1 - a) -the two frequencies cannot 
be distinguished from each other! Each frequency 
above the rate of f per cycle is aliased into a lower 
frequency! This aliasing is fundamental; it is due to 
the sampling and cannot be ignored. As a result we 
have to deal only with frequencies fin the band - f to 
i-there are no other frequencies present after the 
sampling is done. The polynomial approach has no 
such clarity in explaining the effects of the sampling 
rate. Even unsampled original data are generally ap- 
proximately band limited in the frequencies that have 
large amplitudes; for example, hi-fi stereo sound sys- 
tems have a limited band in which they reproduce the 
sound reliably. 

My real introduction to the frequency approach be- 
gan when I was asked to solve on a computer what 
amounted to a 28th-order system of ordinary differ- 
ential equations. I could estimate the cost of the pro- 
gramming (in those days in absolute binary!) and 
knew how many trajectories they wanted and the 
corresponding real times of them. Now the error 
terms in the polynomial approach depended on the 
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size of the 5th derivatives, and who could possibly 
guess at them! But a mistake in the estimate of a fac- 
tor of 32 could double the machine costs (which were 
in the thousands of dollars and hence large for those 
days). Fortunately for me, I knew of Shannon’s sam- 
pling theorem, but this theorem involves samples 
from minus to plus infinity! Having at best data on 
only one side, it seemed reasonable to expect that 
maybe 4 samples would be about right, and also hav- 
ing only a short run of data maybe another factor of 2 
would be needed-hence perhaps a sampling rate of 8 
per the highest frequency present in the function 
might be reasonable. I pointed this out to the men 
who wanted the solution and the need for them to 
commit themselves to the highest frequencies present 
in the solution I was to find. Meanwhile I turned to 
the relay computer we had at that time to test this 
conjecture. I found experimentally, and then theoreti- 
cally, that around 7 samples was the minimum, and 
by 10 samples I was more than safe for the accuracy 
with which they knew any of their constants. They 
came back with the remark, “We will worry about 
anything above 10 cycles per second, and you worry 
about those below.” So I went ahead, and as soon as 
possible tested the program at l/60 of a second, get- 
ting hash more or less, and at l/ 120 and getting per- 
fect results. So we next ran, and continued to run, at 
1 / 70 of a second. Had I not been able to get the solu- 
tions, I at least could have said to them, “You have 
higher frequencies than you thought and have just 
spent $8000 in programming costs to find this out.” 

It was not long after this that I heard that a West 
Coast subcontractor was having trouble simulating 
the launch of a guided missile and was using a step 
size of 1 / 1000 to 1 / 10,000 of a second. I immediately 
asserted that they had a programming error and that 
the error was of the order of 300 or more. Well, this 
debugging of a program across the country was 
correct! It converted any lingering doubts I had that 
for problems in which the frequency was of physical 
significance the frequency approach was greatly supe- 
rior to the classical polynomial approach. One simply 
asks what the error in the formula is for each of the 
frequencies in the band of interest and then adjusts 
the unknown coefficients so that the error term is, 
generally, Chebyshev in form (in the band of course). 

Being at Bell Telephone Laboratories helped, as 
the frequency approach arises naturally both in com- 
munication problems and in feedback control prob- 
lems using the Nyquist criterion of stability. But be- 
ing ignorant of the current development of recursive 
digital filters, I went ahead on my own-and it is prob- 
ably lucky that I did. The classical filter theory insists 
on “bounded input, bounded output,” but it is immedi- 
ately evident that if you are to integrate a constant 

(hence bounded) function, then the solution must 
rise linearly. Stability meant to me no “exponential 
growth.” Later, when integrating trajectories into the 
moon, I tried to get the corresponding second-order 
differential equation methods and I found immedi- 
ately that I would have a double zero on the boundary 
between stability and instability. Reflection showed 
that this had to be true when there is no drag to pro- 
duce first derivatives in the formula. Now, of course, 
the error could rise quadratically! Hardly stable by 
their condition. But thinking things through for my- 
self, I have come to the conclusion that the classical 
definitions from the analog past are simply inappro- 
priate for the digital world. I have been unable to con- 
vince the classicists that their criterion of stability 
prevents them from accurately simulating even sim- 
ple integration, let alone more interesting and impor- 
tant problems. 

The objection so often raised that the correspond- 
ing computing will be much more than the computing 
for the polynomial approach has already been fore- 
stalled above-no matter which functions you use to 
make the formula exact, or at least close to exact in a 
Chebyshev sense, the data assumed will determine 
the amount of arithmetic needed. Of course the deri- 
vation of the formula (which must be done only once 
in your entire career) may be harder in the frequency 
approach than in the polynomial approach, but is that 
a matter of any importance? Hardly! 

The main gains in the frequency approach are 
(when it is appropriate): (1) from the physical un- 
derstanding of the problem you can accurately esti- 
mate the spacing to use, and hence the amount of 
machine time needed, and (2) from the results of the 
computations you can often give physical insight. It is 
perhaps the latter that is the most valuable asset of 
the frequency approach in the long run. The troubles 
that can arise in the polynomial case often depend on 
the position of singularities in the corresponding 
complex plane (which are seldom known in practice), 
while for the frequency approach the troubles are visi- 
ble on the real line (where the data occur). 

I must now digress and discuss “band-limited func- 
tions” a bit more. The basic mathematical tool is the 
Fourier transform of the time function g ( t) , 

r 
m 

g(t) = G(f)e2"ifidf, 
J-CC 

where clearly G( f ) is the amount of the correspond- 
ing frequency fin the signal f (t) . It is a nice fact that 
the inversion formula is almost perfectly symmetric, 

G( f ) = [” g( t)P”‘ftdt. 
J-m 



Note that the formulas we are using are in rotations f, 
and not in radians. 

The effect of sampling at unit spacing is to alias all 
higher frequencies into the range (band) -i < f < i. 
Thus the effective range of integration is similarly 
reduced in the transform in f. 

Let us illustrate the frequency approach method 
with the same Simpson’s integration formula, written 
in the form 

Y n+l = Yn+l + UY’,,l + by:, + ay’,-1, 

where y(x) is the integral and y’( x) the integrand. It 
is natural to want a constant input (y’ = c) to give 
exactly the correct answer. Hence putting y ( X) = x we 
get the equation 

not have a sharp cutoff at the highest frequencies, but 
rather trails off toward zero. If we sampled at the low- 
est rate possible, then the sampling would alias the 
weak higher frequencies on top of those we were con- 
cerned with. Second, by taking many more samples 
than we need, we can get some statistical averaging to 
lower the random effects of the measurements. Thus 
we are often interested mainly in frequencies up to 
some fraction k of the Nyquist frequency f = a. 

Thus we want the variable x: in the Chebyshev poly- 
nomials to reach the value 1 at k/2, that is, -1~ x < 1 
goes into -k/2 < f-c k/2; hence 

1=-l+a+b+a 

or 

But clearly 

so 

x = 2f/k. 

x.2 = 27Tft 

z = ?rkt 

2=2a+b and the fundamental identity becomes 

as one condition on the coefficients. To get the other 
condition we try computing the error R ( f ) 

enrift = J,( akt) + 2i”J,( ?rkt) T,( 2 f/k). 

R(f) = LHS - RHS 
Putting this into our Simpson’s formula we get the 

messy expression 

for the frequency function e’*@. Thus we will have 
the error curve as a function off. 

We want this error curve to have the shape of a 
Chebyshev polynomial so that the maximum error for 
any frequency in the interval will be a minimum. It is 
well known that expansions in Chebyshev polyno- 
mials converge much more rapidly than the corre- 
sponding truncated Taylor series-indeed the last co- 
eiIicient a,, of the Taylor series is divided by 2n-’ to 
get the corresponding coefficient of the Chebyshev 
expansion. We therefore need to write the exponen- 
tial as a series in Chebyshev polynomials using the 
following easily derived identity 

J,(xk) + 2 5 i”J,,,(~k)T,(x) 
m-l 

= J,,(-?rk) + 2 2 i”J,,,(-rk)T,(x) 
m=l 

+ axk[J;(ak) + 2 5 i”J~(wk)T,(x)] 
m=l 

+ bxk[J;(O) + 2 2 i”J2O)T,(x)l 
m=l 

+ cmk[&(-*k) + 2i”&(-?rk)T,(x)]. 

e izx = J,(z) + 2 5 i”J,(z) T,(x), 
m-l 

where J,(z) are the Bessel functions of order m and 
T,(X) are the Chebyshev polynomials of order m. 

We need to identify the variables in the identity 
with those of our problem. Let us suppose, as in the 
case of Tick’s formula, that we want the Chebyshev 
criterion to hold only for some fraction k < 1 of the 
Nyquist interval. The reason for this is that for sev- 
eral reasons we oversample and take more than the 
minimum number of samples for the highest frequen- 
cies we think are there. First, the actual function may 

Because of the oddness and evenness of the Bessel 
functions, the coefficients of T,,(X) all vanish, leav- 
ing only the odd indexed terms. 

Setting the coefficient of T,(s) equal to zero (and 
dropping a 2i factor) will make the error term resem- 
ble the next Chebyshev polynomial T, ( LX). We get 

J,(ak) = J,(--?rk) 

+ ak[aJ;(rk) + M;(O) + aJ;(-nk)] 

or 

%dimJ;(ak) + ?rkbJ;(O) = 2J,(*k). 



Using J’,( 0) = f and the earlier condition on the coeffi- 
cients a and b, namely 

2a + b = 2, 

we get on eliminating b 

a = {2J,(ak)/(?rlz)- 1}/{2J;(?&)- l}, 

from which the following table is easily computed. 

k a b 

0.0 0.33333 1.33333 
0.1 0.33425 1.33150 
0.2 0.33703 1.32594 
0.3 0.34177 1.31647 
0.4 0.34862 1.30276 
0.5 0.35785 1.28431 
0.6 0.36979 1.26043 
0.7 0.38493 1.23014 
0.8 0.40394 1.19213 
0.9 0.42771 1.14457 
1.0 0.45742 1.08496 

These values do not give the exactly equal ripple 
error curves because we have taken only the next term 
in the series and neglected the still higher order 
terms. 

We see that the case k = 0 is exactly the classical 
polynomial case of Simpson’s formula. The particular 
case Tick worked out, using a computer to compute 
the error curves and leveling them by repeated trials, 

was for k = i, and he got a = 0.3584, which differs 
slightly (0.00055) from ours as he exactly leveled the 
error curve and we neglected the small effects of 
higher degree terms. The case k = 1 gives just about 
twice the hamming window coefficients, 0.23, 0.54, 
0.23, as another check. 

Thus we see that the main difference in the formu- 
las derived by the polynomial approach and by the 
frequency approach is that the coefficients differ 
somewhat, but the physical interpretations differ 
quite a bit. Both can be derived by the method of un- 
determined coefficients using the same data, but the 
frequency formulas are closely connected with the 
known physics when the method is appropriate. 

I trust that this essay clearly shows the path by 
which I was fairly directly led, step by step, to the 
frequency approach (though of course I have omitted 
many details). I was simply following my motto: 

The purpose of computing is insight, not numbers. 

I have given only the highlights of the early develop- 
ment. For further details see: 

1. Lanczos, C. Applied Analysis. Prentice-Hall, 
Englewood Cliffs, NJ, 1956; 

2. Hamming, R. W. Numerical Methods for Scien- 
tists and Engineers. Dover, New York, 1972, 2nd ed.; 
1986, reprint; 

3. Hamming, R. W. Digital Filters. Prentice-Hall, 
Englewood Cliffs, NJ, 1989, 3rd ed.; 

and of course the current literature which has greatly 
extended the development without altering the fun- 
damentals. 


