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THE BACK OF THE ENVELOPE 

It was in the middle of a fascinating conversation on 

software engineering that Bob Martin asked me, "How 

much water flows out of the Mississippi River in a 

day?" Because I had found his comments up to that 

point deeply insightful, I politely stifled my true re- 

sponse and said, "Pardon me?". When he asked again I 

realized that I had no choice but to humor the poor 

fellow, who had obviously cracked under the pressures 

of running a large software shop within AT&T Bell Lab- 

oratories. 

My response went something like this. I figured that 

near its mouth the river was about a mile wide and 

maybe 20 feet deep (or about one two-hundred-and- 

fiftieth of a mile). I guessed that the rate of flow was 

five miles an hour, or 120 miles per day. Multiplying 

1 x 1/250 x 120 showed that the river discharged 

about half a cubic mile of water per day, to within an 
order of magnitude. 1 But so what? 

At that point Martin picked up a proposal on his desk 

for the development of a large computer-based mail 

system, and went through a similar sequence of calcu- 
lations. Although his numbers were more precise (they 

were straight from the proposal), the calculations were 

just as simple and much more revealing. They showed 

that, under generous assumptions, the proposed system 

had a chance of working only if there were at least a 

hundred and twenty seconds in each minute. He had 

sent the design back to the drawing board the previous 

day. 

That was Bob Martin's wonderful (if eccentric) way 

of introducing the engineering technique of "back-of- 

the-envelope" calculations. The technique is standard 

fare in most engineering curricula, and is bread and 

butter for practicing engineers in many fields. Unfortu- 

nately, it is too often neglected in computing. 

Quick Calculations 
Card, Moran, and Newell paint an ambitious picture on 

1 When I asked Peter Weinberger how much water flows out of the 
Mississippi per day, he responded, "As much as flows in." He then 
estimated that the Mississippi basin was about 1000 by 1000 miles, and 
the annual rainfall there was about one foot (or one five-thousandth of a 
mile). Multiplying 1000 x 1000 x 1/5000 gave 200 cubic miles per year. 
or a little more than half a cubic mile per day. It's important to double 
check all calculations, and especially so for quick ones. As a (cheating) 
triple check, an almanac reported that the river's discharge is 640,000 
cubic feet per second, or about 0.4 cubic miles per day. The proximity of 

the two estimates to one another, and especially to the almanac's an- 
swer, is a fine example of sheer dumb luck. 
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pages 9 and 10 of their Psychology of Human-Computer 

Interaction (published in 1983 by Lawrence Erlbaum As- 

sociates, Publishers, of Hillsdale, New Jersey, and Lon- 

don, England; this excerpt is reprinted with the kind 

permission of the publisher). 

A system designer, the head of a small team writ- 

ing the specifications for a desktop calendar-sched- 

uling system, is choosing between having users 

type a key for each command and having them 

point to a menu with a lightpen. On his white- 

board, he lists some representative tasks users of 

his system must perform. In two columns, he 

writes the steps needed by the "key-command" 

and "menu" options. From a handbook, he culls 

the times for each step, adding the step times to get 

total task times. The key-command system takes 

less time, but only slightly. But, applying the analy- 

sis from another section of the handbook, he calcu- 

lates that the menu system will be faster to learn; 

in fact, it will be learnable in half the time. He has 

estimated previously that an effective menu system 

will require a more expensive processor: 20% more 

memory, 100% more microcode memory, and a 

more expensive display. Is the extra expenditure 

worthwhile? A few more minutes of calculation 

and he realizes the startling fact that, for the manu- 

facturing quantities now anticipated, training costs 

for the key-command system will exceed unit 

manufacturing costs! The increase in hardware 
costs would be much more than balanced by the 

decrease in training costs, even before considering 

the increase in market that can be expected for a 

more easily learned system. Are there advantages 

to the key-command system in other areas, which 

need to be balanced? He proceeds with other anal- 

yses, considering the load on the user's memory, 

the potential for user errors, and the likelihood of 

fatigue. In the next room, the Pascal compiler 

hums idly, unused, awaiting his decision. 

Their book then goes on to develop a scientific base in 

psychology that is a necessary precursor to such a 

handbook. 

That scenario shows how a few envelopes' worth of 

arithmetic might enable a system designer to make a 
rational choice between two appealing alternatives. 

That is a fundamentally different use than Martin's, his 
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analysis of a single design uncovered a fatal flaw. In 

both cases, a short sequence of calculations was suffi- 

cient to answer the question at hand; additional figur- 

ing would have shed little light. 

Early in the design of a system, rapid calculations 

can steer the designer away from dangerous waters into 

safe passages. And if you don't use them early, they 

may show in retrospect that a project was doomed to 

failure. The calculations are usually trivial, employing 

no more than high school mathematics; the hard part is 

remembering to apply them early enough in the life of 

a software project. 

Safety Factors 

The output of a quick calculation is only as good as its 

input. Sometimes sloppy input is enough to get into the 

right ballpark: if you guess about twenty percent here 

and fifty percent there and still find that a design is a 

hundred times above or below specification, additional 

accuracy isn't needed. With accurate data, though, 

back-of-the-envelope calculations can yield accurate 

answers. 2 Before placing too much confidence in a 

twenty percent margin, consider Vic Vyssotsky's advice 

(from a talk he has given on several occasions). 

"Most of you," says Vyssotsky, "probably recall pic- 

tures of 'Galloping Gertie,' the Tacoma Narrows bridge 

which tore itself apart in a windstorm in 1940. 3 Well, 

suspension bridges had been ripping themselves apart 

that way for 80 years or so before Galloping Gertie. It's 

an aerodynamic lift phenomenon, and to do a proper 

engineering calculation of the forces, which involve 

drastic nonlinearities, you have to use the mathematics 

and concepts of Kolmogorov to model the eddy spec- 

trum. Nobody really knew how to do this correctly in 

detail until the 1950s or thereabouts. So, why hasn't the 

Brooklyn Bridge torn itself apart, like Galloping Gertie? 

"It's because John Roebling had sense enough to 

know what he didn't know. His notes and letters on the 

design of the Brooklyn Bridge still exist, and they are a 

fascinating example of a good engineer recognizing the 

limits of his knowledge. He knew about aerodynamic 

lift on suspension bridges; he had watched it. And he 

knew he didn't know enough to model it. So he de- 

signed the stiffness of the truss on the Brooklyn Bridge 

roadway to be six times what a normal calculation 

based on known static and dynamic loads would have 

called for. And, he specified a network of diagonal stays 

running down to the roadway, to stiffen the entire 

bridge structure. Go look at those sometime; they're 

almost unique. 

2 Sometimes accurate calculations are quite useful. In 1969 Don Knuth 
wrote a disk sorting package, only to find that it took twice the time 
predicted by his calculations. Diligent checking uncovered the flaw: due 
to a software bug. the system's one-year-old disks had run at only half 
their advertised speed for their entire lives. When the bug was fixed, the 
sorting package behaved as predicted and many other programs also ran 
faster. 

3 For more information on the event, see Section 2.6.1 of Braun's Differ- 
ential Equations and Their Applications. Second Edition. published in 1978 
by Springer-Verlag. 

"When Roebling was asked whether his proposed 

bridge wouldn't collapse like so many others, he said, 

'No, because I designed it six times as strong as it needs 

to be, to prevent that from happening.' 

"Roebling was a good engineer, and he built a good 

bridge, by employing a huge safety factor to compen- 

sate for his ignorance. Do we do that? I submit to you 

that in calculating performance of our real-time soft- 

ware systems we ought to derate them by a factor of 

two, or four, or six, to compensate for our ignorance. In 

making reliability/availability commitments, we ought 

to stay back from the objectives we think we can meet 

by a factor of ten, to compensate for our ignorance. In 

estimating size and cost and schedule, we should be 

conservative by a factor of two or four to compensate 

for our ignorance. We should design the way John 

Roebling did, and not the way his contemporaries did-- 

so far as I know, none of the suspension bridges built by 

Roebling's contemporaries in the United States still 

stands, and a quarter of all the bridges of any type built 

in the U.S. in the 1870s collapsed within ten years of 

construction. 

"Are we engineers, like John Roebling? I wonder." 

A Case Study 

To make the above points more concrete, I'll describe 

how I (almost) used them in a system I built for a small 

company. I've given the details in Carnegie-Mellon 

University Computer Science Technical Report CMU- 

CS-83-108; I'll just sketch them here. 

The system prepared several reports a day to summa- 

rize the data on 1,000 80-column records; the reports 

were each about 80 pages long. The system's predeces- 

sor ran on a large mainframe; my task was to imple- 

ment a similar system on a personal computer (using 

interpreted BASIC). 

Early in the design of the system I did simple calcula- 

tions to make sure that the personal computer was up 

to this application. The space analysis was simple: I 

calculated the size of the several largest tables, and 

found that they used only half of the 48K bytes of the 

machine. The time analysis involved two main phases. 

I didn't worry much about the time to read the records 

and build the tables used by the print phase. I knew 

that a previous system did that task on an IBM System/ 

360 Model 25 in a minute, and the microprocessor on 

the personal computer is more powerful than that old 

workhorse. Instead, I concentrated on the time to print 

the report, which I thought would be limited by the 

60-lines-per-minute speed of the printer. Each page of 

the report contained only about 30 lines, so the total 

time of 40 minutes was well within bounds. After this 

short analysis, I purchased three personal computers 

and implemented the design. 

The first implementation of the program was enlight- 

ening. Storing the interpreted program required about 

20 kilobytes of main memory that I had ignored in my 

calculation; the safety factor of two saved the day. The 

calculation of printing time was right on the mark; it 

took about 40 minutes. Unfortunately, I was way off in 
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the time to read the records and build the table. Instead 

of taking a minute, it took 14 hours, which made it 

awfully hard to prepare a few reports a day. The prob- 

lem was that I had compared assembly code on the old 

System/360 with interpreted BASIC on the personal 

computer, ignoring the fact that interpreted BASIC usu- 

ally runs several hundred times slower than assembly 

code. 

At that point I did a more careful back-of-the-enve- 

lope calculation of the time. Multiplying 1,000 records 

by 80 columns per record by about 50 lines of BASIC 

code per column and then including the rate of 100 

BASIC instructions per second showed that it would 

take about ten hours. Had I known that before I built 

the program, I would ha "~,, used a faster language. In- 

• ~,ad, I had an existing system and no choice but to 

tune the code (using technique s like those described in 

the February column) to make it faster. By spending 

forty hours of my time replacing 70 lines of BASIC with 

110 lines of BASIC and 30 lines of assembly code, I was 

able to reduce the time of that phase from 14 hours to 

two hours and 20 minutes. That was good enough for 

the system, but more than it could have been had I 

done an accurate calculation beforehand and then cho- 

sen a more appropriate implementation language. 

Principles 

When you use back-of-the-envelope calculations, be 

sure to recall Einstein's famous advice 

Everything should be made as simple as possible, but no 

simpler. 

We know that simple calculations aren't too simple by 

including safety factors to compensate for our mistakes 

in estimating parameters and our ignorance of the prob- 

lem at hand. 

Problems 

1. At what distances can a courier on a bicycle with a 

reel of magnetic tape be a more rapid carrier of in- 

formation than a 56-kilobaud telephone line? Than a 

1200-baud line? 

2. If you punched the contents of a disk onto cards, 

would they fit in your office? 

3. When is it cost effective to supply a programmer 

with a computer terminal at home? 

4. Suppose the world is slowed down by a factor of a 

million. How long does it take for your computer to 

execute an instruction? Your disk to rotate once? 

Your disk arm to seek across the disk? You to type 

your name? 

5. Which has the most computational oomph: a second 

of supercomputer time, a minute of midicomputer 

time, an hour of microcomputer time or a day of 

BASIC on a personal computer? 

6. 

7. 

Suppose that a system must make 100 disk accesses 

to process a transaction (although some systems 

need fewer, some require many hundreds per trans- 

action). How many transactions per hour (per disk) 

can such a system handle? 

A programmer spends one hour of CPU time and one 

day of his time to speed up a program by ten percent 

on a machine that costs one hundred dollars per 

hour of CPU time. Individual runs of the program 

typically require a minute of CPU time; how long 

will it take to pay for the speedup if the program is 

run a hundred times a day? What if the speedup 

were a factor of two? 

Solutions to the Problems 

These solutions include guesses at constants that may 

be off by a factor of two, but not much further. 

1. 6250 bytes per inch times a 2400 foot reel of tape 

times 0.5 for waste due to blocking gives 90 mega- 

bytes per reel of tape. 7000 bytes per second gives 25 

megabytes per hour for the line. The bicyclist there- 

fore has about three hours to transfer the data, 

which gives (say) a 20-mile radius of superiority. The 

bicyclist has 50 times as long, or almost a week, to 

beat a 1200-baud line. 

2. A disk has about 200 megabytes (compared to 200 

kilobytes for a 5.25" floppy disk). A box of punched 

cards has 2000 times 80 bytes, or 160 kilobytes, so a 

disk is about 1250 boxes of punched cards. That 10' 

by 6' by 3' pile might fit in my office, but I wouldn't 

want it to. 

3. A terminal costs a couple of thousand dollars. A 

programmer (including many expenses beyond sal- 

ary, unfortunately) costs about $100,000/yr, $2000/ 

wk, $400/day, or $50/hr. Thus once a programmer 

has used the terminal for 40 hours, the investment 

cost is recovered and the employer gets free work. 

(I am told that this scheme was invented by manage- 

ment and does not go unnoticed by programmers' 

spouses.) 

4. A one microsecond instruction takes one second, a 

16 msec disk rotation (at 3600 rpm) takes 5 hours, a 

30 msec seek takes 10 hours, and the two seconds to 

type my name takes about a month. 

5. In a second, a supercomputer can do a hundred mil- 

lion 64-bit floating point operations, a midicomputer 

can do one million 16-bit integer additions, a micro- 

computer can execute half a million 8-bit instruc- 

tions, and BASIC on a personal computer can exe- 

cute one hundred instructions. The times stated in 

the problem work out to about the same amount of 

power for the first three machines, while poor 

BASIC is left way behind. 

6. Ignoring slowdown due to queueing, 30 msec per 

disk operation gives 3 seconds per transaction or 

1200 transactions per hour. 
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7. The cost of the change is $100 in machine time plus 

$400 in programmer time. The savings of 10 

rain/day is $16/day, which takes a month to pay for 

the investment. If the speedup were a factor of two, 

the savings of $80/day would pay for the speedup in 

a week. 

Solutions to February's Problems 

1. On a machine with eight-bit bytes a 256-byte table 

could represent the characters in eight (possibly 

overlapping] character classes. The Ith bit in byte J 

tells whether character J is in class I. Testing mem- 

bership involves accessing an array element, AND- 

ing with a bit pattern containing a single one, and 

comparing the result to zero. 

Z. Given N a power of two, we are to initialize 

C[0.. N - 1] such that C[1] is the number of one bits 

in the binary representation of I. We use the identity 

that J < 2 K implies C U + 2 K] = CU] + 1; that is, 

turning on the K th bit adds one to the count. For this 

reason each element in the right column is precisely 

one greater than the corresponding element in the 

left column: 

c[o]=o c[4]=I 
c[i]=i c[5]=2 
c[2]=i c[6]=2 
c[3]=2 c[v]=3 

The code 

table and 

incrementing. 

c[0] := 0 
M := I 

while M<N do 

/* invariant: C[O..M-I] is 

correct */ 

for J:=O to M-I do 

C[M+J] := C[J]+1 

M := M+M 

3. If the binary search algorithms report that they 

found the search value T, then it is in fact in the 

table. When applied to unsorted tables, though, the 

algorithms may sometimes report that T is not pres- 

ent when it in fact is. In such cases the algorithms 

locate a pair of adjacent elements that would estab- 

lish that T is not in the table were it sorted. 

4. Brooks combined two representations for the table. 

The function got to within a few units of the true 

answer, and the single decimal digit stored in the 

array gave the difference. 

5. All the data structures mentioned can employ an 

additional sentinel node to remove a test from the 

inner loop of the search. Before a search starts it 

places the value being searched for in the sentinel 

node, which guarantees that the search will find its 

target. When the search succeeds a single compari- 

son tells whether it found a "real" value or the one 

therefore starts with a single-element 

repeatedly doubles its size by copying and 

Programming Pearls 

in the sentinel. This removes from the inner loop a 

test to determine whether the data structure is yet 

exhausted. 

Linked lists have sentinel nodes at the very end; 

they must also store a pointer to that node (this is 

particularly convenient in a circularly linked list 

with a "dummy" node). Closed hash tables use a 

sentinel cell at the end of the array. Nil pointers in a 

standard binary search tree are replaced by pointers 

to a single sentinel node in the modified tree. 

Updates on Old Columns 

The August column described a sorting program that 

used the integers to be sorted as indices into a bitmap. 

Augustus T. Crocker, Jr., of Shared Medical Systems 

Corporation points out that the "key-indexing" tech- 

nique can also be used to access the I th record in a disk 

file. Even though direct access on disk was not appro- 

priate for the particular sorting problem (a quick calcu- 

lation shows that 27,000 disk reads and as many writes 

would take at least 10 minutes, whereas the solution in 

the column took a few seconds), the technique is quite 

useful in many applications. 

Testing the sort routine required "shuffling" a file of 

numbers; I mentioned in the September solution to 

Problem 3 that one can shuffle a file by calling a system 

sort. Ashley Shepherd and Alex Woronow of the Uni- 

versity of Houston point out that there are more effi- 

cient shuffling algorithms when the data is stored in an 

array in primary memory. For example, Knuth gives 

the following shuffling algorithm in Seminumerical Algo- 

rithms: 

for I := N downto 2 do 

swap(X[I] ,X[RandInt(1 ,I)]) 

The function Randlnt(1, I) returns an integer chosen 

uniformly from the range 1..1. 

The September column described Ed Reingold's prob- 

lem of finding a 20-bit integer not on a tape containing 

one million such integers, and his solution based on 

binary search. David Malon of the University of Ken- 

tucky observed that the simpler solution of looking to 

see whether any of the first 512 integers is missing 

(using the 512 bits in 32 16-bit words) fails to 

find a missing integer with probability of only 

0.000000000003, assuming that all distinct subsets of 

integers are equally likely to appear on the input tape. 

His idea leaves open the problem of relaxing that as- 

sumption by using a randomization algorithm. Eggert 

Ehrake of West Berlin points out that the "binary radix" 

search of Reingold's solution suggests a "binary lexico- 

graphic" sort that uses three work tapes as its queues. 

James Woods of Inforraatics General Corporation gen- 

eralized the anagrams problem of the qeptember col- 

umn to the problem of computing mulnword anagrams 

in a lovely paper entitled "On Computing Anagrams." 

That title is itself a raultiword anagram of such com- 

mon phrases as romantic pang among us, mangos moan 

capturing, and gaunt moron campaigns, among others not 
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Further Reading 
I haven't been able to find much written about back-of- 

the-envelope calculations--the idea is usually passed 

on by example. Similar ideas used to be taught as stu- 

dents learned how to use slide rules; they had to add 

exponents in their heads and to check all answers for 

reasonableness. The best written discussion I have seen 

on such common sense ideas in mathematics is Barry 

Cipra's charming booklet MISTEAKS. . . and how to find 

them before the teacher does .... This 70-page gem is a 

supplement for calculus courses; it was published in 

1983 by Birkh~iuser Boston. 

Denning and Buzen describe a formal but simple 

method for estimating critical parameters in computer 

systems performance. Their paper "Operational Analy- 

sis of Queueing Network Models" appears in Computing 

Surveys 10, 3, November 1978, pp. 225-261. 

suitable for print. Do readers know of more work on the 

fascinating combinatorial puzzle of multiword ana- 

grams? 
Solution 7 in the October column described how Jeff 

Ullman's problem of determining whether any K-ele- 

ment subset of an N-element set sums to at most T can 
be solved by algorithms with running time of 

O(N log N) and O(N). Wayne Amsbury of Maryville. 

Missouri, gave two algorithms with running time 

O(N log K). When Ullman assigned this as a class exer- 

cise, students designed algorithms with all the running 

times mentioned above, as well as O(NK), O(N2), and 

O(NK). Can you find natural algorithms to go with those 

running times? 
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