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FOREWORD

We search the concepts and methods?) of the theory of deformable sotids from GArILEO
to LagraNGE. Neither of them achieved much in our subject, but their works serve as
termini: With GALILEO’s Discorsi in 1638 our matter begins?) (for this is the history of
mathematical theory), while LAGRANGE’s Méchanique Analitique closed the mechanics of

1) There are three major historical works that bear on our subject. The first is A history of the
theory of elasticity and of the strength of materials by I. TODHUNTER, ‘“‘edited and completed” by
K. PEARSON, Vol. I, Cambridge, 1886. Unfortunately it is necessary to give warning that this book
fails to meet the standard set by the histories ToDEUNTER lived to finish. Much of what TODHUNTER
left seems to be rather the rough notes for a book than the book itself; the parts due to PeArsoN are
fortunately distinguished by square brackets. Researches prior to 1800 are disposed of in the first
chapter, 79 pages long and almost entirely the work of PEARSON; as frontispiece to a work whose
title restricts it to theory he saw fit to supply a possibly original pen drawing entitled “Rupture-Sur-
faces of Cast-Iron”. While PEARSON took pains to describe a long list of worthless papers, many of
them devoted to mere speculation or to experiment yielding no definite results, he omitted mentioning
a number of major works by the BErRNouLLIs and EULER, and in general he seems to have been un-
willing to take the pains necessary to follow the more solid researches of the eighteenth century on
rational mechanics. While I have studied PEARSON’s chapter with care, in the end I have been able to
malke no use of it.

The second is the magnificent report of H. BURKHARDT, “‘Entwicklungen nach oscillirenden Func-
tionen und Integration der Differentialgleichungen der mathematischen Physik,” Jahresber. deutsch.
Math.-Ver. 10,, 1800 pp. (1901—1908). Parts I, IT, and IV concern vibrating bodies. It is difficult to
express sufficient admiration for this work, which I have used again and again. To justify my in.
cluding here a new history of the theory of vibrating bodies, presenting in some rare cases an inter-
pretation differing from BURKHARDT’s, I must explain that his emphasis lies on analysis; mine, on
mechanics.

The third is TiMosHENKO’s History of strength of materials with a brief account of the history of
theory of elasticity and theory of structures, New York, Toronto, London, McGraw-Hill, 1953. Although
this work is drawn from a rather capricious selection of sources, it is drawn from them directly and
with understanding. In the few cases where TIMOSHENKO’s subject crosses mine, I acknowledge with
gratitude the assistance his book has provided. Additional material is given by C. A. BEPHIITE#H
Ouepru mo Hemopuu Cmpowmesnott Mewanuru, Moscow, 1957. These two books sketch also the history
of statical theories of arches and frameworks, which are mentioned in the present essay only in cases
where they influence or are influenced by theories of deformable media.

While E. HorpE’s Geschichie der Physik, Braunschweig, Vieweg, 1926, is an unusual historical
work in that it concerns positive and specific achievements, evaluated by its author’s own examination
of the sources, unfortunately as far as concerns our subject HoPPE mentions but a small fraction of the
relevant material and often draws unwarranted or even false conclusions from it.

2) The only earlier mathematical theory is BEECKMAN’Ss, described in § 3; this brilliant work, while
not without influence, remained unpublished for two centuries.
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the Age of Reason with a formal treatise, since regarded universally, though most wrongly,
as the definitive repository of the best from all that went before. As will appear, the giants
of our subject are JAMES BERNoOULLI and EuLER. Here, for the first time, may be read the
story of what these men really did for the theories of flexible or elastic bodies. Modern
theories of materials are set chiefly upon the foundation laid down by CAvcHY from 1822
to 1845. Thus our account serves as preface to his researches.

The prolix speculations on the causes of elasticity, deriving from classical antiquity
and developed in mechanistic terms by GALILEO, DEscArTES, HookE, NEWTON, and many
other great philosophers and scientists before and after, often in accompaniment to the
mathematical or experimental researches described here, are excluded from this history
as being physical or philosophical rather than rational.

In an essay of this kind it is futile to attempt completeness, and hence I have not
given the elaborate citations found in modern historical monographs. The footnotes serve
rather to fill out the details and to illumine the strong personalities which must be recog-
nized if not understood in any full view of the growth of mathematics. A connected account
of the essentials may be gotten from the text alone.

To discuss the works in the order they appeared in print, when they were printed at
all, would lead to perplexities which disappear of themselves when we follow the order of
discovery, as here we do. But we must not forget that in many cases the results were
known to succeeding investigators only after delay or not at all.

For the most part, the researches are reported in quotations or paraphrases from the
originals. My own comments and interpretations I have tried to distinguish by square
brackets'). With regret, I have realized that to reproduce the original notations would
require an effort unlikely to be granted by the reader of a work of this kind. I am aware
that in reducing all formulae to a uniform modern notation I am in a measure misquoting
the sources and making everything seem too easy; now, once and for all, let the reader be
reminded that as a result it is far easier for him today to see to the heart of one of these old
researches than it was for those who first grappled with it and sought to do better.

1) E. g., in a passage paraphrasing an original, from the words “by [Hoox=r’s] law” the reader
is to infer that the author, without citing anyone, used the law now associated with HoOKE’s name;
from the words “by the [Hooxe-] LEIBNiz law,” that the author in using that law attributed it to
LEeisNiz.



PREFATORY NOTE

concerning the presumed technological origin

of the science of elasticity

In support of the currently received preconception that science arose from the needs of technology,
or upon the basis of experience gained from practical solution of technological problems, I have found
nothing as regards elasticity. Here, however, not being able to search for sources, perforce I have rested
content with secondary material. Even works on the history of engineering present accounts suggesting
more often the enthusiastic project of an early thinker than a contrivance actually built and used. In
the earlier volumes of a recent encyclopaedial) most references to elasticity and flexibility occur in
peripheral remarks?) on the scientific theories and planned experiments we shall closely analyze in the
following pages; far from answering to a call from technology, these researches had to wait decades or
even centuries until engineers saw their relevance.

Of course, some elastic phenomena have long been known and utilized in daily life and technology,
although in earliest times, as even today, the rigid body and the fluid are the primary elements of most
mechanisms. As remarked by D. ForpE?), the wooden bow, “specially interesting as the first method
of concentrating energy,” is late among primitive weapons, not being demonstrably in use before
30,000 A. C. The age of the compound bow, arising in ‘‘response to the shortness of pieces of elastic
material,” is not known; it is represented on the column of Trajan (c. 110 A. D.)4).

‘Wooden springs were used in other machines in the middle ages. E.g., VILLARD DE HONNECOURT
{c. 1250) illustrates a water-powered saw so arranged that a limb bent downward in the driven stroke
springs back to effect the return motion?3).

Wood is a particularly unfortunate material on which to try to gain experience of elasticity. Use
of horn and sinew for bows and catapults indicates familiarity with some more typical elastic materials
in antiquity. While bronze fibulae are of great age, other employment of the elasticity of metals is late.
According to A.P.UsHER®), “there is no evidence that springs of either bronze or steel came into
general use” in classical antiquity. He refers to the passage from PHILO of Byzantium that we shall
quote below, p. 17, as being “‘the first clear indication of the possible significance of the elasticity of
metals . . . Until this there is no record of the use of any form of metal spring except in [fibulae].
FELDHAUS gives no record of the use of leaf springs before the later sixteenth century, nor any record of
spiral springs in locks or other devices before the fifteenth century.”” However, another authority?)
states that metal crossbows are mentioned about A. D. 1370. Development of the spring as a driving
mechanism for clocks, and solution of the practical problem of equalizing the force, took place in 1500~

1) A history of technology, ed. SINGER, HoLMyARD, HarL, and WirLiams, Oxford, 5 Vols., 1954—
1958.

2) B.g., A. P. USHER, “Machines and mechanism [1500-1750],” op. cit. ante 3, 324-346 (1957).

3) Pp. 161-163 of ‘“Foraging, hunting, and fishing,” Op. cit. ante 1, 154-186 (1954).

4) In ch. 3 of op. cit. infra, p. 16, HERON of Alexandria refers to the zalivzove, a catapult
having a doubly curved bow, as to a thoroughly familiar object.

5) Pp. 643-644 of B. GILLE, “Machines [to A.D. 1500],” op. cit. ante 2, 628—662 (1956).

6) P. 133 of A history of mechanical inventions, Revised ed., Harvard, 1954.

7) A. R. HaLL, “Military technology,” op. cit. ante 2, 695-730 (1956); see p. 723.
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15501). The invention of the balance spring, claimed by HuveeNs, HAUTEFEUILLE, and HOOKE, came
long after scientific studies of elasticity had begun.

Among the various artillery pieces of the later Greeks which utilize the elasticity of some member,
at least two employ the effective torsional elasticity obtained by turning a rod fixed perpendicularly
within a tight bundle of cords or sinews. The idea which this device suggests, namely, that torsional
elasticity may be explained by the extensional elasticity of the longitudinal fibres, seems not to have
been taken up prior to EULER’s day (see below, p. 341).

That structural members break, and sometimes deform markedly before breaking, must be an
observation as old as the building of structures, but there is no evidence that builders’ rules of thumb
influenced the development of theories of materials, while application of even the crudest principles
of statics to the practice of construction had to wait until long after mathematical statics had become
an element of any solid scientific training.

While it would be unsafe to generalize, such information as I can find shows no ground for in-
ferring any direct influence of technology upon the early theories of elastic and flexible bodies. Rather,
it seems that the early theorists pondered over the phenomena of experience, usually simple daily
experience apparent to anyone; thereafter came scientific experiment; and only much later, after the
end of the period studied in this essay, was there interplay between science and technology. Thus the
present history will not attempt to trace the technological side of the subject.

1) UsHER, op. cit., pp. 305-307.



PROLOGUE

1. Remarks of the ancients on vibration and elasticity. From before 1600 there is
little—at least, little available to the working scientist—that survives of a concrete nature
in our subject. Nearly everything specific concerning elasticity and vibration arose in the
context of music. An account of early acoustics is given by F. V. HunT?).

Traditionally associated with the school of PYTHAGORAS is the first law of the vibra-
ting string:

1
Ratio of lengths

(1) Numerical ratio of pitches =

for a given string at constant tension. “Numerical ratio of pitches” refers to the Pytha-
gorean association of numbers to intervals, recognized by hearing: for the ‘“octave,” 2/1,
for the “fifth”, 3/2, etc.

That sound is a vibratory motion of bodies is an idea of early origin; gradually, from
Greek times onward, it gained wider support, until by 1600 it was commonly accepted.
The very idea of vibration would seem to carry with it the isochronism of the motion of a
sounding body, but I have found no early explicit statement, although a connection
between musical pitch and frequency of vibration was suggested by ArcuyTAS (c. 400 A.C.)2):
“Clearly swift motion produces a high-pitched sound, slow motion a low-pitched sound,”
but the rest of the fragment indicates confusion of the acoustical effects of frequency and
amplitude. Perhaps Evcrip (c. 350 A. C.)3) is only repeating the views of the school of
ArcryTASs and Eupoxus when he writes, ‘“Some sounds are higher pitched, being com-
posed of more frequent and more numerous motions,” but his explanation of why numerical
ratios are attached to sounds is far from clear. It is stated emphatically, repeatedly, and
very clearly by BoETHIUS) (c. 480—524 A. D.), whose writing is considered to reflect much
older views, that sound is a vibratory motion and that pitch increases with frequency, but
he gives no definite relation. This idea was well known, though not generally accepted, in
classical antiquity and subsequently. There was a gradual tendency to regard the loudness

1) Origins in acoustics, forthcoming. I am indebted to Professor HUNT for some of the material in
this section.

2) Fragm. 1, ed. DiELS, 8th ed. (1956), 1, 435, 11. 1-2. Quoted by M. R. CoHEN & I. E. DRABKIN,
A source book in Greek science, New York, Toronto, and London, McGraw-Hill, 1948.

3) Introd. to Sectio Canonis, quoted by CoHEN & DRABKIN, op. cif.

4) De institutione musica 1. 3, quoted by COHEN & DRABKIN, op. cit.
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of a sound as connected with the magnitude or violence of the displacement of the sounding
parts and thus to separate the effect of amplitude from that of frequency.

That the pitch of a string increases with its tension is immediate from experience and
could not fail to have been known to everyone?'); likewise, that the thicker string has the
lower tone, other things being equal, must have been known to every lyre player; but
these simple remarks are not to be found in the early literature. Indeed, the reader of the
fragmentary and inaccurate secondary accounts of Greek science surviving is led to con-
jecture that the pre-Socratic philosophers inferred some definite results which subsequent
philosophic schools failed to understand or at least to appreciate, as when the muddy
THEON OF SMYRNA (c. 125 A. D.)?) attributes to PYTHAGORAS an investigation of the ratios
of pitches as dependent upon the length, thickness, and tenston of the sounding strings, as
well as a study of the sounds of disks and bowls. THEON refers several times to deter-
mining consonances by weights, magnitudes, and motions, but unfortunately all that he
reports definitely is the [supposed] result that the pitches of two identical vessels partly
full of water are proportional to the empty spaces.

Sympathetic vibration, in which a body is set a-trembling when an appropriate tone
is sounded nearby, seems to have been well known to the ancients?).

[That a machine uniformly scaled from a small model does not generally perform in
the same proportion must have been learned from many a sad experience of the builder.]
The earliest scaling laws I have found are in the works of the Greek mechanicians, PHILON
of Byzantium and HERoON of Alexandria.t) The Artillery®) of PHILON gives many rules, clearly
of empirical origin, for constructing catapults of the same type but sufficient to cast
missiles of various weights. HERON’s Ariillery®) states, “It is necessary to know that the
determination of the measurements has been gotten from experience itself. For the an-

1) Of. Virruvius, De architectura 10.12.2. English transl. by M. H.MoreaN, Cambridge,
Harvard, 1926. Quoted also by CorEN & DRABKIN, op. cit. Cf. also BorTHIUS, loc. cit.

2) 2. 12—13. Quoted by CoHEN & DRABKIN, 0p. cit.

3) Virruvius, De architectura 5. 5, reports the practice of the Greek builders to set about their
theatres, so as to magnify the sound of the actors’ voices, large vessels tuned to appropriate pitchea.

4) The dates of these authors remain uncertain: PEILON, A. C. 180 to A. D. 1; HeroN, A. C. 250
to A. D. 75. Modern scholars incline toward the later dates. The matter is further complicated by
uncertainty that the same HERON is the author of both the Artillery and the Mechanics.

5) “PrILONS Belopoitka (Viertes Buch der Mechanik),” Greek text and German translation ed.
H. DieLs & E. ScERAMM, Abh. k. Preuss. Akad. Wiss. 1918, No. 16, 68 pp. (1919). Chs. 3 and 16 seem
to imply knowledge that uniform proportion does not suffice. While Ch. 13 describes a method of
effecting uniform scaling, we need not infer any mechanical rule; PHILON may intend this passage
only as an aid to construction after the proportions have been determined.

6) “HeroNs Belopoiitka (Schrift vom Geschiitzbau),” Greek text and German translation ed. H.
DieLs & E. ScaraMM, Abh. k. Preuss. Akad. Wiss. 1918, No. 2, 56 pp. See Chs. 31-33. There is a strong
likeness between HeErox’s Ch. 31 and Prrrox’s Ch. 3.
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cients, paying attention only to the scheme and the construction, reached no great range
with their artillery, since they did not select harmonic proportions. But the moderns,
reducing some parts and enlarging others, made the above described machines consonant
and efficient.” While HERON states that ‘‘the rule and principle is the bowstring,”” appar-
ently he refers only to its size, for he writes also, “Let the diameter of the machine [i.e.
the calibre of the piece] be AB, and let it be required to build a like machine which will cast a
shot, e.g., triple that of the above-stated. Since the bowstring gives rise to the cast of the
stone, the machine to be built must have a bowstring three times as great . . .”” However,
HeroN warns that not any diameter will do, and he gives and illustrates an explicit rule
for determining the sizes of the remaining members of the machine. [T am not fully able to
understand the rule; moreover, since it involves ‘“harmonic proportion”, it is scarcely
likely to be ‘“‘gotten from experience’” as HERON claims. But what is most important is
that a definite scaling law for like performance is given.]

The earliest known descriptions of elasticity, and in particular of the elasticity of
metals, are found in PHLox’s work. He advises that the bowcord be stretched so tight
“that when the machine is drawn, the diameter is lessened by a third part.” He mentions
the fatigue of the cord as a result of use and advises against the common practice of trying
to regain the tension by twisting the cord until it is tight again. He recommends “tight-
ening all the strings of the bowcord at once, in their natural straight position,” so as to
avoid weakening them by twisting. He claims the invention of bronze leaf springs and
describes their fabrication. His innovation appears to have aroused some doubts: .. . many
persons . . . say that it is impossible that curved bands [4.e. springs] when straightened out
by the force of the bow will not remain straight thereafter but will instead regain their
original curvature. While indeed by its nature horn has this property, and some kinds of
woods (and bows are made of such), bronze on the contrary is hard and stiff in its nature,
as is iron, so that when bent . . . it cannot straighten itself out. Let these persons be forgiven
for holding such an opinion without trying the details. For the production of the afore-
mentioned bands is seen by the agency of the swords called Spanish or Celtic.” After
severe bending, they spring back straight, “having no thought of curvature. Also when
[the test] is done many times, they remain straight.” [That elasticity was unfamiliar, at
least as a subject of science,] is shown by the immediately following inquiry into its cause;
while it is attributed to a choice of especially pure metal, neither too hard nor too soft,
followed by gentle cold working, no special name is given to it.?)

1) The word karevrovely, ‘to be extraordinarily well behaved,” is translated by DIELS & SCHRAMM
as “elastisch sind”; 76 77w edroviav mowoiy as ‘“‘was ihnen Spannkraft gibe.” In Ch. 44 they translate
the old word vevpwdzg, “‘sinewy”, as “‘elastisch.”

Ch. 27
18

27

43—44
46

47
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In the course of a long, dull work on statics!), HERON interposes a list of physical
questions and answers, three of which concern elasticity and rupture. “When [a bow] is
bent strongly, the bowstring with the arrow is more taut . . .,”” but HErRON does not give
an elastic law. In explaining why a stick is more easily broken against the knee, he
suggests that each portion acts as a lever, but he seems to believe the effect arises only
because the knee is not quite in the middle, so that one hand ‘“‘outweighs’’ the other.2)
“Why is a piece of wood as much weaker as it is longer, and why does its bending increase
when it is set upright upon one of its ends?’’ HERON explains, ‘“‘the whole overbalances
the fastened part . . . Hence the same effect takes place as in a short stock when some-
thing hung upon its ends bends it down. The increase of length of the stock corresponds
to the weight that draws the short stock down.”” [This is the first reference to the buckling
of a heavy vertical column, and HERON gives part of a correct explanation.

2. Western researches before 1600. DunEM’s great historical studies showed that the
apparent darkness of mediaeval physics is but darkness of our knowledge of it. How great
a proportion of mediaeval work survives, and how much of that is now available, I do not
know. The only writing of value on deformable bodies that I have been able to see] is the
fourth book of JOrRDAN DE NEMORE’s Theory of Weight3) (13th Century), and remarkable it
13, Western in spirit, ambitious beyond anything in the Greek or Arab tradition?). The
seventeen propositions on fluid flow, resistance, fracture, and elasticity are all original.
While the style is mathematical, it would be unfair to expeet what JORDAN brings forward
as “proofs’ to be more than plausible reasoning alleged in favor of assertions drawn from
experience and conjecture by a scientist well trained in the ancient mathematical statics.
Only two of the propositions concern our present subject.

In Prop. 12 we are told that the coherence of a beam hung up by its two ends may or
may not suffice to keep it from breaking in the middle. The beam, whether supported in
this way or at one end only, is to be regarded as a lever. Greater bending is produced by a
body striking the beam than by the same body resting upon it. [This is the earliest dis-
tinction between static and dynamic loading in respect to deformation.]

1) Mechanics IL 34f—h, in Arabic, ed. with German translation by L.Nix & W. ScEMIDT,
Leipzig, 1900.

2) Chs. 21 and 41 of PrILON, 0p. cit. ante, p. 16, likewise attempt to apply the law of the lever to
the action of the bow, but I cannot understand what is meant.

3) De ratione ponderis, first printed at Venice in 1565 from a manuscript belonging to TARTAGLIA.
Ed. and transl. into English by E. A. MoopY, pp. 167—227 of The medieval science of weights, Madison,
1952.

4) An account of Arab views on acoustics is given by HUNT, op. cit., but the only thing concrete
I have found there beyond what is known from Greek sources is that SA¥r ArL-Dix (d. 1294) wrote, at
last, that the thinner string has a higher pitch.
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Prop. 13 reads, “When the middle is held back, the ends are more easily curved.”
The “body” is taken as a line fixed at its midpoint; the ends are supposed to receive an

(43

impulse. *“. .. since the ends yield more easily, while the other parts follow more easily
insofar as they lie closer to them, it turns out that the whole body is curved into a circle.”
[This is the earliest statement of the problem of the elastic curve or elastica. JORDAN asserts,
in modern terms, that a band clamped at one end and struck by a weight falling upon the
other assumes the form of a circular arc.

The reasoning is vague, qualitative, and insufficient if not erroneous, but the attempt
at a precise argument to prove a concrete result in a domain never previously entered is of
splendid daring. This work of the thirteenth century is better than many to be published
by learned academies in the seventeenth and even the early eighteenth.]

LroNArDO DA VINcI (1452—1519) seems to have been the first to use a light rider to
make visible a very faint tremor, and specifically
in the case of sympathetic vibration?): “The blow
given in the bell makes another, like bell answer
and move a little, and the sounded string of a lute
makes another, like string of like voice [3. e. pitch]
in another lute answer and move a little, and this
you will perceive by placing a straw upon the string
like to the one sounded.”

Moreover, from LeoNarRpo we have the
earliest known project of tests of wires and beams
for their breaking strength?). In Figure 1, sand is
poured from the hopper into the basket until the
wire breaks; thereafter, the sand is to be weighed?3).
“Note how much weight broke the wire, and note
in what part of itself the wire breaks, and do this

Onsocm horvme masng —tttgn B4
-

trial several times so as to see if it always breaks in

the same place.” LEONARDO does not state that he  Figuro 1. Lronarpo pa Viner's projected
has ever performed this test, and he expects that tester for the breaking of wires

1) MS Inst. France A, f 22v. Cf. also Codice Atlantico, f 242 v. a): ‘. .. the campanile shakes at
the sound of its bells.”

The reader must be warned that the various translations from LeEoNArRDO’s works are so inac-
curate as to be of scarcely any use in connection with science or engineering.

2) I have found helpful the account of W. B. Parsons in Ch. VI of his Engineers and Engineering
in the Renaissance, Baltimore, Williams & Wilkins, 1939, but I cannot participate in PArsons’ enthus-
iastic extrapolations beyond what LEONARDO wrote, nor do I consider his translations always just.

3) Codice Atlantico, f 82rb). This is a very clear page.
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the breaking strength will vary appreciably with the length of the wire!), [a common
error, which MERSENNE and GALILEO are later to refute (below, pp. 31, 37)].

LroNARDO wrote what is almost a small treatise on the strength of pillars, beams,
cords, and arches?), remarkable in that it gives definite rules (right or wrong) rather than
mere qualities or tendencies. This treatise is perplexing, for while LEoNARDO often speaks
of experiments, it is always in the future tense, and he gives no indication that he has ever
carried out any measurement. His rules, while showing that he was an acute observer of
experience, seem to arise from a kind of plausible rhetoric in a background of deep attach-
ment to simple proportion?).

LEeoNARDO begins?) with drawings of vertical pillars supporting a load. “If you load
a pillar erected vertically in such a way that the center of the pillar is beneath the center
of the weight, it will compress rather than bend . . .”” [While the reason given is merely one
of symmetry, we find here the first allusion since HERON’s day to a problem whose solution
is to be one of EULER’s most brilliant successes.] LEONARDO gives two rules®) for the
strength of pillars bearing a load P:

. A = cross-sectional area,
(2) P« LZA— and Poad?, d = diameter,
l = length.

[These are not consistent with one another; in LEONARDO’s crabbed writing there are few

definitions, and it is often not clear what is held constant. If we regard the second rule as

a correction for the first when [ = const., then it may follow that LEONARDO’s final ruleis
ds

3) Po—,

but this is far from certain. ]

Lroxarpo considers other kinds of support and load (cf., e.g., Figure 2). For a
horizontal beam clamped into a wall at one end and loaded at the other, he seems to
claim the same law of strength®). He proposes the problem of determining the deflection

1) Cf.Inst. France MS A, f 49r, where LEONARDO states that the strength of a cord is proportional
to its length.

2) Inst. France MS A, ff 45—55.

3) On f 45v he writes, “This is proved by reason and confirmed by experiment,’”” but the further
text supports only the former assertion, not the latter.

4) f 45v.

5) Inst. France MS A, ff 46r, 47r. PARSONS, who misquotes the second rule, states that the first is
P BJl, where B = breadth; this is a correct rule, but it is not borne out by LEONARDO’s arguments or
numerical specimens. While LEONARDO elsewhere shows his familiarity with the concept of static
moment, I fail to verify Parsons’ claim that it is applied here.

6) Inst. France MS A, f 49r.
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of a beam supported at both ends
and loaded by a weight at its
middle?). He discusses also the forces

exerted by a heavy beam on two

supports placed variously along its

length?).

Leo~arpo is the first to con-
sider the form of the catenary curve,

the figure assumed by a
cord or fine chain hung
between two points?3) (Fi-
gure 3). “The lowest point
of the arch made by a
string which is longer
than the space between
the supports holding up
the ends at two different

Rt vt BT O
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Figure 2. A project of LEONARDO DA VINcI for measuring the strength of beams

heights, will touch the earth nearer to the lower support than to the higher, and in the
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Figure 3.
LEONARDO’S
sketches for the
catenary

Pt manes

proportion that the height of the lesser
goes into the greater.” [That is, the lowest
point of the catenary is the point of inter-
section of straight lines dropped from the
supports so as to make equal angles with
the vertical. Except in the trivial case
when the supports are at equal heights,
LrEoNARDO’s assertion is false, but there
is a germ of truth in it.] In the second
drawing in Figure 3, LEONARDO concen-
trates all the weight of the string in the
middle [and thus introduces the first
discrete model for a continuous system]. For

this case, his assertion is true and determines the figure of equilibrium completely. In
another attempt?), he seems to regard the weight of the string as equilibrated by weights

1) Ibid. f 48r.

2) Codice Atlantico f 185 r a. This passage is fragmentary and vague.

3) MS Inst. France A, f 48r. Cf. also f 51v.

4) MS. Inst. France E f 60v. The text makes no reference to the weights, and the drawing is not
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hung over pulleys at the ends and infers that “A cord of whatever size or strength . ..
can never become straight if it has any weight in the middle of its length,” [anticipating
a famous proposition of GALILEO (below, p. 44)]. Moreover, LEONARDO’s drawing of the
catenary appears to be copied from fact.

The nature of resonance was first correctly explained by JERoME FrACASTORO!) in 1546.
“One unison promotes another, since when two strings are equally taut, they are fitted to
make and receive like undulations of the air. Those that are diversely taut are not in case
to be moved by the same circulations, but one circulation hinders another. The beat of
the string, the motion, is composed of two motions, by one of which the string is driven
forward, that is, toward the circulations of the air; by the other, backward, the string thus
restoring itself to its proper location. Therefore, if one moved string is to be moved by
another, in the second there must be such a proportion that the undulations and cirou-
lations of the air which impel and make the forward motion do not hinder the backward
motion of the string. Such a proportion is had only by those strings that have a like tension.
On the contrary, strings of random tension do not set each other in motion, because when
the second motion happens, that is, the return of the string backward, the second string
hinders it, and they get in each other’s way. Whence there occurs no motion except the
first impulsion, which is insensible. T myself have seen in a certain church where many wax
statues stood high up around a chapel, at a certain tinkling only one of the statues moved...
The cause was nothing else than the fact that only one was in unison.” Fracastoro then
draws an analogy to lifting a weight by rhythmic action. ‘“The same thing happens also to
those who beat bread, when two or three men alternately lift up and press down a long
heavy beam, for if indeed they do not act together, all lifting and then all pressing down,
but when one lifts another begins to press, the motion is hindered . . . In strings, however,
it is not perceived because of the speed of the circulations.”

[Thus FracasToro discerns the reciprocal or vibrating motion of musical strings and of
sound in air, observes that not only strings but also other bodies are “fitted” to take on
motion at a definite natural frequency, and asserts that sympathetic vibration occurs when
the source communicates a motion that reinforces the natural motion of the receiver.

The passage just quoted implies a knowledge of sound more precise than anything
preserved from classical antiquity. In particular, FracasToRo clearly takes it for granted
that sound is a vibratory motion of a definite frequency. His book, however, does not read

clear. LEONARDO’S mastery of statics is exaggerated by his enthusiasts. E.g., the rule stated in Codex
Forster II f 67v for finding the tensions in the two cords of the discrete model is false if taken quanti-
tatively, as seems to be LEONARDO’s meaning, and equivocal if taken only qualitatively.

1) Ch. 11 of De sympathia et antipathia rerum liber unus ..., Venice, 1546, [viii pp.] 4- 76
leaves + [vi pp.].
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like a work of an originator but seems rather to be a miscellaneous collection, though
thoughtfully presented. I am led to conjecture that future studies of mediaeval sources
will reveal a considerable knowledge of acoustics that had become common domain by the
sixteenth century.

This is borne out to some extent] by the work of JouNy BapTIsT BENEDETTI, On
musical intervals, published in 1585). At the very end he writes, “Let a monochord be ima-
gined . . .; when it is divided into two equal parts by the bridge, each part will make the
same sound . . ., because the one makes as many strikings in the air as does the other, so
that the waves of air go out in the same way and agree equally, without any intersection
or breaking of each other.

“If the bridge divides the string in thirds, so that one part is twice as long as the
other . . ., then the greater part ... will sound an octave below, for the strikings of its
ends will bear such a proportion to each other that in every second striking of the lesser
string, the greater will strike and agree with the lesser at the same instant, since there is no
one ignorant that by so much the longer is a string, by so much the slower it moves.
Wherefore, since the longer is twice the shorter, and both are equally taut, in the same
time that that longer completes one interval of trembling, the shorter will complete two
intervals.” After illustrating the idea by a fifth and by other musical intervals, BENEDETTI
concludes that ‘“the number of intervals [of trembling] of the lesser portion will stand in
the same ratio to the number of intervals of the greater as does the length of the greater
to the length of the lesser . ..”

[Thus BENEDETTI regards the number of “intervals of trembling”, or, as we say now,
the frequency of the vibration, as a measure of pitch. To speak of such ‘“‘intervals” as
associated with a sound presumes that

(4) Sonorous vibrations are isochrone.,

BenepETTI goes further; since “no one is ignorant’ that the speed of a string is in-
versely proportional to its length, other things being equal, it follows that

(5) Pythagorean ratio of pitches = ratio of frequencies.

These fundamental tenets of the theory of vibration are soon to be rediscovered by
BEECEMAN (1614—1615), MERSENNE (1623), and GaLILEO (by 1636).]

1) “De intervallis musicis,”” pp. 277—283 of Diversarum speculationum mathematicarum et
physicarum Liber, Taurini, Haered. Nic. Bevilaquae, 1585; 2nd ed., date unknown; 3rd. ed., Venetiis,
Baretium, 1599. Reprint of “De intervallis musicis,” ed. J. RE1ss, Z. Musikwissenschaft 7 (1924/5),
13—20.
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3. BEECKMAN on the suspension bridge (1614—1615), on vibration (1614—1618), and
on elasticity (1620—1630). STEvIN?), in a work published in 1608, considered a weightless
string loaded at various points by an arbitrary number of different weights, but he con-
tented himself with finding the tensions when the figure is given, and with testing the
result experimentally. In annotating this work of STEVIN in 1634, ALBERT GIRARD?)
claimed that he had proved in 1617 that the continuous string hangs in a parabola. Mean-
while, however, the problem had been taken up by the gifted but overly modest Isaac
BEECKMAN (1588—1637)%), who considered it in notes dating from 1614—16154). In 1618
DrscarTES®) writes that BEECKMAN “‘asked me if the rope acb hung up on pins a, b would
describe a part of a conic section. I have no time to look into this now.” BEECKMAN,
however, in a note®) from this period or earlier, had set up the problem of the weightless
string loaded by equal weights which seem to be equally distant along the horizontal and
had given part of a geometrical proof that the points where the weights are attached lie on a
parabola. If this interpretation of his note is correct, BEECKMAN was considering the prob-
lem of the suspension bridge and had conjectured, if not proved, its correct solution.

1) Coroll. 6, Part I (“Spartostatics”), ‘‘Byvough der Weeghconst,” part iv, 7 of Wisconstighe
Ghedachtenissen . .., Leyden, 1605—1608. Latin transl., Hypomnemata mathematica . . ., Lugduni Bata-
vorum, 1608. Dutch text and English translation of part iv, 7 = Princ. Works 1, 523—607.

2) “But one must know that STEVIN ... has seen that ... loose or very extended strings are
parabolic lines (as I proved in about the year 1617), and this I will prove below, after the next corol-
lary . . .” There is no published writing of STEvIN that substantiates this statement, and when GIRARD
later on the same page finishes with “the next corollary,” he adds only, “to discharge my promise,
since I do not have the time to copy out my whole proof, I will give it to the public on some other
occasion, by the help of God, when scientific research is more profitable than at present.”” See p. 508 of
Les (Euvres Mathématiques de SIMON STEVIN, . . . le tout reveu corrigé, et augmenté par ALBERT GIRARD,
Leyden, Bonaventure & Elsevier, 1634.

3) Journal tenu par Isaac BEECEMAN de 1604 ¢ 1634, ed. C. DE WaARD, La Haye, Nijhoff, 4 vols.,
1939—1953.

The posthumous publication of a small part of this diary in 1644 does not indicate the extent of
Berckman’s influence. It was BEECEMAN who in 1618 initiated the young DEscaRTES into physics and
encouraged him to apply his talents to the sciences. Each told the other in 1618 that he had never
theretofore met anyone who *‘joins physics precisely with mathematies” (Journal, f 100v.). (This ambi.
tion notwithstanding, most of the contents of BEECKMAN’s Journal, including all the numerous pas-
sages concerning elasticity and resistance, are philosophico-physical and devoid of mathematical
reasoning.) DESCARTES surely saw BEECKMAN’S journal in 1618 and probably also in 1628. BEECKMAN
met MERSENNE and GASSEND in 1629; in 1630 MERSENNE spent whole days studying BEECKMAN’s
notes, the contents of some of which he published. BEECEMAN corresponded both with DescarRTES and
with MERSENNE by letter.

4) Journal, f 20v.

5) Oeuvres 10, 219—228. This note was first published in 1859.

6) Journal 1, Appendix 1. The drawings, unfortunately ill copied, suggest the influence of the
published work of STEVIN. In 1613 BEECEMAN had had access to unpublished papers left by STEvIN.
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The fundamental acoustic principles (4) and (5), while implied by a passage published
three times in the sixteenth century, apparently were rediscovered independently?) by
several savants of the next. [They must have seemed natural ideas to any inquiring
mind prepared to view the doctrines of the ancients in the light of the rising mechanism
of the baroque, and we should not be surprized if they were discovered or shared by others
besides those we name.] In 1618 DESCARTES?) writes, ‘‘BEECKMAN thinks that the strings
of a lute move faster in proportion to their pitch, so that the one higher by an octave gives
out two motions while the lower gives one; likewise, one higher by a fifth gives 1}, etc.”
Every one of the many passages in BEECKMAN’s journal concerning vibration reflects the
basic principles (4) and (5), though he nowhere expresses himself so clearly as does Dus-
CARTES. In 1614—1615 he writes?) that “a sound . .. is composed of as many sounds as
there are returns of strings to their place . . . I suppose the nature of the human voice, of
whistles, of the lute, and of any musical instrument to be the same as the nature of a
string, since experience confirms that all voices can be consonant with strings. Therefore
whatever we shall prove in this matter concerning strings, we postulate could be proved
also for the remaining kinds of voices.” He attempts to prove that the frequency of half a
string subject to equal tension is twice as great. More generally,

» = frequency,

(6) veo t
! = length,

l
[for this is an immediate corollary of (1) and
(), or, conversely, if (1) is taken as a fact of
experience and if (6) may be proved from me-
chanical laws, then (5) follows.] Consider two
a e ¢ fg = » strings ahb and clb plucked into similar trian-

Figuroe 4. gular forms as in Figure 4. Since the strings
BrmoxyaN's drawing to prove (6) (1614-1615) 56 of the same material and subject to the
same tension, the restoring force at # on ahb is the same as that at I on ¢Ib and thus will
induce the same velocity in each string. When the strings are released, the point A must

travel twice as far as the point I, but at the same velocity, and hence it will require

1) As is shown below, BEECEMAN explained his ideas freely to DESCARTES, who apparently adopted
(4) and (5) at once but certainly deserves no credit for them. While it is thus possible that DESCARTES
imparted (4) and (5) to MERSENNE, there is no positive evidence that DESCARTES and MERSENNE were
even acquainted before MERSENNE published these principles in 1623. The personal correspondence of
MzERSENNE and BEECEMAN began in 1629. There seems to be no reason for doubting the independence of
GALILEO, who had cause to delay publication; his work is described in § 5 below.

2) Op. cit. ante, p. 24. This passage shows that (5) was not common knowledge in 1618.

3) Journal ff 23v—24r.
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twice as much time to reach the straight form. A parallel argument applies to two strings
whose lengths are in any given ratio. [Upon reflection, we perceive that this reasoning is
sound in principle! It applies, strictly, only to the first instant, when a finite velocity or
impulse is produced at the corner; to apply it at later instants one must know something
about the motion. BEECKMAN does not say anything about this, but from other passages
one suspects that he considers the form to remain triangular, which is false. To determine
the motion of a string plucked initially into triangular form requires dynamical principles
not known in BEECEMAN’s day; it soon became and remained a major problem, until it
was solved finally by EULER 150 years later. BEECKMAN’s achievement is great: By
furnishing the first mathematical proof of any acoustical proposition, he stands father to
the theory of vibration.]

In 1618!) BEECKMAN gives a convincing physical argument in support of (4). “Since
the string comes to rest at last, we must believe that the space through which it moves at
the second stroke is shorter than that at the first stroke; and thus the spaces of the strokes
diminish. But, since to the ears all sounds seem the same up to the end, it is necessary
that all the strokes are always distant from one another by an equal interval of time, and
therefore the following motions move more slowly . . ., since the string crosses a little
space in the same time it formerly used to cross a greater one.”” Then?) he compares the
vibration of a string to the motion of “‘chandeliers hung from a rope,”” which he says is
isochrone in a vacuum. He seems to have done experiments on this, and he gives a sort
of theory.

After remarking that only properly tuned strings are resonant, and that a string may
set into resonance another tuned an octave higher?), BEECKEMAN gives a correct physical

1) Journal £ 102r. Cf. also ff 105r (1618), 367r (1630—1631), and the repetition of this argument
by MERSENNE, quoted below, p. 31.

2) Journal f 105v.

3) Journal f 54v (1616—1618).

Here we take note of some passages in Frawcis Bacox’s Sylva Sylvarum, or a Naturall Historie,
London, 1627, republished in the various collected editions of his works. § 279 describes as “‘a common
observation’ resonance of a string tuned to like pitch or an octave higher, made visible by a superincum-
bent straw; BACON uses words almost the same as LEoONARDO’S (above, p. 19). He discusses the tones
of strings as follows: “So we see in strings: the more they are wound up and strained, (and thereby
give a more quick start-back) the more treble is the sound; and the slacker they are, or less wound up,
the bager is the sound. And therefore a bigger string more strained, and a lesser string less strained,
may fall into the same tone” (§ 179). Bacon says that shortening a string raises its pitch, since it
causes the string “‘to give a quicker start” (§ 181). He proposes an experiment on the effect of tautness
by recording the pitches corresponding to 1, 2, 3, . . . turns of the peg, so as to discover “both the pro-
portion of the sound towards the dimension of the winding; and the proportion likewise of the sound
towards the string, as it is more or less strained.” Far from anticipating the work of MERSENNE,
BacoN seems to know less than the ancients regarding the tones of a monochord and a pipe. He
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explanation!): “If . . . the other string, however it is struck, always moves equally to the
first, and both end their motions at the same time (which is the nature of unison), this
happens if the air impinging upon the quiet string movesit, even invisibly. But when the
air strikes this string a second time . . ., something is added to the [same] motion. Thus
again for the third and fourth time, and thus finally the motion becomes visible.”

Also?), “. .. when a bell is sounding, its . . . parts tremble so that the parts in the
midst of it push quickly inward and outward again and again . . . Today I saw an experi-
ment of this. There was a glass half full of water or wine and a wet finger pressing the
edge was drawn around it. While this happened, a sound was heard coming out of the glass,
and at the same time the water near the edge jumped and cast up little drops . . . The water
seemed to boil around the sides but to lie quiet in the middle, and the boiling was drawn
around, following the motion of the finger.”” In 1618 BEECKMAN writes3) that DESCARTES
showed him that the low strings of a lute can excite the higher ones, but not vice versa;
also, that a sounding string will excite another tuned up a fifth, but not one tuned a fourth
higher. BEEcKMAN then gives his former explanation more clearly : While the second string
tuned an octave and a fifth higher makes three vibrations, the first string makes one, so
that the vibrations ‘“agree alternately”’. In 1635 MERSENNE%) published this passage
almost word for word, attributing its content to BEECKMAN.

In considering the bending of a beam, BEECKMAN in 1620 recognizes that the parts on
the convex side are extended, while those on the concave side are contracted, but he does
not attempt to formulate a theorys5).

In 1630 BEECKMAN®) informs MERSENNE that when a weight is attached to a string,
“the longer is the string, the more the weight descends . ..” That is,

(7) e = éli = const. when F = const.

presents 189 ‘‘experiments” or pronouncements on sound and music; while not the only early writer
who prefers projecting experiments to performing them, he shows talent for missing essentials while
reporting trivia, and his book exemplifies the vacancy of experiment and speculation undisciplined by
mathematics.

1) Journal £ 67r (1616—1618).

2) Journal ff 86v—=8T7r (1618).

3) Journal ft 100r—101v. Cf. also f 105r. On f 128r (1619) is an unsatisfactory discussion which
seems to indicate that BEECKMAN may have the idea that the same body may resonate at different
frequencies.

4) Harmon. Libri 12 (cited below, p. 29), Lib. IV, Prop. 29. Cf. also Prop. 29.

5) Journal ff 137 bis v, 139 bis v.

6) Journal f 362r. DESCARTES writes to MERSENNE in January 1630 that a string stretched slowly
will break in the middle; quickly, at the ends. This seems to be first recorded observation since HERON’s
day that the static and dynamic strengths of a body may differ.
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[Thus BEECKMAN perceives that it is strain e, rather than merely elongation 417, that
measures the effect of a force in stretching a string of given material and cross-section.]

4. MERSENNE on vibration and rupture (1623-1636). In 1623 MERSENNE, before he
met BEECKMAN or saw his work, published?) (4), (5), and (6). Moreover, MERSENNE writes
that a bell can give out three tones at once: its proper sound, the octave, and the twelfth,
and possibly also two more. He thinks he distinguishes the same phenomenon in organ
pipes and other instruments. [That is, a vibrating body may emit several definite tones simul-
taneously?).] That different methods of blowing cause a pipe to emit a sequence of different
tones had long been known from musical experience, and it seems that MERSENNE connects
these phenomena and proposes the problem of determining the sequence of overtones of a
vibrating body?), e. g., a string.

In 1625 MersENNE*?) published rules of proportion equivalent to the law

(8 o L VT T = tension or stretching weight,
) 4 TV

A = cross-sectional area or “‘thickness’,

which he had inferred from experiment. [This beautiful discovery of MERSENNE, gener-
alizing (6), may fairly be recognized as the first concrete result in the science of vibratory
motion.] The circumstances of finding it are not known?).

1) Cols. 15569—1561 of Quaestiones celeberrimae in Genesim, Paris, 1623. I have never been able to
see this work; for the specific attribution, I am content to cite pE Waarp, Note 1 on p. 161 of BEECK-
MAN's Journal 3.

In an entry dated 12 August 1630 (Journal f 362r) BEECKMAN writes that MERSENNE asked him
the reason why (6) holds, and BEECEMAN replied along the lines he had written in 1614—1615 (above,
pp. 25—26).

2) According to MATTEEW YOUNG, op. cit. infra. p. 294, there is a letter of 1618 from DESCARTES
to MERSENNE (cited by Youna as “Ep. P. 2 Ep. 106”’) referring to ‘‘the different tones which are pro-
duced at the same instant by the same string,” but no such letter is printed in Correspondence du
P. MariN MERSENNE, ed. DE WAARD, 1 (1617—1627), 1932; 2 (1628—1630), 1936; 8 (1631—1633),
1946; 4 (1634), 1955.

3) MERSENNE is a rather vague writer, and besides this it is necessary to infer the question from
the replies sent him by various correspondents from 1625 onward, since MERSENNE's relevant letters
are lost. A feeble explanation is given by DESCARTES about 1626 (Corresp. de MERSENNE, No. 51):
‘. .. all the higher sounds are present in the lower ones, just as the shortest strings are in the longest,”
etc., and ‘‘sound is easier to divide in two parts,” etc.

4) P. 616 of Vérité des Sciences, Paris, 1625. I have never been able to see this work; for the
specific attribution, I am content to cite b8 WAARD, Note 2 on p. 98 of BEECKMAN’s Journal 3.

DESCARTES communicated (8) to BEECKMAN in 1628—1629 (Journal f 334r), at the same time
characteristically disposing of it as ‘“no wonder . . ., since a string twice as thick behaves in the same
way as two simple strings separately.”

5) In the twenty-five published letters to and from MERSENNE prior to 1625, (8) is not mentioned.

Evidently in answer to questions from MERSENNE, there are discussions of sympathetic vibration
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On 28 February 1629 MERSENNE proposes!) to BEECKMAN the problem of determining
the motion of a vibrating string; in particular, of calculating the ratio of successive ampli-
tudes. On 13 November and 18 December 1629 DESCARTES writes to MERSENNE that the
amplitudes diminish in geometric progression. DESCARTES?2) considers the restoring force to

(3

be proportional to the deflection; hence ... the force which makes the string return is
greater in proportion as the string is pulled away from its straight line, and, being unequal,
it makes the diminution of the returns likewise unequal, and that is the geometric pro-
gression.” [If the remarks of DESCARTES are unsatisfactory, the reader should recall that an
adequate theory of the viscous and frictional damping of a vibrating string remains to this
day unknown?).]

In 1635 MERsENNE published a great treatise on acoustics and musie, his Books on
harmonic matters®). Book II gives a disordered list of propositions on vibrating bodies;
[these show that MERSENNE is now somewhat beyond his depth in attempting to generalize
from the definite results he had inferred from experiments on strings.] Prop. 1: The dif-
ference of sizes and shapes of bodies makes the difference of their sounds. Prop. 2: By so
much the moister is a body, by so much lower is its sound. Prop. 3: By so much the harder
is a body, by so much the higher is its sound. Prop. 4: The loudness and pitch of sounds are
not always as the weight of the sounding body. Prop. 5: The denseness and rareness of
bodies make different sounds, but not proportionally. Prop. 6: As the length of one body
is to that of another body of like material, or as the volume to the volume, so is sound to

in the letters from CLAUDE BREDEAU of 30 January 1625 and from JEaN CHATELIER of 12 April 1625;
the lattor shows that sympathetic resonance of a string tuned an octave, a twelfth, ete., above the sound-
ing string was more or less well known.

Later letters of MERSENNE contain hundreds of references to problems of vibration.

The book of R. LENOBLE, Mersenne ou la naissance du mécanisme, Paris, 1943, furnishes little
or no information regarding MERSENNE’s work on acoustics and strength of materials.

1) Letter of MERSENNE to ANDRE RIvVET. BEECKMAN’s replies of March, June, and 1 October 1629
do not go beyond his old work on this problem (above, pp. 25-—26).

2) DESCARTES also tells MERSENNE sarcastically that he had explained sympathetic vibrations
in a treatise he had left with BEECKMAN for eleven years (s. e., since 1618), “and if that time suffices
for copying it, he has the right to attribute it to himself.”” DEscarTEs had indeed written such a treatise
and left it with BEECKMAN, but BEECKMAN had written his explanation (above, pp. 25—26) in his
Journal long before the entry stating that DESCARTES was in the course of writing the treatise (Journal
f 104v); DESCARTES’ explanation to MERSENNE is precisely the same as BEECKMAN’s.

3) Even for the motion of a pendulum in air the question of frictional damping is one of cele-
brated difficulty. The first quantitative treatment is to be given by EULER, E569, “De motu penduli
circa axem cylindricum, fulcro datae figurae incumbentem, mobilis, habita frictionis ratione. Dissertatio
altera,” Acta acad. sci. Petrop. 1780: II, 164—174 (1784); presentation date: 19 August 1776. In this
work EULER finds that the amplitudes decrease in geometric progression.

4) Harmonicorum librs . . ., Paris, Baudry, 1635, [xii] + 184 pp.
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sound. [As we shall see below, the former statement of this “‘broadest . . . of all proposi-
tions in music” is true, but the latter statement seems obviously to contradict it.]

Props. 7—13 and 18 state (8) and its various consequences at length. In commenting
on Props. 8 and 9, MERSENNE writes that in order to increase by an octave the pitch of a
string stretched by a 1 Ib. weight, we have to stretch it not by 4 lbs. but by 41 Ibs.
[This may represent the correction arising from the slight stiffness of real strings.]

Props. 14—17 and 19 give evidence for (4) and are the source whence this basic
acoustical law was immediately diffused. ‘... experiment always confirms that if two
strings of brass, hemp, or gut are stretched until they are in unison, they make their
returns in the same time, however their lengths and thicknesses may differ; whence it
follows that the ratio of the sounds is the same as the ratio of the number of returns.”” For
the “number of returns’” MERSENNE introduces the term frequency. The pitch of an organ
pipe may be defined as the frequency of a consonant string.

Prop. 21 seeks to establish “an exemplary and stable sound by which we may delimit
the other sounds” [:i.e. a standard of frequency]. The figure MERSENNE gives here and
at several later points in the book suggests he thinks the shape of an initially triangular
string remains triangular during the motion?). Coroll. 1 to Prop. 26, which asserts (4),
states in effect that the frequency of large oscillations is about 3%, less than that of small
oscillations, caeferis paribus. Prop. 29: “All the returns of a string are approximately
isochronous; that is, they occur in the same amount of time.” The explanation shows
that MERSENNE is thinking not so much of two different motions started with different
amplitudes but of the successive vibrations in the same motion as it is damped. Thus
Prop. 30 demands the time taken by the ““whole motion”. According to Prop. 32, repeated
experiments show that the ratio of successive amplitudes decreases, but MERSENNE
[following DESCARTES, cf. above, p. 29] considers that in a vacuum this ratio would be a
constant, which his experiments suggest should be 20/19. [All of MERSENNE’s statements
about strings are interwoven with remarks on the motion of a pendulum; like BEECRMAN
and GALILEO, he senses but cannot prove a connection.]

Warming to the subject of frequency, in Prop. 33 he writes, “Since this [concept of]
frequency is applicable not only to strings but also to other bodies giving out a sound, as
bells, organs, flutes, bands, efc., let us now discuss only sinews or strings, from which the
judgment of the rest may be gathered.” Prop. 37: “To determine whether a sinew gives
out a lower tone at the end than at the beginning of its motion . . .”” Experiment shows that
the amplitude decreases but the frequency remains the same; therefore the speed decreases.

1) DEscARTES objected not only to this but also to considering the motion as plane rather than
whirling. Cf. his letter to MERSENNE of 15 May 1634.
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If the pitch depended on the speed of the motion, it would thus decrease, but we hear no
such effect. MERSENNE regards this argument [due to BEECKMAN, above, pp. 256 —26] as
crucial in favor of (5). A still better one follows: The points nearer the fixed ends of the
string move at far lesser speed than those in the middle, yet the string gives out but one
note. Finally, Coroll. 7 to Prop. 36 asserts that frequency is as ‘‘the Lydian stone” for
everything concerning sound.

In Book III, Prop. 2 discusses the proportions to be assigned to the strings of an
instrument so that it will give out an equable tone. According to Prop. 3, a musical string
should be stretched to half the tension under which it breaks. Prop. 7 lists the results of
experiments on the breaking strength of strings but reaches no definite conclusion, while
Prop. 16 [contrary to the expectation of LEONARDO DA VINCI, above, pp. 19—20] asserts
that experiments show the breaking strength of a long string to be the same as that of a
short one, with some reservations.

A final attempt to determine the motion of a vibrating string, in Prop. 21, leads to
nothing.

In the next year appeared MERSENNE’s Universal harmony'), written in his own idiom
and for the most part a still more diffuse account of what was in his Latin treatise. Prop. 8
of Book IIT asserts that ‘... strings and all other kinds of bodies make three or four
different sounds at the same time, and these are harmonious.” [To explain the former
statement from mechanical principles while disproving the latter is to be DANIEL BER-
NOULLI’s great achievement a century later.]

At the end of Prop. 8 MERSENNE writes, ‘. .. it does not follow that other bodies
of cylindrical or other form obey the same law with respect to sounds as do strings, though
many have believed so hitherto...” Prop.9, after remarking upon the difficulty of
experiments on cylinders and repeating that their various tones are harmonious, gives
experimental results which seem to imply that for similar prismatic bars having cross-
sections that are circles, squares, triangles, efc., we have

(9) v X —i— , @ = typical linear dimension.

E. g., to get a bar that sounds an octave higher than a given one, we are to cut down both
the length and the diameter by 3. [This law is correct?), though by the restriction to simul-

1 Harmonie universelle . . ., Paris, Cramoisy, 1636. The date of the Privilége is 13 October 1629.
From MERSENNE’s letter of 20 March 1634 to PEIRESC we learn that the book was complete then and
had cost ten years of work. I have never been able to consult the French and Latin treatises simultane-
ously; thus my citations do not imply that any particular statement in the one is not also in the other.

2) By dimensional analysis, for a material having elastic modulus E, density g, and charac-
teristic linear dimension a¢, we have 1 V‘—l'i

yoC — |/ —.
are
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taneous proportional change of all linear dimensions it falls short of later results. In Prop.
10 MERSENNE notes that a cylinder is not held tense by “‘a weight or any other foreign
force, but only by its own consistency.” Coroll. 1 discusses inconclusively the effects of
length, breadth, and depth on the vibrations of bars of tin or iron. Coroll. 2 proposes what
seems to be the general law » o 1/a?, [but this!) contradicts both (9) and the law that
follows from (8), viz, v « 1/a?].

Prop. 11 gives the results of experiments on bars of many materials. Since all woods
give out nearly the same tone, as do both hard steel and soft iron, MERSENNE decides that
little can be determined about a material by the sounds it emits. Prop. 16 attempts to cor-
relate the pitch with the material of the sounding body, but offers only vague speculation.

Prop. 15 discusses the breaking strengths of beams in four tests: extension, trans-
verse load in the middle, longitudinal thrust, and impact in the middle. We gather that
MEersENNE does not consider his experiments complete, for he is hesitant to draw any
conclusion. He thinks that for horizontal beams supported at both ends, the breaking force
is inversely as the length.

A sequel to the Universal Harmony, published along with it, is the T'reatise on Instru-
ments. In Book IV, Prop. 11 asserts that ‘‘the string struck and sounded freely makes at
least five sounds at the same time, the first of which is the natural sound of the string and
serves as the foundation for the rest . . .”” All these sounds ““follow the ratio of the numbers
1, 2, 3, 4, 5, for one hears four sounds other than the natural one, the first of which is the
octave above, the second is the twelfth, the third is the fifteenth, and the fourth is the
major seventeenth.”” Then there is ““a fifth one higher yet, that I hear particularly toward
the end of the natural sound, and at other times a little after the beginning; it makes the
major twentieth with the natural sound.” Of all these, ‘“none is ever heard that is lower
than the natural sound of the string, for all are higher ... They follow the same pro-
gression as the jumps of the trumpet.” [Thus MERSENNE is the first to determine the
sequence of overtones of the vibrating string?).]

In Book VII, Props. 7 and 10 claim to correct the bad practice of the bell makers by a

The rule (8) is not included because, as MERSENNE in effect remarks, the transverse vibrations of a

. N 11/T
string are not elastic vibrations. From (8), or rather its generalization (10) below, follows vcc - ]/?

when all linear dimensions of the string are scaled proportionally, and this gives »cc 1/a? in place of (9).

1) Cf. the second, false alternative in Prop. 6 of Book II of the Latin treatise, above, pp. 20—30.

2) MERSENNE’s recognition of the pitches of these tones seems to date only from 1633, since in
that year he proposed to several correspondents the problem of explaining them. On 30 May 1633
BerCEMAN replied that the “‘globules of air” may be broken into 1, 2, 3, ... parts, etc. On 21 June 1633
BoULLIAUD transmitted MERSENNE’s observation to GASSEND in a letter full of the new enthusiasm for
science: “I hope to be able to prove something physically and geometrically by a cylinder and a cone
inscribed in it . . .” Of. also the replies of DESCARTES, 22 July 1633, and pE VILLIERS, September 1633.
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better rule relating the tone of a bell with its dimensions [but what the rule is, I cannot
determine.] In a later work!) MERSENNE asserts that for ‘bells, cylinders, and other bodies
of the sort used in harmony” we have »ccl /VW, where W is the weight. [This is but
another expression for (9).

There are few figures in the history of science so appealing as MErRsENNE. His work is
often belittled for its errors, its contradictions, and its disorder. However, his positive
achievements?), obtained not only before there was any theory but also long before
any reasonable standards had been set for experiments, are the greatest ever goﬂten from
purely experimental study of vibrations.] '

1) Prop. III of “Harmoniae liber primus,” Art. I1, in Cogitata physico-mathematica in quibus tam
naturae quam artis effectus admirands certissimis demonstrationibus explicantur, Paris, Antonius Bertier,
1644.

2) A discussion of MERSENNE’s work on acoustics, including some of the topics we have pre-
sented and also his discovery, description, and explanation of beats, is given on pp. 35—58 of H. Lup-
wic's MARIN MERSENNE und seine Musiklehre, Halle-Saale and Berlin, Buchhandlung des Waisen-
hauses, 1935.
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Part I. The earliest speeial problems, 1638—1730

5. The vibrating string, the breaking of a beam, and the catenary in GALILEO’s Discorsi
(1638). Since they were read by everyone, GALILEO’s Discourses and mathematical demon-
strations regarding two new sciences concerning mechanics and local motions') must be given
greater notice here than their content or novelty would otherwise deserve?).

a. The vibrating string. At the end of the First Day, Salviati emphasizes that a pen-
dulum can oscillate only at one determined frequency and describes what would now be
called the phenomenon of resonance. [The example given ismuch the same as that published
by FrRACASTORO almost a century earlier, but GALILEO’s writing is brilliant:] A single man
by pulling the rope successive times at proper intervals can sound a great bell whose
motion suffices to lift four or six men off the floor. This allows us to explain ‘‘the wonder-
ful problem of the string of a guitar or harpsichord which causes to move and resound
another, not only one in unison with it but also one at the octave or the fifth” [i. e. twelfth.
Here, t00, GALILEO’s explanation is much like that of FracasToro;] he mentions explicitly

1) Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica ed %
moviments locali, Leiden, Elsevier, 1638 = Opere (Ed. Nazionale) 8, 39—318 (page references are to
this edition). In English, Dialogues concerning two mew sciences, transl. H. CREW & A.DE SALVIO
(with use of technical terms sometimes suggesting GAariLEO had had the benefit of a freshman course in
physics), New York, MacMillan, 1914, and later reprints, besides two earlier translations by others.
German transl., Unterredungen und mathematische Demonstrationen . . ., Ostwalds Klassiker Nos. 11,
24, 25, Leipzig, 1890—1891.

2) There is much evidence that some of the contents of the Discorsi dates from 1602 or earlier,
but in GarLEO’s correspondence I have been able to find nothing whatever concerning the vibrating
string or the catenary prior to the book itself, which was written, apparently, in 1630--1635.

Not so with the material on beams, for on 11 February 1609 Garireo writes to ANTonIo DE’
Mepicr as follows: “I have recently finished finding all the conclusions, with proofs, concerning the
strengths and resistance of beams of various lengths, sizes, and shapes, and by how much they are
weaker in the middle than at the ends, and how much more weight they will sustain if it is distributed
along the beam rather than in one place only, and what shape they should have so as to be equally
sturdy all along; which science is very necessary in making machines and all kinds of buildings, but
there is no one who has treated it.”

On 17 September 1633 N1cCOLO ARRIGHETTI communicates to GALILEO his views on the breaking
of a heavy horizontal bar supported at its middle. His words are interpretable in two ways, one of
which is consistent with the theory of heavy beams GALILEO published later in the Discorsi, 4. e., with
(14), which GALILEO states, more or less, in his answer of 27 September 1633.

In March 1635 GALILEO writes to ANTONIO DE VILLE an emphatic refutation of the prejudice in
favor of scaling by simple proportion. Suppose a bridge can bear 1000 lbs. ‘It is desired to know . . . if
another bridge, made of the same wood but with all its members increased fourfold . . . will be strong
enough to bear 4000 Ibs. There I say no; and I say no even thus far, that it could happen that such
a bridge would not even be able to support itself, but would collapse from its own weight,” efc. GALILEO
writes of the Second Day as if it were then complete.

(The three letters just described were first published in 1718.)
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that “‘the string tuned to unison with the one touched is disposed to make its vibrations

b

in the same time,” etc., [but he says nothing to explain the sympathetic vibration of a
string tuned to the octave or the twelfth?).] ‘The undulation, spreading out through the
air, moves and causes to vibrate not only strings but also any other body disposed to
tremble and vibrate with the same [periodic] time as that of the trembling string, so
that if one fixes upon the case of the instrument little pieces of bristle or other flexible
material, when the harpsichord sounds it will be seen that now this, now that little body
trembles too, according as is touched that string of the harpsichord whose vibrations
occur in the same time: The others will not move at the sound of this string, nor will that
one tremble at the sound of another.” [Thus GALILEO perceives that a bristle has a
natural period, but he gives no attention to determining it.] The sounding of an appro-
priate tone on a musical string causes a glass nearby to emit the same tone, and if the
glass is partly full of water, this same act induces standing waves on the surface. *“. .. and
sometimes it happens that the tone of the glass jumps up by an octave, and at the same
moment I have seen each of those waves split in two, which effect most clearly shows the
form of the octave to be the double?).”

Into the mouth of Sagredo [and hence perhaps to be regarded as accepted science of
the day] GALILEO puts the statement that in order to make a string emit a tone higher
by an octave it is sufficient (1) to shorten it by one half, (2) to quadruple the stretching
weight, (3) to diminish its greatness?) fourfold, other things being equal. [We are tempted
to conclude that MERSENNE’s formula (8) was common knowledge. This is not so.] Sagredo
is not convinced when the authors “who have written learnedly on music . .. say that
the octave is contained in the double, . . . the fifth in the three halves’ part.” From the
facts (1), (2), (3) one could just as well consider the octave as the quadruple [or as the inverse
quadruple]. But since to number the vibrations of an audible sound is “entirely impos-
sible,” we could never know if “the string an octave higher really makes twice as many
vibrations in the same time,” were it not shown by the standing waves on the water glass.
[Thus GALILEO regards (8), or at least the satisfactory establishment of it, as his own.]
Indeed, after recounting the celebrated observation that an iron file which emits a tone
when scraping brass leaves parallel and equidistant seratches, the closer together the higher
the sound, Salviati goes on to correct (8). The effect Sagredo refers to greatness “‘ought
more properly to be attributed to weight”’; Salviati then states clearly that

1) Thus it is unlikely that GALILEO was influenced by the more complete idea of resonance which
BeeckMAN had developed in 1618 and which MERSENNE had published in 1635.

2) This remark was to be appropriated by BLONDEL in 1681; see Hist. acad. sci. Paris 1666—1699,
1, 4to ed., Paris, 322 (1733).

3) I translate “grossezza’ by ‘‘greatness’; from the context it is plain that GALILEO here means
“cross-sectional area’’, while in the Second Day he means ‘“‘depth”.
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(10) Y % I/_G—T? , og = pAg = weight per unit length,
independently of the material. [This capital refinement of (8) GALILEO may have inferred
from experiment?).]

Salviati goes on to say that ‘‘the nearest and immediate reason [or rule?] for the
forms of musical intervals is neither the lengths of the strings nor the tension nor the bulk,
but rather the proportion of the numbers of the vibrations . . . Consonant and pleasantly
received will be those pairs of sounds that strike upon the tympanum of the ear with some
order?), which order requires first that the blows made within the same time be commen-
surable in number, so that the cartilege of the tympanum shall not have to be in a per-
petual torment, bending itself in two different ways so as to agree and obey the ever
discordant beating.” To this Simplicio, who has long been silent, says “I should like this
matter explained with greater clearness.”” [The following explanation is most confusing]:
the amplitude is at first taken proportional to the period, but it seems this is only a device
for visualizing the period as a line. Without actually stating an analogy between the vibrat-
ing string and a pendulum, GALILEO plays upon the effect of resonance noted above;
the “order” of the commensurable vibrations seems to consist in the fact that the two
oscillating points if started at the same time will reach their maximum displacements
simultaneously after a stated number of periods.

[GALILEO’s contribution to the science of vibration has been exaggerated. His

1) This is not proved by his explanation, which in addition to asserting a comparison between
the tones of harpsichords fitted with brass and gold strings, respectively, draws an analogy to the
different resistances attributable to the weight and the size of a body moving in a medium.

MersENNE did not know the correct dependence of v on ¢ at this time, as is shown by his refer-
ences to ‘“‘thickness and material”’ in Prop. 18 and the discussion of the effect of qualities such as
hardness in Props. 41 and 42 of Book II of Harmonicorum libri (cited above, p. 29). In Prop. 4 of
Book III MERSENNE gives a table of measured frequencies of strings as a function of their weights
when T, A, and [ are the same; while these measurements may be seen to verify (10), MERSENNE does
not perceive this proportion.

In Props. 17—18 of Book III of his French treatise (cited above, p. 31), MERSENNE in reporting
experiments on various kinds of vibrating bodies writes that it is very difficult to determine the effect
of the density, and his results seem to contradict any simple dependence upon it.

In his Cogitata (cited above, p. 33), published after the appearance of GALiLEo’s work, MERSENNE
states (10) in Prop. II of Art. II of Harmoniae liber primus.

MERSENNE expressed great admiration for GALILEO, who did not reciprocate. MERSENNE attempted
to correspond with GALILEO from about 1625 onward, but with little success. MERSENNE took careful
account of everything GAriLeo published and had knowledge of some of GALILEO’s unpublished work.
There is no indication that GALILEO took any notice of the work of MERSENNE.

2) This is not a new idea, being merely a mechanical paraphrase of the PYTHAGOREAN views,
which were held, in one form or another, also by many other scientists, e. g., by BEECKMAN.
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adopting (5), which was not new, doubtless hastened its widespread acceptance. His
formula (10) is an important refinement of MERSENNE’s formula (8), but he gives no
evidence of knowing many of the experimental facts observed and published by MERSENNE.
For example, while he barely mentions harmonic resonance, he states nothing regarding
the overtones of a string. On the other hand, there is no hint of mathematical proof or
even theory. Like BEECKMAN, GALILEO sets the sonic motions side by side, as it were,
with the swinging of a pendulum, but he does not apply mechanical principles at all and
does not even state (4) explicitly, although it is presumed by (5). In regard to the vibrating
string, GALILEO is inferior to MERSENNE as an experimenter, inferior to BEECKMAN as a
theorist, but superior to both in imagination and in persuasive writing.]

b. The breaking of beams. The Discorsi open with Salviati’s statement that “the com- 50
mon opinion”’ that a machine proportionately larger is also proportionately stronger is
“absolutely wrong”. [In a word, GALILEO will initiate us into the mysteries of scaling
laws.] He begins by considering the breaking of a column by pulling it, but he is diverted to 55
other subjects; when he returns, we find that he considers the breaking strength of a barin 156—157
tension to be independent of the length. He has told us that the coherence of some solids, §54—05
at least, is like that of a rope, in reference to which he gives the following argument.
Salviati says, “I fear, Simplicio . . ., that . . . you are making the same mistake as many 161—162
others; that is, if you mean to say that a long rope . . . cannot hold up so great a weight
as a shorter length . .. of the same rope.” He attaches a weight C (Figure 5) just suf-
ficient to break the rope and asks Simplicio where the break will occur, and
Simplicio replies, “Let us say at D ..., because at this point the rope is
not strong enough to support, say, 100 Ibs.” Salviati then, fixing the rope
at F, just above D, and attaching the weight at Z, points out that at D
the rope is still subject to the same pull, and thus the short segment FE
will break again at D, by Simplicio’s admission. [While this reductio ad
absurdumis in itself unsound, it convinced many readers and has been repeat-
ed by many later authors. To complete the argument one has to assume
that the section of rope DB has no function but to transmit the force of
the weight, and this is tantamount to assuming the conclusion. The value
of this passage lies in its considering the whole effect at D of the rope and
weight DC to be a force in the direction DEB. In replacing the action of the
system below D on that above D by one force, it furnishes the first
primitive example of the stress principle of continuum mechanies?).]
Figure 5. Sketch for GALILEO’s argument to show that a long rope is as strong as a Sho(rf(;%%?

1) By later authors and historical writers GALILEO’s arguments on beams are sometimes pre-
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Shortly after the beginning of the Second Day, GaLILEO takes up the problem of a
prismatic beam built in at one end and loaded by a weight at the other (Figure 6). He
regards the beam as a compound lever with fulerum at the under side B; the length BC
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Figure 6. GALILEO’s figure for the breaking of a beam by terminal load (1638)

is one arm, on which acts the weight H, and [half of] the greatness [¢. e. depth] AB is
the other arm, “in which resides the resistance.”” The first proposition is, ‘The moment of
the force at C to the moment of the resistance . . . has the same proportion as the length
CB to the half of BA, and therefore the absolute resistance to breaking ... is to the
resistance [in the present case] in the same proportion as the length BC to the half of
AB...” The “absoluteresistance” is ‘“‘that which occurs when the beam is pulled straight
on, since then there is as much motion in the mover as that of the moved.” [This last

seni',ed in terms of the concept of stress, but it is not to be found in GALILEO’s own words. See esp.
p- 159, where the temptation is great.
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is difficult to understand; we infer that] GALILEO’s ‘‘absolute resistance” is the weight
P, required to break the beam by direct pulling. Thus the proposition reads?)

P, = “absolute resistance” or
breaking force in tension,

(1) Py _ P, = breaking force in bending
by terminal load,

1 = length,

D = depth or thickness.

While GALILEO says this follows ‘‘from the things asserted”, the preceding passage merely
describes the actions of levers and mentions the common experience that a long beam is
broken by a lesser weight transversely than directly. In order to take the weight of the 1567158
beam into account, add half of it to Py .

When a beam is loaded first in the direetion of its thickness D and then in the direction 158
of its breadth B, by (11) we see that the breaking strengths P, in the two cases stand in
the ratio D/B, explaining why a rule supports a much greater weight when stood on edge
than when laid flat.

“There is no doubt” that the [absolute] resistances P, of two cylinders are to each 160
other as the base areas, “‘since by so much greater are the fibres, the filaments, or the
tenacious parts that hold together the parts of the solid.” [That is,

(12) P, = KA,

where 4 is the area of the cross-section and where K is a constant depending only on the
material, not on the shape.] From (11) follows

2
—A%Q—, or P, DlB s

(13) Py

where the latter form is asserted for rectangular beams. An argument supporting the so
far unproved basic formula (11) is now supplied. The filaments are “scattered over the
whole surfaces” of the cross-sections, so they may be regarded ‘‘as if all were reduced to
the centers.” [Thus we see that (11) results from the balance of moments about the lower
edge of the beam. The moment of the load E is Py l; this equals the moment of the absolute
resistance P,, thought of as concentrated at the mid-point of the base; therefore

P,l=P,.}D.

Later writers will replace this ecrude approximation by an integral over the base (see below,

1) The lengths B and D are defined here for consistent later use; they are not to be confused with
the points labelled B and D in Figure 6.
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pp. 61—62, 102—104).] Taking A4 o d®, where d is now the diameter or typical linear
dimension of the cross-section, since Do d GALILEO obtains from (13) the rule (3), [known
at least in part to LEONARDO DA VINcI].

To analyse the bending of a beam due to its own weight, GALILEO considers the weight
W concentrated at some unspecified point, so that (3) applies. Since P, d? by (12), it
follows from (13) with W« P, that

(14) Wi ds o (PYF

a result which GALILEO interprets as asserting that the ratio of the bending moments
exerted by similar heavy beams is as the § power of their breaking strength in tension.
“Among heavy prisms and cylinders of similar figure, there is one and only one which
under the stress of its own weight lies just on the limit between breaking and not break-
ing . . .” There follows a [mysterious] passage in which GALILEO tries to apply (14) so as to
determine the scaling rule for a beam to break under its own weight, or, more generally,
to determine the laws under which an arbitrary relation between bending moment and
resistance is preserved. [Much of his reasoning is correct, but his summary of it is not?).
Writing M for the bending moment, replace (11) by M = « DP,, and for bending of a
heavy beam take M = BWI, where « and B are constants?); since W = pgAl, by (12)
follows Bogl? = x« KD, or

(15) D2 ]

Thus “not only art, but also nature cannot make its machines grow to a vast immensity”’
unless harder and harder materials are found, for to make a beam of greater length have a
proportionately greater strength requires a disproportionate thickening, as GALILEO
illustrates by a figure of a little bone and one three times as long and sufficiently strong as
to “perform the same function”. [GALILEO does not disclose what the function is, and he
carefully avoids saying what scaling law he uses. Measurement of his figure indicates
that he takes Doc 3. Be this as it may,] GALILEO concludes that “if the size of a body is
diminished, the strength of that body is not diminished in the same proportion; indeed,
the smaller the body the greater its relative strength.”” [This may be true, but it is a
flowing generalization of the very special results he has obtained.]

By an appeal to symmetry, GALILEO infers that if a beam is just long enough to break

1) The error is not noted in any edition or translation I have seen. Both toward the end of
p- 167 and at the beginning of p.169 GALILEO states that d®coc Py, contradicting his own result (14),,
which is stated in his Prop. VI. The passage is hard to understand because of shifty wording and may
be corrupt.

2) On pp. 157—158 GaLLEO has said that B = }. The formula M = }pgA? is the essential
content of his Prop. 3.
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when built in at one end, a similar beam twice as long is just long enough to break when
simply supported at its middle or at its two ends. [This is the first occurrence of an
argument later to be used frequently in connection with elastic curves.]

Toward the end of the day GALILEO proposes the problem of the solid of equal resis-
tance. Such a solid is so shaped that its absolute resistance at each cross-section is just
sufficient to balance a fixed load of a given type. From (13) we see that for a weightless
beam loaded by a weight at one end, the general equation of such a solid is

(16) AD|l = const.

GALILEO assumes the solid to be a cylinder with horizontal generators normal to the plane
of bending; then 4 o« D, and from (16) the generating curveis D?/l = const., a parabola.
[To the problem of calculating solids of equal resistance subject to various loads and geo-
metrical conditions a large subsequent literature was devoted?).]

1) GaLiLEO’s theory is applied to different shapes and different loads by V. Viviawni, “Trattato delle
reststenze,”’ completed by G. GraNDI, Opere di GaLiLro 8, 193—305, Firenze, 1718 = Opere di GALILEO
3, 213—307, Padova, 1744. A diffuse account and elaboration of GAaLiLEO’s theory is given by FABRI,
Lib. V of Tract. IT of Physica, id est, scientia rerum corporearum ... [1], Anisson, Lugduni, 1669.
According to MUSSCHENBROER, FABRI is often in error.

Of. MERSENNE, Props. 18—19 of “Tractatus mechanicus theoricus et practicus,” included in his
Cogitata, cited above, p. 33.

Cf. also Ricer’s letter to TorrICELLI of 18 July 1643.

GarLeo’s results are attacked by BLONDEL in two discourses dated 1657 and 1661, being the
fourth part of ‘““Resolution des quatre principaux problémes d’architecture,” Paris, 1676 or 1677 = Mém.
acad. sci. depuis 1666 jusqu’s 1699, 5, 355—530 (1729). HuYGENs saw this work, and in his letter to
Lopewirk Huovarns of 10 August 1662 he expressed a low opinion of it: “ . . . at least for me, these are
very easy things.” HuYGeENS himself, in notes dating from 1671, Oeuvres complétes 19, 70—72,
considered a rectangular beam fixed obliquely into a wall, as had FABRI. A. MARCHETTI, De resistentia
solidorum, Vangelisti & Martini, Florence, 1669, [xii] + 127 pp., claims in his preface to disprove
GALILEO’s proposition that the prismatic solid of equal resistance is parabolic. According to MUSSCHEN-
BROEK, there are errors in MARCHETTI’s work.

Examination reveals that MARCHETTI adopts (13), spins out endless corollaries and generalizes it
to beams of various simple shapes, including non-prismatic ones, but I do not find in his text either
errors or the source of his criticism of GALILEO. His Props. LXXXII sqq. on parabolic beams seem to
agree with GALILEO’s theory.

G. GRANDI’s Risposta apologetica . . ., Lucca, Pellegrino Frediani, 1712, [xvi] -+ 288 pp., is a most
wordy answer to MARCHETTI. Pp. 45—47 give a chronology of the work of BLONDEL and MARCHETTI
from 1649 to 1673. Lib. IT, Cap. VII, gives seven propositions which are claimed to correct those of
MARCHETTI on solids of equal resistance.

It is difficult to find sense or interest in this diffuse literature. It exemplifies the common
historical experience that once mechanical principles, right or wrong, sufficient to set definite and not
too difficult mathematical problems are proposed by a recognized authority, an abundant harvest of
taediosa follows.

Further bibliography is given by PEARSON, § 5 of op. cit. ante. p. 11.

178—181
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“But, in order to bring our daily conference to an end, I wish to discuss the strength
of hollow solids, which are employed in art, and still oftener in nature, . . . so as greatly to
increase strength without adding to weight. Examples are seen in the bones of birds and in
many kinds of reeds . . . For if a stem of straw which carries a head of wheat heavier than
the entire stalk were made up of the same amount of material in solid form it would offer
less resistance to bending and breaking.”” Comparing a hollow cylindrical tube with a solid
one of equal area and length, since by (12) P, is the same for each, we see by (11) that their
breaking strengths P, for bending are in the ratio of their diameters. “Thus the strength of a
hollow tube exceeds that of a solid cylinder in the ratio of their diameters . . .2),”” and the
more general proportion (13); applies for all eylinders of the same material.

[In summary, GALILEO takes account of the effect of a load on a beam only through
its moment. He recognizes that the resistance of the beam is due to the mutual action of
its fibres but is unable to formulate a mathematical theory in which these fibres occur.
He tacitly regards a solid body as rigid and undeformable prior to rupture. In accord with
this, he takes it as self-evident that the criterion for failure?) is the magnitude of the load.

While GALILEO proves the various corollaries following from (11) with elaborate rigor,
for the basic law (11) itself he gives only some mysterious juggling?). It is sometimes said
that GALILEO regarded the stress in the beam as uniformly distributed over the cross-
section; while this false assumption suffices to derive (11), GALILEO himself uses no concept
of interior stress, and his regarding P, as acting at the midpoint of the base is no more than
a guess or a postulate. Since all his subsequent results are proportions such as (13), the

1) Garmeo does not notice the paradoxical corollary that the strongest tube of given area is of
infinite radius and zero thickness.

2) Cf. also the discussion at the beginning of the First Day, esp. p. 5. The modern literature
often attributes to GALILEO the idea that a solid fails when a certain maximum stress is attained;
indeed, this is a natural modern inference from his expressed viewpoint, but of course nothing of a
local character oeccurs in his work.

3) The two weak points in GALILEO’s theory of strength, namely, (12) and the factor % in (11),
were pointed out by Barrani, who in his letter of 1 July 1639 to GALILEO writes, “I wish you had
explained ever so little more,” etc. GALILEO’s answer of 1 August 1639 gives a vague allusion to the
symmetry of the cross-section and the law of the lever but does not face the issue.

In his celebrated critique of the Discorsi, sent to MERSENNE on 11 October 1638, DESCARTES
pounces upon (11): that “. . . the force . . . is like a lever with fulerum at the middle of its thickness . . .
is not at all true, and he gives no proof of it.”

As regards the catenary, ‘‘His two means of describing the parabola are merely mechanical, and
in good geometry they are false.” (Doubtless DESCARTES knew of BEECKMAN’s partial proof that the
parabola corresponds to uniform load per unit horizontal length (above, § 3), whence it is clear that the
catenary is not a parabola.)

Most of DESCARTES’ criticisms are ill taken, however, as when he denies the dependence on ¢
as given by (10), asserting instead that strings of different materials vibrate at different frequencies
in consequence of the differences of hardness.
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error introduced by the factor } is cancelled out, but the error resulting from neglect of the
bending of the beam is not. According to GALILEO’s theory, in effect, the dimensionless
scaling parameter is KAD|IP, , where K is the mean stress for rupture in tension; according
to the BERNOULLI-EULER theory (below, § 60), the parameter is KADZ?/I*P,, where
K is the stress required to produce a specified elastic strain of the fibres. By dimensional
. . KA ,(A D

analysis alone, the general parameteris ——f| =, <

Py, "\D*’ |

tion to be determined by some hypothesis of elasticity or rupture. In engineering practice
it is customary to take f(,n) = 7*, where 1 < a < 2; in a sense, that is, to interpolate
between (GALILEO’s theory and the BErNoULLI-EULER theory.

The central concept of modern theories of materials is the stress vector, introduced in
its final generality by Cavcry in 1822. In this history we shall follow with especial care

, where fis a dimensionless func-

and interest the preliminary concepts from which it grew. To this end, the properties
defining it must be distinguished :

i. Its dimensions are [force]/[area].
ii. In elasticity theory, there is a material constant of the same dimensions.
iii. The constant mentioned in (ii) represents a specified stress required to produce a
specified elastic strain.
iv. The stress vector represents the action of interior parts of the body upon one another.
v. The stress vector may subtend an arbitrary angle with the (imagined) boundary
across which it aets.

All these properties are independent of each other and belong to varying levels of sophis-
tication in mechanics.

The equation (12), described in words by GALILEO, introduces properties (i) and (ii);
in this sense, we may say that GALILEO initiated the theory of stress. But in his work there is
no trace of any of the further properties, except for the hint toward (iv) mentioned on
p. 37. In particular, while K in (12) is a material constant having the dimensions of
stress, it is not an elastic modulus, being rather the stress such that, if uniformly applied
over a cross-section, it will rupture a body heretofore rigid.]

c. The hanging cord. Among other means of describing a parabola, GALILEO mentions
the following. “Fix high up on a wall two nails equally distant from the horizontal . . . and
from them hang a little thin chain .. .; this little chain will bend itself into a parabolic
figure!).” [Thus GALILEO’s ideas are inferior to the unpublished work of BEECKMAN on the

1) On pp. 369—370 of vol. 8 of the Ediz. Naz. is a fragment indicating that GALILEO’s motive
for this supposition is an analogy with the motion of a projectile, which he knew to be parabolic: Just
as the parabola of a projected body is described by two motions, horizontal and perpendicular, so the
form of the little chain results from two forces: horizontal, from what pulls it at the end, and per-

186
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catenary?').] The Discorsi close with GALILEO’s proof that any string, no matter how
tightly stretched, sags somewhat in the middle. To this end GALILEO considers the weight
of the string as concentrated at its center, [as had LEONARDO?).

d. GQarizro’s method. To the reader without preconceptions, GALILEO’s writings on our
subject bring a strange experience. A complete absence of mathematical proof at essen-
tial points?) is set against a background of an almost Platonic love of regular geometrical
figures and strict demonstration of trivial details, accompanied by a complete absence of
reference to specific experiment. Experiments, indeed, can scarcely have entered the pro-
cess, since most of the physical assertions GALILEO makes are not consonant with later
experiments. Rather, it is difficult to regard his work as more than a sequence of ingenious
conjectures, brilliantly described and eloquently pled. .

In contrast to earlier writers, GALILEO here avoids seeking causes and never attributes
anything to ‘“tendencies”. Not only are his words usually clear and concise, but also he is
the first to put forward any considerable body of definite, quantitative statements,
capable of subsequent proof or disproof by reason or experiment.

For his application of statical principles to the problem of rupture of a beam he deserves
to be regarded as the founder of the theory of strength of materials. His great achievement
here is refutation of the common idea (indeed, common even today) that all effects are
proportional to the sizes of the members, and his construction of a theory of scaling.
That his proportions are correct only subject to a hypothesis not generally verified in prac-
tice is less important than that he did obtain definite scaling laws, right or wrong. Herein
lie his enormous insight and originality.]

6. The unpublished work of HuvcENs on the suspension bridge (1646), the breaking
of a beam (1662), the vibrating string (1673), and the vibrating rod (1688).

a. The suspension bridge. On 28 October 1646 HuycENs?), seventeen years old, writes
to MERSENNE, “In another letter I will send you the demonstration that a suspended chain

pendicularly downward, by its own weight. The same reason is advanced somewhat less clearly at the
end of the Fourth Day, pp. 309—310.

1) According to LEIBNIz, JoacHIM JUNG ‘“‘excluded the parabola by calculations begun and
experiments finished, but could not find the true line.” I have never been able to see the book of
Juna, Geomeiria empirica, Rostock, 1627; later eds., Hamburg, 1630, 1642, 1649.

On 18 June 1645 Riccr writes to TORRICELLI that a friend wished to measure depths by the fall
of a line hung from the two sides. RIccI suggests letting a weight run freely over the line; he can prove
that the two sides of the string will then be inclined equally to the horizontal. This is a rediscovery of
the result of LEoNARDO DA VINCI (above, p. 21).

2) The proofs and drawings of GALILEO and LEONARDO here are similar.

3) Of. footnote 3, p. 42.

4) All works of HuvaeNs are cited from his (Buvres complétes, where the letters and pre-
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or string is not at all parabolic, and what must be the pressure on a mathematical or
weightless string in order to hang so, of which I have found the demonstration not long
since.” MERSENNE replies on 16 November 1646, * . . . if you can adjoin also the way in
which to press it so as to make it hyperbolic or elliptic, you will surpass yourself.”” [The
importance placed on familiar curves seems frivolous today, but was scarcely avoidable
prior to the ‘“calculation of curves”, as the infinitesimal calculus was often called in its
early days?).]

In his analysis, not published during his lifetime, HuyaENS considers the weightless
string loaded by discrete weights, [as had BEEcKMAN]. He sketches treatments starting

Figure 7. HuvaENS’ drawing for
STEVIN’S theorem (1646)

from two different statical principles. The first
method?) is based on a theorem?) he attributes
to SteEvin: When the weights G and H in
Figure 7 are equal, the vertical through the
midpoint of a segment meets the two adjacent
segments produced. The second treatment?)
rosts on an ewtremal principle: “The center of Figure 8. Huverns’ drawing for the problem
of the suspension bridge (1646)
gravity descends as far as possible.” To dis-

prove GALILEO’s claim, HUYGENS passes a parabola through three points and then shows it

viously unpublished fragments are printed in chronological order; thus detailed citation is usually
superfluous. Most of the correspondence between HuveENs and LErBN1z was published also in LE1s-
Nizens math. Schriften 2.

1) Cf. the comments HUYGENS was to apply many years later to JaAMEs BERNOULLI’S solution of
the problem of the elastica, below p. 97, and also footnote 2, p. 68.

2) Pieces No. 20 and 21, which, despite being written in different languages, form a single work.
They date from November, 1646, as does No. 22; according to a note on p. 811 of (Euvres 10, by
15 June 1646 DEscARTES had seen and approved some form of HuvaENs’ work.

3) Proof of a generalization is given below, p. 67.

4) Piece No. 22. Throughout his life Huvyaens made much use of this principle.
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cannot pass through the rest. Proposition 10 of the first treatment asserts that the figure of
a continuous chain does not differ appreciably from that of one composed of infinitely
many links. [No real limit process is involved.] Propositions 11 and 12 assert that if from a
wetghtless string equal weights are suspended at equal horizontal intervals, the poinis where they
are suspended will lie on a parabolat) (Figure 8). Hence the limit form for the continuous cord
subject to uniform weight per unit horizontal length is also a parabola. HuYGENS asserts
also that if equal parallelograms are placed upon the string as shown in the figure, the points
of application again lie upon a parabola; [this, as he himself was to note in 1668, is false?)].
For a more condensed presentation in final form, HuveEns selected the approach based
on STEVIN’s theorem, but his little treatise was not published during his lifetime3).
HuyeENs’ arguments, resting heavily on special properties of conic sections, are hard to
follow. He gives no hint of how he
was led to suspect the particular kind

of loading that would yield & para-
bolic figure?).

b. The breaking of a beam. The
problem of fracture of a heavy rect-

Figure 9. angular beam supported at two points
Huveens’ drawing for the breaking of a supported beam (1662) (Fi gure 9) is considered by HuveENs

1) A proof is given below, p. 67.

2) Since the pressure of the parallelogram on a frictionless string is normal, the tension 7' is
constant; thus, in the notation to be used below in connection with the catenary, we are to integrate
Ten=1T % — ka2, where 7' is constant; the result is a circle.

3) “De catena pendente,” (Euvres complétes 11, 37—44. Our figures are reproduced from this
version,

4) Between 8 December 1646 and 3 January 1647 MERSENNE received some version of Huy-
GENS’ solution. On 24 January 1647 MERSENNE writes that he accepts the results but not all the proofs.
In particular, HuyGENs had established equilibrium by asserting that “there is no cause for them to
change their position;”’ MERSENNE objects that “Just because you see no cause, it does not follow
that none exists, we do not see all at the first glance, and what does not appear to us at one time
often does appear at another, it is enough that we can doubt whether there be any cause.” Another
fragment by HUYGENs, from 1647, treats the subject along the same lines. On 15 May 1648 MERSENNE
writes, “will you permit the printing of the little treatise . .. on the string or chain hung equally?
But it would be necessary to add the demonstration of what I wrote you about it.” On 12 July 1648
HuvYeENs replies that he will finish the treatise within another week; he regards STEVIN’s proof of the
statical principle as insufficient, and he will include a new proof of it. This is the end of the correspond-
ence; MERSENNE died on 1st September 1648.

Presumably the version cited in the preceding footnote was that intended for publication. It is on
its margin that HuveeNs noted in 1668 that the solution is incorrect for the loading by parallelo-
grams; see the note on pp. 43—44 of Buvres 11. It seems that aside from this one remark in 1668,
HUYGENS gave no attention to the problem of the hanging cord in the years 1647—1689.
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in a notel) from the year 1662. He regards the beam as bent only at the point of fracture
A . His hypotheses seem to be: (a) Wherever the fracture occurs, the angle y between the
two parts of the beam is the same, and (b) rupture occurs at the point such as to render the
“descent of gravity’”’ a maximum. [The ‘‘descent of gravity” is the loss of potential energy
due to the descent of the centers of gravity of the two segments. We see here a first
glimmering of an energy criterion for failure, with elastic energy of course neglected. It
can be shown?) that this potential energy = 97y, where 97 = the moment exerted by
the support and the weight of either segment, taken about the point where rupture occurs.
Thus HUYGENS’ proposal is equivalent to the more plausible idea that the beam breaks at
the point where the moment of the applied load is greatest. In all this, it seems most arti-
ficial that the angle y should be assumed constant, but this angle disappears in the cal-
culation, yielding a unique point of rupture,] which HuyeENs obtains in a special case.

¢c. The vibrating string. Since his earliest youth, HuveENs had been incited by MER-
SENNE to provide a theory for the vibrating string?). Ina work published in 1673, HuvcENs*)

1) Buvres complétes 16, 381—383. The same problem is treated in a fragment from 1688—1689,
(Euvres complétes 19, 74—75.

2) See the editors’ explanation, (Buvres complétes 16, 333—336, which determines the point of
fracture in general according to Huvamns’ proposal. It results that the point of fracture is such as to
render the weight borne by each support equal to the weight of the portion of the beam resting upon it
after the brealk.

3) On 16 November 1646 MERSENNE proposes to HuvcENs the problem of explaining the law
o Vﬁ/l . “I foresee that your foundations of mechanics show that to make a motion twice as fast,
perhaps four times as much force is required . . .”” HuveEens replies that he has thought about the
matter often, but the solution would be very difficult. On 8 January 1647 MERSENNE proposes the
problem anew, recalling that the successive amplitudes decrease in geometric progression (cf. above,
p- 30).

(In February of 1645 MERSENNE had proposed to TORRICELLI the proof that »cC VT is a con-
sequence of mechanical laws. TORRICELLI’s reply, written in the same month, suggests that there may
be some analogy to his hydrodynamical theorem.) '

A letter of 12 January 1647 from MERSENNE to CoNsTANTIN HUvaENS, the father of CERISTIAAN,
says that the explanation of the simultaneous harmonic sounds is “‘the greatest difficulty I have en-
countered in music.”

A letter from MARIOTTE to HUYGENS on 1st February 1668 shows that no advance on the problem
of the vibrating string beyond GALILEO’s work was known to MARIOTTE at that time.

In a fragment written in 1675 (@Euvres 19, 366—367), HuYGENS, after describing the sequence of
overtones of the string, writes “And it is probable that these [harmonic] tremblings still occur, though
feebly, when the whole string is sounded freely, and since there are so many ways of making this 12th
[4. e. the second harmonic], that is the reason why one hears it always along with the sound of the string
sounded freely.” :

4) Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geo-
metricae, Paris, 1673 = (with accompanying French translation) (Buvres complétes 18, 69—368. See
Pars Secunda, Prop. XXYV.
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had shown that motion of a body sliding down a cycloid is isochronous. The proof does
not involve any calculation of forces; rather, HuveENs approximates the cycloid by
tangents, to which he applies GALILEO’s laws for motion on an inclined plane. In a fragment
written in the same year or the next?!), he states and proves as a corollary of the above
that the ‘“‘gravity’ [accelerating force] of a body resting on a cycloid is as the length of arc
from the bottom. [This apparently puts him in mind of proving the isochrony of other
types of motion by showing that the accelerating force is proportional to the displacement,
but this he left to his editors to say for him.] With this much in hand he strove to render
definite [BEECKMAN, MERSENNE, and GALILEO’s] analogy between the vibrations of a
string and the oscillations of a pendulum. As a model for a vibrating string he considers
a werghtless cord loaded by a single central weight, intended to represent the mass of the string

£ <

Figure 11.
HuveENs’ second
model for the
vibrating string

Figure 10 (1675-1676)

Huveens’ first model for the vibrating string (1675-1676)
(Figure 10). First he considers a horizontal string in circular vibration,
which he finds to be isochronous if the radius is small enough. Then he
considers a vertical cord stretched by a weight (Figure 11); he neglects

the difference of tensions in the two parts of the string caused by the
weight in the middle. In effect, HuYGENS constructs a cycloidal pendulum
such that the restoring force equals the resultant force of the tension
on G. Knowing the period of a cycloidal pendulum, HuycENs is then
able to write down the period of the system shown in Figure 11. His
result, [here expressed in modern notation, is the correct one,] viz

1 i 1 1/T M = mass of G‘:jol,
(17) v=—\Var=a1 V4 I = length of string,
T 7 ? T = tension exerted by K.

In the special case when Mg = 7', HUYGENS finds the frequencies
of circular and lateral oscillation to be the same?). [This is in fact true
in the greatest generality3).] Returning to (17), HUYGENS says that ex-

1) (Buvres complétes 18, 489—495.

2) HUYGENS says that the time of one complete vibration is twice as great in the circular case,
but this is only because as in all early work the “time” of a lateral oscillation is the half-period.

8) For let the resultant outward force from all statical causes (other weights, tensions, efc.) be F';
the equation of transverse motion for the mass M is then F + F; = 0, where F; is the inertial force,
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periments should be tried rather with a horizontal string and gives directions on how the
experiment should be done ; while he does not report any measured values, he says that (17)
“agrees very well with experiments.”

Finally HuYcENS considers the weightless string loaded by many weights (Figure 12). 7
He sketches the first steps of such a treatment, in which not only does he assume that
“the curve SAQC is a parabola, from which it differs insensibly,”
but also he assumes a distribution of velocities not possible unless
all masses are in simple harmonic oscillation at the same period and
phase. The mechanical principle he applies is the conservation of
energy?).

d. The vibrating rod. In 1688—1689 HuveENS?) considers
vibrations of a bar resting upon two supports so placed as to

breaking (above, pp. 46—47). He writes that a bar so supported
gives the clearest sound when struck and that, in effect, these points
of support remain at rest [i.e., they are modes]. His theoretical
value for the fractional distance from the end to a support is
%(1/5 — 1)~ -1% ~+; the chime makers, he says, use the value g,
“which agrees well enough.”” [This is an example of experiment
confirming a false theory. While the difference between % and T26 +
might seem experimentally negligible, in fact for free vibrations
of arod the theoretical value (from the theory of DanIEL BERNOULLI

Fi 2.
and BEuLER, see below, pp. 198, 328) for the fractional distance to HUYGENlBg’uﬁ,;:d model

for the vibrating string

the node is 0,224 ~ %. HuyeEns’ theory, since it employs no (1675—1676)

dynamical principle and is merely a conjecture based upon a

statical result itself precarious, is unsound, but it deserves notice for its recognition of the
nodes®) of a vibrating body and the first attempt to calculate anything concerning the
vibrations of a rod.

and where F i8 the same in both problems considered. Let y be the transverse displacement. For trans-
verse harmonic oscillations of circular frequency onwe have Fj = — M§ = M wiy. For circular
oscillations at angular velocity we, the centrifugal force is Fj = M wiy. Hence we= wn [7.e.,
each transverse frequency is also the frequency of a possible circular motion].

1) On pp. 494—495 of his (Buvres 18, the editors carry through what they conjecture HuyGENS’
ideas to have been. Their resultis » = Ln_l—g . 2% l/—’g , in the notation used in (17); this is close to the
correct value (75) for the continuous string.

2) Buvres complétes 19, 74—75.

38) It is safe to presume that HuvgENS had read WALLIs’ paper on the nodes of strings, published
in 1677 (see § 16 below).
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None of these brilliant studies of HuYGENS was published during his lifetime. Despite
some measure of communication through letters and conversation, they remained unknown
and do not seem to have influenced later work.]

7. PARDIES’ essays on the catenary and on elastic beams (1673). In 1673 appeared the
first general treatise on theoretical mechanics, an incomplete posthumous work by a man
now forgotten even to historians of science, the Jesuit IeNACE-GAsToN PArDIES?Y). In the
preface PARDIES says he wishes to make “one body” of mechanics, and his description
organizes well all aspects of the subject then investigated, but unfortunately he did not
live to carry out all his promises?). While he appears to have performed many experiments,
he always attempts mathematical proof; [here he fails almost invariably, for he seems
insensible to the difference between proof and persuasion. The scorn bestowed upon his
work by his great contemporaries is easy to understand, since this is the sort of book
that, in a sense, ought never to have been written. With a show of the right facts and often
even the right principles, little is done cleanly, yet the virginity of the subject has been
defiled. As we shall see, while LEIBN1Z and the BERNOULLIs scarcely take note of PARDIES
they had read his work and profited from it3).]

At the beginning of his treatment of flexible bodies, PARDIES introduces the continuous
string and applies all arguments to it without the intermediary of a discrete model. Like
nearly all writers of the day, he uses infinitesimal constructions, [but he is a poor mathe-
matician, unable to do better then guess at the results of what we now call differentiation

1) “La statique ou les forces mouvantes,” Paris, 1673, being the sequel to an earlier treatise on
“local motion”, mainly impact. I have seen this work only in the second edition, Paris, Mabre-Cramoisy,
1674, [xxiv] + 240 pp., in the third edition, 4bid. 1688, [xxii] 4+ 240 pp., and in Parpies’ (Euvres,
Lyon, Bachelu, 1696, and second edition, 1709, where “La statique” occupies pp. 199-298, while its
preface occurs among the unnumbered pages at the beginning of the volume. Also in Latin, Opera, Jena,
1693-1694, where this treatise occurs on pp. 87-211. There is also a third edition of PARDIES’ (Buvres,
La Haye, 1710.

2) In particular, the fifth discourse, which was to concern vibration, is lacking. PARDIES said he
could prove from properties of the pendulum that the vibrations of a string are isochronous and that
the frequency obeys the law voc YT A[l; this last is surely a misprint for (8), since PARDIES seemed
to be generally well informed. However, the erroneous statement is repeated on p. 6045 of the English
review quoted in the next footnote.

3) It was favorably reviewed in Phil. trans. London 8, No. 94, 6042—6046 (1673). After remark-
ing that PArRDIES was “‘cut off by an intimely Death; being regretted by those that knew his frankness
and strong inclinations to promote philosophic knowledge,” the anonymous reviewer continues,
‘“‘Besides, the Author treats of Bodies suspended, fastned at one or both Ends; of the manner how they
are broken; of the figure they take in becoming curve; and particularly of the Cases, where Cords
extended will be Parabolical, Hyperbolical, Elliptical, or Circular. More-over, he examins the force of
Towers and Pyramids, and shews in what part they are weakest; he determins the figure they ought
to have to render them perfect and able every where to resist equally to the violence of Winds...”
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and integration.] PARDIES observes that
the form of the string remains unchanged
if we solidify any part, or, further, if we
replace the parts above two points 4 and
a, on each side, by suitable forces acting
along the tangents at A and a. [This we
recognize as the first occurrence of the
tension in a curved flexible line ; PARDIES
does not calculate these forces, but in the
concept we see the first of the two devices
whereby JoEN BERNOULLI was to achieve
his solution of the catenary problem
(below, p. 74, especially Figure 25).] PARr-
DIES’ statical principle is [the continuous

Figure 13. PARDIES’ theorem (1673)

analogue of a generalization of the theo-
rem of STEVIN mentioned above,] viz, the point of intersection of any two tangents lies on the
vertical through the center of gravity of the included portion of the cord (Figure 13), no matter
what the line weight may be. [Since some shadow of a correct proof is given?),] we may
justly call the result the theorem of Parpirs. As we shall see, it forms the basis of Lers-
N1z’s solution for the catenary2) (below, p. 71). This principle is particularly suited to
solving all problems concerned with flexible lines subject to vertical load only, since, as
was assumed tacitly by PArDIES and later writers, the fact that the supports can exert
any desired tension makes it sufficient as well as necessary for equilibrium.]

ParDIES then asserts that the figure of the uniformly heavy cord is not a parabola.
“For one can imagine that the chain is now fixed at @ and b (Figure 14) ; then this part aC'b
would remain in the same location as it was when attached freely at the ends @ and 4.”
[This is the second of the two devices to be used by Joa~x BERNoULLI (below, Figure 26).]
“Thus the center of gravity of the chain ab would be at C*’ [careless wording for “on the
line DC E”’]. “But if the figure a C'b were parabolic, the line DCE would divide aF just
in half, but the part aC of the parabola would be greater than C'b, and it is very easy
to prove that the center of gravity of the parabola cannot be at C'.” [To replace it is

1) Granted ParpiES’ preceding statement, the result is obvious, since the weight of the segment
is equipollent to a concentrated force acting at the center of gravity, and the lines of action of three
equilibrated forces must intersect. We must not lose sight of the times we are describing: In the discrete
case for two equal weights, HuvcENs had had trouble finding an adequate proof, and only years later
did he obtain the generalization to unequal weights.

2) Also of the first correct published proof of that solution, viz, Prop. XVIII, Prob. XIII in the
book of TAYLOR, op. cit. infra p. 86.
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very easy to prove,” we note that the re-
quired property of the center of gravity is

jx= —él;- Jzds ; equivalently, s o z, and this

characterizes the straight line.]

“But if we conceive a thread without
weight, on which rest an infinity of equally
heavy lines EC, ec, parallel and equally
distant from each other, then the thread
aCbA will be perfectly parabolic.” For then
the center of gravity of the load acting on
a(Cb lies on the line DC E bisecting a F, and
““the geometers know” that the parabola is
the only curve such that the tangents from 4
and from b intersect at a point upon this
bisector.

[Tt is possible that Parp1Es had heard?)
of HUYGENS’ results on these problems, but
the line of thought is distinct from HuycENs’ ,
and yields the simplest correct proofs ever .B

obtained from that day to thjs.] Figure 14, Drawing for PARDIES’ arguments regard-
ing the catenary and the suspension bridge (1673)

If the string is elastic, says PARDIES, in
order to assume a parabolic form it must be loaded by uniform forces directed toward a
fixed center ; also, a taut elastic string always assumes an approximately parabolic form
in the small sagging due to its own weight. For such a string to be hyperbolic, it must
be drawn by uniform forces directed toward a center below it ; elliptic, toward a center
above it. [For these results only the vaguest of reasons are given?).]

PArpIEs then considers the problems of breaking strength proposed by GALILEO,
[but from a basically different standpoint. While GALLEO had considered the beam as
rigid prior to rupture,] PARDIES attributes everything to elasticity. Indeed, he goes so far as
to try to reduce all phenomena of bending and even of compression to extension. For

1) Either through MERSENNE or from HuveENs himself while he was in Paris. At the end of the
treatise on statics, PARDIES gives a proof of the isochrony of motion on a cycloid, ‘“‘so that after
Mr. HuvgENs has published his proof, I can see if I have been fortunate enough to compete with so
great a man.” PARDIES’ ingenious proof is valid and is distinct from that published by HUYGENS in the
same year (above, pp. 47—48).

2) It is strange that the editors of HuveeNs’ (Euvres 18, p. 487, cite this dubious material but
give no hint of the solid ideas of PARDIES on the immediately preceding pages.
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example, he claims that in compression of a beam the longitudinal fibres bulge outward and
try to extend the annular fibres ; from the resistance of these to extension arises the great
compressive strength of beams, which can be further increased very notably by iron rings?).
As for the form of a beam built at one end and loaded by a weight at the other, “it is easy
to prove” that it is a parabola. There follows a long list of specific rules regarding ‘‘the
effort a body makes to break itself by its own weight”’. Then inclined beams are considered.
Finally there is a long study of solids of equal resistance.

[Thus to PARDIES, and to him alone, belongs the credit of first attempting to introduce
the elasticity of a beam into calculation of its resistance. His mathematical tools were far
from sufficient to carry out his ambitious program of deriving results on the basis of his
hypotheses. This is all the more evident in that he claims to calculate definite numerical pro-
portions, yet he proposes no specific law connecting the extensions with the forces which
produce them.]

8. Hooke’s law of spring (1675, 1678) and researches on the arch (1675), on ropes
(1669), and on sound (1675-1681). At the end of a work published in 1675 on another
subject?), after a “Postscript”’ claiming priority for the “Spring to the Ballance of a
Watch, for the regulating the motion thereof,” against “some unhandsome proceedings”
on the continent, HOOKE wrote :

“To fill the vacancy of the ensuing page, I have here added a decimate of the centesme
of the Inventions I intend to publish . . .

3. The true Theory of Elasticity or Springiness, and a particular Explication thereof
wn several Subjects vn which v vs to be found : And the way of computing the velocity of Bodies
moved by them. ceiiinosssttuwu. ..

“9, A mew sort of Philosophical-Scales, of great use in Experimental Philosophy.
cdeiinnmnoopssstiuu”

1) The ingenious qualitative arguments I have not tried to follow. The problem had been men-
tioned by TORRICELLI in his letter of 2 January 1643 to Ricci. ToRRICELLI asserts that a ring suffi-
ciently strong to prevent bulging at the center of & column in compression may be determined by the
following rule, apparently empirical:

Tension in ring — i

Load on column [
TORRICELLI’S letter to Riccr of 20 January 1643 suggests some analogy to the spreading of & crack in
a wall.

2) R. HOOKE, A description of helioscopes, and some other instruments, London, T. R. for John
Martyn, 1676; reprinted, pp. 119—152 of R. T. GUNTHER, Early science in Oxford 8 (1931). The date
1676 is an error; on 15 October 1675 OLDENBURG sent the printed work, including the “‘postscript”,
to HuYGENS; OLDENBURG'S review is printed in the Phil. trans. No. 118, 25 October 1675 = (Euvres
complétes de HuyeENs 7, No. 2075.

CIII
CIV—CVI
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[1] 331 Three years later he published a treatise on elasticity?),
beginning : ‘“The Theory of Springs, though attempted by
divers eminent Mathematicians of this Age has hitherto not
been Published by any. It is now about eighteen years since
I first found it out, but designing to apply it to some parti-
cular use, I omitted the publishing thereof.” The anagram
in No. 3 deciphered reads : “ut tensio sic vis; That is, The
Power of any Spring is in the same proportion with the
Tension thereof . . . Now as the Theory is very short, so
the way of trying it is very easie.” With admirable clarity
and directness, HoOKE describes his experiments, whose
nature is made clear by Figure 15. Necessary experimental

precautions and procedures are included.

[3] 335 “The same will be found, if trial be made, with a piece
of dry wood that will bend and return, if one end thereof
be fixt in a horizontal posture, and to the other end be
hanged weights to make it bend downwards.” [I. e., the
elasticity of bending is also linear.] Corresponding experi-
ments for the compression and rarefaction of air he
published fourteen years ago. [Thus HookE’s statement is

{
(18) 7o Al F = applied force, ﬁ

A4l = elongation or change in length.]

IAREALE RL Y

Figure 15.

[4] 336 “From all which itis very evident that the Rule or Law HoOKE’s g;rperiments on
] . . tensi

of Nature in every springing body is, that the force or power extension (1678)

1) R. HoOKE, Lectures de potentia restitutiva, or of spring explaining the power of springing bodies,
London, John Martyn, 1678; reprinted, pp. 331—388 of R.T. GUNTHER, Early science in Oxford
8 (1931). Page references are to the reprint.

According to records of the Royal Society published by GUNTHER, Early science in Oxford 6-7,
Oxford, 1930, on January 27, 1663/4 HoOKE was ordered to perform experiments on springs in rarefied
or condensed air. On February 3 he reported that no alteration in the elasticity was discernible in
springs left in the open for some time. On December 17, 1668, Hook® was “desired to bring in what he
had considered of the cause of springiness.”

The following entries in The diary of RoBerr Hooke M. A., M.D., F. R. S.1672-1680, ed.
H. W. RoBinNsoN & W. Apams, London, Taylor & Francis, 1935, refer to elasticity :

September 2, 1675. ‘‘All springs at liberty bending equall spaces by equall increases of weight.”

September 3, 1675. ‘“Perfocted Philosophicall Scales to show to the King.”

September 21, 1675. “Dind with Sir Chr, WREN . . . Discoursd about Springs.”

October 3, 1675. . . . adjusted Demonstration of the equality of the motion of Springs.”

October 6, 1675. “Walkd into the Park with Sir Chr. WrEN. The King calld me to him, bid me
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thereof to restore itself to its natural position is always proportionate to the Distance or
space it is removed therefrom, whether it be by rarefaction, or separation of its parts the
one from the other, or by a Condensation, or crowding of those parts nearer together. Nor
is it observable in these bodys only, but in all other springy bodies whatsoever, whether
Metal, Wood, Stones, baked Earths, Hair, Silk, Bones, Sinews, Glass, and the like.
Respect being had to the particular figures of the bodies bended, and the advantagious
or disadvantagious ways of bending them.” [While HookE does not say explicitly that
the moduli of extension and contraction are the same, this seems to be his opinion ; in the
case of air, the only material for which he says he has measured condensation, this is true.]

Conversely, the anagram in No. 9 is the law of the spring scale : “Ut pondus sic
tensio,” affording an absolute rather than merely relative measure of the weights of
bodies. With its aid, HoOORE has sought to measure the variation of the earth’s gravity
with altitude, but on church towers and in deep mines no effect was discerned.

In terms of his views on the causes of elasticity, HookE writes that *“ . . . it will be
very easie to explain the compound way of springing, that is, by flexure, supposing only
two [elastic] lines joyned together as at GHI K (Figure

16), which being ... bended into the form LMNO, & el
LM will be extended, and NO will be diminished in
proportion to the flexure, and consequently the same y e K

proportions and Rules for its endeavor or restoring it I
self will hold.” [Thus HookE remarks, as had BEeckmMax L "':“ M&-m"---{:.%"‘% M
before him, that the outer fibres of a bent beam are - ot .,%é:?
strotohed and the inner ones compressed. This “com-  f o
pound way of springing” is the main problem of Figure 16. Hooxw’s drawing to show
elasticity for the century following, but HOOKE gives ° °§ﬁ’;§i‘(’)’f‘ :ﬁgn:‘;;t;gf%&gf the
no idea how to relate the curvature of one fibre to the
bending moment, not to mention the reaction of the two fibres on one another.]

“It now remains, that I shew ... the Vibrations of a Spring, or a Body moved by a

shew him experiment. Followd him through tennis court garden &c. into closet. Shewd him the Experi-
ment of Springs. He was very well pleasd. Desired a chair to weigh in.”

According to records of the Royal Society published by GUNTHER, loc. cit. ante, at the meeting on
August 1, 1678, HookE showed his experiments on “a tubical spring of brass wire,and . .. a spiral
spring of steel . ..,” and on August 22 he demonstrated the law (18) with “a spring of brass wire,
about thirty-six or thirty-seven feet long, extended by weights hung at the lower end thereof . ..”
Also, “about three years since his Majesty was pleased to see the experiment . . .” The diary entries for
these dates confirm these facts. Also, on August 20, 1678, “Met Sir Chr. WREN . . ., discoursd about
equation of Springs, etc.,” and August 21, “To Sir Chr. WREN . . . Discoursd much about Demon-
stration of spring motion . . . I told him my philosophicall spring scales . . .”

337—338
[6—6]

347 [15]

348 [16]
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Spring, equally and uniformly shall be of equal duration whether
they be greater or less.” To this end, HookE introduces ‘the
aggregate of the powers of the spring” [¢. e. the work done by it]. /
To prove the isochrony, HookEe gives two distinct arguments,
[both fallacious?). The error is now difficult to understand, since
GavrILEO had given the correct solution for the mathematically
analogous problem of small oscillation of a pendulum. It must

be remembered that problems of this kind were still extremely

difficult ; such analogies were not obvious, because it was not
yet customary to think of motions as determined directly by
assigned forces. We may conjecture that HOOKE observed the
isochrony in his experiments and devised some sort of reasoning
to conform to it.

So far as I know, there is no other early treatment of simple
harmonic motion in an elastic context. We have mentioned f
(above, pp. 47 —48) the roundabout argument of HUYGENS to con- 3
clude the isochrony and calculate the period. To the modernreader * s
of NEWTON’s Principia (1687)%) it is abundantly clear that for Figure 17.

HooxkEe’s incorrect results

NEwron simple harmonic motion was a familiar and completely on the motion of a body
attached to a spring (1678)

mastered concept. To the original readers3) of his book, however,
it must have appeared rather different.] The results are stated as follows?) : “Supposing

1) The dynamical principle Hook® uses to find the speed v of a mass M starting from rest is
» o< VW, which is correct since in fact

2 8
v= Vﬂ{ ras = |5

where W is the work done. However, HOOKE’s first argument is based on the formula s < VW, which is
correct only for motion starting at the equilibrium position of the spring, not from a point where v = 0.
Hooxxr's second argument, based on the correct formula for the work done by spring when released
from rest at amplitude A, viz. W = 3} K(2Us — s?), obtains the correct formula 2o 2WAs — s2 for
the speed, shown by the circle and the ellipses in Figure 17. Both arguments assume # = sfv rather
than the correct kinematical formula ¢ = | ds/v. It would seem that the resulting “S-like Line of
times” CIIIF in HooKE’s figure would have aroused his physical intuition, since it has a point of in-
flection, implying that the velocity first increases and then decreases in each quarter period.

2) Philosophiae naturalis principia mathematica, London, 1687. There are many reprints and
translations. OQur references are to the first edition, with variants in later editions noted in parentheses.

3) As is shown below, p. 61, LErsNiz failed to see in NEwWTON’s book anything concerning the
vibrations of springs. The very brief mention of sonorous vibrations of solid bodies in the Scholium
after Prop. L, Probl. XIII (in later eds., Probl. XII) of Lib. II adds nothing.

4) Lib. I. Prop. XXXVIII, Theor. XII, p. 121.
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that the centripetal force be proportional to the altitude or distance of the places from the
center, I say that the times of falling, the speeds, and the spaces traversed are as the arcs,
the versed sines, and the sines respectively.”” For proof we are told only to use Proposition
X in the same way that Proposition XXXII was proved from Proposition XI. This means
that we are to pass to the limit in results already derived for motion on an ellipse. [This
oblique and scarcely illuminating approach to a problem which now seems fundamental
reflects NEWTON’s concentration on celestial mechanics.] In his proof of the isochrony of a
cycloidal pendulum and his discussion of a simple pendulum?), NEWTON is content to show
that the restoring force is proportional to the arc ; everything then follows from the above.
[What & modern reader would consider a straightforward treatment of simple harmonic
motion, based on the differential equation Mz = — Kz, seems first to have been given
many years later by JoEN BERNOULLI (see p. 134, below).]

Returning to the “decimate of the centesme’ published in 1675, we read as No. 2,
“The true Mathematical and Mechanichal form of all manner of Arches for Building, with
the true butment necessary to each of them. A problem which no Architectonick Writer hath
ever yet attempted, much less performed.” The anagram, when deciphered?), reads
“Ut pendet continuum flexile, sic stabit contiguum rigidum inversum,” <. e., as hangs the
flewible line, so but inverted will stand the rigid arch. [While none of the available papers
of HooxkkE reveals how he reached this conclusion, there is no reason to doubt that he had
sufficient mastery of statics to show that an arch of infinitely small stones in order to
exert purely tangential thrust should be formed like an inverted catenary subject to in-
verted loads. Thus the problems of the catenary and the arch are reduced to one, but
neither is solved.]

According to records of the Royal Society?), on July 8, 1669, ‘“Mr, Hoox® proposed an
experiment about the strength of twisted cords, compared with untwisted ones, to be
tried at the next meeting . . .”” On July 15 “Mr. HookE made an experiment of comparing
together the strength of twisted and untwisted silk, and it appeared by the several trials

1) Lib. I, Prop. LI, Theor. X VIII and Prop. LII, Probl. XXXTV, pp. 1561-153 (note the important
corollary added to Prop. LI in the 2nd. ed.).

2) The solution seems first to have been published by RICHARD WALLER in his introduction to the
Posthumous Works of Roperr Hookre, M. D.,S. R.S., 1705, included among other writings about HOOXE
printed by GUNTHER, 0p. cit. ante, p. 54, b, 1—68; see p. XXI of the original or p. 51 of the reprint.
In Hooke’s diary as published by GUNTHER in the same volume, the arch is mentioned in the entries for
December 8 and 15, 1670, for January 12 and 19, 1670/1, and for December 14, 1671; Hooke demon-
strated something to the Society but disclosed the proof of it only to the president. In HoOKE’s later
diary, cited above, p. 54, the entry for June 5, 1675, mentions “my principle about arches”, and on
September 26, “Riddle of arch, of pendet continuum flexile, sic stabit grund Rigidum.” Doubtless there
is an error of transcription.

3) GUNTHER, op. cit. ante, p. 54.
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made of it, that a certain number of threads untwisted proved stronger than so many
twisted. Whence Mr. HookE concluded, that cables made faggot-wise would be stronger
than when twisted.

“To this it was objected, that cables would not then be so manageable ; and that
certainly people had not been wanting to make trials of this nature, but had doubtless
found, that, all things compared, the inconvenience would prove greater in the use of
untwisted than twisted threads.” [The “inconvenience” depends on the use. It is precisely
Hooxz’s “cables made faggot-wise” that PamLon had found superior in use on ballistae
many centuries before (above, p. 17).]

“Mr. HookE remarked upon this, that the belief of the superior strength of twisted
threads to that of untwisted had doubtless proceeded from trials made upon flax, which
having but short pieces held not therefore so well untwisted as twisted.” [GALILEO had
explained the apparent strength of ropes?) but had not stated any definite relation between
the total and partial strengths. HookE’s result is to be rediscovered in 1711 by bpE
RiavMUR?2).]

Hooxr was also a leading proponent of some of the now accepted ideas regarding
sound, [but he made no advance beyond BEeckMAN and MERSENNE]. He devised an ex-
periment for producing sound by toothed wheels, [but exactly what he did is hard to as-
certain?)].

1) Pp. 55—58 of op. cit. ante, p. 54.

2) “Eaxperiances pour connoistre si la force des cordes surpasse la somme des forces des fils qui com-
posent ces mosmes cordes,”” Mém. acad. sci. Paris 1711, [2nd.] 4to ed., Paris, 6—16 (1730). DE REAUMUR
reports a sequence of experiments ending with one on a silk cord composed of 832 fibres.

3) In HooxkEe’s diary, cited above, p. 54, in the entry for January 15, 1675/6, we read, “To Sir
Chr. WaeNs, Dr. HoLpER and I discoursd of musick, he read my notes and saw my designs, then he read
his which was more imperfect. I told him but sub sigillo my notion of sound, that it was nothing but
strokes within a Determinate degree of velocity. I told them how I would make all tunes [%. e. tones]
by strokes of a hammer. Shewed them a knife, a camlet coat, a silk lining. Told them that there was no
vibration in a puls of sound, that twas a puls propagated forward, that the sound in all bodys was the
striking of the parts one against the other and not the vibration of the whole. Told them my experiment
of the vibrations of a magicall string without sound by symphony that touching of it which made the
internall parts vibrate—caused the sound, that the vibrations of a string were not Isocrone but that
the vibration of the particals was. Discoursd about the breaking of the air in pipes, of the musick of
scraping trenchers, how the bow makes the fidle string sound, how scraping of metall, the scraping the
teeth of a comb, the turning of a watch wheel &c., made sound.” Cf. also the entry for January 8.

The records of the Royal Society, as published by GUNTHER, op. ¢it. ante, inform us that on July
27, 1681, HookE “showed an experiment of making musical and other sounds by the help of teeth of
brass wheels; which teeth were made of equal bigness for musical sounds, but of unequal for vocal
sounds.” On p. xxiii of the original edition of WALLER’s life of HoOKE, p. 57 of GUNTHER’S reprint,
it is stated that in July of 1681 Hook= “shew’d a way of making Musical and other Sounds, by the strik-
ing of the Teeth of several Brass Wheels, proportionally cut as to their numbers, and turned very fast
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9. MARIOTTE and LEIBNIZ on elastic beams (1684). [Before taking up the more im-
portant work of LEIBNIZ to which it apparently gave rise, we must mention the attempt of
MARIOTTE, especially since he is one of those writers who, for some unaccountable reason,
has been read and cited often.] The second discourse of Part V of MARIOTTE’s Treatise on
the motion of water and other fluid bodies'), published two years after his death in 1684,
concerns “the force of pipes of conduct, and the thickness which they ought to have,
according to their matter, and the height of the reservatories.” [This seems to be the
first treatise on the experimental strength of materials ; it describes many intelligent experi-
ments carried out with some care.] MARIOTTE says that his tests on wood and glass do not
conform to GALILEO’s proposition (11); instead of the factor §, he finds a value between
4 and }. He undertakes to derive a better result by starting from the assumption that the
“Fibres and Ramous Particles” of a body “may be extended more or less by different
Weights : And, Lastly, That there is a Degree of Extension which they can’t bear without
breaking.” [Thus MARIOTTE, like PARDIES, considers the deformation of a beam prior to
rupture ; his criterion for failure is the magnitude of the elongation.]

As a model, MARTOTTE proposes a rigid lever tied down by little strings which break
when they suffer a certain elongation (Figure 18). [His reasoning is incomprehensible ;

N

&)

Figure 18. MARIOTTE’s figures supposedly representing the forces in a terminally loaded beam (1684)

]

round, in which it was observable, that the equal or proportional stroaks of the Teeth, that is, 2 to 1,
4 to 3, &c, made the musical notes, but the unequal stroaks of the Teeth more answer’d the sound of
the Voice in speaking.”

1) Traité du mouvement des eauzx et des autres corps fluides, [xiv] 4 408 + [xx] pp., Paris, Estienne
Michallet, 1686. The date of the permit is 4 July 1685. This posthumous work is edited by DE LA HIRE;
particularly the last parts were not in order. Qur page references are to the first edition. There is a “New
corrected edition,” xii 4 390 4 xiv pp., Paris, Jean Jombert, 1700. A new edition, “corrected and
augmented by rules for fountains,” same publisher, 1718, xii + 414 4 xiii pp. is reset but seems to
carry no changes in the part described above; a reprint from the Paris memoirs of 1693 is added. In
the (Buvres of MARIOTTE, 2 vols. paginated as one, xii 4+ 701 4 xxxiii pp., Leiden, Pierre Vander Aa,
1717, the Traité occupies pp. 321—476. Our quotations are taken from the English translation by
J. T. DESAGULIERS, The motion of water, and other fluids, being a treatise of hydrostaticks, London,
J. Senex, 1718, xxiv 4 290 pp.
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apparently the fact that the little transverse strings are stretched in proportion to their dis-
tance from C in the first figure is intended to justify the assumption that] the [longitu-
dinal?] fibres “resist in Proportion to their Distance from the Point D’ in the second figure.
By some mysterious juggling!) with a numerical progression appropriate to a special case,
Mar10TTE concludes that % should replace } in (11).

In a further discussion MARIOTTE says ‘‘you may conceive that from D to I, which is
half the Thickness 4D, the Parts are pressed together by the Weight L ; those that are
near D, more than those toward I ; and that they are extended from I to 4, as has been
before explain’d ; and the same Reasoning about the little Cords may be applied to the
Part T A ... and it is very probable that these Compressions resist as much as the Exten-
sions . . . whence will follow the same thing as if all the Parts were extended . ..” [It is
still not clear whether transverse or longitudinal fibres are intended. In the traditional
interpretation?) of MARTIOTTE’s work, it is the latter ; if so, then MarIOTTE implies but does
not state that there is an unextended or neutral fibre within the beam and infers that
agsuming the central fibre to be the neutral one yields the same resistance to bending as
when the lowest fibre is neutral. This is false. Nevertheless, MARIOTTE’s dubious or false
calculation may be considered as some advance beyond the clearer though unsupported
statement of HookE (above, p. 55)].

MARIOTTE’s experiments show that in fact all materials, even glass, deform before
breaking ; moreover, a glass rod returns to its original length when the stretching weight
is removed. Several of GALILEO’s assertions resting on the assumption that a given moment,
however applied, suffices to break a body, are verified by MARIOTTE’s experiments. “These
Rules are of use for brittle solids, as dry Wood, Glass, Marble, Steel, etc. But for supple and
pliable Substances, that are broken by Traction alone ; as Paper, Tin, Ropes, etc. other
Rules are necessary . ..” E.g. “lists [:. e. bands] of Paper, Tin, and such kinds of Bodies
break equally whether they be long or short.”” An experiment with a spiral spring not
only verifies [HooKE’s law of] proportionality between elongation and stretching weight
but shows also that this rule applies as well to a part of the spring as to the whole of it.
For the rupture of vessels under water pressure, MARIOTTE asserts that the breaking
strength is proportional to the thickness of the walls.

[From the remarks in the paper to be discussed now, it is plain that LEiBN1z knew of
MarroTTE’s work before it was published.] LersNiz is the first to attain a mathematical
theory taking account of the elastic tension of the fibres of a beam. His New proofs con-
cerning the resistance of solids®) begins by considering a cubical beam, for which GALILEO’s

1) PARENT, § 17 of op. cit. infra, footnote 1, p. 111, finds “an error of geometry” here.
2) Deriving from VaRiGNoON and BULFFINGER, op. cit. infra, pp. 102, 103.
3) “Demonstrationes novae de resistentia solidorum,” Acta erudit. Leipzig, July 1684, 319—325 =
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formula (11) yields P, = }P,. LEIBNIZ interprets GALILEO as supposing the resistance
[¢. e. moment] of the fibres varies linearly with their height above the lower edge. Inte-
gration over a square base then indeed yields the factor . But, says LEIBNIZ, experiments
show that P, < {P,. GALILEO’s reasoning is correct, but his hypothesis is false. “The
cause of this can be nothing else than that he considered
the beam as perfectly rigid, so as to break off entirely in one D
moment at the place where its resistance is exceeded, while 1B}
in fact all bodies . . . give way considerably before they can
be ruptured.” This was observed by MARIOTTE, who by ‘“‘an
ingenious calculation” concluded that!) P, = }P,, “butas *H
soon thereafter as I found leisure to search the matter more 4
deeply and to subject it to the laws of the geometers, I found
the true proportions . . .”

To consider the elasticity of a beam, LEIBNIZ supposes

each fibre acts as a spring (Figure 19) connecting the beam El
to the wall. “From the hypothesis elsewhere substantiated,

that the extensions are proportional to the stretching forces?),”

he concludes that the resistances [moments] of the fibres are &g 15 s fgwre for

as the squares of their distances from the lower edge, since (a) acting on the cross-section of a
q £e, e (a) terminally loaded beam (1684)

the weights required for stretching a given amount are pro-

LEIBNIZens math. Schriften 6, 106—112. The account of this work given by Prarson, § 11 of op. cit.,
p- 11, so little squares with the contents that I am tempted to conjecture he saw some other version
of it.

1) While MARIOTTE’s work is obscure, the result he seems to conclude by his theory, if such it
may be called, is Pp = 3 Pt. See above, p. 60. Since the publication of MARIOTTE’s work is subse.
quent to LE1BN1z’s, LEIBNIZ may be citing an earlier version, or he may be citing from memory. Cf. the
criticism of BULFFINGER, § 11 of op. cit. infra, p. 103.

2) Since he cites no source for the linear elastic law, later Continental writers often named it
after him. It is plain, however, that LErsNiz considered the linear relation neither as his own nor as
important.

An attitude very different from that often attributed to LEIBNIZ is revealed by his long corres-
pondence with HUYGENS concerning the experimental laws of elasticity. In October 1690 LEIBNIZ
writes: “I am not yet entirely content with the elastic laws which are given out, since it seems that
experiment does not sufficiently agree with the rule that the extensions of strings (for example) are
as the stretching forces. For this reason I should like to know your opinion.” 2 March 1691: “Mr.
NewToN has not discussed the laws of spring; it seems to me that I have heard you say formerly that
you had examined them and that you had proved the isochrony of the vibrations.”” Also: “I prefer a
LEEUWENHOEK who tells me what he sees to a CarTEsian who tells me what he thinks. But it is neces-
sary to join reasoning to observation.” HUYGENS replied on 26 March 1691: ‘I have a proof of the
isochrony of the vibrations of a spring, supposing that it yields in proportion to the force that presses it,
as experience shows constantly.” The preliminary note for this letter adds: “HOOKE has discussed it
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portional to the distance from the fulcrum 4, and (b) the extension varies as the force. [We
should now say that since the force varies as the extension, and the extension of the fibres
at a cross-section pivoted about the fulcrum varies linearly with the distance, the moments

1
about the fulerum vary as the square of the distance.] Integration yields [ y2dy = %, so
0
(19) Py = }P,

(for a cube). [While LEIBNIZ is somewhat hard to follow, we see he is not only the first to
apply HooxkE’s law in a correct calculation of the equilibrium of moments but also the first
to obtain, in a special but typical case, the celebrated formula

I = Bending Moment,

20
(20) Ml I = Geometrical Moment of Inertia of the Cross-Section.

This, indeed, is the product to be expected from the first apphcatlon of calculus to the
theory of continuous bodies.

For understanding of later developments, we may describe LEIBNIZ’S procedure as
taking account of the elastic tension of the fibres while neglecting the bending which accompanies
the tension!). GALILEO, it may be recalled, had neglected both the deformation and the
variation of tension to which it gives rise. Since very large forces produce very small
deflections in bodies used for structural ends, LEIBNIZ’s approach is natural, though of
course later experience will reveal it to be insufficient.]

LEereN1z finds that according to his theory, as according to GALILEO’s, the cylindrical
solid of equal resistance to end load is parabolic ; to uniformly distributed load, linear. He
attacks the problem of a beam of arbitrary cross-section and gives geometrical construction
for its resistance. He asserts that the surface of revolution forming a solid of equal resistance
is a paraboloid. For most of these propositions he gives no proofs, but he observes “that

fallaciously.” Luisniz on 20 April 1691: “In England they have published a little book on springs, I
believe by Mr. Hook[E], but it seems to me I found something wrong in it. I beg you to tell me the
experiments you say you have made on this subject.” On 5 May 1691 HuvaeNs replied: “I have seen
earlier the treatise of HOOKE on the spring, and I noticed a paralogism in it, which I could find among
my papers.” No such paper has been found. HUYGENS agrees with HOOKE’s result, but only for slight
extension. ‘“‘But in the spring of air the proportion is always perfect, for which there are experiments in
the books of Mr. BOYLE.” For HOOKE’s error, see above, p. 56. The nearest approach to a statement
and proof that has been found in HuYGENS’ manuscripts is described above, p. 61.

The foregoing exchange makes it plain that in 1691, after the dissemination of calculus and after
the publication of NEwWTON’s Principia, simple harmonic motion was not thoroughly understood even
by the foremost scientists.

I have been unable to find any early correct proof of isochrony referred to an elastic context.

Later views of LEIBNIZ on elasticity are given below, pp. 96, 127—128.

1) That Leisniz fully understood what he was doing is shown by his letter quoted below, p. 64.
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by these few considerations all this matter may be reduced to pure geometry, which in
physics and mechanics is uniquely to be desired.”

Lersniz states also, [contrary to MERSENNE’s inference from his experiments,] that
the elastic and acoustic properties of bodies are connected. “And that there is nothing so
rigid but that it is bent a little by the lightest stroke follows from the nature of sound,
which is a certain trembling or reciprocal bending of the parts of the sounding body. The
more rigid and indiscernible is the restitution, the higher is the sound, since the tremulous
parts are the shorter and the tenser, and they constitute the harder body?).”

[This paper establishes LEIBN1Z as the father of the mathematical theory of elasticity.

It had also a second great function in our subject; not only did it excite JAMES
BERNOULLI to the study of elasticity but also it was the means that drew him into the
higher analysis.] His first letter?) to Leisniz, dated 15 December 1687, relates that an
expert mechanic of Basel had consulted him regarding the construction of wagons; in
LErBn1z’s paper BERNoOULLT had sought and found help. However, he decided to test by
experiment LEereniz’s hypothesis that the elongations are proportional to the stretching
weights. The results of BERNOULLI’s experiments on a gut string do not conform to this
hypothesis at all. But LersNiz has written that the experiments of others support the
linear law. What is the reason for the discrepancy ? Was BERNOULLI insufficiently careful ?
Or are the fibres of which LEIBNIZ considers hard bodies to be composed different from
such a string?

But there is another trouble. LEIBNIZ’s assumptions imply that the beam is broken or
bent at the wall, while the said mechanic asserts that for iron bars the bending (which
seems to be nothing else than an incipient break) takes place mainly in the part one third
to one half the distance from the built-in end to the free end.

This letter LErBN1zZ, absent on a long journey, received only after a delay of three
years. On 24 September 1690 he replies, in effect, that the relation between extension and
stretching force should be determined by experiment; in particular, the table of values
BrrNoULLI had sent to him seems to fit a hyperbolic curve. The ratio P,/ P,, says LEIBNIZ,
will be altered if the assumed relation between force and extension is altered. But the
dependence of P, and P, upon the dimensions of [similar] cross-sections, as he proceeds
to show by what would now be called a dimensional argument, is unaltered, and thus in
particular his results concerning the solid of equal resistance remain valid?).

1) In symbols, » is an increasing function of K, where E is an elastic modulus. This statement of
LersNi1z foreshadows the correct and general law » oc VE.

2) All letters between LEeisNiz and the brothers JAMES and JoEN BERNoULLI are cited from
LEeisN1zens mathematische Schriften 3.

3) In an undated letter to V. BODENHAUSEN, reprinted in LEIBNizens math. Schriften 7, 356,
LrrsNiz mentions having sent this proof to BERNoULLI. “I have also explained to him what the figure
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LEersNiz is indeed aware of the bending undergone by a beam prior to its failure.
“But in my reasoning I preferred not to consider the bending of the whole beam, or
rather I assumed a shape already reduced, through the prior bending caused by the weight,
to the [straight] form we attributed to it ...” [In this latter explanation we first en-
counter a view that has recently proved most useful in problems of finite deflection : The
forces are referred to the actual, deformed condition of the body.] ‘“However, consideration
of the bending would furnish a new and by no means inelegant problem.”

[JAMES BERNOULLI was not quite ready for this not inelegant problem.] In the years
between query and answer, he had pondered and fathomed the Lerssizian calculus and
had proved his mastery by his own researches, published in the Acta Eruditorum, the
very journal to which LrrBN1z had consigned his few enigmatic abstracts of the differential
algorithm. Indeed, BErNoULLI had gone further. Four months before receiving the long-
delayed letter to which the above is a reply, LEiBNiz had read in the Acta a challenge
JamEs BErNOULLI directed to the learned world, but certainly by implication especially to
him : ¢o find the catenary curve. LEIBN1z now answers, ‘. . . I think I can satisfy you regard-
ing the catenary curve as well.”” In fact he had answered two months earlier, also before
receiving BERNOULLI’S letter—answered in print. We now step backward four months in
this history to follow from the start the discovery of the catenary.

10. The contest to find the catenary (1690). In the Acta Eruditorum for May 1690,
at the end of a paper on another subject!), JAMES BERNOULLI writes, ‘“And now let this
problem be proposed : T'o find the curve assumed by a loose string hung freely from two fized
points. I assume also that the string is a line which is easily flexible in all its parts.” So
begins the great contest to find the catenary.

LEIBN1z is quick to reply2). In the July issue, after restating the problem, he remarks :
“It is supposed also that the string remains of the same length, like a chain, rather than
being stretched or contracted like a wire. This problem, proposed by GALILEO and famous
since his time, has not yet yielded to solution . .. Therefore I should rightly be excused
from the burden imposed, especially since I am much drawn into other matters. But the
humanity of that most enlightened man is such that I should not wish to fail of his first

of equal resistance must be when the beam is loaded not only by its own weight but also by a foreign
weight . . ., which I omitted in my paper, and which he could scarcely find, since it involves the higher
analysis.”

1) “J. B. Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi
percurrendae uniformiter, sic ut temporibus aequalibus aequales altitudines emetiantur : et alterius cujus-
dam Problematis Propositio,” Acta Erud. Leipzig, May 1690, 217—219 = Opera omnia 1, 421—424.

2) “Q. Q. L. ad ea, quae vir clarissimus J. B. in mense Majo nupero in his Actis publicavit, res-
ponsio,” Acta erud. Leipzig, July 1690, 358—360. Not reprinted in LErBNizens math. Schriften.
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summons. Therefore I have attacked [the problem], which I had hitherto not attempted,
and with my key [4. e. differential calculus] happily opened its secret approaches.

“However, this problem is a little more involved than my former one and displays
a certain singular use of our method ; thus I have thought it worthwhile, before publishing
my solution, to give time also to others for exercising their skill. By this as by the Lydian
stone we shall know the best methods; which bears much on the improvement of thescience;
especially since here it is not a matter of elaborate calculation, hut rather of artifice.-
First of all the most noble D. T. [Count TSCHIRNHAUSEN], who promises splendid things
of this kind, is to be asked whether he wishes to try the strength of his method here too?).
But if no one indicates before the end of the year that he has found a solution, I will give
mine, God willing.”

On 9 October 1690 HuyeENs writes to LEIBNIZ, “But to judge better of ... your
algorithm, T await with impatience . . . what you have found regarding the line of the string
or hanging chain, which Mr. BERNoULLI has proposed for you to find, for which I am
grateful to him, since this line includes singular and remarkable properties. I had con-
sidered it formerly, in my youth, when I was but fifteen [recte seventeen], and I had proved
to Father MERSENNE that it is not a parabola, and had found what the pressure should
be in order for it to be a parabola. [See § 6, above.] This has caused me to be tempted now
to examine the problem, and here is the cipher of what I have found. I have written it in
such a way that you can interpret it somewhat if you have made the same discoveries, and
I think to give you more pleasure thus, than if I were to send you everything explained.
I beg you to send me your cipher in return, and let us shorten between ourselves the term
of a year that you have allowed to the geometers . . .”” The cipher follows. On 13 October
LEeewiz replies, <. .. I find some relation to my caleulation, but also some difference’ ;
the difference is one of sign, [and it is plain that LE1BNIZ has unravelled the cipher]. In
his letter of 18 November, HUYGENS again requests LEIBniz’s cipher; for the curve he
proposes the name catenary [already used by LEIBNIZ].

On 23 February 1691 HuyeENs again demands LEIBNIZ’s cipher. On 2 March LEIBNIZ
replies that Mr. BERNouLLI also has found the solution. “I think that knowledge of my
calculus helped him a little, for although this problem is not one of the most difficult, I
suspect it is not too easy to solve without something equivalent to that calculus. I have
not seen his solution, but I do not doubt he has succeeded. Mr. TSCHIRNHAUSEN has not
bitten . ..” On 26 March and 21 April HuyeENS again demands LriBNiz’s cipher and
BerNouLLI’s as well. Finally on 5 May HuveENs sends his solution, sealed, to LEIBNIZ,
to be transmitted to the Acta for publication. On 27 May LEIBNIzZ replies that he had sent
in HuveENS’ solution and his own at the same time.

1) To this challenge TSCHIRNHAUSEN did not reply.
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The Acta Eruditorum for June 1691 printed not only the solutions of LErBniz and
HuveEexs but also one by a new protagonist from whom we are to hear much more, JAMES
BERNOULLI’s younger brother JoHN, then 24 years old!). As the editor explains in a notice
titled Solutions of the problem proposed by J. B.2), “The benevolent reader will have no
trouble in remembering the problem proposed by the most enlightened Professor JAMES
B....of Basel. .. The most celebrated G. G. L. promised to publish a solution obtained
by his method, if no one also had solved it by the end of the year ... But in fact the
brother of the proposer, Mr. JoEN BErNouULLI, candidate in medicine and much versed
in these studies, solved it and sent us his solution last December ; and through his brother
he most kindly required us to add it to that of LEIBNIZ, in its time. Thence it has happened
that we have urged the most celebrated man above-mentioned to publish his solution . . .
Also Lord CurisTiaaN HuveENS has deigned ... to ornament this our Journal with
his solution of the problem. Therefore we shall give you, benevolent reader, the two
solutions of these illustrious peers and that of BERNOULLI, but in the order in which they
reached our hands.”

[For 1690, these three solutions, in the order received, exhibit the mathematics of the
future, the present, and the past ; therefore we discuss them here in reverse order.]

The note of HuYGENS?) gives “‘only the solutions . . . for special cases, in a desire to
avoid prolixity, and since I do not doubt that the learned will sufficiently exhibit
the general rules. And if anything further of ours is wished, I will freely send it.”
[Indeed, it is incomprehensible.] Only special points, often with numerical values, are
considered. HuYGENS asserts that the catenary can be constructed by means of the
quadrature of either of a certain pair of quartics but does not explain further. The only

statement of principle contained seems to be equivalent to —‘:— = ]‘(%), where s is arc

length and z and y are rectangular co-ordinates, [but this is not correct]. A little later4),
however, HUYGENS published something more specific : “it is easy to prove” that the
slopes of the segments of a weightless chain with links of uniform length, uniformly

1) Thus our subject includes the problem By whose solution JOEN BERNOULLI established him-
self, overnight, as the peer of HUyGENS and LErBN1z. It was this solution, as Professor SPIESS remarks,
that served the young giant as a passport to enter the learned society of Paris in 1691. See p. 136 of
Der Briefwechsel von JoHANN BERNOULLI, Basel, 1955, where part of JoEN BERNOULLI’S autobio-
graphical letter to bE MONTMORT of 21 May 1718 is quoted.

2) Acta erud. June 1691, p. 273.

3) “CurisTiaNI HUGENII, dynastae in Ziilechem, solutio ejusdem problematis,” Acta erud. June
1691, 281—282 = (Buvres complétes 10, 95—98 = LEiBN1zens math. Schriften 5, 251—252.

4) Letter of February 1693 to BasNAGE DE BEAUVAL, Hist. des Ouvrages des Scavans, Number
for Dec. 1692 and Jan.—Feb. 1693, 244—267 = (Euvres complétes 10, No. 2793.
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weighted at the junctions, increase in arithmetic progression). In the limit as the lengths of

the segments approach zero, this becomes % o« s, [which we recognize as the correct

1) While not attempting to follow HuyGENS’ intricate argument, I append here a simple treat-
ment along the lines introduced a half century later by EULER in connection with problems of motion
(§ 30, below). With notations as in Figure 20, equilibrium of horizontal and vertical forces acting at the
point (%, y;), where W, is attached, yields

Tk+1 sin 0k+1 —_ Tk sin Bk = ch

Tk+1 cos 9k+1 —_— Tk cos Gk =0.

Hence
Wy -
Ty cos 0 = tan Ox4+1 — tan 0;,
Figure 20. Sketch for modern proof of HuvGENS’ theorem
so that Wit W
_ x
tan O 42 — tan Ogy1  tanOg41 — tanf; °

When Wiiy= W, =W for all £, it follows that tan 0x4s — 2 tan 0x4+1 -+ tan 6, = 0. This yields
Huvaeens’ theorem:

(H) tan 0, = Ak + B,
which is thus seen to follow from statics alone as a statement that the weights, however they be spaced,

are equal.
The geometrical constraints are

1
BT R = by = Oy e
tan 0y
=0, .
E77F Y11 tan® 6,

z
©)
Yp —Yk—1 = b, tan 0

If by, — b forallk, then from (C),,; and (H) follows @) — #g—1 = b, ¥y, —yk—1 = b(4dk + B),
so that
2, =bk + xz, ,

Yp = b [3AR* + k) + BE] + yo 5
therefore the points («}, ;) lie upon a parabola. This is the solution of the suspension bridge problem.
If a, = a for all k, then from (C),,, and (H) follows
1

aQq—— F)

V1+(4k + B)?

Ak + B

A .

V1 + (4k + B)?

Ly — Tp—1 =

Y — Yk—-1 =

HuyeeNs’ problem is equivalent to summing these difference equations explicitly, or at least to
showing that the limiting form of any curve through these points is the ordinary catenary.
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differential equation]. HuyeENSs’ extant notes?) enable us to reconstruct his solution. The
statical principle is the same theorem of STEVIN as was used in HuYGENS’ earlier work
described in § 6. A part of the complexity of the analysis lies in HUYGENS’ insistence on
first calculating the figure of the equilibrium of the weighted cord, then passing to the limit.
An equal part, however, lies in the geometrical method ; [nowadays we admire a person
who could think correctly in such an elaborate way2).

1) Appendix 1 to the letter of 9 October 1690 to LErBNIzZ, (Buvres complétes 9, 560—501, explains
the cipher (conjectured date, September 1690); Appendix 2, of the same date, 502—510, explains the
solution, but even with the aid of the editors’ copious notes it remains extremely difficult to follow.
Another fragment of 1690, emphasizing the statement italicized in the text above, is given in Buvres
complétes 19, 66—68. Another is the appendix to the letter of LriBNiz of Oct.—Nov. 1690, (Buvres
complétes 9, 541—543; here the quartics are discussed. There is also a later explanation, written
presumably in 1691, (Buvres complétes 10, No. 2724, and perhaps a first draft for the publication
cited in footnote 4, p. 66.

2) It seems pointless to follow in detail the further discussion that fills much of Huvceexs’
Euvres complétes 10, but we add & summary of it. LEiBN1zZ, convinced indeed correctly but as yet
without sufficient reason that BerNouULLI has used differential calculus, triumphs in the power of his
“key”. Also, his solution and BErNoULLI’s, unlike HuveeNs’, do not presuppose the quadrature of any
curve [except the hyperbola] (see especially his letter of 24 July 1691). HuvceENS at firet expresses
great admiration for the work of LEIBNIZ and BERNOULLI. In the notes for his letter of 1 September
1801 he writes, “The additional properties you and Mr. BERNouLLI have discovered I did not even
search for . ..since I thought them incomparably more difficult to find than in fact they are.” He
would like to follow their methods. He begins to think that after all the differential calculus may have
some advantages. In time, however, he grows suspicious that LrrsNiz had achieved the solution only
after getting a prior hint of BERNoULLI’Ss method—a suspicion that would be the last to enter a modern
reader’s mind. HuvaeNs begins to consider his own solution, using only “‘ordinary geometry”, as the
bost, but ho continues to beg to see LErsNiz’s and BERNOULLI’s methods. For LEIBNIZ’s final response,
see p. 71 below.

A great part of the discussion concerns special cases and reflects a passion for special properties
of special curves that the modern reader is unable to share. The mechanical principles on which the
three solutions rest are scarcely mentioned.

LE1sN1z seized the opportunity to advertise his calculus by publishing in three countries his sum-
maries of the results and the methods the several authors had used to obtain them: “De solutionibus
problematis catenarii vel funicularis in actis Junis A. 1691, aliisque a Dn. J. B. propositis,” Acta erud.
Sept. 1691, 435—439; “De la chainelte, ou solution d’un probléme fameux proposé par Galilei, pour
servir d’essai d’une nouvelle analise des infinis, avec son usage pour les logarithmes, et une application d
Pavancement de la navigation,” Journal des Sgavans 20 (1692), Amsterdam ed. 218—226 (1693);
“Solutio 4illustris problematis a Galilaeo primum propositi de figura chordae aut catenae e duobus
extremis pendentis, pro specimine novae analyseos circa infinitum,” Giornale de’ Letterati, Modena,
1692, 128—132; all three are reprinted in LEIBN1zens math. Schriften 5, 255—266.

In the first of these, LEIBN1Z says that HUYGENS’ method rests on use of the radius of curvature,
but this must have been a conjecture, since LErsN1z had not seen HuyGENS’ proof or any real expla-
nation of it—in fact, in his correspondence with HuyeENs he showed no curiosity of his elderly friend’s
line of thought, which must surely be based on the “ordinary geometry”’ LEiBN1z wished to supplant.
As we shall see below, the intrinsic equations were found later by James BErRNoULLI but not published.
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It is curious that the catenary was both the first and the last problem HuveEeNs
attacked ; but it is not without parallel that his departure from the world of mathematics
fell below the brilliance of his entry. This is less a measure of the man than of the meth-
od : While HuvyeENS’ notes show that this problem strained his mathematical equip-
ment, which was limited to “ordinary geometry’’, to the utmost, we shall see now that for
the possessors of the new calculus the determination of the continuous catenary, while not
trivial, fell quickly before a determined attack. In fairness to HUYGENS we must admit that
he solved first, at least in principle, the
more difficult problem of determining the g' . g L L.De ﬁru:a Catenaria

form of the weighted string.]

In his paper, Leisniz!) writes that 2&*2’{ O e‘,‘,{%“"}é’&“"“:}‘%
Jams BerNovrzr had “publicly asked R mjm%“”:‘;;g" "
me to try whether our kind of calculus ﬁ%@' ! &%M,
could be applied to this kind of prob- 4 L
lem ... Having tried the matter for his : ;J ‘ é
sake, not only did I have so great success 3 A ©
as to be the first . . . to solve this illustrious B / &
problem, but also I found that this line \ : 4
has extraordinary uses . ..” The solution g " N
is “‘geometrical, without help of a thread T p /
or chain, and without assuming any . ’
quadratures, by a kind of construction for . (2
transcendents, than which nothing more °
perfect nor more appropriate for analysis
exists, in my opinion.” WA W ° W) (%)

In Figure 21, ® N is horizontal. £ and Figure 21.
. e . e e ss Lr1sN1z’s published figure for the catenary (1690
(&) are points on the “logarithmic line”, 5P © y (1690)

In all three notes, LEIBNIZ reproaches HuyeeNs with having supposed ‘‘the quadrature of a certain
figure, in the third one going so far as to remark that the quadrature is ‘“very complicated, and the
author does not give its nature or reduction, and besides it is not consonant with the nature and
degree of the problem”; it is curious to contrast this with HuveENS’ criticism of JaAMES BERNOULLI’S
elastica (below, p. 97). In the second, LEiBN1z implies that he has found that a light chain really
assumes this form, while a string, being both extensible and somewhat stiff, does not. It is amusing to
read that such a chain may be used inversely, by aid of Lersniz’s solution, for calculating logarithms,
and “‘this may help, since on long trips one may lose his table of logarithms . . .”

JoEN BERNOULLI esteemed HUvGENS’ solution lightly, found LEIBN1z’s “very pretty’’, but was
unable to see cause for LEIBNI1Z’S boasting of its superiority over his own. (See JoHN BERNOULLI’S
letter of 29 September/9 October 1691 to JAMES BERNOULLI in 0p. cit. ante, p. 66, footnote 1.)

1) “De linea in quam flexile se pondere proprio curvat, ejusque usu insigni ad inveniendas quot-
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[which we should now write as % = b"*, where b is a dimensionless quantity and

a= ©A]. “Now taking ON and © (V) as equal, above N and (N) erect NC and
(V) (C), respectively, both equal to half the sum of N& and (N)(£); then C and (C) will
be points of the catenary line . . .’ [Thus LEIBNIZ’s solution is

(21) % = }c(e”® + e~%®) = ¢ cosh % ;

the mechanical problem requires in fact that ¢ = 1.]

LE1BNIz’s paper contains a good deal of explanatory material, especially concerning
logarithms, but he neither derives his solution (21) nor proves its validity. He states that
the triangles @ A R and CBT are similar. He states also that 4 R = the arc length from
4 to the point C(x, y). [That is,

dy s
(22) iz
LEe1Bn1z gives a construction for the center of gravity of any arc: ¢. .. the tangent CT

cuts at Z the horizontal line through A4; let the rectangle GAEP be completed...” [As we

shall see, this is the key to the solution.] He concludes, “Thus . . . will be had the greatest

possible descent of the center of the string or chain or any flexible and inextensible line,

hung up from its two ends ... and having a given length ...” [This is the extremal

principle first used by HUYGENS (above, p. 45); it is not justified by the foregoing

construction.]

Among other results is the series (appropriate to the case a = 1)
w=s—%83+f§sﬁ—%s’+ ces

(28) = Argsinh s .

““So as to avoid prolixity, I refrain from supplying the proofs, especially since to him
who understands the calculi of our new analysis explained in this journal they will come
of themselves.”

A letter of 26 October 1690 from LEIBN1zZ to V. BODENHAUSEN!?) reveals that LEIBNIZ
had “looked back at Father PARDIES’ treatise . . .; I find his assumptions correct, but well
known . . .” LEIBN1Z gives a just résumé of PARDIES’ work and remarks that the case of the
elastic cord furnishes “an entirely new and more complicated problem.” As explanation,

cunque medias proportionales et logarithmos,” Acta erud. June 1691, 277—281 = LEIBNIzens math.
Schriften 5, 243—247. LE1BNIZ’ letter of 24 July 1691 to HUYGENS gives a summary of the published
paper and a carefully drawn sketch.

1) LeisNi1zens math. Schriften 7, 356—357 = (in more accurate transcription) (Buvres complétes
de Huveens 10, 157—158, footnote 7.
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perhaps, of the cryptic nature of his publication, LEIBNIZ writes?), “Es ist aber guth, da
wann man etwas wiirklich exhibiret, man entweder keine demonstration gebe, oder eine
solche, dadurch sie uns nicht hinter die schliche kommen.”

In a fragment?) from this time LETBN1Z writes, “The fundamental assumption so as to
put the nature of the catenary curve into equations, as HuveeNns, Father PARDIES, and
others noted long ago, is the following property of the tangents,”” and he then states the
theorem of PARDIES (above, p. 51).

To learn Lersniz’s full course of thought, we turn to the magnificent letter3) of
14 September 1694 with which he finally answered a long sequence of requests, complaints,
and accusations from HuyeENs. We reproduce the passage intact, in the original nota-

tions?) :

““Mais pour vous donner un example d’un probleme Geo- 4 c
metrique, prenons celui de la Chainette : et je vous donneray A TB
en meme temps l’analyse dont je me suis servi autres fois Figure 22.

LEersniz’s figure for explaining
pour le resoudre, puisque vous avés temoigné de la desirer to Huverxs his solution of the
aussi. Soit AB, x; BC,y; AT, retranchée par la tangente, est catenary problom (1694)
la distance entre I'axe et le centre de gravité de 'arc AC. Or, Of ou AB est & T8,
comme dx & dy; donc Tf sera xzdy:dx, et AT sera y — z-dy:dxz. L’arc AC soit

appellé ¢ et par la nature du centre de gravité il est manifeste, qu’ AT sera

jﬁz:c(l) =y — zdy :dx ou bien [ydc(2)=cy — cady:dw;
et differentiando
yde(3) = cdy + yde — xdy : dedec — cdy — cxd, dy :dx .

Et rejettant ce que se détruit, il y aura dedy : da + ¢d,y : do(4) = 0. Supposons que
les y ou ﬁg croissent uniformement, ou que dy soit constante et ddy(5) = 0, nous aurons

d.dy:dx(6) = — dyddx :dzdz, et au lieu de 4il y aura dedz — cddz(7) = 0, c’est-a-
dire summando dx :¢(8) = dy : a (car cette equ. 8. estant differentiée rend ’equation 7)
ou bien adxz(9) = cdy et differentiando addxz(10) = dedy. Or generalement en toute
courbe decde(11l) = dydy + dxdx et differentiando deddc = dyddy + dxzddz, donc icy
(par 5) dcddc(12) = dxddx, et (par 10 et 12) addc(13) = dxdy et summando
adc(14) = xdy + bdy. Soit z + b(15) =2, fiet dz(16) =dz et adc=zdy, et

1) In his report to v. BODENHAUSEN on the catenary, LEIBN1Zens math. Schriften 7, 359—361.

2) LEiBN1zens math. Schriften 7, 372.

3) (Buvres complétes de HuvceNs 10, 679. Essentially the same material is contained in LEIB-
N1z’ letter to v. BODENHAUSEN of about 1691, printed in LEiBN1zens math. Schriften 7, 370—372.

4) LerBNiz’s z, y, ¢ are the variables y, =, s in the notation used elsewhere in this work.
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(par 11 et 16) dcdc = dzdz(17) 4+ dydy. Donc par 14, 15, 17, nous aurons
aadzdz + aadydy(18) = zzdydy, et enfinl) y(19) =aa [dz:V 2z —aa, c’est-a-dire il ne
faut que chercher la quadrature d’une figure, dont ’ordonnée est aa:Vzz — aa.”
LErrBNiz’s statical principle, a corollary of PARDIES’ theorem, is stated in the first line :
The distance AT 1is the y co-ordinate of the center of mass of the arc AC. Once this statical
principle is granted, we have the integro-differential equation (in our usual notation)

dx
dy ’

(24) ——jmds——x—y

which is the equation numbered (1) by LErBN1z. We multiply by s and then differentiate
with respect to s; the resulting differential equation is at once integrable to yield (22).
LE1BN1z’s analysis, which goes further and derives a quadrature from which (21) is imme-
diate, [seems brilliantly clear to a modern reader. The impression it made on HuyGENs,
to whom differential calculus was foreign, may be imagined.] Indeed, on 27 Decomber 1694
he called LEIBNIZ’s argument ‘‘a strange route.”

In the young JouN BErNouLLI’s Solution of the funicular problem?) we read, “It is
almost a year since in conversation with my enlightened brother we happened to speak of
the nature of the curve that is assumed by a string hung freely between two points. We
marvolled that a thing daily present to the eyes and hands of everyone should not as yet
have drawn the attention of anybody. The problem seemed extraordinary and useful, but
because of its apparent difficulty we preferred not to touch it ; we decided thus to propose

i it publicly to the learned, to see if anyone
would dare to try, for we did not know that it
had been discussed among the geometers since
the time of GALILEO . . . I have found moreover
that our funicular curve is not geometrical but

rather of the type called mechanical, since its

nature cannot be expressed by any determinate
algebraic equation ...” JoHN BERNOULLI states

Figure 23.
Jomy Bervourir's first  his results, without proofs, in the form of two
published construction .

c for the catenary (1690)  constructions.

First construction (Figure 23). Let AH be

an equilateral hyperbola with center at C'; [thus its equation is X2 = y% 4 2ay, where
A is the origin and @ = AC.] Holding y fixed, let KF be so constructed that X ¥ = a2,
where £ = BK. Let # = A@, and construct x so that

1) In this formula and the next, the first @ should be deleted.
2) “Solutio problematis funicularii,” Acta erud. June 1691, 274—276 = Opera omnia 1, 48—51 =
LE1BN1Zens math. Schriften 5, 248-—250.
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— za = Area EABKF ia
Yy
(25) = [Xdy .
0
Then z, y is a point on the catenary. [Indeed,
we find that N
2 /
=% /
Vyi+2ay / /
(26) v 4 Ve
— i == f _i__ . ,-' //
a Vy* + 2ay . e
J Yy + 2ay , /‘ -
) ) . Yy x . e
integration yields v cosh—a— — 1, differ- B
ing from (21) only in choice of origin.]
Second construction (Figure 24). Let BG
be an equilateral hyperbola ; [its equation is ¢ Figuro 24.

2 — 42 J B i d
X2 = y2 4 2ay]. Let B H be a parabola whose N Pgmheﬁl‘;‘:ntg:lu s socond
latus rectum is four times the latus rectum the catenary (1690)
of the hyperbola ; [i.e., #2 = 8ay]. Then if

we lay off GE = BH, the point Z lies on the catenary. [This last means
27) X —z= Vit &y,
[}

or

Y
(28) —w— —Vy F Bay + |/1+27“dy,
0

whence (26), follows.]

JoHN BERNOULLI then lists thirteen properties of the catenary. The first of these,
referring to Figure 24, reads: “Let F.D be a tangent; then AF:AD = BC:BF.”
[Analytically expressed, this is (22); as~we shall see, it gives the key to the solution.]
The thirteenth is an awkward expression for the variational principle!) asserted simul-
taneously by LE1sniz (above, p. 70) and used earlier by HuyGENS (above, p. 45).

“My honorable brother has begun to extend this thought to strings of non-uniform
thickness, when the thickness stands in a relation to the length which is expressible by an
algebraic equation.” JAMES BERNOULLI has noted a special law for the density which leads
to a simple solution, and JoEN BERNOULLI has shown that this funicular is the evolute
of that for the case of uniform thickness. For experimental tests, “‘one should take a fine
chain rather than a string, which sometimes because of too much lightness, sometimes too
much rigidity, we have found unsuitable.

1) In his comment in Lesson 37 of the work discussed just below, JoaN BeErNouULLI adds, “This is
proved by the axiom that the center of gravity descends as far as it can,” but this is a mere restatement.
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“For the rest, whoever wishes to perfect and extend this subject may investigate the
nature of the curve...in the case when the string is a finite distance from the center of
the earth, or if also it is supposed extensible by its own weight or loaded in any other way ;
or, vice versa, how it should be loaded in order to assume the form of a parabola, hyperbola,
circle, or any other given curve. The matter is altogether within reach.”

JorN BERNOULLI’S concepts and methods are

a

given in his Mathematical lessons on the method of A
integrals and other subjects, written for the use of the
tllustrious Marquis pE L’ Horrrar while the author was

at Paris in the years 1691 and 1692') ; while these were

not published until 1742, their content was certainly
widely diffused in the teaching, both direct and
indirect, of the great BERNOULLI who dominated the
productive mathematics of the first half of the eigh-
teenth century. In Lesson 37, On funicular or catenary

curves, the following principles are set down as self- Fi%::iiéﬁi) ugf;g’ Ef;ﬂg;“ﬁ:fﬁ?f;gg"
evident for any hanging curve.

(1) In Figure 25, the forces which must act at 4 and C in order to support the cord are
the same as those that must be applied along the tangents 4 D and C D in order to support
at D a weight equal to the weight of the cord. [This is the
principle of ParDIES, above p. 51.]

(2) Applying No. 1 to portion of the cord between A and the
lowest point B yields the (horizontal) force at B (Figure 26).

(3) If the cord is hung from any intermediate point, such as F,

D

A

the remaining portion FC' 5

. . C
E retains its previous figure. F
Figure 26. (4) In the case men-
Jomy BerNourL's ] ,
application of Parpres’  tioned in No. 3, the forces
theorem (1691-1692) . . B
acting on each portion of
Figure 27.
the cord between F and C are the same as before. In JorN BERNomgzrﬁgure for isolating a

particular, the force acting at B is unaltered. portion of the catenary (1691-1692)

(5) Forces may be resolved according to the vectorial rule.

1) “Lectiones mathematicae de methodo integralium aliisque, conscriptae in usum ill. Marchionis
HosPITALII cum auctor Parisiis ageret annis 1691 et 1692, Opera omnia 8, 385—558 (1742) [1743]. I cannot
forbear remarking that these lessons together with those on differential calculus, lost until 1922, form
the most beautiful treatise on calculus ever written. It is ironical that this masterly exposition by
one of the discoverers had to wait over 200 years for full publication.
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JoHN BERNOULLI’s elegant proof is easier to follow if we introduce the inclination
6 at an arbitrary point 4 (Figure 28) and the tension 7' acting at that point. Consider
the equilibrium of the portion of the cord between 4 and B. By No.3 we may
consider the cord suspended by the tension 7' at 4, and by No. 4 the tension at B is
independent of the choice of A4 ; call this constant ka.

By No. 2, the tension at A4 equilibrates the horizontal H 2,
force ka and the vertical force ks, where s is the N\ = G
length of A B. By No. 5, in order that these two forces A
be equilibrated by a tangential force at 4 we must have
58 _ tan0 =% which is (22). [Thus Jorn Brg-
ka dzx C
NOULLI’s statical principle is the equiltbrium of forces,
applied to a finite segment beginning at the lowest ,\
point. Indeed, balance of vertical and horizontal forces E

i Fi 28. JonN BERNOULLI's figure f
yields cxolaining to & HOPTRAL his solation of
(29) Tsin@ = ks, T cos 0 = ka, the catenary problem (1691-1692)

where T is the tension at 4 ; elimination of 7' yields (22) ; an alternative form of (29), is

ds
(30) T =kag ]
Manipulation of (22) easily yields (26),.
[Evidently JorN BrmrNourrr did not find Lersniz’s form (21) of the solution?).]

11. James BErRNouLLI’s researches on the general theory of flexible lines (1691—1704),
and later work to 1717. There is no evidence that the deep and enigmatic JAMES BER-
NouLLI had a solution to the problem of the catenary in 16902). His next mention of it

1) Lesson 37 purports to give LEIBNIZ’s solution but of course does not reveal to us how LEreniz
reasoned; rather, JOHN BERNOULLI merely verifies that (21) satisfies LEIBN1z’s differential equation (22).

2) In annotating the above cited paper as republished in James BErNoULLI’s Opera in 1744,
the editor, GABRIEL CrRAMER, wrote ‘‘whether the method of our author was entirely dissimilar from
that of his brother, which I am going to explain, we dare not guess.” The method then presented is
indeed essentially that of JoEN BERNOULLI but applied in generality sufficient to obtain JaMEs BER-
NovuLLr’s later results (41).

JoHN BERNOULLI in later years asserted that his brother had been unable to solve the problem.
He tells his recollection of the discovery in a letter to pE MoNTMORT on 29 September 1718 (quoted in
part on pp. 97—98 of op. cit. ante, p. 66, footnote 1):

“But it is time, Sir, that I draw you forth from your astonishment. I astonish you, you say,
by saying that my brother was unable to solve the problem of the catenary: Yes, I tell you again,
for it is an uncontestable truth, of which I will give you proofs which put an end to your astonish-
ment . . . You say that my brother proposed this problem; that is true, but does it follow that he had
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is in an addition to a paper?) published in 1691. § 1 of the addition states the form of the

a solution of it then ? Not at all. When he proposed this problem at my suggestion (for I was the first to
think of it), neither the one nor the other of us was able to solve it; we despaired of it as insoluble,
until Mr. LEIBNIZ gave notice to the public in the Leipzig journal of 1690, p. 360, that he had solved
the problem but did not publish his solution, so as to give time to other analysts, and it was this that
encouraged us, my brother and me, to apply ourselves afresh.

“The efforts of my brother were without success; for my part, I was more fortunate, for I found
the skill (I say it without boasting, why should I conceal the truth?) to solve it in full and to reduce it
to rectification of the parabola. It is true that it cost me study that robbed me of rest for an entire
night. It was much for those days and for the slight age and practice I then had, but the next morning,
filled with joy, I ran to my brother, who was still struggling miserably with this Gordian knot without
getting anywhere, always thinking like GALILEO that the catenary was a parabola. Stop! Stop! I say to
him, don’t torture yourself any more to try to prove the identity of the catenary with the parabola, since
it is entirely false. The parabola indeed serves in the construction of the catenary, but the two curves
are so different that one is algebraic, the other is transcendental. I have unfolded the whole mystery.
Having said that, I showed him my solution and explained the method that had brought me to it.

“It pleased him at first, and he saw straightaway (although that was no longer difficult after the
method was found) that this method was applicable to all kinds of catenaries of non-uniform thickness.
There is the reason for the words, ‘My honorable brother has begun to extend this thought’ ete.

“But then you astonish me by concluding that my brother found a method of solving this prob-
lem . . . T ask you, do you really think, if my brother had solved the problem in question, he would
have beon so obliging to me as not to appear among the solvers, just so as to cede me the glory of
appearing alone on the stage in the quality of first solver, along with Messrs. Huvcens and LersNiz?
You knew the disposition of my brother. He would sooner have taken away from me, if he could have
done 80 honestly, the honor of being the first to solve it, rather than letting me take part by myself, let
alone ceding me the place, if it had really been his.”” Jorx BERNOULLI goes on to explain the wording
used by LE1sn1z and the editor of the Leipzig Acta in respect to this question of priority, and to give
other evidence that the solution of the catenary was not due to JAMES BERNOULLI.

While claims of this sort by JoEy BERNOULLI were formerly taken lightly by historians, most of
them have been substantiated in all essentials by concrete evidence. In the case of the catenary,
JorN BERNOULLI’S account is supported by such evidence as there is, not only that presented in the
text above but also by the *“Remarques de Mr. LE1BNIZ sur Dart. V. des nouvelles de la république des
lettres du mots de février 1706, Nouv. Rép. Lettres 1706 == Lrrenizens Math. Schriften TT 1, 389—392.
LEIBNIZ writes, . .. Mr. [JAMES] BERNOULLI . . . asked me, at the suggestion of his brother, who was
already far advanced in these matters, to reflect whether by the same analysis one could not [find]. ..
the curve that a chain would form, supposing it to be perfectly flexible, [the curve] that GArLLEo had
thought to be a parabola, although they did not yet know he had worked on the problem. I reflected
about it, and I succeeded at once, but instead of publishing my solution, I encouraged Mr. BERNOULLI
to try to find it. Doubtless my success was the reason that the two brothers applied themselves vigor-
ously to this problem and that the younger ... prevailed with entire success (eut 'avantage d’y
réussir entiérement). To get so far by the means I had up to then communicated required extraordinary
skill and some practice, which application and the desire for distinction gave them so as to make good
use of this new calculus.” It is unlikely that LEIBN1zZ knew as much about the matter as did Jouw
BerNoULLI, but he was always just and equally desirous for the success of each of the brothers.

1) “Specimen alterum calculi differentialis in dimetienda spirali logarithmica, loxodromiis nau-
tarum, et areis triangulorum sphaericorum; una cum additamento quodam ad problema funicularium,
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catenary curve corresponding to certain particular non-uniform densities. § 2 considers
the case of an extensible cord of uniform thickness. ‘I suppose, moreover, that the exten-
sions are proportional to the stretching forces, even though I doubt that that hypothesis
be sufficiently congruent to reason and experiment. Let us be allowed to retain it, however,
since we know none truer.”’ The result stated is

bdy

(31) z =f
Va2 + 2by — 2a Va?® + b2 + 2by

where b is an elastic constant. [When b = 0, (31) becomes indeterminate and does not
immediately reduce to (26),, and it is difficult to make anything out of this paper.]

For explanation, we turn again to JOHN BERNOULLI’s Lessons, which may be pre-
sumed to reflect JAMES BERNOULLI’s views on these topicsl). Lesson 38, On the curvature
of a string of non-uniform thickness, begins by observing that if the weight of the arc 4 B
is not ks but kp(s), then the same argument?) as for the uniform case leads to

(32) dy _ p(s)

generalizing (22). [This is the continuous analogue of HuyeENs’ theorem (above, p. 67).]
In the special cases treated by James BERNoULLI, the quadrature is relatively easy.

Lesson 39 first considers the case when the weight p is known as a function of  rather
than of s. Then (32) yields at once

(33) ay = fp(x)dx .

For example, if p = bz, we have y = 1 TZ;— 22, the ordinary parabola; [this is the solution
of the suspension bridge problem obtained long ago by BEEcRMAN, HUYGENS, and PARDIES
(above, pp. 24, 45—46, 51—52)]. After working out two other special cases, JOHN BER-
NOULLI takes up the inverse problem : If y = y(x) is the given shape of the funicular, then

alitsque,” Acta erud. June 1691, 282—290 = Opera omnia 1, 442—453. The addition occupies pp.
449—453 = LEIBNIZens math. Schriften 5, 2562—254.

1) James BERNOULLI, as we have seen, claims the results. JoEN BERNoOULLI in his letter to DE
MonTMORT, quoted above, pp. 75—76, when vehemently defending his sole priority over his brother
with respect to the ordinary catenary does not make any reference to these problems except to say
that they had become ‘‘no longer difficult”.

2) Indeed, in the copy of JoEN BERNOULLI’S Opera in the Basel University Library, at Remark 13
in Lesson 37 a correction lettered in an old hand emends ‘‘the distances of those points’ to read ‘“‘the
distances of the centers of gravity of those points,” which is an awkward way of stating (32).
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the density is p = a,gg— . Let t be the weight per unit horizontal length. Then

(34) _d_ %y

=——=aq .
dax?

de

Therefore whenever the catenary is ‘“geometrical” [:. e., an algebraic curve], ¢ is also
geometrical. For example, if the catenary is the parabola, y o 22, then ¢ = const., so
that the horizontal load is uniform. [It now seems more natural to consider the line
weight og per unit length of cord, '

_dp dp dx a dy dy \?
(35) 09—“7;_7{575_]/@ da? ——a[H-(%)]x.]
dz

Lesson 40 considers the case when p = p(y).

Lesson 41, the most interesting after Lesson 37, is On the curvature of extensible strings.
JorNn BerNouLLl, as suggested by his brother Jamms, adopts ‘“‘the axiom of Lrreniz
[¢. e. HoORE’s law] that the extensions are proportional to the pulling forces!).” [The
analysis is difficult to follow?) but is important because the special devices used for the

inextensible catenary are not sufficient here ; BERNOULLI must face not only the compli-
cation introduced by the elasticity of the cord but also the fundamental statical problem.]

BerNoULLI again considers the equilibrium of the section of cord from the lowest
point B to 4 ; again the weight of the cord equilibrates the horizontal tension ka at B and
the tangential tension 7' at 4. Let s denote arc length in the deformed cord [no longer
the same as arc length in the undeformed cord]. Let the elastic law be that a force 7' pro-

duces a local extension %~ 7 in the cord. If do is the original length of the element dsat A ,

ka
we have then ds —=da |1+ %'—I:c% . The weight density — F, is related to that in the
undeformed cord, k, by — F,ds = kdx. Hence
k
(36) —F v = b T
1+ %

For statical principles, first we have (30) [which was implied by BERNOULLI’S earlier

1) In addition, he supposes the cord to be incompressible and concludes that the areas S, s and
lengths L, 1 before and after deformation satisfy SL = sl. These areas are infinitely small, and the
curve considered is that ‘““in the middle’ of the cord. These assumptions, however, do not appear to be
used.

2) Somewhat clearer is CRAMER’s version, given as an annotation on p. 451 of JAMES BERNOULLI’S
Opera 1. Our presentation does not reproduce either source but rather attempts to bring out clearly
what JOEN BERNOULLI'S steps seem to imply. '
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analysis but apparently not noticed until now]. In addition, BERNoULLI infers from the
balance of forces the principle

d dy\ _
(37) —‘E(ka%)———py,
expressed partly in words. Combining (30), (36) and (37) yields
d ( dy 1
(38) () —a -
ds \ dx b ds
I+ %

When b = 0, this reduces to (22) ; when b £ 0, it may be manipulated into the form of
James BERNOULLI’s equation (31).

[More important than the clever solution of this problem that LeiBNiz had regarded
as hopelessly difficult is the method. We now write the statical equations for a flexible

line as

d d dx
E(TCOEG)’—‘»"@(T‘w) = '—Fz ,

(39)

d o d dy \
TE(TSIne)—Td?(TTJ?)— —F,, s

where I, and F, are the components of applied force per unit length in the directions of
z and y. In all problems considered so far, ¥, = 0, and integration of (89), yields (30).
The resulting expression for 7', when put into (39),, yields BERNOULLI’s result (37). What is
important is that BERNOULLI obtains (37) by the fully general statical argument which we
should now use to obtain (89),. That is, while he still expresses the equilibrium of hori-
zontal forces in an integrated form valid only in special cases, his result (37) for the vertical
forces is a condition of equilibrium in differential form. For the first time, the resultant force
acting on an infinitesimal element has been calculated. This is the first step in continuum
mechanics, and it is also the first advance toward the theory of stress since GALILEO’s
simple argument concerning the strength of a rope (above, p. 37) and PArRDIES’ remarks
on the tengion in a catenary (above, p. 51).

The result (37), as it stands, is of great value, for it is the general equation of equilibrium
for a flexible line subject to load parallel to a fixed direction. The difference between the mastery
of mechanical principles in 1690 and today is strikingly illustrated by the fact that the
modern student may read off, by inspection of (37), the equation of small transverse
oscillations of a taut string, for one has only to put ds &~ dx, T = ka = const., and take

% 2% %
5 whence follows o-—3- 52 =T—= 52

but in fact a full fifty years of mechanics lay ahead before this equation was to appear in
the work of D’ALEMBERT and EULER. See §§ 33 —34, below.]
Returning to JaAmEs BERNOULLI’s Addition (above, p. 76), in § 4 we find stated the

the transverse force F, as merely inertial, F', = — o —=-
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problem of the velaria : To find the curve assumed by the base of a cylindrical sail. As for-
mulated by BERNOULLI, the velaria is the figure of a perfectly flexible cord loaded by a
uniform normal pressure ; this curve, [determined incorrectly by HuycENs, above, p. 46,]
JamEs BERNOULLI asserts to be a circular arc. After some controversy, it was decided the
proper loading is a uniform force per unit length parallel to a fixed direction ; in this case,
the curve was shown to be the ordinary catenary. About this time was proposed also the
problem of the lintearia, the form of a cylindrical cloth filled with water ; this was shown
to be an elastic curve of the type to be discussed in our § 12 below. These same problems
could be regarded in an alternative light. . g., as had been known to HookE (above, p.
57) and as was pointed out anew by GREGORY!), the catenary turned upward gives the
solution for an arch sustaining its own weight through tangential compression alone, thus
needing no cement. While these problems called forth considerable ingenuity, mainly in
respect to differential manipulations, and occasioned the great quarrel between the brothers
BerNoULLI, nevertheless, so far as I can learn, they gave rise to no additional enlighten-
ment of mechanics, so they shall not be considered further here?2).

Whether or not JAMES BERNOULLI had a method for deriving the catenary in 1690,
it is nearly certain?®) that by June 1691 his slow but mighty intellect had found a second
approach. differing more from those used by Lersniz and Jorx BERNouLLI than do those two
from one another. This approach rests on the concept of curvature (see below, pp. 90—91).
While he never published this method, we may follow some of his ideas in his remarkable
notebook, Thoughts, notes, and remarks on theology and philosophy, condensed and collected
from the year 1677 onward by me J. B.%). No. CLXV, dating probably from 1691, concerns

1) Corollary 6 to Prop. 2 in op. cit. infra p. 85.

This was observed also by PARENT in a work which appeared in 1700; see pp. 810—815 of vol. 2 of
his Hssais, cited on p. 110. The passage reprinted on pp. 494—499 of vol. 2, if it actually appeared in 1700,
is the first correct derivation of the ordinary catenary to be published. The difficulties in connection
with PARENT’s publications are mentioned in footnote 1, p. 109 below.

2) A definitive original treatment is given in JouN BERNoULLI’s Integral Calculus (cited above,
p- 74), Lessons 42—45, except that the identity of the lintearia with the elastica is not shown. Pub-
lished expositions of inferior quality are to be found in the books of HERMANN and TAYLOR, cited
below, p. 86.

3) In June 1691 he gave the solution for the elastica as an anagram (below, p. 88); on publishing
this solution in 1694 (below, p. 89), he says that it rests on the second of the “two keys” to the
catenary, namely, the formula for the radius of curvature. In the work of JaAMES BERNOULLI every
sentence must be weighed by the reader.

4) Meditationes, annotationes, animadversiones theologiae & philosophiae, a me J. B. concinnatae &
collectae ab anno 1677, Basel Univ. Library MS Ia 3. As its title indicates, this is not a diary, and for
many matters where the interest would be greatest there is no entry at all. In particular, and consist-
ently with JoEN BERNOULLI’S claims (above, pp. 76—76), there is nothing regarding the catenary
prior to 1691.
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the velaria. The load, which is normal, is resolved into rectangular components ; the pro-
cess is lengthy and obscure, and it seems that the radius of curvature is brought in a
posteriort by looking at the equations derived. The statical principle seems to be the theo-
rem of PARDIES or something akin to it ; in any case, a finite arc rather than a differential
element is considered!). Much later?), probably in 1695, there is a thorough analysis of the
string subject to various concentrated loadings. What is new is the concept of tension3)
(firmitas) of the string. By its aid, a straightforward balance of forces acting on the
weighted string leads to results generalizing STEVIN’s theorem (above, p. 45). When he
comes to the continuous string?), however, JAMES BERNOULLI turns aside from this line
of thought and again considers a finite segment. He calculates the “line of mean direc-
tions” of the load, ¢. e., the line such that the resultant force may be regarded as directed
along it and concentrated at a point upon it. [In generalization of the theorem of Parpigs,]
this line must pass through the point of intersection of the tangents from the ends of the
arc, and its direction follows by integrating the forces. [JAMES BERNOULLI is still close to
the methods successful in treating special cases.] These results are checked against the
catenary and the elastica, visualized as the lintearia.

In a note®) from 1697—1698 James BERNoULLI finally obtains the general equations
for a flexible line. This is made possible by systematic use of the tension, which is now the
main tool in arguments applied either to a finite segment or to an infinitesimal element?®).
Let the small angle between the tangents at the two ends of an element be df. Then the
tensions exert a resultant force normal to the element of amount 7'df, and this must balance
the normal load F,ds. Since dfl/ds = 1/r, we have?)

(40) -% = F, = density of normal load.

(This result was discovered independently by SAUVEUR in 17038). .

1) No. CLXXXVII demonstrates the identity of the velaria and the catenary; No. CLXXXIX,
of the lintearia and the elastica. The former of the sections numbered CCXXVIII concerns a
construction of the catenary which BERNOULLI himself noted to be false.

2) Nos. CCXIIT—CCXXVII, addition to No. CCXXVIII.

3) Of course the tension was present implicitly in the earlier solutions. It is its explicit recognition
that is new and important.

4) No. CCXXIX and the immediately following No. CCXXXT.

5) No. CCXLYV, printed in slightly expanded form as No. XI, pp. 1036—1048, of the ‘‘Varia
Posthuma,” Opera 2 (1744).

6) Here BErNoULLI refers back to No. CLXYV (above, p. 80).

7) The argument is given in words in the middle of p. 1037 of the printed version; one must
supply an equality sign reading downward to realize that ‘‘firmit. fili in B” is prz/a.

8) “Du frotement d’une corde autour d’un cilindre immobile’ (14 July 1703), Mém. acad. seci. Paris
1708, 2nd. 4t0 ed., Paris, 305—311 (1720). Prop. I states (40) only for the case of a rope lying on a ecir-
cular cylinder, but the reasoning is general.



82 EARLIEST SPECIAL PROBLEMS

After a long detour concerning the mean line of the load, JAMEs BERNoULLI balances
the forces acting on a finite part of the string ; the argument, [in reality, the argument of
JonN BERNOULLI put in more general form?),] yields?)

79 _p (s,
ds )
(1) oy e
T%= —‘arods >

where T, is the tension at the lowest point, s = 0. [These are integrated forms of (39).]
The intrinsic equation companion to (40) is

(42) %f_ = — F, = tangential load per unit length.

This result, also in integrated form, BERNOULLI obtains by some rather mysterious mani-
pulations.

The result is rediscovered, at least in part, by JorN BERNOULLI at the conclusion of his “Solution
du probléme . .. sur les isoperimetres,”” Mém. acad. sci. Paris 1706, [2nd.] 4to ed., Paris, 235—245
(1731) = 12m0 ed., Amsterdam, 304—318 (1708) = Opera 1, 424—435.

It is again rediscovered by TAYLOR, Prop. XXI, Prob. XVI of op. cit. infra, p. 86 (see also his
proof of Lemma 9) and by HERMANN, § 93 of op. cit. infra, p. 86.

Vanrawoxn attributes (40) to Sauveur and to BoreLLi, De motu animalium 2, Lugduni Bata-
vorum, 1685; new ed., ibid., 1710. BoreLLr’s Prop. 56 reads, “If a rope wound around a globe and
[recte or] cylinder is pulled uniformly along its whole length, the power pulling the rope will be to the
resistance of the globe or cylinder as its radius to the circumference of the rope.” This result follows
from (40), since it asserts that % = -:—, where ¢ = the circumference. However, despite its correct-
nessy even this corollary may not be attributed to BorELLI without reservation, since he adduces a
fantastic argument about the velocities with which the parts of the cylinder or globe are contracted
as the rope is pulled tighter.

VARIGNON himself spins out numerous corollaries; see his ‘“‘Pressions des cylindres et des cones
droits, des spheres et des spheroides guelcongues, serrée dane des cordes roulées autour d’euz, ot tirées par
des poids ou des puissances aussi quelconques,” Mém. acad. sci. Paris 1717, 4to, Paris, 195—210 (1719),
also Hiet, ¢bid., 68—70.

1) Perhaps it is on this account that in obtaining the quotient of (41), by (41), by an argument of
this kind the editor of JAMES BERNOULLI’'S works on pp. 424—426 attributes the proof to JorN BER-
NOULLI, though nothing so general is to be found in the latter’s printed works. In Lesson 42 of op. cit.
ante, p. 74, there is a start, and in Lesson 44 there is a near miss in connection with the lintearia, but in
fact all of JoEN BERNOULLI'S work rests on special integrated forms possible because of the specially
simple loads considered.

2) In “Extrait d’'une lettre de Monsieur BERNOULLI de Béle [6 Mr. VArignon], du 26. juin 1698.
Contenant U'examen de la solution de ses problémes, inserée dans le Journal du 2. décembre, 1697, J. des
Scavans. 26 (1698), Paris ed. 355—360 = Amsterdam ed. 560—569 (1699) = JAcOBI BERNOULLI
Opera 2, 829—839 = JomANNIS BErRNOULLI Opera 1, 222—229, JamEs BERNOULLI in conjecturing
the nature of an unpublished proof by his brother writes out results equivalent to (41) for the case of
normal loading.
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//{f The next to last entry in JAMES BER-
' NoULLI’s Thoughts, notes, and remarks, ‘‘solved

4 3 /,’l : ‘W H . 5 December 1704,” is called Problem of the
: z' J { . : curvature of an arch whose parts support each
sy } other by their own weight, without use of mor-
: : tart). This introduces a third method, which

we present in much abbreviated form. The
[infinitesimal] stone K L in Figure 29 *“ . . .is
to be regarded as a wedge trying to force
itself into the triangle DQE. As it comes
from K L into the position DE, that is, while it
traverses the space K D, it pushes

back the force pressing along I'L

>- by the distance K L — DE.” Then
) ;2 the wvirtual work done by the nor-
"~ mal force — F, pointing inward

Figure 29, JamEs BErNouULLI’s figure for calculating the form of .
the general catenary by use of the principle of virtual work (1704) equals that done against the com-

pression — 7'. That is,
(43) —F,-KD= —T-(KL — DE) .
From the geometry of the figure follows KL/(r + KD) = DE|r, so that
KD:(KL — DE)=r:ds .

Substituting this last into (43) yields (40). The argument is given by BERNOULLI only sub-

ject to the special assumptions appropriate to the arch ; the result is 1/r = % / 8 (%)2 ,
which is integrated to obtain (22).

James BerxourL here considers also a second hypothesis : Friction being assumed
sufficient to prevent the stone from slipping forward, it ‘“‘tries to rotate’” about its lower
edge. While JAMES BERNOULLI now obtains a differential equation like (22) but with a
factor 2 on the right-hand side, the “subtle paralogism’ in his argument is pointed out in
two annotations by his nephew NicHoLAs I BerNourri?): With correct analysis, this
hypothesis leads to just the same result as the first. [Thus JAMES BERNOULLI introduces
yet a fourth method : the balance of moments on a differential element. While for this problem

1) No. CCLXXXYV, published in slightly expanded form as No. XXIX, pp. 1119—1123, of
“Varia Posthuma,” Opera 2 (1744).
2) The BErNOULLIS we shall encounter in this history, along with our principal associations with
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the outcome is the same, it is possible that JamEs BERNOULLI had the insight to grasp the
independence of the balance of moments from the balance of forces in a continuous body.

Thus by 1698 JamEs BERNoULLI had wrung out the general equations of equilibrium
for a plane flexible line. To this end, he had to abandon the special devices used for the
ordinary catenary by his brilliant younger brother and by LEiBNiz and to purify and
deepen the problem until it was reduced to its essential : The action of any part of the line
upon its neighbor is purely tangential.

By 1704, moreover, JAMEs BERNOULLI had succeeded in grasping and using four
tndependent approaches :

1. Balance of forces resolved in two fixed orthogonal directions.
2. Balance of forces normal and tangential to the line.

3. Virtual work.

4. Balance of moments.

Even today, there are scarcely any more.

Elegant as were the quick solutions of LEieN1z and JorN BERNoULLI for the ordinary
catenary, these achievements of JAMEs BERNoULLI are of a different order of worth. Far
from being easy extensions of what had been done before, they required a kind of intense
fundamental thinking in rational mechanics that JAMES BERNOULLI alone, of all those we

them, are shown in the following table:

[ |
JaMES JorN
(general catenary (catenary (1690),
(1691—1704), elastica - vibration of loaded or
(1691—1694), elastic laws l weighted string
(1695—1705)) 1655—1705 Niczoras I (1713, 1742)) 1667—1748

(Editor of Opera of
JAMES, 1744) 1687—1759

Nicueoras II DaNiEL Jonn II
(correspondent of JamEs (frequencies and modes of vibrating (small oscillations,
Riccari) 1695—1726 systems (1733—1771), correspondence conical strings (1736))
with EULER (1733—1763), elastic laws 1710—1790

(1738—1742), co-existence of small
oscillations (1753)) 1700—1782

Jorn III James I1
(intermediary between EULER and (vibrations of plates
DawnierL BeErNouLni (1763—1766), (1787)) 1759—1789

laws of elasticity (1766—1768))
1744—1807
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have so far encountered, had the insight and the stamina to pursue. It is from JamEs
BeRNOULLI’s ideas that the further development for this part of the theory of deformable
bodies grew.]

While the foregoing account of the first researches on the catenary is complete, the
reader may note with some astonishment that nearly everything that concerns principle is
taken from sources that lay unpublished for fifty to one hundred and fifty years. Indeed, the
original papers consist in little else than ‘“‘constructions”, 1. e. the explanation of a desired
curve in terms of properties of possibly more familiar ones. [From the standpoint of me-
chanics, at least, the first researchers concealed everything they ought have published?)
and published only what they had better discarded. Nothing illumines more surely the
little band of proud, possessive, and mutually suspicious giants who reared the new cal-
culus than that they were content to withhold proofs indefinitely while continuing to
publish assertions, hints, and quarrels regarding ever broader new researches that even
with full explanations would have been understood by at most fifty men in all Europe.
Thus it was quite proper] for DaviD GREGORY seven years after the great contest to
publish a paper?) whose expressed purpose was to supply proofs, using the method of
fluxions, for the propositions of HuygEeNS, LEIBNIZ, and Jou~ Berxvourrr. However, as
James BErNourrd) and LErBNIz4) hastened to say with respectively characteristic gloom

1) In the case of JOEN BERNOULLI this was surely not from choice but from the terms of the
monopoly he had sold to L’H6PITAL, Who from the material bought from BERNOULLI chose to publish
under his own name only the parts concerning differential calculus. See O. Seimss, pp. 135—153 and
especially p. 1562 of op. cit. ante, p. 66, footnote 1.

2) “Catenaria,” Phil. trans. 19, No. 231, August 1697, 637—652 (1698) — Acta erud. July 1698,
305—321. English translation, Phil. trans. abridged 4, 184—196.

3) The seventh of the ‘“Epimetra” at the end of Positionum de seriebus infinitis . . . pars quarta,
Basel, 1698 = Opera 2, 849—867, reads: “‘DAVID GREGORY’s analysis of the catenary curve, recently
published in the Leipzig Acta for July, shows neatly how it is possible for us to be misled through an
inevident and false though plausible argument to a true conclusion.”

4) See LErsNiz’ anonymously published ‘‘Animadversio ad Davipis GREGORII schediasma de cate-
naria, quod habetur in Actis Eruditorum an. 1698, Acta erud. Feb. 1699, 87—91 — LEIBNIzens math.
Schriften 5, 336—339. It is curious to see, in a reversal of the roles traditionally attributed, that while in
later parts of the paper the calculus is more or less rightly manipulated by NEwToN’s follower, LEIBNIZ
has to correct him in the principles of statics. GREGORY’s pitiful attempt to salvage his proof is in-
cluded in “Responsio ad animadversionem ad Daviprs GREGORII catenariam, Act. Eruditorum Lipsiae,
Mense Februarit A. 1699,” Phil. trans. 21, No. 258, 419—426 (1699) = Acta erud. July 1700, 301—306.
English translation, in part, Phil. trans. abridged 4, 456—458.

As appears from other writings (e. g. LEIBNIZens math. Schriften 5, 418), LEIBNIZ unjustly
but understandably attributed the gross errors of GREGORY to the insufficiency of NEWTON’s method of
fluxions. Indeed, after the long silence of the English regarding the great problems being solved on the
continent by LEIBNIZ’s method, nothing could have made a poorer appearance than this piece, where
the author shows himself unable even to prove correctly results long since obtained, mastered, and
improved by the users of the differential method. Whether or not anything on the catenary is to be
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and ebullience, his argument is wrong?) : The attempt to calculate the force acting on a
differential element is a failure. [This is one more example to show that the local balance
of forces, which nowadays we are all taught to regard as the simplest approach to the
mechanics of continuous media, is in fact not an obvious concept.] The first correct proofs
to be published, a full quarter century after the great contest, are those of HERMANN?) and
TAYLOR?), both of whom treated a wider class of problems. TAYLOR’s work, while not as
general or as efficient as it might have been, and also not exempt from error, is pleasant to

found among NEwTON’s papers, I do not know, but no modern reader who has followed in detail any
of the disguised fluxional proofs in the Principia would doubt for a moment NEwWTON’s own power to
solve this problem, and quickly, by fluxions. It would be my conjecture, judging especially by his later
performance with the Brachistochrone, that NEwToN found the catenary too easy to distract him from
his other occupations. What is most abundantly proved by all this is that unlike Lersniz, Newron
had no BERNOULLIS.

1) Everything rests on Prop. 1, which derives (22) by means of a fallacious balance of forces on an
infinitesimal element, cancelled by an incorrect expression for the tension. We may conjecture that
(a) for GREGORY as for anyone who knows calculus, all that was needed was a differential equation;
(b) GrEGORY searched the papers of 1690 for a differential equation, thus finding (22), which wag
stated by LersNiz and BERNOULLI but not emphasized by either; (c) GREGORY tried to apply the paral-
lelogram rule to yield (22), but he did not isolate the differential element correctly (failing in fact to see
that it is the difference of tensions on the two ends that balances the gravity of the element), whereupon
he adjusted the tension so as to give the right answer.

2) Lib. L, Sect. I, Ch. IIT; Lib. IT, Ch. IV and Ch. XIII; and also § V of the Appendix in Phoro-
nomia, sive de viribus et motibus corporum solidorum et fluidorum, Amsterdam, Rod. & Gerh. Wetstenios,
1716, [xx] + 401 - [ii] pp. The copy in the Basel University Library, the gift of the author, is cor-
rected by him. In § 462 HERMANN says ‘‘the solution, or more properly the analysis” of the velaria had
not been published up to that time.

It is possible that PARENT published a correct proof in 1700; see footnote 1, p. 80.

According to Jorn BeErNouLLl, HERMANN’s treatment of flexible curves is faulty. See ‘‘Solutio
problematis catenarii generaliter concepti, per methodum Hermanni ab errore repurgatam,” Opera 4,
234241 (1742). Here Jomy BErNoULLI obtains the equations in polar co-ordinates. While HERMANN
may have made mistakes in his applications (which I have not tried to follow), I can find none in his
principles or main equations; the difficulty may lie in failure to realize that his polar co-ordinate
diagram must be drawn over again at each point. In § 93 he obtains the general intrinsic equations
(40) and (42) by JamEs BerNOULLI’S second method (above, p. 81). The equation of normal forces is
expressed in terms of the angle of contact, without mention of the radius of curvature, and this may
be a further difficulty.

In the EULER collection at Basel is a manuscript (MS III 29 [16c]) dating from some time after
1713 but before 1728, in which JorN BERNOULLI constructs a catenary subject to the attraction of a
fixed center.

3) See Problems XIII—XVI, Props. 18—21 of Methodus incrementorum directa et inversa,
Innys, London, 1715 and 1717, [vi] + 118 pp. The work was complete in April 1713 (see JoHN BER-
NovuLLI's Opera 2, 474).
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read. HERMANN’s, though thick and ugly?), has the virtue of JAMESs BERNOULLI’s influence?),
as shown by the following definition3) :

“The tension or compression (tenacitas vel firmitas) of a thread or body at any of its
points or at an element of the curve is that force of the thread or body which resists that
power or force growing from all the applied powers [¢. e. loads] and tending by pulling
the thread in opposite directions to tear it apart. This tension exactly equals or is equipol-
lent to that tearing force resulting from all the powers applied to the body.” [Especially if
shortened by the omission of alternative words, this is a perfect definition of the general
line stress, to be introduced by EuLEr fifty years later (below, pp. 391—392). However,
HERMANN’S statement is not so general as it sounds, since he tacitly supposes the tension
to be tangent to the curve, as is appropriate to the perfectly flexible case only.

This late and merely derivative publication had its effect on the further development
of our subject. On the one hand, the historian, looking at (40), (41), and (42), both in
general and in special cases, and regarding their derivations, may say that the problem
of the catenary led almost immediately to sufficient principles and indeed to the general equa-
tions, both for fized and for intrinsic co-ordinates, for a flexible line subject to any loading.
On the other hand, almost none of this material was generally available, and much of it
had to be rediscovered, especially since TAYLOR’s book was incomplete and HERMANN’s
obscure. ]

To finish with the early history of perfectly flexible cords we must note that in a short
time the variational principle known to all the first investigators (see above, pp. 45,
70, 73), that the center of gravity hangs as low as possible, was reduced to mathematics
and shown to yield the same solution, viz (32), as obtained by direct methods. This was

1) Not to everyone, for upon receiving the manuscript on 17 September 1715, before the book was
published, LEIBN1Z wrote, ‘I could not restrain myself from rushing through your work with the
greatest enjoyment, as if it were a book of stories or romances.”

2) In his letter of 29 September 1718, cited above, p. 75, JoEN BERNOULLI writes that HER-
MANN govoral times had free access to his teacher JamMus BERNOULLL's posthumous papers and was able
to make any use of them he pleased. By his own admission, however, JoEN BERNOULLI was not able to
witness any such use, and nothing specific should be concluded.

HERMANN’S correspondence with LEIBNIZ certainly gives the impression that HERMANN evolved
his results on the catenary slowly and by himself, though they were of course based on the instruction
he had received from Jamrs BERNOULLI. After passing remarks on 19 March 1707 and 11 January 1711,
finally on 27 October 1712 HERMANN writes with pride of having established ‘‘a most general proposi-
tion, of which the problems of the catenary, velaria, etc., are but special cases.”” Again on 22 December
1712, “ ... I do not even require the tendencies or impulses, to which the points of curves of this sort
are subject, to be only perpendicular to the curves or parallel to an axis, but oblique in any way ...”

Had HERMANN obtained this material from JamMes BERNOULLI’s notes in 1705, he surely would
have had no cause to withhold it until 1712.

3) Phoronomia Lib. I, Sect. I, Ch. III,
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an achievement of JAMEs BERNoULLIY). [We do not follow it here for two reasons. First,
its development is properly a part of the history of the calculus of variations, which has
been written by others?). Second, as in most cases of variational principles, it furnishes
only a detour for mechanics : By the time it was successfully used, the problem of the
flexible line had already been solved correctly by direct methods in cases when there is a
horizontal as well as a vertical load, and in these cases the variational principle does not
hold.]

12. JamEs BERNOULLL’s first researches on the elastica (1691—1694). In § 3 of JAMES
BerNouLLI’s Addition®) appears an ‘“‘equally outstanding problem”, to which LEIBNIZ
had drawn his attention in private letters (above, p. 64) : ‘‘the bendings or curvatures of
beams, drawn bows, or of springs of any kind, caused by their own weight or by an attached

B weight or by any other compressing forces . ..” (Figure 30). “But

this problem, whether because of the uncertainty of the hypothesis

¢ or the manifold variety of cases, seems to be more difficult than

[that of the hanging cord], although here it is not a question of

lengthy calculation but rather of industry [?]. I have opened the

A approach to this problem by the fortunate solution of the simplest

Figure 30. . .
JaMES %U;RNOULH’S case (at least, under the aforementioned hypothesis on the elon-

drawing to announce the
problem of the elastica

(1691) will allow others time to try their analysis; I will suppress my
solution for the present, and I shall conceal it in an anagram, the key to which, along

gation). In imitation of that most excellent man [Lursniz], I too

with the demonstration, I will communicate at the harvest festival.”
[The problem of the elastic band, or elastica, is indeed of a deeper difficulty than that of
the catenary?).] Not merely a few months but three full years JAMES BERNOULLI held his

1) Q. D. 0. M. B. V. analysin magni problematis isoperimetrici, in actis erud. Lips. mens. Mai.
1697. propositi, sub praesidio JACOBI BERNOULLI ..., Basel (1701) = Acta erud. Leipzig, May 1701,
213—228 = Jacosi BErRNouLLI Opera 2, 895—920 = JorANNIS BERNOULLI Opera omnia 2, 219—234.
See Problema III. See also No. CCXXXIX of the Thoughts, notes, and remarks, cited above, p. 80.

2) R. WoODHOUSE, A treatise on isoperimetrical problems and the calculus of variations, Cambridge,
1810. C.CarATHEODORY, ¢ Basel und der Beginn der Variationsrechnung,’’ Festschrift zum 60. Geburtstag
von Prof. Dr. ANDREAS SPEISER, Ziirich, Fussli 1945, pp. 1—18.

3) Cited above, p. 76. An annotated German translation of § 3 by H. LINSENBARTH is given on
Pp. 3—4 of Abhandlungen uber das Gleichgewicht und die Schwingungen der ebenen elastischen Kurven,
Ostwalds Klassiker No. 175, Leipzig (1910).

4) In addition to LE1BNI1Zz’s remarks we have HUYGENS’ comment in his letter to LEIBNIZ of
16 November 1691: “I cannot wait to see what Mr. BERNoULLI the elder will produce regarding the
curvature of the spring. I have not dared to hope that one would come out with anything clear or
elegant here, and therefore I have nover tried.”
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secret while no one, not even his brilliant brother?), put forward a word on the mathe-
matical theory of elasticity?).

In 1694 James BERNOULLI published his solution, The curvature of an elastic band.
Its identity with the curvature of a cloth filled out by the weight of the included fluid. The radii
of osculating circles exhibited in the most simple terms ; along with certain new theorems thereto
pertaining, etc.®). “After a silence of three years I keep my word ; but in such a way as
right richly to compensate for that delay, which else the reader might have borne with
annoyance, since I exhibit the curvature of springs not in one way only (as I had promised
in the beginning) but generally for any hypothesis on the elongations ; which, unless I err,
I am the first to achieve, after the problem was attempted in vain by many.” After point-
ing out the erroneous opinion of GALILEO?), the ‘“‘pure fallacies”” of PARDIES, and the
“plainly preposterous” argument of prT LaNAS®) on this subject, BERNOULLI continues.
“T said . . . that this problem is more difficult than the funicular one, and not without
reason. Not to mention other things, T remark that in investigation of the catenary there
are two keys, which lead to two different equations, one of which expresses the nature of
the curve through its relation to its co-ordinates, the other through a relation between the
thread and its evolvent, while for probing the nature of the elastic curve, only the latter
key opens the way. Thus, plainly, it is possible that a person might overcome the difficulties

1) JorN BErRNOULLI wrote to DE MoNTMORT on 15 June 1719 that he had shown to L’HSPITAL
in 1691—1692 ‘“‘a very individual analysis of the elastic curve much different from my brother’s.”
According to Sprmss, p. 137 of op. eit. ante, p. 66, footnote 1, there exists a paper of this period which
served as the first draft for the note JoEN BERNOULLI published fifty years later: “‘Solutio problematis
curvaturae laminae elasticae a pondere appenso,” Opera omnia 4, 242—243 (1742). The published note
interprets the [HookE-] LEIBN1z hypothesis as asserting that the normal relative displacement of
infinitely near particles is proportional to the moment of applied force. This is a mere ex post facto
affirmation of the law (46) in the linear case, leaving nothing to prove.

2) At the end of a paper printed in May 1692, JaMEs BERNOULLI wrote, ‘“‘very soon I will give
the curvature of a spring.”

3) “Curvatura laminae elasticae. Hjus identitas cum curvatura lintei a pondere inclusi fluidi expansi.
Radii circulorum osculantium in terminis simplicissimis exhibiti; una cum novis quibusdam theorematis
huc pertinentibus, etc.,” Acta erud. June 1694, 262—276 = Opera 1, 576—600. Part of this work is
translated into German and supplied with helpful annotations by LINSENBARTH, pp. 5—17 of op.
cit. ante, p. 88, footnote 3.

4) BErNoULLI attributes to GALILEO the contention that the elastic curve is a parabola, but
nowhere in GALILEO’s works have I been able to find any mention of elastic curves. However, the para-
bolic form of a beam is included among the “‘pure fallacies’ of PARDIES (above, p. 53).

5) The book of the Jesuit FRANCESCO D1 LANA TERzI, Magisterium naturae et artis, Brixia, 1684—
1692, is long; a cursory search did not reveal either anything concerning elastic beams or anything at all
of a definite nature. According to MUSSCHENBROEK, DI LANA “took virtually everything from GALILEO
and FaBrI, except for certain physical observations of little worth”; also, his experiments he “ex-
tracted from his own head, performing none at all” (pp. 427 and 506 of op. cit. infra, p. 151).
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Figure 31. JAMES BERNOULLI’S first publication of the elastica (1694)

of the first problem, yet fail to emerge as victor of the second —a person, namely, who
lacked the second of the keys, which exhibits . . . in simplest and purely differential terms
the relation of the evolvent of radius of the osculating circle of the curve. This was already
known to us at the time we speculated upon the rope, and on his travels my brother com-
municated it soon after to some others [i.e., to T”HéPITAL, VARIGNON, efc.]. Meanwhile,
since the immense usefulness of this discovery in solving the velaria, the problem of the
curvature of springs we here consider, and other more recondite matters, makes itself
daily more and more manifest to me, the matter so stands that I cannot longer deny
to the public the golden theorem . ..”

The “golden theorem” is the general formula for the radius of curvature of a curve?).

1) To this both HUY¢ENS and LEIBNIZ reacted with some sarcasm, since both had been in possession
of the “‘golden theorem’ for some time. HuYGENS, for example, had published a statement and proof,
quite clear though synthetie, of a result equivalent to the formula in rectangular Cartesian co-ordi-

d?
nates; see Pars Tertia, Prop. XTI of op. cit. ante, p. 47. JAMES BERNOULLI obtains the forms 5= dy_:s
dz 1 dzd 3 - . .
= dxfi/s and 7= xl :y according as s or 2 is the independent variable. In defense of BERNOULLI’S

boasting, however, must be adduced the remarks of HuveeNs and LEIBNIZ cited above (pp. 64, 88); both,
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For his solution of the problem of the elastica, JAMES BERNOULLI gives a geometrical
construction described in terms of the elaborate figure above (Figure 31). There is no
proof, but the explanation tells us that the theory is applicable to ‘‘a rather long hoop, a
stay, a rod, a switch, or any weightless elastic band 4Q RSyV A, of uniform breadth and
thickness RS, AV, of length RQ A, with one end at RS fixed vertically, and if at the other
end AV there acts a force, or if a weight Z is attached there, that is sufficient to curve the
band until its tangent at 4, namely 4 B, is perpendicular to the direction of the weight
AZ, then the concave side of the band will take on the curvature RQA that we have
constructed. The convex side SyV is parallel to it . ..” The “line of elongations” 4 FC
is “any straight or curved line, whose abscissae 4 E represent the stretching forces, while
the ordinates E F give the elongations.” [That is, JAMEs BERNOULLI introduces an arbi-
trary single-valued functional dependence of elongation upon stretching force'). The little
springs drawn in the figure at 7'S and ¢s suggest that BErNoULLI, following LEIBNIZ,
regards the fibres of the beam as extensible, but, unlike LEIBN1z, he is taking account of the
bending which accompanies this extension.]

For explanation of BERNOULLI’s ideas we turn to a paper?) he published in the next

despite their knowledge of curvatures, considered the problem of the elastica impossibly difficult. As
Bunwourur replied in § I of op. cit. infra, Note 2, “Indeed I knew that that most acute man had not
refrained from study of bending, as he himself once mentioned to me in private letters [above, p. 64],
and to it the notice of my solution published in June 1691 might have inclined him [4.e. again].
I saw indeed that not only was he himself the author of the principle used by me [%. e. the elastic law],
but aleo that my caleulation built upon it (with the sole exception of the above mentioned theorem
[on the radius of curvature]) was so simple, so easy, as will appear from the analysis I subjoin pre-
sently, that I should have wronged him much, had I thought he had known the theorem but not gotten
the solution.”

James BERNOULLI’s solution is indeed a masterpiece of higher order than anything published
concerning the catenary.

1) This has been remarked by PEARsoN, Appendix, Note A (1) of op. cit. ante, p. 11. With his
usual ability to miss the point of fundamental researches in elasticity, PEARSON criticizes BERNOULLI
for not using “the curvoe obtained by measuring the strains produced in the same rod by a continuously
increasing stress.” In fact, like most modern investigators of finite deformation, BERNOULLI uses the
actual force in the deformed state.

2) “EHxplicationes, annotationes et additiones ad ea, quae in actis sup. anni de curva elastica, 1s0-
chrona paracentrica, et velaria, hinc inde memorata, et partim controversa leguntur,; ubi de linea mediarum
directionum, alitsque novis,” Acta erud. Dec. 1695, 537—553 = Opera 2, 639—663. See § I. The same
argument is given in somewhat clearer and more general form in a note by CRAMER on p. 581 of JAMES
BerNouLLI’s Opera.

In JamEs BERNOULLY'S Thoughts, notes and remarks (cited above, p. 80) is no explanation of how
he attained the basic idea of the elastica. No. CLXX, probably from late 1691 or early 1692, concerns
the quadrature of (49), which, he says, is the elastic curve, ‘“‘as I will show in due time.” Thus JAMES
BerNovULLI’S published claim of 1691 is substantiated. No. CLXXX contains his first attempt to cal-
culate the numerical bounds (52).
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year (we change notations to conform to Figure 31; BERNOULLI’s new figure is somewhat
clearer in that a differential element of the band at y, with a small spring there, is indicated).
. .I consider a lever with fulcrum @, in which the thickness @y of the band forms the
shorter arm, the part of the curve 4@ the longer. Since Qy and the attached weight Z
remain the same, it is clear that the force stretching the filament at y (or, what according
to the usual hypothesis amounts to the same thing, the elongation itself) is proportional
to the segment QP ...” [That is, BERNOULLI regards the entire action of the part
@RSy on the part QyV A as equivalent to that of a single spring of tension F at y;]
therefore equilibrium of moments requires

(44) Fe=2z7,

where ¢ = yQ, the thickness, and 2 = QP. Since ¢ and Z are constant, we have
F o 2. If the elastic law relating elongation ¢ to stretching force is ¢/b = f(F'), where b
is the length A R of the whole band, we may thus write ¢/b = g (), and this is BERNOULLI’S
“curve of elongations”. ““And since . . . the elongation [of the fibre at y] is reciprocally
proportional to @n, which is plainly the radius of curvature, it follows that Q= ... is
also reciprocally proportional to...x.” That is, (¢ds/b):c =ds:r, or

1 t
4 — e
(45) r be °

[Thus BErNovuLLI carefully separates the basic statical principle (45) from the par-
ticular elastic law ¢/b = g(w). Since he replaces the action of all the fibres of a ecross-
section by that of a single spring on the outer edge, and since (44) gives the moment exerted
by this spring about @ as xZ, we may write his combined result in the form

(46) —71'— = f(9), G = Bending Moment,

defining a general, non-linear theory of elastic bands. The form (46), however, is not that
in which BERNOULLI presents his result, nor was it at first so interpreted. BERNOULLI uses
the form (45), in which appears the extension /b of the outermost fibre, not only indepen-
dent of the extensions of the other fibres but in disregard of them. Contrary to the expec-
tation raised by the second spring in the figure, he does not integrate over the cross-
section of the band. Thus (45) expresses the curvature of the innermost filament in terms
of the extension of the outermost. Comparing BERNOULLI’s own form (45) with the alter-
native (46), we may say that he wrought better than he knew. For to introduce the radius
of curvature, he considered the extension of one particular fibre. This is sufficient to
derive (46), but not convincing. What is lacking is an integration over the cross-section,
such as that Lursniz had effected in a context he interpreted either as neglecting the
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bending or as applying to a beam that assumes a straight form when loaded (above,
Pp. 62, 64).

ToDHUNTER!) has criticized JAmMES BERNoULLI for considering only the equilibrium of
moments while neglecting the equilibrium of forces. This criticism is just in one context,
ill taken in another. Indeed, the tragic flaw of BERNOULLI’s conception, the flaw which
will cause him time and again just barely to fail of establishing his theory properly and
fully, is his vacillation between the one-dimensional elastic curve and the three-dimen-
sional elastic beam. From the one-dimensional standpoint, a law such as (46) must be
postulated ; by the principle of moments, the form of the band is then determined ; by
EuLER’s general equations (562), below, to consider the equilibrium of forces serves only
to determine the line stress, in which we have no great interest, and TODHUNTER’S cri-
ticism falls. From the three-dimensional standpoint, (46) is to be derived from the nature
of the forces acting within the beam, and in this context TODHUNTER’s criticism is perti-
nent. JAMES BERNOULLI, as we shall see, was never willing to face this second problem
squarely even though the special work of LEIBNIZ might have served as a hint. Upon this
point will be focused later researches by PareNT, EULER, JorN ITI BErNOULLI, and
Couroms.]

2

JAMES BERNOULLI substitutes the general formula % = - -Zl%%s_ , & being the
independent variable, into (45) and obtains

dy N _z
(47) — = S=[upd,
since it is assumed that Z_:Z =0 when @ =s=0. Hence
Sdx

(48) W= Ve

From this formula, the geometrical construction is easily derived [but is of no interest].

Returning to the paper of 1694, the unfortunate reader of which had to create for
himself all the essential principles we have just described, we find a number of remarks :

1. If the band is clamped at any point @ and the part RQ is cut away, the remaining
part 4@ retains its figure.

2. If RQA is rotated about RZ and clamped at any point ¢, the same force Z causes
the resulting band to retain its figure.

3. If any section 4@ is rotated about the normal @n, the resulting band, composed of
two congruent parts, is caused to retain its figure by equal and normal forces Z applied at
its ends, provided it is held at @ . The same holds for staves obtained by rotating the whole

1) § 24 of op. cit. ante, p. 11.
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curve AQ R or the curve as supplemented by Rq. ‘““Thus one obtains three kinds of staves :
the diminished, the complete, and the extended . . . For the diminished stave, the tangents
at the ends intersect on the convex side, for the extended stave, on the concave side, while
for the complete stave, they are parallel.

‘4. This same curvature is proper to the staves from which barrels are made. Thence
it follows that no one has correctly measured the capacity of barrels, since these are usually
taken as ellipsoids of revolution . . .

5. If the direction of the weight . . . is skew to the elastic band . . ., there results a
curve a little different from 4@ R, and this curve I can determine just as easily. But I do
not wish to dilate.

“6. The rectangle made by the radius of curvature @» and the corresponding abscissa
E F equals the constant area 4 BC = AG2.” [This we recognize, in BERNOULLI’s typical
style hidden in the midst of ““scholia and corollaries’, as a verbal statement of the basic
statical principle (45). It is stated again in a special case as the fourth remark following
(49).] Since ¢(0) — 0, we see that the curvature is zero at the free end and greatest at the
clamped end, “at least in the case when the elongations increase with the stretching
forces . ..”

7. If we know the law of elongation and are to find the elastic curve, “in abstract
geometry this is nothing else than to determine the curve AQR from the given curve
AF Q. By (45), the inverse problem is trivial.

JAMES BERNOULLI gives some attention?!) to the parabolic law2) ¢ = ka™; then he
takes up the linear case, m = 1. [Though these laws as stated seem artificial, recall that
2 ig proportional to the stretching force F, as shown above, and hence BERNOULLI is
in effect assuming that strain o (force)™.] Then (48) becomes

z?dx

49 dy = —— N ¢ = const.
(49) V= Va—a

This quadrature may be achieved by a construction.
After futile attempts to express this curve in terms of exponential functions, “I have

1) While the modern reader will admire BERNOULLI’s careful separation of the particular elastic
model from the general principles of the problem, TODHUNTER (§ 24 of op. cit. ante, p. 11) typically
describes the investigation as ‘“‘more elaborate than necessary’ because BERNOULLI does not descend
at once to the linear case.

2) Historians of elasticity do not seem to have noticed that this is the first non-linear law of
elasticity to be proposed in print; cf. the suggestion of LEiBN1z, above, p. 63. The most extensive list
of special elastic laws is given by R. MEHMKE, “‘Zum Gesetz der elastischen Dehnungen,” Z. Math. Phys.
42, 327—338 (1897). MEEMKE mentions only three from our period: Hooke’s law (18), the parabolic
law above (which MEHMKE attributes to BULFFINGER, cf. below, p. 103), and an inexact form of
RiIccATI’s law (81).
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heavy grounds to believe that the construction of our curve depends neither on the
quadrature nor on the rectification of any conic section.” There follows a list of eighteen
properties of the curve, mainly geometric. No. 2 is that described in the anagram published
in 1691. No. 16 gives series for the displacement y(¢) and the arc s(c) at the end, ¢ being
the length : 1
y(c) E2dE ®  (2n—1)!!

c Vi—& St 2 @ F ol

0
1
s(c)= d¢ _ ®  (2n—1)!!
¢ fvr:?« 1+2
0

(50)

w1 27(4n + )n!

(From his manuscript notes?) and from a later publication ?) we know that JAMES BERNOULLI
had integrated term by term in the power series expansion of the integrands, obtaining

_y_(_a:_)_z%(ﬁ)"’_*_i.° 2n — 1! (1’_)4”‘*3,

c c n=1 2%(4n 4+ 3)n! \ ¢
(51)
s(¢) _ 2 (2n—D!l [g)\teh
c ¢ +,.z='1 2 (4n + L)n! (c) '

From (50), BErnoULLI has caleulated the bounds
(52) 0,598 < i‘(}ﬂ < 0,601, 1,308 < -s-(cfl <1,316.

Remark No. 18 states the identity of the lintearia with the [rectangular] elastica and
aoourto five propertics, of which the last is a variational principle : ““ . . . among all curves
of a given length drawn over the same straight line the elastic curve is the one3) such that
the center of gravity of the included area is the farthest distant from the line, just as the
catenary is the one such that the center of gravity of the curve is the farthest distant . . .

“It would remain now, under the common hypothesis regarding the elongations, to
investigate the kind of curves engendered when the elastic band is bent by its own weight
in addition to the suspended weight ; if it is bent simultaneously at each end ; if its thick-
ness or breadth is not uniform or, for example, if it is of triangular shape or any other and

1) No. CLXXYV of the Thoughts, notes, and remarks (cited above, p. 80), written late in 1691 or
early in 1692. The numerical bounds are obtained in No. CCXVII; the quadratures are studied in
No. CCV, the end of No. CCVII, and the second of the sections numbered CCXXVIII. The elastica as a
variational problem is mentioned but not properly treated in No. CCXXXIX.

2) § LVI of Positionum de seriebus infinitis . . . Pars quinta, Basel, 1704 = Opera 2, 955—975.

3) As BErNoULLI remarked later, he means here to restrict attention to curves of a fixed length.
See p. 836 of the reprint in JaMES BERNOULLI’S Opera, p. 227 in JoEN BERNOULLI’S, of op. cit. ante,
p. 82, footnote 2.



96 EARLIEST SPECIAL PROBLEMS

if the bending force is applied first at the apex, then at the base. Also, what should be the
curvature of the band in order that from an attached load or from its own weight or from
both together it assume the form of a straight line (this would be useful in designing the
arms of balances and axles, where it is required that the centers of the motion and of the
suspended bodies be collinear). Also, what shape should be given to a band in order that
through bending it take on a given curvature, and a thousand other things of this kind.
Of all these curves I can exhibit the characteristic properties, and of some even the con-
structions . . . but many things I have not yet assimilated, nor is it given to one person
to work at all things. Besides, something should be left to the industry of our readers, for
whom there is thus ample opportunity to complete our discovery.”

[It is difficult to find words to describe the power and beauty of this paper. Among
other researches on materials published in the seventeenth century, only NewTtox’s
essays on fluids might be compared to it. By this, JAMES BERNOULLI at once regained the
superiority he had temporarily lost when overtaken not only by Lrieniz and Huveexns
but also by his quick and brilliant younger brother JoHN in the matter of the catenary.
The form of the elastic band, the deepest and most difficult problem yet to be solved in
mechanics, is his alone.]

13. JAMES BERNOULLI’S attempts toward a theory of the neutral fibre (1695—1705).
Lr1BN1z, generous as usual, recognized at once what JAMES BERNoULLI had done; in
particular, he praised him for avoiding special hypotheses and considering a general law
of elongationl).

Huveens wag not enthusiastic. In a letter to LurBN1z of 24 August 1694, part of
which, with its expression somewhat softened, was quickly published?), he wrote, * I find
Mr. BERNOULLI’s three years’ work quite considerable, provided that all he contends is
true ; also he hoasts much over it. As for the principle of the spring, T think he has used it
well, and that it is true that the rays which measure the curvature are in the inverse ratio
of the forces that bend the spring, although, in my opinion, it is not only the exterior
surface that extends but also the interior one simultaneously shortens . . . If this principle
were not the unique and true one, but rather the line A FC were a curve depending on

1) See the second paragraph of LEiBNiz’s ‘“‘Constructio propria problematis de curva isochrona
paracentrica,” Acta erud. August 1694, 364—375 = JacoBr BErNouULLI Opera 2, 627—637. In his
letter of 27 July 1694 to HuyeENS, with which he inclosed BERNOULLI’S paper in print, LEIBNIZ
writes, “I think it is always true that the elongations are as the forces, but it is not always right to
take the elongations as the changes of length in the body, because they depend rather on the changes of
solid content . . .,”” but instead of pursuing this penetrating line of thought, which might have led to
a concept of local strain, he gives reasons for being personally unwilling to study elasticity any further.

2) “Excerpta ex epistola C. H. Z. ad G. G. L.,” Acta erud. Sept. 1694, 339—341 (second pagina-
tion) = JAacosl BERNoULLI Opera 1, 637-—638 = (Euvres complétes de HuveENs 10, No. 2874.
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infinitely many experiments, I should find all his research very vague and little worthy
of time spent. And even now all he has found seems of no use to me, but only such very
beautiful and subtle pastimes as one finds when one has nothing on which to employ
mathematics more fruitfully.

“It is a strange assumption to take the quadratures of every curve as given, and if
the construction of a problem ends with that (apart from the quadrature of the circle and
the hyperbola), I should think nothing accomplished, since even mechanically one does not
know how to carry anything out . . .

“... Mr. BErNOULLI has

€
determined the curvature of the
arc A only in the case when the A
tangents at the ends &, F are
parallel, which I consider joined ¥

by the string EF (Figure 32). It Figure 32.

would remain to give the form of K Bent forms of an elastica
the true arc B; again, of C, the @ suggosted by Huwanxs (1694)
extremities of which point toward !

one another ; of D, where they come together, and of @, where they pass beyond and
are held by a rod HI.” He goes on to express his doubts of BERNOULLI’s results until
he sees the proofs?).

To these criticisms BrrNovLLI responded in his usual gloomy and massive style?).
“Since what T published in recent years . . . the illustrious geometers Mr. HuyaeNs and
Mr, LerBniz have deigned to subject to special examination, where some parts they have
approved, others, more hidden in statement, they have augmented by conjectures, while
here they have raised scruples and there they have expressed their open disagreement, I
have decided to add some later thoughts to the former ones, and to explain with order and
candor the several matters as they appear to me, so as both to satisfy the wishes of those
most famous men and also to bring the purer sparks of truth from the hidden recesses of
nature more and more into the daylight . . .

“That the radii of curvature are inversely as the stretching forces (more truly, as the
elongations), which both those very famous men consider me to have used as a beginning,
is learned from the equation first discovered [i. e. (45)] and is a conclusion rather than the
beginning, as I said distinctly among the corollaries, see Corollary 6 of the first construction

1) In his letter of 14 September 1694 to HuvcENS, and also in an addition to the publication of
Huveens cited in the preceding footnote, LEIBNIZ suggests that cases BC DG can be obtained by
extending the curve A or by taking only a part of it. This is false.

2) Op. cit. ante, p. 91, footnote 2.
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and the fourth Corollary of the third construction (above, p. 94). The principle I in fact
used assumes that any point on the concave surface of the spring may be regarded as the
fulerum of a certain lever. This principle is the same as that introduced by the most acute
LEIBNIZ . . . (see p. 61, above). Thus if Mr. HuvyeeENs felt some doubts concerning it,
thinking that not only is the outer surface extended but also the inner contracted, he should
have made this objection to Mr. LEIBNIZ, not to me, who only adopted this ten years later
from the author of the principle. But I admit that when I first thought about this matter
the same objection came to mind, since anything susceptible of extension should be sus-
ceptible also of compression.”

JAMES BERNOULLI proceeds to analyse the bending of a beam such that the upper
fibres are extended, the lower ones contracted. In his figure (Figure 33) we see that 'S4,

~—a.

R~ i
T ;g-/ Figure 33.
R H James BErRNOULLI's first
. P consideration of
~— B .~ : the neutral fibre (1695)

o

L_ 3M .

“the line of fulcra”, is the neutral fibre!), while the curve BAC is the curve giving the
elongation BD as a function of the stretching force 4 D and the contraction £ C as a func-
tion of the compressing force AE . ¢ . . . the part 4 C should have an asymptote parallel to
the axis 4 E, since nothing can be compressed more than its total length ; thus, plainly,
all sorts of parabolic or hyperbolic lines and the straight line itself are excluded.”

N

1) Historical writers always fix upon someone else to whom to attribute the concept of the neutral
fibre. This is its first explicit appearance. However, the existence of such a fibre is implied by the state-
ment that the outer fibres are extended while the inner ones are contracted, which had been positively
asserted by BEECKMAN (1620), HookE (1678) (above, pp. 27, 55), and Huveens (1694) (above, p.
96), possibly also by MarIoTTE (1684) (above, p. 60), and is in any case sufficiently obvious, though
difficult (for that time) to use profitably in a mathematical theory.
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In this paper JAMES BERNOULLI gives only his conclusions, without analysis. He
assumes that half of the bending moment is used for extending the upper fibres, the other
half for compressing the lower ones?). ‘It can be established . . . that if the curve of exten-
sions 4 B and the curve of compressions are similar and like curves . . ., as for example if
BAC were a straight line . . ., the construction from here on will agree with that which
I published in June 1694, excepting only for the quantity of the applied weight, and that
the line of fulera 4 8, which was there put on the concave side of the spring, is now in the
very middle . ..”

[These conclusions are clear and entirely correct : (A) The lever arm of the applied
weight, at each cross-section of the beam, is its distance from the neutral line, and (B) If
the fibres respond symmetrically to push and pull, the neutral line is the central line. These
results are usually attributed to later authors, perhaps with some justice, since BERNOULLI
has obtained them, as we shall see now, only in consequence of a wrong hypothesis,
namely, that the stretched and shortened fibres contribute equal shares to the bending

B ) moment. ]
Figure 34. James BERNOULLI’s
1 g comsdertion of the mesl o onm ks By
¢ P ? NOULLI'S reasoning, we
/L 9 turn to No. CCL of his
- . O Thoughts, notes, and re-
A — - Pid g marks?) ; this note, writ-
5 _’ N ten after 1696 and hence
! a little subsequently to the published paper, is
;’ \)g\ 1 called Curvature of the elastic band when it is sup-
i v posed that not only is the outer surface extended but
also the inner surface is contracted. Here BERNOULLI
attempts to integrate over the fibres making up the
& band.

In Figure 34, “Let the band 7T'SA be curved

1) This appears to be the only basis for the explanation supplied by CRAMER on pp. 643—644 of
James BERNOULLI'S Opera. In this note all the extended fibres are represented by one spring on the
convex side of the beam, all the contracted ones by another on the concave side: ‘“Many things induce
me to suspect that the analysis of the author was not very different from this. Nevertheless, I should
not like to assert it positively, lest I should seem to attribute to him a solution laboring under not one
defect only, such as is that substitution of the [outermost] fibre »¥ for all the extended ones and of
the [innermost] fibre ¢Z for all the compressed ones. When he noticed this, he undertook to consider
the problem again” [in the memoir analysed below, pp. 105—109]. In the surviving papers of JAMES
BerNouLLI the only indication that he used so crude a model is a sentence we quote below (p. 105)
from his paper of 1705.

2) Cited above, p. 80.
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by the weight ab attached at 4, and the little convex part HV extended to F, while the
concave I X is contracted to G, so that V8 X acquires the location ¥ SG, which produced
meets H I [produced] at the center of curvature M. The point to be found, or 8, liesin theline
VS8 X, with the property that as much force [¢.e. moment]is available for extending the part
of the band H 8 through AV SF asfor compressing the other part through A SGX.” The

segment v is the elongation of a typical fibre at the element ds ; thus vp = ans , where

a is the thickness H I, and where z is a certain function of the stretching force 6 given by
the upper curve: m = 7 (0). Setting f= VS, the thickness of the stretched part, we have

Sv=¢&= -fi , where p is the value of = at the convex side ; with ¢ the counterpart for
ap _, 99
e A R
ted by the fibre vp about 8 is then 0&d& = f_2 Ondn. Thus for the total moment JZ;

exerted by the stretched fibres we have P

. The moment exer-

the concave side, we have V8 =f=

al
(r+9°
and a similar result holds for the moment J7; of the compressed fibres. BERNOULLI'S
hypothesis, stated above, is T, = J%,. Whatever the form of the curve of tensions, this
fixes the point § [which he is later to call the center of tension] where the neutral fibre
meets the cross-section ; in particular, in the case of an odd curve of tensions the point S
is the midpoint. To relate these results to the radius of curvature, BERNOULLI observes

2
tMtVWVS=HVNM;&E@WSMM=r=p:q.
[To understand this near miss and the complexity of the analysis, we remark first that

BERNOULLI wishes to avoid any hypothesis regarding the tensions of the fibres. Every word
shows that he is thoroughly familiar with the linear case and its properties. Instead, how-
ever, of balancing the force, as is necessary (cf. the criticism of ToDHUNTER, above, p. 93),
he proposes the special condition JZ; = JZ,. On the one hand, there is nothing to recom-
mend his condition; on the other, no modern treatment attempts this degree of
generality. Far from being unaware of the problem of location of the neutral line, BEr-
NOULLI attempts to solve it! (Recall that in modern theories of bending, such as Sr.

2
(53) .ﬁﬁ:=-£gf0ﬂ¢n== [ Omedze |

VENANT’s, the location of the neutral line is in effect assumed, not demonstrated.)

Disregarding the condition J%; = JZ,, let us retrace JAMES BERNOULLI’s argument.
If tdé = f(e)d¢ is the stretching force on a typical fibre of height d¢ in the cross-section,
e being the strain, from the above equations we infer the correct result

(54) T = §tEdE .

But this is not enough. What is missing is the geometrical relation e = £/r, by which
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the strain e of a typical fibre, not merely that of a fibre on the surface, is related to r.
From (54) now follows

(55) I = H(%)éds = KnrF (%) )

where K is a modulus having the dimensions of [Force]/[Length], and where F is a dimen-
3

sionless function which in the case of the linear elastic law reduces to a multiple of (%) .

Thus JAMES BERNOULLI's argument again leads to a general, non-linear theory of elastic
bands, for (55) is the inverse of (46). This time, however, his program is more ambitious ;
an essential step is missing, and the result (55) may not be regarded as fully established by
him,

No other problem we shall discuss in this history is as difficult as this one, which
remains today unsolved?!), nor shall we encounter any other scientist who approaches it.
The results JamEs BERNOULLI obtained here, while incomplete and partly unjustified, may
serve as measures of the man.]

In the paper published in 1695 BERNOULLI remarks that as regards the forms of
elastic curves in Figure 32 HuYGENS, [as sometimes happens with senior scientists,] had
not read carefully the work he criticized. “But since I see that those most acute men have
expressed so many conjectures on this subject, it will be worthwhile to treat the whole
matter openly.” From the very beginning (above, p. 94), BERNoULLI claimed to give only
a special case, and in his [third and] fifth scholia he mentioned expressly the other pos-
sibilities. Moreover, his general argument is easily adjusted to cover these cases : We need
only supply in (47) the constant of integration there set equal to zero. [Thus follows

(S + C)dzx ]
56 dy = ——o L2020
(%) Y e Vai—@8 top
which BERNOULLI gives in the linear case, viz
(57) +dy = (22 £ ab)dx

Vat — (a? + ab)?

[On this differential equation are founded all later researches on the inextensible
elastica.] BERNOULLI notices another possible form (Figure
35), for which the bending force is applied not directly
to the band itself but at the ends of the rigid rods A F
and C'@; this loading is suggested in the interpretation
of the lintearia, where fluid fills not only the cloth A BC

Figure 35. . but also the space between the rigid walls 4 ¥ and CG.
JamEs BERNOULLY’s conception of a . K X
band bent by couples (1695) [This device allows the moment to be adjusted inde-

1) I. e., to determine the law of bending and to locate the neutral line when the fibres obey an
arbitrary stress-strain relation.
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pendently of the force; ¢. e., it visualizes a couple in addition to the moment of a
forcel).]

Ten years after the appearance of JAMES BERNOULLI’s second paper was published
a work by VarieNoN?), [where we find no new ideas but a somewhat fuller and clearer
mathematical treatment. VARIGNON follows JAMES BERNOULLI] in using at first an arbi-
trary law of the tension as a function of the distance from the lower side of the beam ;
[thus it is his merit to separate, explicitly and clearly, the purely statical problem from
the particular elastic hypothesis. The subject, however, is only GALILEO’s problem of rup-
ture (above, p. 38), not BERNOULLI’s problem of bending,] and all VarieNoN does is to
carry out more explicitly the integration over the cross-section [which LrrsNiz executed
in a typical though not clearly explained special case (above, pp. 61—62). At that, the
analysis of VARIGNON is unnecessarily complicated ; the same line of thought was later put

1) Here we describe some subsidiary researches given at about this time in Jasmg BErNOULLI’S
Thoughts, notes, and remarks (cited above, p. 80).

No. CXCVIII, “To find the shape of a stretched rectangular )4
cloth A D,” contains the earliest attack upon a two-dimensional elastic A I\
problem. A fabric of threads (Figure 36) is pulled apart by the rigid
rods 4 R end OD. The hypotheses are not clear. The equation is
“HI:LM = AN:KO, that is, the differentials are as the integrals.”
With AN B as the y-axis, the reasoning seems to consist in observing ?

that the ¥ component of tension in the thread A E is then 7' % , and

this is equated to a force of extension of the cross threads of amount
Ky, or, more reasonably, K(a 4 y), where a is a constant. This gives Cor

D

Figure 36. JAMES BERNOULLI'S

ment of the general idea of tension; he seems to take 7 here as &  sketch for a theory of an elastic
fabric or membrane (c. 1695)

T %Z— = K (a + y). Thisnote is prior to James BErRNoULLI’S develop-

constant, which it cannot be.

No. COLI and an entry added later to No. CCLXXII were printed in slightly expanded form as
No.IX, pp. 1030—1032, of James BerNouLLl's Varia Posthuma, Opera 2 (1744). The question is,
“whether a taut spring when the stretching force is released restores itself simultaneously to straight-
ness in all its parts, or whether in some parts more quickly, in others more slowly ?”” While N1cHOLAS I
BERNOULLI, the editor, seems to follow the argument, I cannot. The beam is regarded as a set of parallel
and not coupled fibres, which are extended by different amounts; the stretching forces are arbitrary
functions of the elongations. BERNOULLI concludes that ‘“the bow springs back more quickly in the parts
enjoying a greater curvature . . .”

No. CCLXXIII, Discovery of the center of tension, appears as Varia Posthuma No. XXVI, pp.
1105—1108. Here the line of fibres is attached to a rigid hinge. The center of tension is defined as above,
p- 100. The argument, connected with the foregoing, is obscure.

2) “De la résistance des solides en général pour tout ce qu’on peut faire d’hypothéses touchant la force ou
la tenacité des fibres des corps & rompre; et en particulier pour les hypothéses de GALILEE et de M. M ARIOTTE,”
Mém. acad. sci. Paris 1702, 4t0 eod., Paris, 66—94 (1704) = 2nd. 4t ed., Paris, 66—100 (1720).
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Figure 37, VarienoN’s analysis of the forces acting upon a cross-section of a loaded beam (1702)

more directly by BirLrriNeER?).] In VARIGNON’s figure (Figure 37) the typical fibre Hh
is extended, and it is assumed that at a certain load K = BG a unit fibre will break.
Integration yields GALILEO’s result (12) for the absolute resistance P;. To calculate Py,
which VarteNoN later (§ XIII, 4°) calls the ‘‘relative resistance”,set HH = dz, EF =y, 111V
DH = z, and let KH = F(x) be the tension in a unit fibre at the height z. Since the

1) “De solidorum resistentia specimen,”” Comm. acad. sci. Petrop. 4 (1729), 164—181 (1735).
See § 13, where BULFFINGER criticizes the ‘“‘detours” of VaArieNoN. BULFFINGER’S paper is a just,
scholarly, and critical exposition of the subject as it stood in 1729, with the unfortunate omission of
PARENT’S best work. In the current Russian literature BOLFFINGER is often cited as the author of the
power law of elasticity that was in fact introduced by LEIBNIZ in a special case, by JAMES BERNOULLI
in general, and was used by VARIGNON,
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uppermost fibre = D breaks when the tension is K, we have F(D) = K, as indicated
in the drawing. Balance of moments about the fulerum 4 C yields

(58) Pyl= (Fyxdx = [ Fazdd ,

where [ = DT, the length of the beam. These results constitute Varrexon’s ‘“Funda-
mental Rule”.

For GALmLEO’s hypothesis of rigidity up to fracture, we have F = K, and (58)
becomes

(59) Pyl=KzyA ,
where z, is the distance of the center of gravity from the axis 4 C. Therefore

(60) Pb _ Lo

— T3

Py 1

yielding GALILEO’s formula (11) in all cases when the base is symmetrical about the hori-
zontal line through the midpoint of DB, so that z, = }D.

On the [HooRE-] MARIOTTE-LEIBNIZ hypothesis we have F = Kax/D, and (58)
then yields LereNiz’s formula (20) in the explicit and general form?)

K
(61) M—Pbl—fl.

For a rectangular cross-section this reduces to LETBNIZ's result Py/P; = $D/l.

[True, Varianox tacitly supposes that the fibres on the concave side are unextended,
but this error does not invalidate the argument : placing the neutral fibre where we will,
we still derive (61), where I is taken with respect to the unstretched fibre.

Following JAMES BERNOULLI,] VARIGNON considers also the power law F = K(x/D)™.
Under this assumption, (68) becomes

(62) Pyl = KD [ amtidd ;
[as was to be remarked by BtLrrINGgER?), for a rectangular cross-section this yields

P, 1 D
(83) P omtz T

and thus by choice of m yields any numerical factor desired?).

1) VARIGNON expresses this result in terms of the center of percussion.

2) § 14 of op. cit. ante p. 103.

3) BULFFINGER seems to be the first since LEIBNIZ (above, p. 63) to have tried to compare a
non-linear elastic relation with experimental data. He says that m = § fits the experiments of Ma-

rioTTE for wood; m = §, for glass. The former value fits also Jamus BERNOULLI’S experiments on
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Most of the rest of the paper consists in applications of the fundamental rule. In
particular, at least for rectangular cross-sections we have Py o AD|l according to both
hypotheses, and hence the forms of solids of equal resistance will be the same for both, [as
Lersniz had asserted. Indeed, we now see that this result follows by dimensional analysis,
so long as bending is neglected.]

Similar reasoning yields a rule for a beam broken by loads applied at both ends, and
similar corollaries follow.

[Thus VARrIGNON succeeds only in putting into somewhat more explicit and general
form the ideas of LEIBNIZ, applying statical principles correctly but neglecting the bending
of the beam.,]

Like HUvGENS before him, JAMES BERNOULLI leaves our scene in the grasp of the
same problem with which he entered it ; moreover, his last work concerns the topic which
first drew him into the higher analysis, namely, the strength of a beam. A few months
before his death he finished his last paper, T'rue hypothesis on the resistance of solids, with
a proof of the curvature taken on by bodies acting as springs'). He writes that his own work
of 1695 is ‘“‘rather imperfect, considering . . . only the fibres on the exterior of the bent
surface, while in fact one must take account of all the fibres going to make up its thickness. ..

“Lemma I. Fibres of the same material and the same greatness, or thickness, drawn
or pressed by the same force, stretch or shrink proportionally to their lengths.” [I.e., if |
is the length and Al the elongation or change in length, we have

(64) €= —Al—l— = f (material, 4, F),

A = cross-sectional area,
F = stretching weight.

gut strings. See §§ 17—20 of BULFFINGER’S paper. In §§ 256—33 he goes on to suggest (1) the laws of
compression and extension may be different, [as had been contended but later retracted by JAmEs
BerNouLLI, see pp. 99, 106—107,] (2) the position of the neutral line should enter the theory as a
parameter, to be adjusted so as to fit measured values of Py /Py, and (3) the resistance of the cross-
section should be measured by the moment of the stretched fibres about still a third point, neither
the bottom fibre nor the noutral one. f. the prior researches of ParenT, § 14, below.

1) “Veritable hypothese de la resistance des solides, avec la démonstration de la courbure des corps qui
font ressort . . . Lettre du 12 mars 1705, Mém. acad. sci. Paris 1705, 4t0 ed., Paris, 176—186 (1706) =
2nd gto ed., Paris, 176—186 (1730) = 12mo ed., Amsterdam, 230—244 (1707) = Opera 2, 976—989.
No. CCLXXX of the Thoughts, notes, and remarks (cited above, p. 80) is a preliminary version; our
Figure 38 is taken from it.

No. CCLXXXII, which just precedes a piece dated ‘1 9ber 1704, applies the theory of the elas-
tica to determine the form of a cam such a thread wound around it and attached to the end of a leaf
spring exerts a constant torque on the cam while unwinding. This piece appears as No. XXVIII,
pp- 1115—1118, of the Varia Posthuma. On p. 337 of his work on the spring (cited above, p. 54),
Hooxe had written, “It will be easie to calculate the proportionate strength of the spring of a Watch,”
etc., but of course HOOKE, who in any case was given to pronouncing as ‘‘easie’ calculations quite
beyond his own powers, assumed a linear relation between force and deflection.

XIII—XXIV
XX1

XXV—
XXXIV
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This is the first explicit appearance of the strain since BEECKMAN’s assertion (7), but JAMES
BERNOULLI, as we have seen, has used (64) implicitly and without comment in his earlier
proofs. The proposition (64), of course, is a postulate ; the alleged “proof”, while circular,
is plausible, akin to that given by GALILEO and MARIOTTE to show that a long cord and short
one break under the same load.]

“Lemma II. Fibres that are homogenous and of the same length but of different great-
ness or thickness are stretched or shrunk equally by forces proportional to their greatness.”’
[L.e.,

(65) Al = f (material, l, 71471,—) .

This is the first explicit appearance of the mean elastic stress F| A; ¢f. GALILEO’s formula (12)
for rupture. The “proof”, again, but restates the lemma. Combining (65) and (64) yields
the assertion that for a given material

_ A

(66) e = f(r), where =, 15%;

thus BERNOULLI is the first to introduce a stress-strain relation as distinet from a formula
such as Hooxg’s for elongation Al as a funetion of applied force F. This, too, must not
be exaggerated, since still more than a century ahead lie the local concepts of stress
and strain used in modern theories of materials. BERNOULLI refers here only to simple
push or pull, and his explanations indicate also that he regards the phenomenon as
occurring homogeneously over the length and cross-section of the specimen. But Lemmas I
and II together assert that there is an elastic law, viz (66), which is common to all specimens
of @ given matersal, be their lengths and areas what they may. It is the first time since
GALILEO’s formula for rupture that a material property appears in rational mechanies.
James BERNOULLI's insistence upon full generality, however, prevents him from exploiting
(66) in the linear case, when 1t becomes v = H¢, the modern “Hooxr’s law’’ relating
stress and strain, nor does he comment that it implies the existence, as for dimensional
reacons in fact it does, of a material constant E having the dimension of 7, 4. e., of stress.]

Lemma IIT asserts in effect that if % = —g—:— , t.e.,if Eeas v for small values
of e, then =
(67) Ee<rz.

The reasons given are (A) ¢ = — 1, since it is absurd for a fibre to be compressed more
than its entire length!), (B) ‘It ought to be the same for the extensions, since an extension

1) This plainly correct observation, which JaAMEs BERNoULLI had phrased in other terms in 1695
(above, p. 98), is called ‘“rather an idle argument” by Prarson, § 22 of op. cit. ante, p. 11; it is
approved by D’ALEMBERT (Encyecl. 6 (1753), art. “‘Elasticité”). ToDHUNTER (§ 20) describes Lemma II1
as ‘“‘strictly true, but . .. not of great practical importance for our subject . ..” In fact Lemma III
is not always true; cf. p. 115, below.
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is nothing else than a negative compression” [thus BERNOULLI has retreated from his
correct opinion of 1695 that compression and extension follow different proportions],
(C) the relation (67) is borne out by BERNOULLI’s experiments on the stretching of a gut
string a yard long [the same as he reported to LEIBNIZ eighteen years earlier (above, p. 63).
The quantity E is what is now called the ‘“‘tangent modulus of elasticity’ ; it does not
appear explicitly in BERNoULLI’s wording of Lemma ITI, which amounts to an assertion
that bodies which remain elastic respond more stiffly beyond the linear range.]

Lemma IV asserts, in effect, that the moment required to bend a beam a given amount
is independent of the position of the neutral axis. [This, as has been remarked many
times?), is false, and the two proofs BERNoULLI presents are fallacious.]

Problem I is GALILEO’s problem. Here BERNOULLI finds VarIGNON’s formula (58),
except that he uses the extension rather than the altitude as independent variable. In
applying the result, however, he employs (67) to show that P, < 3 P,, asis confirmed by
Mar1oTTE’S experiments. The simple proof rests on [VArIeNoN’s] assumption that the

]\!-“-.-

S "v:v‘— l-\-:.\.l—:
)

Figure 38. JaMEs BErNoOULLI’s last analysis of the elastica (1704)

1) E. g. on pp. 983—984 of JamEs BERNoULLI'S Opera 2 by CRAMER, the editor, who says ‘it
would require a volume” to treat the following two problems correctly.
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beam breaks in bending when the uppermost fibre suffers the stress just sufficient to break
that same fibre in simple pull.

Problem IT gives JaMEs BERNOULLI’s final treatment of the bending of an elastic
beam (Figure 38).

[He is now somewhat further from the right approach than he was in the unpublished
note explained above, pp.99—101.] Again he calculates the moments acting on the cross-
section, but then he invokes the [false] Lemma IV to relate the extension of the inner-
most fibre to the contraction of the outermost, and these two are then expressed in terms
of the radius of curvature. The result is an equation of the form (56).

The papers published in JAMES BERNOULLI’s lifetime do not exhaust his basic con-
tribution to our subject. A note!) from about 1694 is called, T'o find the curve which an
attached weight bends into a straight line ; that ts, to construct the curve a?= sR. Written
before his first paper on the elastica, it gives the foundation for his claim there that he
could exhibit the “characteristic properties™ [¢. e. the differential equation, efc.] of ‘“what
shape should be given to a band in order that through bending it take on a given curva-
ture.” The text of the fragment concerns only the integration of the differential equation
stated in the title,

a?
(68) P
and does not mention the elastic band ; in publishing the work in 1744, NicuoLAs I
BerNouLLI writes, “‘I have not found this identity established.” [Small wonder, since to
set up the differential equation for this problem two prerequisites unpublished in 1744
were required : (A) formulation of the tnverse problem in theories of finite deflection, and
(B) the theory of naturally curved bands. NicHOLAS I BERNOULLI was an able and well
informed mathematician, who annotated his uncle’s posthumous fragments with insight
and precision. Nothing could show more clearly James BERNOULLI’s gigantic dominance
of rational elasticity than this incomprehension, nearly forty years after his death, of
those parts of his principles he did not publish in detail. For the law of an elastica endowed
with natural curvature R is

1 1
(69) G ity
in the inverse problem, r is given and R is unknown. If the elastica is to be straight when
loaded, we have —;— =0, and the moment %7 = Wx = Ns, where x refers to the straight,

loaded form. Thus (68) follows. Not only does this show that JamEs BERNOULLI was in

1) No. CCXVI of Thoughts, notes, and remarks, cited above, p. 80, published in slightly expanded
form as No. XX, pp. 1084—1088, of the “Varia Posthuma,” Opera 2, 1084—1086.
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possession of (69) but also, as it were, from the very grave he claims his own, for in the
same year as this fragment was finally published appeared also EULER’s treatise on elastic
curves, where (69) is asserted and (68) is derived (see below, pp. 214—215). Both publications
have escaped notice in most modern expositions of the theory of the elastica.]

JAMES BERNOULLI obtains a ‘‘construction’ for (68); [it is not enlightening, as it
does not reveal that the curve is a spiral, nor is this indicated by his figure.

We pause to salute the great man who here leaves our history. In our epoch for study,
1638—1788, but one other, EULER, is to build himself a like monument in our subject.
JamEs BERNOULLI reached deepest of all the students of continuum mechanics of his
century. In the theory of perfectly flexible lines in the plane, he derived the general equa-
tions and thus, had his work been known, would have closed the subject. While in the
theory of elasticity he attacked but one problem, it is of the deepest conceptual difficulty
as well as central, indeed the elastic problem for a hundred years. Approximations were
abhorrent to him; resolutely he put his entire strength upon problems of finite deflection.
His solution (56) is correct; today it remains a landmark, the classical specimen for a
theory of large deformation. That, as we have seen, his treatment is bound closely to
earlier work of GaLiLEo and LEIBNIZ, does not lessen its originality but rather fastens
its relevance. To the ironies and disappointments which filled James BerNouLLI’s life
must be added that while he originated or assembled all the apparatus sufficient to put
(66) on firm ground, he failed to do so, failed because his attempt was on too grand a
scale,]

14. PARENT’g researches on the neutral fibre (1704—1713). [The researches of
ParunT are of greater valuc for the sciences of elasticity and strength of materials than
any others done in France in the 150 years between MERSENNE's day and COULOMB’s.
Granted scarce notice in PARENT’s lifetime, they were forgotten until TiMosaENKO read
and described some of them!). PARENT was an unusual scientist in that he performed many
experiments yet was able to contribute to the theory as well.

1) § 11 of op. cit. ante, p. 11. Here I add a few supplementary remarks.

PareNT (1666—1716) is a scientist of wide attainments and considerable originality, deserving a
special historical study. The following remarks are drawn partly from FoONTENELLE’s frank “Kloge”
in Hist. acad. sci. Paris 1716, 88—93 (1718), and partly from his own works. PARENT seems to have
been the most active and creative person associated with the Paris Academy in the years 1699—1716.
“The great extent of his knowledge, joined to his natural impetuousness, led him often to contradict
upon all subjects, sometimes precipitately and with little tact.” But a small fraction of the works he
presented to the Academy appear in its publications. His writing was obscure; this gave the academ-
icians the excuse of not trying to understand him. That his papers were rejected, however, is more likely
because he was justly critical not only of classic writers like DEscaArTEs and HuvGENS but of eminent
but now deservedly forgotten colleagues as well, and perhaps also because his own researches are of a
quality superior to most others published by the Paris Academy at the time.
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At first PARENT’s researches followed closely the work of LriBNiz and VARIGNON.]
As early as 1704%), he noted that [VarIGNON’s] formula (59) implies [GALILEO’s] proportion

His papers in the volumes of the Academy are mostly short and uncontroversial summaries of
experimental data. Even the Histoire scarcely mentions his activity after the favorable comments in
the volume of 1700 (mentioned below, p. 378), just after he was attached to the Academy and pre-
sumably before his personality became well known. For his deeper studies, he had to find another issue,
so he began in 1705 ‘‘a kind of journal, called Recherches de mathématique et physique, which appeared
anew, much enlarged, in 1713.” I have not seen a copy of the first edition; the second is Hssais et re-
cherches de mathematigque et de physique, nouv. éd., Paris, Jean de Nully, 3 vols, [xlvi] 4+ 472 4 [84]
+ 156 + [viii] pp., [ii] + [781] pp., [viii] + 528 + [80] pp., 1713, miserably printed, confusingly
paginated, and full of misprints or errors of inadvertence; lists of corrigenda and revisions occur here
and there. In these articles PARENT published systematic and critical reviews of the works of others;
it was this practice, fraught with peril then as now, that had all but caused the Journal des S¢avans,
the first scientific periodical, to founder after its first year (1665). The preface to the Essats is an
interesting document in the history of scientific independence.

The obituary tells us that PARENT was left in oblivion because of his known obscurity as a writer,
“the dislike he drew upon himself by his free criticism, the little order, or rather the disagreeable
order of the material, and the awkward form of the volumes . . .”” Although he published prolifically, he
left many unpublished papers behind him; the obituary states that some of these are complete treatises
and names the executor of the estate.

Obscure writing and tactlessness contribute but do not suffice in explanation. PARENT was one
of the first writers to use the new mechanics for practical analysis of machines; see, e. g., his remarkable
paper, “Nowvelle statique . . .,”> Mém. acad. sci. Paris 1704, 4t0 ed., Paris, 173—197 (1705) = 2nd 4toed.,
Paris, 173—197 (1722), and others in his Essais. Work of this very applied type, like EULER’s on
similar topies in the next half century, was not of interest to mathematicians or physicists and was
much too difficult to be understood by the engineers who could have used such results but in fact did
not begin to do so for about a century.

PARENT lived in retirement, devoted to science, truth, and piety. Though poor, he gave much
charity; though straitly pressed for time, he gave freely of it to help others, particularly foreigners, because
he was proud of his country. He gave lessons to certain mathematicians, who straightaway drew con-
crete profit from his teachings; the secret of their names died with him.

He entered the Academy as a ‘“‘Student” and remained in this rank until it was abolished in the
yoar of his death.

1) In publishing the result in & memoir dated 4 June 1707, PARENT writes that he had explained
it more fully in a memoir dated 2 April 1704, but I cannot find this earlier work. See § I of PARENT’s
““Des résistances des poiitres par rapport & leurs longueurs ou portées, et & leurs dimensions et situations, et
des poiitres de plus grand résistance, indépendamment de tout systéme physique,” Mém. acad. sci. Paris
1708, 4to ed., Paris, 17—31 (1709) = 2nd 4to ed., Paris, 17—31 (1730); also Hist. ibid., 116—123.

A theory of arches is given in the paper, “Des charges qu’il faut donner aux vottes, afin qu’elles
tendent & s’affermir le plus qu’il est possible,” Essais . . . 8, 152—175 (1713), dated 7 May 1704.

The resistance of a truncated cone according to GALILEO’s theory is calculated in the paper, “Du
point de rupture des arbres causés par Ueffort du vent contre leurs feiiillages; et de la figure qu'un corps tiré
par un point doit avoir, pour résister le plus qu’il est possible & étre rompu, Essais . . . 8, 220—227 (1713),
dated 12 April 1704.

PARENT then gives experiments on breaking strength but reaches no definite conclusion: “Ex-
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(13) for beams of arbitrary but similar cross-section, where B and D are the typical dimen-
sions of the cross-section in the directions normal and parallel, respectively, to the plane
of bending. [Of course he supposes tacitly that all fibres are subject to equal tension when
the beam breaks.] But at the same time he mentions explicitly the “center of compression”
[JaMEs BERNOULLI’'s “‘center of tension’, the point where the neutral fibre meets the
cross-section] and states, [as had JAMES BERNOULLI in 1695, see above, p. 98,] that the
moment of forces acting on the cross-section is to be taken with respect to this point.
After reproaching the wood merchants for disregarding the rule (13), he determines the
rectangular beam of greatest strength that can be cut from a cylindrical log of given area.
By (13), we are to maximize BD? when B? 4 D? = const., and hence D = V2B. To
achieve this proportion, the woodcutter has but to erect oppositely directed perpendiculars
upon the points trisecting the diameter ; these perpendiculars cut the circumference at the
two remaining corners.

PARENT’s paper, Comparison of the resistances of solid cylinders and cylindrical seg-
ments with those of hollow ones having equal bases, in the system of Mr. M ariorTE?), [seems
to follow the concepts of VarIiaNON closely?),] although PARENT denies any connection.

TN [While LerBN1z most plainly knew and VARIGNON made

/ . it entirely clear that the moment (61) depends upon the
‘/ ’/ \'° cross-sectional shape,] PARENT is the first to give exam-
| ! ples. In effect, he calculates I for the annular segment

r‘ shown in Figure 39. The result, while elementary, is ela-
,  borate. PARENT gives many special cases and compares
| tho strengths of such segments with those of solid or full

Figure 39. Cross-section for beams of equal area. The simplest case is the most in-
which PARENT calculated the . . .
floxural stiffness (1713) teresting : For a full solid cylinder we have from (61)

periences pour connoitre la résistance des bois de chéne et de sapin,” Mém. acad. sci. Paris 1707, 4to ed.,
512—516 (1708) = 2nd 4to ed., 512—516 (1730).

Figures of equal resistance under very general circumstances are calculated in the paper, “Des
points de rupture des figures,” Mém. acad. sci. Paris 1710, 4to ed., 177—194 (1712) = 2nd 4to ed,,
177—194 (1732); also Histoire 126—133.

1) “Comparaison des résistances des cylindres et segments pleins, avec celles des creux égaux en base,
dans le systéme de M. M ar10TTE,” Essais... 2, 567—595. At about this time, the problem is attacked
also by HErMANN, Prop. VIII of Lib. IT of op. cit. ante, p. 86; HERMANN’S assertion that the ‘‘resis-
tances or firmnesses” [¢. e. breaking forces] of tubes are directly as the ‘‘tenacities’’ of the material,
the thickness, and the length does not seem to be justifiable on the basis of any reasonable assumptions
about the nature of the interior forces.

2) PARrENT, though a poor writer, is somewhat more explicit; he says that he neglects bending as
being ‘‘almost imperceptible in experiments on hard bodies.”

2—16

16
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Pyl = —6—54— nKd?®, where K is the breaking tension, ¢.e. the tension [per unit breadth]

in the topmost fibre. Division by (12) yields
(70) =

While Marrorte had compared his experimental data on circular cylinders with (19),
that formula is valid only for a rectangular cross-section, so it is no wonder he failed to
find agreement ; according to PArENT, (70) fits MARIOTTE’S measurements very well.

[Although on GALILEO’s hypothesis there is a simple universal formula to compare the
strength of a hollow tube with that of a solid rod, on LErBn1z’s hypothesis there is not.]
PARENT gives a table of the values of Py/P,, and »/r, as functions of r,/r,, where P, is
the strength of the circular rod of equal cross-sectional area, and r is the radius of the
circular rod of equal strength?).

Just before this table PArRENT puts some criticisms of VarienoN. The first I do not
fully understand ; PARENT seems to say that a break in a loaded beam always starts on
the top side. In the second, he writes that ‘‘there is no body insusceptible of extension . . .
and compression . . . Therefore at the instant before the body breaks, its base [i. e. cross-
section] suffers dilatation above and at least a little compression below, although this
latter is of scant importance in practice . . . Thus there is a middle [part] where it suffers
nothing at all, and the axis of breaking is there. It is true that this axis descends during the
breaking until it reaches the edge of the base, where it is located when the breaking is over.
But at the instant just before the breaking of the first fibre, the axis is never at the surface.
But everything is governed by the breaking of the first fibre, since once it is broken, all the
others will give way without fail. Thus all problems of the resistance of solid bodies broken
on fixed points [4. e, supports] are reduced to finding the force necessary for breaking the
first fibre, with the axis being that which we have just determined.

[These ideas are not consistent with the calculations he has just made. They seem to
indicate that after having finished this memoir, he achieved a clearer view of the strength
of beams, as we see now.

The source of PARENT’s enlightenment is indicated by] the title of his most important
paper : On the true mechanics of the relative resistances of solids, with reflections on the system
of Mr. Bernourr of Bale?). Here he criticizes BERNOULLI's Lemma IV and shows its

1) A later paper, which is apparently the first to recognize the factor I in (61) as being a moment
of inertia, concerns similar problems for a trapezoidal cross-section: ‘“‘Sur les résistances des prismes
dont les bases sont des polygones réguliers autour d’un axe, et que I’on rompt sur des points fixzes proches ou
dloignés, sutvant le premier systéme de M. M ArIOTTE, Essais . . . 8, 314—335 (1713).

2) “De la véritable méchanique des résistances relatives des solides, et réfléxions sur le systéme de
M. BERNOULLI de Bdle,” Essais . . . 3, 187—201 (1713). On the basis, apparently, of PARENT’s paper of
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7
A Figure 40. PARENT’s figure representing
‘.,& J the tension in a loaded beam (1713)

falsity by calculating the mo-
ment of tensions represented
by the line 7'C X, where M C
is the neutral fibre (Figure 40),
and comparing it with the mo-
ment of tensions represented
by the line 7'B. PARENT ad-
duces a somewhat involved
argument to show that “LD
will indicate the pressure that
the fibres at I suffer perpen-
dicularly to 4 B, and at the
same time the resistance these
fibres offer to being com-

pressed parallel to their lengths; and LY, that which they suffer from top to bottom,
and at the same time that which they make in virtue of their tenacity against being

separated from each other parallel to DL.” [In this
isolated sentence is the first and only appearance of
interior shear stress prior to the work of CouLoMB at the
end of the century.] Moreover, ‘“‘the resistance of the
fibres of the triangle BC' X to being compressed along Y71
is equal to that of the triangle 40T to being stretched
along DL, a property of which no one has yet said
anything.” [I. e., it is not enough to balance moments ;
one must balance also the normal forces acting upon the
cross-section (¢f. above, p. 93).] PARENT'S figure is mis-
leading in that 7C X is a single line, while all his reason-
ing refers to allowing different moduli for compression
and extension (Figure 41). Hence he concludes that ‘‘the
resistance at A7 is to the resistance at BX . .. recipro-
cally as their distances BC, AC from the fixed point
C ..., which no one had noticed before.” [That is,

T |4—Kt—-h

=1

Tc

D¢

L B
fe—— Kk —»]

Figure 41. Modern diagram to illus-

trate PARENT’s view of the tensions

acting on the cross-section of a
terminally loaded beam

X

K,/K,= D,/D,, for this is a

statement that the areas, or resultant forces, of the two triangles ACT and BCX are

equal.

While PARENT has been anticipated in part by JamEs BERNOULLI’s paper of 1695

1708, BULFFINGER (§ 1 of op. cit. ante, p. 103) describes PARENT as ‘‘ a man whose reputation is far
below his desert’’ but does not mention having seen the more important paper described above.
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(to which he does not refer) and by BErNoULLI’s unpublished notes concerning a deeper
problem, PARENT replaces BERNOULLI’s incorrect assumption 7, = 9%, by a correct
means of locating the neutral line, viz, the areas under the curves of extension and compression
must be equal, as follows from the balance of normal forces.]

PARENT then gives a simple argument in favor of (67).

Also!) Py l=}(K,D;+ K,D?) and P,= K,(D,+ D,); hence

P b Dt
(71) —g)t— = T 5
from MARIOTTE’s experiments it follows [according to this theory] that D,/D, = 9/2.
[Thus PArRENT proposes to infer the position of the neutral fibre by comparison of theoretical
formulae with the results of experiment, at least in part?).]

From all this PARENT concludes that “‘the elastic curve remains to be found.” [This
is not quite just, since the curve is unaffected by these considerations, which concern only
its interpretation in terms of the cross-sections.

While the memoir just analysed is far from clear, we see that PARENT was the first
to apply statical principles correctly and completely to the tensions of the fibres of a beam,
and that he recognized the existence of shearing stress. However, like all other writers so
far except Jamms BERrNOULLI, he neglected the bending of the beam.]

15. Researches on theoretical and experimental elasticity by James Riccatr
(1720—1723) and others. In a letter3) of 29 June 1721 James Riccatr writes

1) These results are given wrongly in the text but corrected in the unpaginated notes at the end
of the volume.

2) Since later work on the neutral line prior to CouLoMB’s failed to reach PArEnT’s level, we
summarize it here.

Birrrivoer in §§ 22— 86 of op. cit. ante, p. 103, illustrates the effect of the law of tension on the
position of the neutral line, but his considerations fall short of PARENT’s rule of areas. BULFFINGER
proposes to locate the neutral line by comparing with experiment formulae derived from a general
[and hence not equilibrated] linear distribution of tension.

In § 20 § of op. cit. ante, p. 11, PEARSON describes & work of JAcoro BELGRADO, De corporibus
elasticis disquisitio physico-mathematica, Parma, 1748. PEARSON’s claim that although ‘“he gives a
goometrical method for determining points on the . .. neutral line,” which he does not make the mistake
of placing on the surface of the beam, ‘‘there is little to be learnt’’ from BELGRADO’s work, arouses
my suspicion that this may be an important study, but I have been unable to locate a copy.

3) An extract is given in the letter of NI1cHoLAS IT BERNOULLI to GOLDBACH, 16 July 1721,
included in the correspondence published by Fuss, op. cit. ¢nfra, p. 165. The matter is discussed further
in the letters of 30 July, 11 September, 15 September, 23 October, 6 December, and 2 January 1722.
GOLDBACH points out, in effect, that the increment of force is applied to the deformed, not the initial
configuration; also, the laws of compression and extension may be different. He refers mainly to bend-
ing rather than to simple pull. These are true observations, but, as BERNOULLI remarks, they do not
seem connected with RiccaTr’s experiment.
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to NicHonLAs II BERNoULLI in regard to JaMES BERNoULLI’S memoir of 1705,
particularly to the inequality (67). “I have repeated [JaMES BER-

NOULLI’s] experiment various times in strings of different material; ¥ /l

often I have found true what that famous author says, but often

experiment showed me just the opposite ... But when further

equal weights were added until the string broke, the extensions

which went on increasing up to a certain point then began to &
decrease againin inverse order.” [This is the experimental discovery Figure 42.

Different types of yield
prior to rupture, as

two types of behavior, as reported by RICCATI, we represent ngelﬁggt:ﬁr?{” 21)
schematically in Figure 42.]

At about this time JamEs RiccATr wrote the paper entitled T'rue and appropriate
laws of elastic forces proved from the phenomena?®). His basic idea, [proposed earlier by
LEIBNIZ, above, p.63,] is that elastic properties of a body may be inferred from the
frequency of its vibration. Rejecting any kind of empirical law of force vs. elongation
as ‘“‘unworthy of geometry”’, even if borne out by experiment?), Riccart attempts to
derive a theory of elasticity with no further basis than the laws of mechanics and

that some materials stiffen, others soften prior to rupture!). The

the known rules governing the [fundamental] frequencies emitted by vibrating
strings, Thus it would seem, as indeed the editor of Rrccarr’s works later asserted?),
that R1coaTI presumed an analogy between the transverse and the longitudinal oscillation

1) It is typical of Prarson, § 30 of op. cit. ante, p. 11, that while he quotes at length what he
miginterprets as a general and unsupported proposal of an empirical philosophy of science by RiccaTt
(cf. footnote 3, below), ho doos not mention this simple, definite, and illuminating experiment.

2) “Verae, et germanae virium elasticarum leges ex phaenomenis demonstratae,” De Bonononiensi
gel. art. ist, acad. comm. [1], 523—644 (1748) = Opera 3, 239—2567. An editorial note in the reprint
(1764) tells us that RICCATI began this work as far back as 1720, that an abstract of it was communi-
eated to N1cHOLAS 1T and JorN I BERNOULLI in 1721, and that the finished manuscript was delivered
to the academy of Bologna before 12 October 1723. This note states also that the first volume of the
Bologna memoirs appeared in 1731, but I find no record of such a publication.

3) Here PrarsoN (op. cii. ante, p. 11, § 30) shows his usual ability to miss the point of theoretical
papers: He extols this essay because R1cCATI lays down “the true theory of all physico-mathematical
investigations,” namely, that things to be regarded as known must be sought “from nature itself, and
from experiments,” rather than from ‘‘the imagined hypotheses of the philosophers” (p. 523). What
RICCATI is rejecting is the tendency of the physicist (‘‘philosopher’) to conjecture or determine empiri-
cally what may be proved by mathematics (‘‘geometry’’). RICCATI’s aim is the opposite of that PEARsON
attributes to him, and PEaArsoN might better have taken this work, in fact a failure, as an example of
misguided theory, which it is.

4) This editor seems to have been the author’s son, JORDAN RICCATI, since the long Note of the
editor, pp. 258—276, has little to do with the work ostensibly being annotated but rather presents what
seems to be a preliminary version of the paper on elasticity published by JorpAN Riccatr in 1767
(see below, p. 384).
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of a string, [but in any case the reasoning is tenuous]. The result is a differential equation
[which is not dimensionally correct; if corrected and integrated, it yields a relation
between stretching force F' and length [ of the form

I-L j1—L|

(72) F=F,e ' orpossibly Fee *° ,

where F; is the force required to maintain the string at the length L.]
The paper ends with a statement that the “elasticities” [:. e. force constants] of
strings of given length obey the proportion

(73) K < g3? ,

where v is the frequency of oscillation. [If the oscillation is longitudinal, this result is cor-
rect, but for transverse oscillation it is false. What RiccAaTr means and how he reasons
I cannot understand.] His application is to the vibrations of elastic spheres; citing experi-
ments of CARRE, he infers that K o gr2v%; [while the result is correct, if K is an elastic
modulus, the reason is again obscure?).]

Writers of the eighteenth century occasionally refer to the work of ’s GRAVESANDE?);
examination of his chapter On the laws of elasticity reveals it to be the report of a mass of ill
conceived experiments garnished with bold assertions. He claims to establish the pro-
portionality of deflection to load and length, but his experiment, employing specially
designed and presumably precise apparatus, is imperfectly described and in any case

1) RicoAaTt wrote further papers on related subjects: “Della proporzione, che passa fra le affezions
sensibili, e la forza degli obbietti esterni, da cut vengono prodotte,” Suppl. giorn. letterati d’Italia 1,
114141 (1722) — Opere 8, 287—297. This is perhaps the first attempt to apply mathematies to
physiology. RICCATI assumes that the human body is made up of “fibres” and that all sorts of stimuli
are analogous to forces deflecting these fibres. On this basis he discusses the sensations, the effects of
age, efe. While the paper is fantastically imaginative, it is a most courageous attempt, deserving notice
in the history of theoretical biology.

“Sopra alcune proprietd delle corde elastiche,” Opere 8, 276—284 (1764). This paper, which an
editorial note asserts to date from 1734, discusses rather inconclusively the vibratory motion of a
weight hung by a spring in which the law of restoring force is not specified.

“Confutazione dell*ipotesi, che due corpi dotati di eguali quantita di moto wrtando in due corde del
tutto eguali le ripieghino per egualt saette,”” Opere 8, 284—287 (1764). Here RiccaTr studies the difficult
problem of determining the form, which he assumes to be triangular, that an elastic string will assume
when struck at its center by a ball.

After these three papers is a Note by the editor, pp. 299—323, which seems to be a preliminary
version of the paper by JORDAN RiccaTI described below, pp. 280—281, 384—385.

2) Phystces elementa mathematica, experimentis confirmata. Stve introductio ad philosophiam New-
tontanam, Lugduni Batavorum, Vander Aa, Vol. 1, [xxvi] 4 345 + [iv] pp., 2nd ed., 1725. I have not
seen the first edition, dated 1720. Page references refer to the second edition, with numbers in paren-
theses being the references ’s GRAVESANDE himself gives to corresponding passages in the first edition.
The counterpart of Ch. XXIX of the second edition was Ch. XXVT of the first.
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would prove nothing at all'). Saying that ““‘an elastic band may be regarded as an agglom- 692—696
eration of strings,” so that results on strings may be applied to it, ’s GRAVESANDE finds (262)

that ““the bendings of the same band are proportional to the forces which bend it,”” both

for a straight band loaded at one end and for a curved band pulled out straight2). He 697—698
gives also an imaginative description of the deformation of an elastic sphere dropped upon (266)

a rigid plane3).
1) See §§ 673—680 (249—251). Since this experiment is sometimes cited by historians as a

decisive proof of HookE’s law, I append an analysis

of it. An elastic wire is passed over two wedges and 1%P

held taut by a specified weight T'; other weights ‘T 7

are hung from its center, and the corresponding ‘

deflections & are found to be proportional to those

weights. Since the forces exerted on the string by

the wedges are not known, the problem is inde-

Lo

Figure 43. Analysis of

terminate. ’s GRAVESANDE’S experiment (1720)

The most general possible system of forces
acting on one half of the stretched string is shown in our sketch (Figure 43), where T, is the unknown
horizontal force exerted by the wedge. For equilibrium, we must have

0 3P o

E —_— = P=2T—.
(%) b T+1T,° |
Thus if T' is held constant, and if T, is constant or is much smaller than 7', we must have & o P,
independently of any elastic law. For this, no experiment is required.

‘We usually encounter another form of this problem, in which the end of the string is fized.
Then we have no concern with 7' or T, but, by Hooke’s law, T = K V& + 12— L, where L,
the initial length, may or may not equal ;. Then (E), gives

P = ZKO(I—_L—”"_—)N2K6<1—£+%£IL> .
VIt odi ) 13

Therefore 8 o< P holds for small deflections if and only if L # [,. If L = [, we get P o< §® instead.

This 1s a classic example to show that the response of a linearly elastic body may fail, for kinematical

reasons, to be liear; it is to bo derived by EULER and by DANIEL & JORN IIT BERNOULLI (below,

pp. 386—386).

Thus ’s Gravmsanps missod his chanco twice over: Had he set up the experiment properly, he
would have failed to find the linear response he was looking for.

2) In § 701 he writes that results concerning the period of oscillation of a string or the shape of
the elastie curve require ‘‘use of the direct and inverse methods of fluxions and hence do not seem to
me to pertain to the elements of physics.” This is perhaps the earliest example of what has become an
honored tradition among writers on physical mechanics.

3) Here we mention some minor works of this period.

Camus, “Du mouvement accéléré par des ressorts et des forces qui résident dans les corps en mouve-
ment,” Mém. acad. sci. Paris 1728, 159—196 (1730). This paper gives elaborate statements and proofs
of simple theorems on the motion of a body subject to the force of a not necessarily linear spring.

J. JURIN, “A letter . . . concerning the action of springs,”” Phil. trans. London 43 (1744/5), No. 472,
46—71 (1746); Phil. trans. abridged 9, 18—20. This paper concerns the motion of a linear spring struck
by a body.
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16. Experiments on the nodes of vibrating bodies by NoBLE and Picor (1674), SAUVEUR
(1696—1701), pE LA HIRE (1709), and ZenNDRINI (1715—1716). In 1677 WALLIS wrote as
follows to the Editor of the Philosophical Transactions?). “‘Sir, I have thought fit to give
you notice of a discovery that hath been made here, (about three years since, or more) . . .
‘Tis this : whereas it hath been long since observed, that, if a Viol string, or Lute string,
be touched with the Bow or Hand, another string on the same or another Instrument not
far from it, (if an Unison to it, or an Octave, or the like) will at the same time tremble of
its own accord. The cause of it, (having been formerly discussed by divers) I do not now
inquire into. But add this to the former Observation ; that, not the whole of that other
string doth thus tremble, but the several parts severally, according as they are Unisons to
the whole, or the parts of that string which is so struck. For instance, supposing 4 C to be
an upper octave to ay, and therefore an Unison to each half of it, stopped at f :

A C

o T y

B

Now if, while &y is open, AC be struck ; the two halves of this other, that is, 8 and Bv,
will both tremble ; but not the middle point at 8. Which will easily be observed, if a little
bit of paper be lightly wrapped about the string xy, and removed successively from
one end of the string to the other.” The like holds for the points trisecting or quadrisecting
oy when A4 C is tuned a twelfth or a double octave, respectively, above ay. “So if AG be
a Fifth to 7 ; and consequently each half of that stopped in D, an Unison to each third

* T | n

1) “Dr. Warrts’s Lotter to the Publisher concerning a new Musical Discovery; wrilten from Ozford,
Marels 14y 1676y Phil, trans, London 18, No. 134, 830—842 (1677) = Phil. trans. abridged 2, 380-——3882.

Almost twenty years later WALLIs published this material in Latin in Ch. 107, “Experiments on
musical strings,” of De algebra tractatus, Opera 2, 1—482 (1693). The English edition of the Algebra
(1685) does not contain it. The Latin version, written with markedly British constructions, when put
back into English emerges as a superior literary performance; in respect to content, it is partly clearer
and partly less clear than the letter of 1677. The later version is very careful in respect to priorities.
Not only was harmonic resonance not claimed as new, but ““I recall that sixty years ago it was shown to
me, then a boy” (4. ¢., at about the time of MERSENNE’S publication). In 1693 WALLIS writes that the
nodal phenomena were shown him by NARCISSUS MARSH in 1676 ‘“‘as a new thing observed three years
before (for the first time, I think) by Wirriam NoBLE . . . and THOMAS P1goT . . .; whether by both
together or by one [first], I do not know.” It is not clear whether WALLIS is here correcting or for-
getting what he had written in 1677. In the Latin version WALLIS is also more careful in describing
the behavior of the paper rider: “Then in the middle it will remain unstruck, but elsewhere it will be
chaken off.”
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part of this stopped in D ; while that is struck, each part of this will tremble severally, but
not the points y, € ; and while this is struck, each of that will tremble, but not the point D.
The like will hold in lesser concords ; but the less remarkably as the number of divisions
increases.

“This was first of all (that I know of) discovered by Mr. WiLLiam NOBLE, a Master of
Arts of Merton-College ; and by him shewed to some of our Musicians about three years
since; and after him by Mr. THoMAs PIcoT, a Batchelour of Arts, and Fellow of Wadham-
College, who, giving notice of it to some others, found, that (unknown to him) the same
had been formerly taken notice of by Mr. NoBLE, and (upon notice from him) by others :
and it is now commonly known to our Musicians here.”

[Thus it was known to numerous Oxonians by 1677 that a string may assume a mode
of vibration with k — 1 nodes dividing it into k equal portions, and in such a mode the tone
emitted is the k** overtone).] WALLIS notices also that a string if struck at any nodal point
“will give no clear sound at all ; but very confused,” though “the less remarkable as the
number of divisions increaseth. This and the former I judge to depend upon one and the
same cause ; vz the contemporary vibrations of the several Unison parts, which make the
one tremble at the motion of the other : But when struck at the respective points of divi-
sions, the sound is incongruous, by reason that the point is disturbed which should be at
rest.”

A Postscript adds, ‘“A Lute-string or Viol-string will thus answer, not only to a con-
sonant string on the same or a neighboring Lute or Viol; but to a consonant Note in
Wind-Instruments : which was particularly tried on a Viol, answering to the consonant
Notes on a Chamber-Organ, very remarkably : But not so remarkably, to the Wirestrings
of an Harpsichord . . . And we feel the Wainscot-seats, on which we sit or lean, to tremble
constantly at certain Notes on the Organ or other Wind-Instruments ; as well as at the
same Notes on a Base-Viol. I have heard also (but cannot aver it) of a thin, fine Venice-
glass, cracked with the strong and lasting sound of a Trompet or Cornet (near it) sounding
an Unison or a Consonant note to that of the Tone or Ting of the Glass?).”

1) In our terminology the fundamental is called the first overtone, or, for a string, the first har-
monic,

2) This phenomenon seems to have caught the fancy of several writers of this period. The work
most often cited is MorRHOF’s Stentor valokldorys sive de scypho vitreo per certum humanae vocis
sonum fracto . . . dissertatio, Kilonis, J. Reumann, 1672. I have seen this work only in the “Editio
altera priori longé auctior,” ibid., 1683. On pp. 16—17 MORHOF writes, “When I was living at Amster-
dam, I grew to know JopoEUs PLUMER, a famous bookseller of that place. He told me one day . . . of a
certain wine seller, NIcHOLAS PETTER . .. who could break glass beakers with his own voice....I
did not leave off urging the bookseller to take me to that man. He did so. When it was requested that
the experiment be done in my presence, he brought out certain pot-bellied beakers with knobby feet,
the kind we call “Romans”’, but not exceeding a pint measure. I selected one . .. which seemed very
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In 1692 Francrs RoBERTS?) correctly described the nodal forms of a vibrating string,
observed by means of a paper rider, and drew a correct analogy between the trumpet and
the marine-trumpet, each having natural frequencies in the ratios 1, 2, 3, 4, . . . and thus
being incapable of other “musical” vibration. If the marine trumpet is stopped at any
point not making one of the two resulting portions of the string an aliquot part of the other,
“the vibrations of the parts will cross one another, and make a sound sutable to their mo-
tion, altogether confus’d.”

[The existence and the positions of nodes and their relation to frequency, for a vibrat-
ing string, were thus well known in England by 1693, though apparently not yet clearly
understood on the Continent?2).]

strong. Then he, after determining its sound, gave it to me to hold, and bringing up his mouth to the
middle part, he sang out a tone which seemed to me an octave above that of the glass. The glass at
once resounded almost to screaming, and my hand felt its trembling. When he took a long breath and
continued his voice without interruption, the glass broke with a crack so that an orbicular break went
crosswise through the belly of the glass and the knobs of the feet from the side opposite his mouth.”

Moruor writes that BarToLI also described this experiment, but he himself tried it in vain. On
Pp- 17—18 he writes, ‘I easily saw that the explanation .. .lay in the equality of the sound;...if
changed by so much as a comma, or half a one, the effect would be destroyed. [The wine dealer] had
learned to control his voice by daily practice, so as never to fail. He had a son, too, who could replace
him and do it even more quickly, having a higher voice.”

On pp. 19—20 MorHOF writes that he had told all this to BoyLE and OLDENBURG and to a meeting
of the Royal Society. “It was decided that the thing should be tried . . ., but, as I learned, it ended in
failure.” In the records of the Royal Society as published by GUNTHER, op. cit. anle, p. 54, we learn
that on November 17, 1670, Hooks reported that he had tried the experiment “but had found no
other success, than that the glass had sounded upon the sound of a man’s voice.” MorHOF’s trials
with musical instruments also led to failure.

The rest of MorHOF’s not slight book is & compendium on sound, containing nothing original but
nevertheless being of some interest as displaying the quantity of more or less correct but vague ideas
and scarcely correlated facts current just prior to the creation of the first mathematical theories.
The same may be said of the diffuse treatise of Fasri, Lib. IT of Tract. III of Physica, id est, scientia
rerum corporearum 2, Anisson, Lugduni, 1670.

1) “A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects
of the same,” Phil. trans. London 17, No. 195, 6569—563 (1692) = Phil. trans. abridged 8, 467—470.

2) In 1681 MarIoTTE had observed that different parts of the trumpet tremble when different
notes are blown, but he gave no evidence of having observed nodes; see Hist. acad. sci. Paris 1666—
1699, 1, 4t ed., Paris, 322 (1733).

An attempt to explain the action of the marine trumpet is given by DE LA HIRE, ‘“Explication des
différences des sons de la corde tendué sur la trompette marine’’ (1692), Mém. acad. sci. Paris 1666—1699,
9, 500—529 (1730), see esp. p. 502. DE LA HiRE is so vague a writer that it is difficult to know what he
has seen and what he has not; he has some idea of the nodes. He claims to explain how a slight sound
can cause a louder one by resonance; I can make no sense of his explanation, but he adduces an in-
teresting experiment in which a faintly audible string is made to strike a consonant bell, which as a

result emits a much louder sound.
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In 1704 was published the celebrated paper by SAUVEUR, General system of the intervals
of sounds and its application to all musical systems and all musical instruments'), where in
the Preface the name acoustics is proposed for ‘‘a superior science of music . . ., having
as its object sound in general, while music has as its object sound to the extent that it is
pleasant to hear.” [While SAUVEUR’s researches appear to be original, most of what he
reports may be found scattered here and there in the publications of MERSENNE (§ 4,
above) or in the notes of Warris and RoBERTs, just described. The importance of SAU-
VEUR’s paper is nevertheless great, for he wrote clearly and systematically, his short treatise
served as a definitive and organizing summary of what was known in 1700 concerning the
vibrations of strings, and he introduced much of the terminology gradually accepted in the
acoustical researches of the eighteenth century.]

SAUVEUR calls for ‘‘a measure common to all intervals of sounds, capable of measuring
the least perceptible differences between them, and such that one could select from them
those necessary for ordinary music ...” [With a thought appropriate for his times, he thus
seeks to master a continuous range of frequencies, not merely the discrete scales used in
music.]

“I was made to observe that especially at night one may hear from long strings not
only the principal sound but also other small sounds, a twelfth and a seventeenth above ;
that trumpets have still more such sounds, such that the number of vibrations is a multiple
of the number for the fundamental sounds . . .I concluded that the string in addition to
the undulations it makes in its entire length so as to form the fundamental sound may
divide itself in two, in three, in four, efc. undulations which form the octave, the twelfth,
the fifteenth of this sound. I concluded hence the necessity for the nodes and loops of these
undulations . . .”” [The three terms we have italicized above are introduced in this passage.]

Most of the paper concerns construction of musical intervals by different systems, but
Section IX is entitled, On harmonic sounds. I call a harmonic sound of a fundamental
sound that which makes several vibrations while the fundamental sound makes but one.
Thus a sound at the twelfth of the fundamental sound is harmonic, since it makes three
vibrations while the fundamental sound makes but one . . . Divide a monochord in equal
parts, say 5... Pluck this string as you please, it will give out the sound I call the
fundamental of this string. Then at one of these divisions D, put a light obstacle C
(Figure 44), such as the tip of a feather if the string is a fine one, so that the motion of
this string is communicated to either side of the obstacle. It will then give out its fifth

1) “Systéme general des intervalles des sons, & son application @ tous les systémes & @ tous les ¢ns-
trumens de musique,”” Mém. acad. sci. Paris 1701, 4t0 ed., Paris, 297—364 (1704) = 12m° ed., Amsterdam
390—482 (1707) = 2nd ed. Paris, 4to, 209—366 (1719). See also Histoire, 1t Paris ed. pp. 123—139 =
2nd Paris ed., 121—137 and Histoire 1700, Paris, 4t0, 131-—140 (1703) = 2nd ed., 134—143 (1761).
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AB harmonic sound, that is, a 172, [SAUVEUR’s imagi-
native explanation, however, is unrelated to any
g Dechanical or kinematical principle; while he uses

A c
@5@' freely the word ‘“undulation”, he seems to have

no idea of wave propagation.] “I shall call the

c

B
Aer'ber',ei@ee' points 4, D, B, F, @, B the nodes of these undu-
Figure 44, SAUVEUR’s observation lations, and the middles of these undulations will

of the nodes of a vibrating string (1701 .
¢ g string (1701) be called the loops of these undulations . . .

“One will be convinced of these undulations, 1°, by hearing ; for those who have a fine
ear will distinguish a harmonic sound proportional to the parts forming these undulations,
or indeed one may make sure by tuning a monochord in unison to this harmonic sound,
2°, by the eye ; for if one divides the string in equal parts, e. g. in 5, and if one sets a movable
bridge C at D or E and bits of black paper on the divisions £, F', and bits of white paper on
the middles of these parts, upon striking the part 4 C one will see that the bits of white
paper, which are on the loops of the undulations, will jump, and the black ones on the
nodes will stay fast.”” [Thus the technique of the paper rider, introduced by LEONARDO DA
Viver and by NopLE and P1gor, is refined.]

There follow some consequences.

I. The same harmonic results if any one of the nodes is fixed.

II. If, having formed the 5'® harmonic, one places an obstacle on a node for the 3™
harmonic, the 152 harmonic will result. [From SAUVEUR’s reasoning it is easy to infer the
general rule: If we sound simultaneously the m'® and #'® harmonics, we discern the tone of
the p'® harmonic, where p = l.c.m. of m and n.]

III. There are other ways to produce a harmonic in a string: 1°, by touching it with
another string vibrating in unison with the desired harmonic; 2°, if a string is touched by
another, each will give out the harmonic that is the least common multiple of their
fundamentals.

IV. The higher harmonics are less sensible than the lower. [I. e., other things being
equal, the amplitudes of the harmonics decrease as the order increases.]

V. Bells and other resonant bodies have harmonics [recte, overtones which are not
harmonious ; see below, p. 124].

In the parallel account given earlier in the volume?), the term beats is used, but only
in connection with rare ‘‘encounters of vibrations” [such as are mentioned in GALILEO’s
explanation of harmony (p. 36 above) ; MERSENNE’s concept of beats was clearer (above
p. 33).

These phenomena remained long unnoticed by the geometers. As often happens in

1) P. 125.
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such matters, a practiser rather than a theorist was eager to employ them before they
were understood.] In his New system of theoretical musict), the great composer RaAMEAT
sets down as ““facts of experience that serve as the principle for this system” the existence
of perceptible overtones, citing MERSENNE and SAUVEUR. He says also that overtones occur
in the sounds of cymbals and bells and in the lowest tones of a trumpet and of a bass voice.
The overtones are heard slightly after the fundamental, and he advises us to imagine them
first as an aid to hearing them. While he says the phenomenon of overtones ‘““will serve us
as a principle for establishing all our consequences,” [I am unable to find any logical con-
nection between it and the various assertions which follow]. However, as we shall see, the
geometers were soon to interpret RAMEAU as founding his entire system of harmony on
the idea that tones which can be emitted by the same vibrating body are harmonious?).

[In fact, this is true of the lower overtones of musical instruments, but for most other

1) Ch. 1 of Nouveau systéme de musique theorique, ot I'on découvre le principe de toutes les regles
necessaires @ la pratique, pour servir d’introduction au Traité de harmonie, Paris, viii + 120 pp., 1726.
Though RAaMEAU’s earlier Traité de 'harmonie reduite & ses principes naturels, Paris, 1722, is usually
cited in this connection, I find in it no reference whatever to the ‘“principle” stated above. Whether
from continuing mediaeval tradition, from concession to the ruling mechanistic views of the day, or
from honest solf-dolusion, RAMEAU writes in the preface, “Music is a science which should have secure
rules; these rules should be drawn from an evident principle, and this prineiple can scarcely be known
to us without the aid of mathematics. Thus I must admit that despite all the experience I could get
in music from practising it for so long a time, nevertheless it is only by the help of mathematics that
my ideas have grown clear . . .”” Not only is the ‘“‘mathematics’ confined to observations on the nature
of subtraction, multiplication, and the arithmetic and geometric progressions, but there seem to be
fow traces of logical reasoning of any kind. As far as I can ascertain, RAMEAU’s system in the T'raité is
based upon an @ priort preference for certain numerical ratios as against others, while in the Nouveau
Systéme he claims to have found a physical basis for that preference.

2) At the end of §IX of op. cit. infra, p. 242, DIDEROT in 1748 gives a very guarded statement of
RAMEAU’s principle: “. . . a sound never strikes our ears by itself; with it are heard other concomitant
gounds, which are called its harmonies. It is thence that Mr. RAMEATU started in his harmonic generation;
that 1s the experience which serves as basis for his admirable system of composition, which it may be
hoped someone will draw out from the obscurities surrounding it . . .”

Cf. also the remarks of BurNey, A general history of music from the earliest ages to the present
period, 1 (1776), 20d ed. (1789) (see p. 164 of MERCER’S ed. (1935)): ... the moderns have lately
discovered that nature, in every sounding body, has arranged and settled all these proportions in such
a manner, that a sound appears to be composed of the most perfect harmonies, as a single ray of light
is of the most beautiful colors; and when two concordant sounds are produced in just proportion,
nature gives a third, which is their true and fundamental base.”

But in Volume 4 (1789) (see p. 968 of MERCER’s ed.), BURNEY in describing RAMEAU’s system
does not say anything about the harmony of all overtones. ‘“After frequent perusals and consultations
of RAMEATU’s theoretical works, and a long acquaintance with the writings of his learned commentator
D’ALEMBERT, and panegyrists, the Abbé RoUsiEr, M. DE LA BORDE, &c. if anyone were to ask me
to point out what was the discovery or invention upon which his system was founded, I should find it a
difficult task.”
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bodies it is false. Bodies apt for musical use are specially selected, rare in comparison to
other sorts, being in fact those whose audible overtones harmonize. As we shall see, EULER
and DANIEL BERNOULLI are to obtain many examples contradicting the harmony of over-
tones, and HELMHAOLTZ!), writing 150 years later, after asserting that RAMEAU’s theory is
based on the ‘“‘naturalness” of chords, rejects it: . . . if RAMEAU had listened to the effects
of striking rods, bells, and membranes, or blowing over hollow chambers, he might have
heard many a perfectly dissonant chord. And yet such chords cannot but be considered
equally natural.” But this is unfair, for to determine the pitches of overtones precisely is
not so easy as mere “listening”’, and when RAMEAU wrote, almost the only scientific datum
then published was MERSENNE’s claim, apparently supported by Savvrur, that all over-
tones are harmonious (above, pp. 31, 122).]

RAMEAU’s later writings?) describe a greater variety of acoustical experience [but seem

1) In the “Retrospect” at the end of Part II of Die Lehre von den Tonempfindungen, 5th ed.,
Braunschweig, 1896; translation by A. L. ErLis from the fourth edition, On the sensations of tone as a
physiological basis for the theory of music, London, 20d ed., 1885.

2) RAMEAU is an obscure and graceless writer, whose disconnected wordy conglomerates of
details and opinions contrast strangely with the precision and elegance of his music. It is difficult to
ageertain what he really believes to be the acoustical facts.

In the preface to his Génération harmonique ou traité de musique théorique et pratigue, Paris,
Prault, 1737, [xiii] + 227 + [xvii] pp., RAMEAU speaks of ‘“‘the sound born from the totality of the
sounding body, with which at the same time resound its octave, fifth, and major third . . .” The work
opens with a series of propositions and experiments, most of which are taken, without mention of their
source, from MERSENNE and SAUVEUR, except for a fantastic theory of propagation of sound in air
(Prop. ITII) which Rameau acknowledges having adopted from MATRAN. Prop. V concerns the ‘“‘commen-
surable particles” of a body; equally incomprehensible is Prop. VII: “The most commensurable sounds
are those which intercommunicate their vibrations the most easily and strongly; therefore, the effect of
the greatest common measure among sonorous bodies which intercommunicate their vibrations by the
intermediary of the air should prevail over that of any other aliquot part, since this greatest common
moasuro is tho most commensurable.”

Experiment ITI mentions that the fifth and eighth harmonics may be audible, and even sometimes
the seventh. RaMmAT writes here that the same harmonics are audible in “‘every other sonorous body,
even in the voice.” To prove that no other overtones occur, try to imagine them first and then
produce them; “even so you will not perceive them.”

RAMEAU’s closest approach to a realistic appraisal of the sequence of overtones comes in Experi-
ment VI. “Hang up a tuning fork by aslender thread, each end of which you apply to an [ear]. Strike it;
you will perceive at first only a confusion of sounds, which will prevent you from discerning any of
them; but, the highest ones gradually abating . . .,”” you will hear only the fundamental, the twelfth,
and the seventeenth. Cf. also his remarks about “insupportable cacophony” in Experiment IV and his
reiteration on p. 28.

From this work it is not certain what RAMEAU means by ‘“‘corps sonore”; it is possible that the
only “bodies” of interest to him are those used for musical instruments. While not making his acoustical
beliefs correct, such a restriction would render them not obviously ridiculous for the year 1737. RAMEAU
has grudgingly admitted the existence of disharmonious higher overtones, such as the seventh, even in
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to be a confused medley of fact, error, and special pleading]. One of his remarks?), however,
[anticipates a suggestion to be made later by JorpAN Riccarr (below, p. 280) and to be
developed by HeLmuOLTZ:] “What has been said of sonorous bodies should be applied
equally to the fibres which carpet the bottom of the ear; these fibres are so many sonorous
bodies, to which the air transmits its vibrations, and from which the perception of sounds
and harmony is carried to the soul.”

In 1709 CarrE had confirmed MERSENNE’s law (9) for vibrating rods, in the form
voc V™43 where V is the volume?). The tones of rods do not obey the law (10) appropriate to

musical instruments, but they do not fit in with his earlier numerical preferences, so he skirts about
them as lightly as possible, claiming that they are indiscernible in practice, unless perhaps in “caco-
phony’.

Tt is a different matter with the official report of MATRAN, NIcOLE, and D’ALEMBERT, acting as a
commission for the French academy : Extrait des registres de U'académie royale des sciences du 10 de-
cembre 1749, printed as pp. j—alvij of RAMEAU’s Démonstration du principe de Uharmonie servant
de base 6 tout U'art musical théorique & pratique . . ., Paris, Durand & Pissot, 1750, xxiij + 112 +
zlvij pp. This report states that RAMEATU’s system is founded upon ‘‘the two following experiments:

“1° If & sonorous body is caused to sound . . ., one hears in addition to the principal sound two
other sounds, very high, one of which is the twelfth above the principal sound, . . . and the other is the
major seventeenth . . .

2° If one brings up to the body . . . four other bodies, the first of which is at the twelfth above,
the second at the major seventeenth above, the third at the twelfth below, the fourth at the major
seventeenth below; then in sounding the body . .. one will see the first and second bodies tremble in
their entirety. As to the third and fourth, they will divide themselves by a kind of undulation, the one
into three, the other into five equal parts . . .”

Thege experiments are attributed to MERSENNE and WALLIS. The report upholds RAMEAT’s views

without qualification and concludes that in consequence “harmony ... has become a science more

geometrical . . .

What may be passed off lightly as inaccurate wording and insufficient knowledge of acoustical
facts in a musician writing in 1737, the reader of §§ 23—24, 27 and 29 of this history will agree to be
inexcusable in a mathematician or physicist writing in 1749. Rather, this report fits into what seems to
be a general policy of p’ALEMBERT, to the rather considerable extent that he controlled or influenced
organs for the popularisation of mathematical and physical science in his day, to keep from general
knowledge and appreciation the great acoustical discoveries of DANIEL BErRNouULLI and Eurer. See
below, p. 245, Note 3.

1) Prop. XII, Génération harmonique.

2) “De la proportion que doivent avoir les cylindres pour former par leurs sons les accords de la mu-
sique,” Mém. acad. sci. Paris 1709, 4t0 ed., Paris, 47—62 (1711) = [20d] 4t0 ed., Paris, 47—62 (1733)=
12mo gd., Amsterdam, 57—76 (1711). See also the Histoire, 4t¢ eds., Paris, 93—96 (1733) = 12mo ed.,
117—121. CARRE claims that the vibrations of rods are ‘“circular as well as longitudinal” and tries to
replace MERSENNE’s rule by one separating the effects of length and surface area (not cross-section).
He claims to prove that full geometrical similarity is necessary in order that the tones of two bars
harmonize. His theory is no more than guesswork; CHLADNI later pronounced CARRE’S experiments
‘“‘set up as incorrectly as they are described;” cf. p. 13 of op. cit. infra, p. 335.
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strings. In commenting upon his work, pE LA HIRE!) states that when a wooden cylinder
is struck, ““there are always toward its two ends two places where the sound is considerably
damped and virtually extinguished. It does not matter what are the dimensions of the
cylinder . . .”” [Thus, apparently, he had observed the two nodes occuring in the funda-
mental mode of free vibration of a rod with both ends free.] Some years later DE r.A Hirz?2)
reported some further experiments, [haphazardly conceived and vaguely described,] in
which the same rod gives out different sounds if struck in different ways. [I. e., by accident
he observed two or more different modes of elastic vibration of a bar.] He finds that when a
suspended rule is struck on the flat side, the tone is higher than when it is struck on the
edge, but “the place . . . where the sound was damped” is the same. [These are the first
vague hints that the nodal ratios are independent of the form of the cross-section, but the
frequency depends upon the depth and breadth in different ways.] DE LA HIRE goes off
into a physical theory of how sound is caused by air being forced out of the pores of an
elastic body.

In a letter3) of October 1715 to LEIBNIZ, ZENDRINI criticizes the work of CARRE:
“. .. I have not been able to agree with his reasoning or experiments. . . . I have tried . . .
striking several wooden cylinders and comparing their sounds with musical strings. It
turns out that by striking various points of a wooden cylinder I perceived in a certain and
determinate spot a higher tone than in the remaining.” While ZENDRINI speaks of “‘a body
of any form”, his figure and language describe a rod-like body of revolution, and he asserts
that there are two and only two circles on which such a body may be struck so as to give
out the higher tone. [Since ZENDRINI does not describe how the rod is supported, it is
difficult to know what modes he has observed ; the two circles suggest the fundamental
mode of free-free vibration, but we are left wondering to what mode the previously observed
lower tone corresponds.] ““The striking excites waves in a solid body none the less than
wavos aro gonorated in quioct wator by the blow of a stone, but with this difference, that
in the fluid the waves cleave to the surface, while in solid bodies they penetrate the thick-
ness of the body and diffuse themselves as far as the opposite surface.”” He then attempts
to explain the two different tones on the basis of reinforcement or interference of the waves
as they travel through the body and are reflected from its surface. His physical idea seems
to be that “mute spots”, where the greatest interference of the waves takes place, are the
places where a rod should be struck in order to give out a higher tone. In order to get hold

1) Reported in Hist. acad. sci. Paris 1709, 4t° ed,. Paris, 96—97 (1711) = [20d] 4t ed., Paris,
96—97 (1733) = 12mo ed., Amsterdam, 121—122 (1711).

2) “Experiences sur le son” and ‘“‘Continuation d’experiences sur le son,” Mém. acad. sci. Paris
1716, Paris ed., 4t0, 262—268 (1718) = 12mo ed., Amsterdam, 335—342 (1719).

3) The brief but important correspondence between LEIBNIZ and ZENDRINI is given in LErIB-
~izens Mathematische Schriften (I) 4, 227—251 (1859).
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on something one can compute, ZENDRINI brings in the cross-section of least resistance
according to VARIGNON’s formula ; rectilinear rays, the normals to the waves, if drawn
from this section to the end of the rod will intersect in a point where the waves interfere
with one another, rendering the cross-section ‘“‘mute”. In this way he finds the mute spots
for a circular cylinder to lie one quarter of the way down the rod, ‘“which answers perfectly
to experience.” [Cf. this value, 0,250, with HuyGENS’ value, 0,207 (above, p. 49); the
correct value for the fundamental mode of free-free transverse vibration according to the
BERNOULLI-EULER theory lies just midway between them.]

ZENDRINI indicates how to find the mute spots in a cone or an egg ; for the latter, there
is only one plane of mute spots. ZENDRINI’s experiments have confirmed all cases he has
calculated. He conjectures that the bridge of a stringed instrument is placed at a mute spot
and that drums also have such spots.

LEBNiz’s answer of 4 November 1715 contends that the analogy to waves on water is
a poor one, since in water ‘‘the waves are only on the surface and arise from gravity, not
from elastic force, but I do not deny nevertheless that also this propagation may be called
by the name of waves. What you have observed about wooden cylinders might help, per-
haps, in explaining the structure of wood itself.” LEIBNIZ points out that other kinds of

vibration are possible. In a hollow cylindrical tube, for example, the motion resulting from

£z

Figure 45. The experiment LErsN1z writes in 1715 that
he had proposed to Mar1oTTE (before 1684) to demon-
strate the propagation of transverse vibration around
the circumference of a circular ring

a blow on one side is transmitted, not across the cylinder, as ZENDrINT had assumed, but
around the surface. Vibrations of this kind “were tried long ago by Mr. MARIOTTE at my
suggestion. Hang up a horizontal circle AB (Figure 45) from a point C' and then hang a
little ball from a point E so that it touches the circle on the inside at F ; if, then, you
strike the circle with a stick on the outside at G, just opposite to F, the little ball D will
come toward the striker, because the circle 4 B is transformed into an ellipsoid [i. e. an
ellipse-like curve] with the points F and G approaching one another.” [LEIBNIZ’S experi-
ment of 1684 or earlier demonstrates the existence, for a curved rod, of transverse vibra-
tions in the plane of the rod.]

To this ZENDRINI replies on 5 January 1715/6 that he does not see that the results
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have anything to do with the structure of wood ; he has done the experiments also with
iron cylinders, with the same acoustical results, while the structures of wood and iron are
entirely different.

On 15 March 1716 LErBN1z writes to ZENDRINI, ‘T should like it if some outstanding
musician who is at the same time a remarkable mathematician would enter that ocean of
the subject of sound, scarcely navigated until now, first leaving the shore and little by
little coming out into the high seas, that is, beginning with rather simple experiments.
Thus I should hope that most things could be reduced to mathematical-mechanical argu-
ments . . . Which sonorous properties are common to bodies of iron, wood, earth (or baked
clay), so as not to depend upon the peculiar structure of the body . . ., the difference be-
tween bodies continuous and those contiguous or glued together, as again between homo-
geneous and heterogeneous . . . the sound of a cavity is changed when liquid is poured in.
And liquids vary among themselves or if combined with solids ; water covered with water
sounds much clearer than when a hard body covers it.”

[ZENDRINI, who experimented, was ready to base a theory on tenuous hypothecated
analogies between sound waves and other waves, while LEren1z, who did not experiment
himself, called for a preliminary experimental program so as to classify the kinds of pos-
sible vibration. LEIBNIZ seems, however, to have forgotten his earlier remark that the
elastic and acoustic properties of bodies must be related (above, p. 63).

This is the last we shall hear of LerBn1z. In the history of physics, he has been too
little valued. In our subject, despite the small proportion of his effort given to it, we have
seen that from 1684 to 1716, the year of his death, his influence was great, his knowledge
of particulars was extensive and accurate, and his insight was sound?). Each of his two
published notes, besides being a landmark for all time, displays a perfect command of the
principles of mechanies as then they stood. Had LEIBNIZ written no more, these ten pages
would have made him a famous mathematician forever, What is most remarkable is that
his private recommendations pertain to limited mechanical objectives as entering wedges
toward greater things, rather than wvice versa, and call for an intelligent interrelation of
theory and experiment maintained, within the scope of this history, only by HuYeENS
and DANIEL BERNOULLI.

We have seen that little or nothing was known by 1716 about vibrating bodies other
than strings ; moreover, the two most interesting studies, namely, the incorrect theories of
HuyeeENs and ZENDRINI, were to remain unpublished until a century after the later

1) The experimenter MUSSCHENBROEK writes of LEIBNIZ, *“ ... from what he confided to the
public light it may plainly be inferred that the most noble mathematician had examined not only those
things that he brought forth but also innumerable others which he kept back as being of lesser worth”
(p. 427 of prim. op. cit. infra, p. 151).
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triumph of the BERNoULLI-EULER theory. With the vibrations of a string, however, the
situation was different, for the main experimental phenomena were known. We now
follow two mathematical researches which could easily have explained them, had not
their authors, it seems, resolutely closed their eyes to the experiments in a unique con-
centration upon the fundamental mode.]

17. TAvLOR’s analysis of the continuous vibrating string (1713). The calculation of
the [fundamental] period of a vibrating string was first achieved in a celebrated memoir
of TavyLow, On the motion of a taut sinewl). Lemma 1 presents a geometrical argument
showing that for two similar curves y = of(2) and y = ff(x), the ultimate ratio of
the curvatures as «— 0 and f—~0 is «/f. Lemma 2 reads, “In any aspect of its
vibration, let the taut sinew between the points 4 and B take on the form of any curve
Apn B. Then Isay that whatever be the increment of velo-
city of any point P, that s, its acceleration arising from the A / R
tension stretching the sinew, it will be as the curvature of the = B

sinew at that point”’ (Figure 46). The prooffollows. “Imagine

the ¢inew to consist of infinitely small rigid particles p P and 21}!: T

P, etc., and at the point P erect the perpendicular PR = Figure 46,

theradius of curvature at P. It is intersected at ¢ by the  TaYLow’s figure for analysis of
the vibrating string (1713)

tangents pt and =, at s by the lines ws and ps parallel to

them, and at ¢ by the chord pz. Then, by the principles of mechanics, the absolute force

by which the two particles pP and Pz are drawn toward R will be to the tension of the wire

ag ot to pt, and the half of this force, which acts on the one particle p P, will be to the

tension of the sinew as ct to ¢p, that is (on account of the similar triangles ctp, tpR) asip

or Pp to Bt or to PR, Therefore, on account of the given force of tension, the absolute

accelerating force will be as Pp/P R. But the acceleration produced is in the ratio of the

abooluto foreo divided by the matter to be moved ; and the matter to be moved is the

particle Pp. Therefore the acceleration is as 1/PR...” [Thus TAYLOR’s argument, if

somewhat obscurely2), calculates the resultant normal force acting on an infinitesimal element

of the string, obtaining

1) “De motu nervi tensi,” Phil. trans. London 28, No. 337 (1713), 26—32 (1714). I have not con-
sulted the translated and abridged ed., ““Of the motion of a tense string,” Phil. trans. abridged 6, 14—17.

An attempt to determine the frequency of a string from certain statical assumptions which are not
clear to me is made by SAUVEUR in his last paper, “Rapport des sons des cordes d’instrumens de musique,
aux fléches des cordes; et nouvelle détermination des sons fixes,”” Mém. acad. sci. Paris 1713, 4t ed., Paris,
324—350 (1716) = [2nd] 4to ed., Paris, 324—350 (1739). Seo osp. § 47.

2) Despite the introduction of the chord p=, the argument seems to be correct.
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(74) 64,=—F,x %1— , A, = normal acceleration.

Indeed, the statical principle, at least to within a constant factor, is that expressed in
James BerNouLLr’s unpublished formula (40). Not only does TAYLOR obtain the result
independently, but also by applying to it the Newtonian principle on “the acceleration
produced’’, he adds something new: T'his is the first time the momentum principle is applied
to an element of a continuous body. From (74) the modern reader will conclude at once
that small motions are governed by the partial differential equation

% _ 0%
aTt“‘——T ox2 °

While indeed small motions are TAYLOR’s objective, his result (74) is an equation valid
for finite motions of a perfectly flexible string, as indeed his figure suggests. Moreover, he
does not approximate (74) by the wave equation. Instead, after this brilliant beginning,
he wanders into a morass of special assumptions and errors.]

His Problem 1 is “To determine the motion of a taut sinew.”” The displacement from
the axis 4B is assumed small, “so that the increment of the tension from the increase of
length, as well as the obliquity of the radii of curvature, may safely be neglected.” Apply-
ing a plectrum at the midpoint, deform the string into a triangular form. When the plec-
trum is removed, only the apex will move, by Lemma 2. “But then by the bending of the
sinew at points nearby . . ., those points too will begin to move, and so on...” Each
point moves fastest when it first begins, more slowly thereafter, since the curvature
decreases. This ocours in such a way “that since the forces are properly tempered among
each other, all the motions conspire together so that all points simultaneously reach the
axis and recede from it, back and forth ad infinitum.

“But for this to happen, the sinew should always take on the form of a curve such
that in any point the curvature is as the distance of that point from the axis.” What
TAYLOR now attempts to prove is the converse, that if the curvature is as the distance,
then all points of the string reach the axis simultaneously ; [this is true, under the hypo-
theses made, but TAyLOR’s argument is obscure if not faulty.] A second argument invokes
Lemma 1 as well as Lemma 2. It then follows that the acceleration of each point is as its
distance from the axis. By a known theorem, the vibrations are isochrone, and the motion
of an arbitrary point is that of a simple pendulum. [The argument is now logically correct
but trivial, since to apply Lemma 1 to the motion of a string we must assume that
y = f(t) g(x), and most of what was to be proved follows a fortiori.] As a corollary,
r = a?[y, where a = const.

Problem 2 is, “Given thelength and weight of a sinew, along with the stretching weight,
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to find the time of one vibration.”” TAYLOR’s result, in modern notation, is

11/T
(75) 7=—27V;.

[Thus, extending GALILEO’s proportion (10) and HuveeNs’ unpublished approximation
(17), he calculates from theory the fundamental frequency of the vibrating string.] The
argument is divided into two parts. The first sets up a precarious analogy between the
motion of the central point on the string and the motion of a pendulum whose length is

the amplitude of vibration of the central particle, 2. The result is, in effect, v= -2_;@ l/% .

The second part, “to find the line,” combines the general formula r = sy/% [when
§ = const.] with r = a?/y, yielding the differential equation a2z = syy. ‘“Taking the
fluent” [i. e. integrating] yields a2z = }3y® — 33U + sa%, where the constant of
integration is adjusted so that z = s “at the midpoint” [i. e., when y = UJ. Putting
§% = 2 4 »* and solving for z yields a quadrature; TAYLOR supposes that “U and y
simplifying the quadrature to & — ay/V/U* — y*. Hence

”

vanish with respect to a,
(76) y=Asin >

Putting y = A corresponds to z = £I; hence a = I/x. Putting this result into the
above derived expression for » yields (75).

[Possibly TAvLOR’s work was criticized for the manifest contradiction between the
initially triangular form assumed in Problem 1 and the sinusoidal form (76) given as the
result. In the revised form presented in his book?), the indication of the finite velocity of
propagation of a disturbance has been removed. In its place is a passage concluding
“Therefore, in whatever way the sinew is struck [initially], it very quickly takes on the
form of curve here described,” <. e., one in which the curvature is proportional to the dis-
placement [and hence a sine curve. Thus began an error that was to hang on for half a cen-
tury. While indeed the effects of friction may be such as to cause the form of a vibrating
string to become more nearly sinusoidal as the motion subsides, nothing of the sort is
mentioned here.] TAYLOR’s argument is purely dynamical [and fallacious,

From this extraordinary performance we see that TayLor had within his haunds the
correct dynamical principles and the partial differential equation we now regard as govern-
ing the whole problem, but he turned aside from them to the special and restricting hypo-
thesis that the curvature is as the displacement ; thus all that could emerge from his
analysis are the sinusoidal forms and the periods of the simple modes ; the fundamental

1) Pp. 88—93 of op. cit. ante, p. 86, Note 3. Here (74) is not stated so clearly as in the original
paper; e. g., only the word ‘“‘accelerating force”, not the word “acceleration” is used. The calculation
of the frequency is slightly more direct.
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he did in fact obtain, though by a roundabout and scarcely convincing argument. At that,
however, he did not apply to his hypothesis even so simple an idea as that the acceleration
is 9%y/ot?. What is missing is the calculus of partial derivatives. Indeed, even to speak of
the acceleration of a particle on the string requires some concept of partial differentiation,
but in TavLoR’s work we find no sign that the partial derivative was included among the
entities he could manipulate even in the simplest contexts.

From this jumble of brilliance and error in principle, little but confusion could re-

sult?).]

18. JouN BERNOULLY’S analysis of the loaded vibrating string (1727). Among the
Selected theorems to be proved as illustrations of the conservation of live forces and to be
confirmed by experiments?) which JoEN BERNOULLI communicated to his son DANIEL in
1727 are the following. Theorem IV asserts that TAyrLoR’s formula (75) is correct ; [this
simple restatement implies that BERNOULLI saw the insufficiency of TAyrLom’s deri-
vation.] Theorems V—VII concern the weightless string loaded by n equally spaced and
equal masses M |n. [While this model had been used by HuYGENS (above, pp. 45, 49),
his work remained unpublished, and his methods were inadequate ; here we see the first
publication of a partially satisfactory theory for small vibration of a system of several
degrees of freedom.] If we write »(® for the [fundamental] frequency for » masses and » for
Tavror’s value (75) for the continuous string, then, putting o = M /I, we may express

JOHN BERNOULLI'S results as follows :

M (@ @ —
2l 1y L Ve _sva,
14 4 4 T 4 T

(4) — (8) —

(77) M _ 1 ,]|/56=V5 2 1 Veo—30v3,

» 2 54+ Vs v /

y© 1 1/422" — 126w + 168

v @ 222+ x4 1 ?

where x is “‘the root” [or “‘a root”?] of 2® — 22 — 22 4+ 1 = 0. ““By the same method,

1) Immediately a solution was published by HERMANN, “De vibrationibus chordarum tensarum
disquisitio,” Acta erud. August 1716, 370—377. HERMANN regards the motion as arising from the linear
elasticity of the string. Somehow he concludes that the resultant transverse force for small displace-
ment y is T'y/l, where T' is the tension in the undisturbed state. He then supposes the entire mass of
the string to move as a mass-point subject to this tension. This is not even a discrete model such as
that forming the beginning of HuyGENS’ treatment (Figure 11, p. 48) but merely juggling to get (75)
for an answer.

2) “Theoremata selecta, pro conservatione virium vivarum demonstranda et experimentis confir-
manda, excerpta ex epistolis datis ad filium DANIELEM, 11.Oct. & 20. Dec. (stil. nov.) 1727, Comm.
acad. Petrop. 2 (1727), 200—207 (1729) = Opera omnia 8, 124—130.
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which I have, I can go on to de- G, H
. . . I
termine the number of vibrations D /;
for a string loaded by more C
weights, but I turn to other @ x y 2’\
bR ‘B
matters. A . L , -
The proofs are given in a Figure 47 .
short paper dense with equations: JorN BERNOULLI's analysis 0{11'77}; )wbratnons of a loaded string
Thoughts on wvibrating strings,
loaded by Uittle equidistant weights, where the mumber of wibrations . .. is sought from

the principle of live forces alone'). JOHN BERNOULLI says that the vibrating string (Figure 47)
“must compose itself into such a shape that all the little weights simultaneously reach the
line 4 B, whence it follows that the velocities of the several particles, as well as their
—z%;_l portional to the distances to be
T travelled Cc, Dd, Ee, etc.” To follow

BerNOULLI’s argument, consider the

accelerating forces, must be pro-

k'" particle at the center of Figure 48.

v, The tension 7' is taken as constant,
+I . LR
Y1 Y% and the accelerating force ¥, arising

from the tension is assumed purely

transversal [these assumptions are

et —— justifiable only for small motion].

Figure 48. Variables used in Joun BErRNOULLI’s analysis of
the vibrations of a loaded string

Then by equating the projections of
the forces on to the direction normal
to the left-hand segment we obtain F, sin p, = 7 sin ¢,. “Since the shape is almost a
atraight line,” siny, &~ 1, sin ¢, A 2,,,/a. From the geometry of the figure, we have
exactly 2y = 2¥; — Yp1 — Yy . IHence

T T
(78) F, N_a,— 2py1 = a (Y — Yr—1 — Yr11) -

[Thus BerNouLLr calculates in full generality the restoring force on the k' particle,
subject only to the hypothesis of a nearly rectilinear form.] By hypothesis, F, o y,. Hence

(79) 2Y% — Y1 — Y
Yr

1) “Meditationes de chordis vibrantibus, cum pondusculis aequali intervallo a se invicem dissitis,
ubt nimirum ex principio virium vivarum quaeritur numerus vibrationum chordae pro una oscillatione
penduli datae longitudinis D,” Comm. acad. Petrop. 8 (1728), 13—28 (1732) = Opera omnia 3,
198—210.

= const.
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[We note how close BERNOULLI comes to establishing the equations of motion, yet he fails
to do so, being misled by TAvLoRr’s hypothesis.] For each of the cases n =2, 3, ..., 7,
BEerNoULLI works out a solution of (79). Each time his solution is such that all displace-
ments are of the same sign. E. g., for n = 2 hehas y; = y,; for n = 3, hehas y, — 9,
with y, adjusted accordingly, viz, ¥, =y, V'2; and only for n =7 does he mention any
other solution, but then he says, ‘it does not belong here.”” [With the whole set of principal
modes for the loaded string standing before him, he refuses to notice any but the funda-
mental.]

Next BeErNouLLI turns to calculation of the frequency. The tension is regarded as
caused by a weight hung over a pulley at 4 (Figure 49). The “descent of the weight” is
the distance it has to be lifted in order for the string to assume its present configuration;
for the case shown in Figure 47, thisis AFGHB — ACEI B, which BErNouLLI finds

v tobe 2(2 —V'2) W/a, where U, is

i *’; - the displacement CF of the first

weight, F. By the principle of vis

. » viva, this must equal the kinetic
. c £ 1 energy of the weights when they
(15 cross the line 4 B. At this point
Figuro 49 BERNOULLI recognizes the fact that

JorN BERNOULLI’s use of the principle of live forces (1727) L . ]
the initial assumption F, o<y, im-

plies simple harmonic motion. In particular, the velocity v, with which the particle
crosses the axis satisfies v, o 9. Thus, again for the case when n=3, we have v,=1/2v,,
and hence the total kinetic energy is 3 M -0} + L M -2+ + } M -+}. Therefore

(80) §Mv§=2(2—1/§)%_§.1’=3(2_1/2_)9g%_

Since v, = 2wy Ay, substitution in (80) yields an expression for »® which is in fact (77),.
The calculations grow more and more complicated, but BERNOULLI carries through the
same method as far as n = 6.

BerNouULLI then gives ‘“solutions of the same problems from the principle of statics.”
Here everything rests on Lemma IV, which calculates the frequency of a motion z(¢) of a

body of mass IR subject to aforce!) — Kz, viz, v = —21; |/ % . As he says in the scholion,

by this method we may treat a general number of weights, n. For by (78) follows

1) As far as I can learn, this passage contains the first treatment of simple harmonic motion by
straightforward integration of the differential equation. Cf. above, pp. 56—57.
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T T
F, =7(2?/1 — Ya) =7(2 — %) Y1 »

where y, = «,%,. Thus, since M = % IR, in full generality we have

(81) Ml yamFOE—a).

4 TT

All that is needed now is the factor a,,. This, for » =1, 2,...,7, was determined earlier
[but plainly BERNOULLI is unable to determine it for general »; to find it is equivalent to
finding the solution of the difference equation (79) such that y,>0fork=1,2,.. ., nand

Yo = Ynq1 = 0]. For example, for n = 7 we have o, = V2 + V2, hence

(82) " ?l 2Vue—-Veiy vy .

14

Coming finally to the continuous string, BERNoULLI quickly calculates the restoring

force on an element as being 7' %— , where 6 is the slope angle [this is essentially TAYLOR’s

result (74), and in any case was familiar to BERNOULLI from the unpublished researches
on the catenary]. ‘““But it must be noted that the curve . . . is an elongated companion of
the trochoid” [¢. e. sine curve]. On this assumption df/ds is easily calculated, and the
period (78) follows at once by the second method used for the loaded string. BERNOULLI
gives aleo a proof based on conservation of live force ; for this, a more accurate calculation
of the curvature is necessary.

The paper ends with a proof that the shape of the string must be sinusoidal. Since the
4%y

. . . . 1
restoring force is proportional to the curvature, at any instant we have vy R by
d?y

af <Y whence the assertion

hypothesis, the restoring force is proportional to . Hence
follows.

[The reader cannot fail to be disappointed. After the brilliant start expressed by (79),
Brrxourrr has shut his eyes to the real problem three times over. The calculations of the
fundamental frequencies are of course correct, and the general formula (81) is clever,
But there is no hint that other frequencies can occur and no indication that the frequency
satisfies a polynomial equation of degree n. Here we look for recognition of the problem of
proper frequencies, but we look in vain!). Rather, following TAYLOR, BERNOULLI insists
at every turn that the force must vary as the displacement. On the one hand, in demand-
ing that all particles cross the axis simultaneously, BERNOULLI seems to realize that he

imposes a restriction. However, he fails to find the other modes sharing this property. His

1) The description of his paper given by BURKHARDT, § 1 of op. cit. ante, p. 11, while techni-
cally not incorrect, gives a partly false impression by describing what the problem really is rather than
the problem as BERNOULLI himself handled it.
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treatment of the continuous string is shorter and clearer than TAYLOR’s in that he uses
TAYLOR’s assumption F oy directly, without TAyLoR’s detours, but in principle both
are alike?).

19. Summary: EULER’S heritage. Our scene is ready for the man destined to take up
the theory of deformable bodies and by slow degrees exalt it, as he did most parts of
mathematics, to a perfection scarcely thought possible from the material as it first came
to his hands. This man is EULER. We cast the sum of his heritage in our subject.

The past ninety years had seen the field of elastic and flexible bodies opened by
drives upon five largely isolated special problems. Should the reader contrast our following
survey of them with his own immediate impression from a sample of the old writings, he
will find little in common. Indeed, a statistical summary of the papers of the late seven-
teenth century would reflect little more than a mass of ““‘constructions’ relating one curve
to another. This helps in understanding the researches in the following quarter century,
since for the students of that time it must have been even harder to extract the real
thoughts from the endless differentiations and integrations in which they were entwined.

PROBLEMS

1. Equilibrium of flexible lines. The general differential equations, both in rectangular
co-ordinates (39) and intrinsic co-ordinates (40) (42), were derived correctly by JamEs
BrryovLrLr and finally published by HErmaNN. For the most interesting special cases,
explicit solutions were found. In this sense, the problem was closed. However, real chains
or strings show somne measure of stiffness, and a theory taking account of it was lacking.
(See Problem V below.)

The basic concept for the theory of flexible curves was the tension, evolved from special
cases by James BERNOULLT and published by HERMANN (above, pp. 81, 87).

IL, Small vibrations of flewible or elastic bodies. TaAYLOR’s formula (75) for the frequency
of the continuous vibrating string and Jorx BerNourrr’s formulae (77) for the string
loaded by one to seven masses were definite achievements. For the loaded string, it was not
shown that JoHN BERNOULLI'S method, which seems to rest on guessing a part of the
solution of (79) and then calculating the rest by laborious elimination, really would go
through for an arbitrary number of weights. The work of both authors was misleading if
not erroneous from special assumptions which a modern reader sees at once confine the
results first to the simple modes and then to the fundamental. Neither author recognized
the true nature of the problem, either mechanical or mathematical. There is no hint of a

1) The earliest researches of EULER on vibrating systems, which began in connection with this
paper by his teacher, are described in footnote 1, pp. 142—143.
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spectrum of frequencies or, apart from the errors TaAyLOR bequeathed to his successors
for half a century, of any other form of the string than that to which the exhibited fre-
quencies belong. Indeed, what are lacking are the equations of motion. These TAYLOR, and
to some extent also JoEN BERNOULLI, had within their hands but cast aside.

Generalizations of the problem, as for example to a heavy chain hung from one end,
could be attacked by the same methods, with the same measure of success and failure to
be expected.

That elastic vibrations are of a different kind was recognized, but the only definite
result concerning them was MERSENNE’s empirical formula (9), apparently little known.
LEIBNIZ’s suggestion that the elastic and acoustic properties of bodies are connected had
not beon followed except in unsatisfactory work by Riccarr; it is soon to be made definite
by EvLer. That the vibrations of a given body, whether elastic or flexible, may occur at
several different definite frequencies, to each of which corresponds a motion with a
definite number of nodes, should have been clear from the experiments organized by
Sauveur, but the theorists took no heed of it, leaving the field clear for DANIEL
BERNOULLL

III. Rupture. The problem of rupture, apparently, is ill adapted to mathematical
treatment and remains today unsolved. It gave rise to the LEIBNIZ-VARIGNON formula (61)
for the bending moment acting upon a cross-section of a beam when the bending itself is
neglected but the tension is assumed to vary linearly over the cross-section.

IV. Extension. HoOKE’s linear relation (18) was known to all the following students
of the subject but esteemed lightly. To the extent they consider deformation at all, the
early researches always concern finite deflection, for which indeed (18) is rarely appro-
priate. On the one hand, linearization as a device for cutting the problem down to the
size of the man was reserved for a later age to discover. On the other, the early geometers
failed to exploit the implications of a fact they all knew, namely, that large forces may
accompany searcely perceptible changes of shape. JAmES BrrNouLLI's parabolic law,
elongation o (foree)m, had been explored but not found appealing.

While James BERNoULLI had seen that force per unit area (stress, t) and change of
length per unit length (strain, €) are the proper variables for a theory of elasticity, nothing
had been done with these basic concepts. The last work of JAMES BERNOULLI implies the
existence of a material constant or modulus having the dimension of stress and specifying
the degree of elasticity, but he did not introduce such a modulus explicitly because he
wished to avoid assuming any particular stress-strain relation. We shall encounter the
modulus of extension in EvLER’s first paper.

V. Bending. The principle expressed by JAMES BERNOULLI’s equation (56) or its
special case (57), defining the elastic curve, was a second major discovery. However, the
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theory was in a primitive state. First, BERNOULLI’s derivations of the basic formulae (45)
and (46), relating the bending moment to the curvature, were unsatisfactory. It remained
to integrate over the cross-section of a beam, in a word, to unite the LEIBN1z-VARIGNON
formula (61) with JAmEs BERNoOULLY’s formula (45). This will be EULER’s first achievement.

‘While BErNoULLI had stated that the moment is to be taken, at each cross-section,
with respect to the point where it intersects the neutral fibre, his theory for calculating the
position of that fibre was faulty. A correct and essentially general application of statics to
the forces and moments acting upon the cross-section had been given by PArRENT, but only
at the expense of neglecting the bending. That the neutral line is the central line if the
tensions vary linearly over the cross-section was known and stated by BrrNourL and
Parexnt. This aspect of the theory is to be disregarded by Evrer and nearly all other
savants in the eighteenth century.

Second, the true shape of the elastic curve was still a mystery. While a literature
grew up around it, this literature, in the style of the day, presented ‘“constructions’
whereby the curve could be drawn in terms of other curves, but no one drew it. So simple
an idea as to perform the quadrature (57) numerically and compare the result with experi-
ment is not to be found, nor did anyone calculate the approximate shape for small deflec-
tions. The only concrete results were BERNOULLI’s series (51) and the bounds (52) for
the rectangular elastica. It is to be EULER’s achievement to determine all possible forms
of the initially straight band subject to terminal load, besides other elastic curves.

But this is not all. JamEs BERNOULLI’s first paper on the elastic band (above, p. 89)
concludes with a list of further problems chosen with his usual insight and left to “the
industry of our readers”, These problems remained untouched. Indeed, in this period only
one person, the great BERNOULLI himself, put in print anything at all concerning the funda-
mental theory of the elastica. The first among these problems was “to investigate the kind
of curves engendered when the elastic band is bent by its own weight in addition to the
suspended weight” —in effect, to unify the theories of the catenary and of the elastica. How
to do this was far from clear, since the most general problem of the flexible line had found
its formulation in terms of the tension, while the law of the elastic band was a statement
concerning the bending moment. The matter lay quiet until 1724, when in the Acta Erudi-
torum appeared a note, The famous problem of the catenary proposed again to the geometers,
especially to those who are members of the royal societies of London and Paris'). The rather
scornful anonymous proposer speaks of ‘“a rope or little chain not infinitely but rather
moderately flexible—if you like, not imaginary but real,”” such that the slope at the points

1) “Celebre catenariae problema geometris denuo propositum, iis praesertim qui ex Soc. Reg. sunt,
quae Parisiis florent & Londint; Parisiis ad collectores actorum erud. transmissum,” Acta erud. August
1724, 366—367.
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of support may be prescribed, ““as is seen to occur not by pure hypotheses but in fact . . .
It is easily shown that this case is possible, you cannot doubt it ... Farewell. LBC.”
While this challenge seemed to pass unnoticed, and LBC, whoever he was, had to wait
several years for an answer, solution of this fundamental problem of principle will furnish
the subject of DANIEL BERNoOULLI’s and EULER’s first publications on our subject.

METHODS

I. Models. Three mathematical models for real cords, chains, wires, bands, planks, and
bars were proposed :

a. The continuous line was introduced by PARDIES and used in nearly all later re-
gearches. This is not to be disguised by the loose language in which the arguments are
sometimes put, as when TAYLOR speaks of the vibrating string consisting in “‘infinitely
small rigid particles”.

b. The line loaded by discrete masses or weights, thus far equidistant and of equal
magnitude, may be related to the continuous line by one of two passages to the limit :

1. In the equations of motion or equilibrium. For the simple catenary, this seems to
have been done by HuvaENs (above, pp. 66 —68).

2. In the final answer. In the case of the suspension bridge, where it is easy, this
was done in unpublished work of Berckman and HuyeENs (above, pp. 24, 45 —46). While
it was doubtless Joun BerNouLLI's aim in connection with the vibrating string, his
solution for the discrete model is too fragmentary to be used (above, pp. 132—135).

These models, recognized as distinct?) by early writers, all will appear in researches of
the cighteenth century.

II. Theory and experiment. All the first researchers in our subject turned to experiment
for guidance, and most of them experimented themselves. However, they showed little
comprehension of what experiment can do and what it cannot. While theory made brilliant
progress in the seventeenth century, experiment remained crude, serving virtually as a
popular diversion, and it is almost surprising that certain definite results were discovered
experimentally?). On the one hand, preliminary analysis of the factors that govern an

1) However, this distinction may not always be apparent to a reader accustomed to modern
precision of statement. Cf. § 2 of BURKHARDT, op. cit. ante, p. 11. That in much of the early work the
limit passage is unrigorous or even incorrect is of course a different matter.

2) These were:

1. The MERSENNE-GALILEO laws (10) for vibrating strings

2. MERSENNE’S law (9) for vibrating rods

3. The existence and coexistence of definite overtones accompanied by nodes, at least for strings

4. Hooxkz’s law (18) for extension

Even here we should be cautious, for only in Nos. 3 and 4 do the original reports declare and reveal
the experimental nature of the discovery. That No. 2 was found out by experiment, the circumstances
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experiment, such as the dimensionless parameters relevant for its interpretation, was
lacking, and the need for reporting the specific data from a sequence of tests rather than
one or two isolated cases was not felt. On the other, the geometers, sharply aware of the
uncertainty of their hypotheses, turned to some simple experiment for direct confirmation
or denial of those hypotheses rather than waiting for a more troublesome check of detailed
predictions from resulting solutions. The case of HOOKE’s linear law of extension is typical :
For any noticeable extension it does not hold for most materials, but the more subtle idea
that it could be tested indirectly for unmeasurably small extensions by checking JAMES
BERNOULLI’s derived formulae for large bending was never suggested. At the same time
the geometers, triumphing in the power of their new methods, hastened on to try new
problems. Thus remained frustrate the high hopes expressed by all the early theorists that
their results find important practical application. Thus began the chasm between elastic
theory and elastic experiment or engineering (if such it may then be called) that spread
ever wider for a hundred years and more and to this day is not closed. In the century that
follows we need not study the general course of experiment, for most of it was unrelated to
our subject ; as we shall see also, many splendid theoretical discoveries of EULER remained
long unheeded by the experimenters.

III. The principles of mechanics. In static problems both the BerNoULLIs in time
came to isolate a differential element and balance the forces acting upon it. The deeper
work of Jammes BerNoULII was available, if in unpalatable form, in HERMANN’S book. In
dynamic problems it wag a different matter, for in those days each savant treated motion
after his own fashion. A variety of mechanical principles, each correct in some range be-
twoon tho vory special, such as GALILEO’s laws for an inclined plane, to the rather general,
such as the LrrBN1z-BERNOULLI principle of live forces, was known, and recognition of
the central importance of the momentum principle was to come only at the hands of
Evurer some fitty yoars later. Here the modern reader, accustomed to obtain equations of
motion by what i called “NrwrToN’s second law,” will expect the English to have the
advantage. But in our subject the English, aside from the unfortunate GREGORY, kept
silent until TAYLOR’s work began to appear, and indeed TayLoR’s formula (74) results from
the sole application of the momentum principle to a continuous body so far ; however, TAYLOR
failed to write or use it as a differential equation. Thus, it seems,

a. None of the continental geometers used the momentum principle, at least in con-
nection with continuous bodies.
b. The English (aside from NEwToN himself, who kept aloof from our subject) lacked

lead us to presume. No. 1, as we have seen, is the cumulative result of experience, guesswork, plausible
reasoning, and experiment, definitively tested at last, though only in the more special form (8), by
MERSENNE,
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the mathematics sufficient to carry through an analysis based on the momentum

principle.

IV. Mathematics. The last observation is essential. For today it is instantly plain
that the language of our subject is partial differential equations. Now the English with their
fluxions and the Continental geometers with their differentials were, in principle, on a par
so long as problems involved but one independent variable. But no problem of the dyna-
mics of continua, apart from those artificially simplified by extra assumptions, is of this
kind. The idea of a partial derivative was indeed known, known in the same sense that the
ideas of a tangent and area of an arbitrary curve were known and used correctly long
prior to the differential and integral calculus. Lacking was a formal calculus of partial
derivatives, and for developing such a calculus the fluxional concepts, while indeed admis-
sible, were not conducive. What was needed was a man who could express and master the
Newronian view of mechanics in Lrisnizian partial differentials. This man was EULER.
As we shall see, with some deviations this program occupied much of his effort for much of
his life, and for the next twenty-five years our history records a part of his gradual pro-
gress toward achieving it.
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Part II. The Beginnings of the General Theories, 1727—1748

20. EULER’s derivation of JAMES BERNoOULLI’s law of bending from HookEe’s law
of extension; introduction of the modulus of extension (1727). At the time when JouNn
BerNouLLI was calculating the [fundamental] frequency of the loaded string (cf. § 17,
above), his student EULER was studying problems of vibration under his guidance. [It may
be comforting to learn that even EULER must have found these problems difficult when a
student, for his earliest attempts are faulty!). By 1726, however, he had a derivation?) of
TayLowr’s formula (75), which he had confirmed by experiments3).

1) Through the kindness of Professor MIkHATLOV I have seen a copy of a note of 1725—1727in
which EULER reports a value of »{) which is greater than the correct value in the ratio V14/11 (i. e.
2 /V;t-); on this note JorN BERNOULLI wrote the correct value (77),.

Further information may be obtained from the unpublished notebooks of EULER. These were
hastily catalogued by ENEsTROM, Jahresber. Deutsch. Math.-Ver. 22 (Ergdnzungsband), 191—205
(1910), who assigned to them the numbers (E) H1—HS9. Slight inspection of these notebooks shows
that ENESTROM’s dates are not always correct; my conjectured dates are as follows:

EH1 1726—7 (completely from Basel)

EH2 1727

EH3 1736—1740

E H4 1740—1744

EH5 1745—1750

EH6 17601757

EHS8 1759—1760

E H7 1760 or 1761—1763

EH9 Miscellaneous
These notebooks, despite their length of some 3000 pages, contain little that Evrer did not ultimately
publish, usually in extended form, and the subjects of many of EULER’s printed works are not men-
tioned in them at all. It is rarely possible to use them to date discoveries; rather, the dates of entries in
them ucually must be bounded by dates from letters or published papers.

I conjocture that the pages of E H6, E H7, and E HSE are not now in their original order, though
most of the contents of E H8 was surely written before E H7. The material on pp. 72—75 of E HS
can bo bracketed with certainty between EuLER’s letter to LAGrANGE of 28 October 1759 and the pre-
sentation date, 13 December 1759, of E 307. Also p. 84 and pp. 86—87 contain the first treatment of
material in E303 and E302, respectively, presented in Berlin on 25 September 1760 and 22 January
1761 and listed on p. 184 of E H7 as among the memoirs sent to Petersburg on 26 April 1762.

A partial description of the notebooks, with similar conjectured dates, is given by I'. K. Muxaiiron
«Banucnsie enuxru Jdeonapda dizepa ¢ apruse AH CCCP,» Hcrop.-uar. nccren. Beaycs 10, 67—94 (1957);
G. K. MiknAILOV, “On LEONHARD EULER'S unpublished notes and manuscripts on mechanics,” Proc.
3rd. congr. theor. appl. mech. Bangalore, 19-24 (1957); I'. K. MuxAliioB & B. M. CMHPHOB, “Heoxyb.xo-
pamEble MaTepmausl JEOHAPTA DAIEPA ® apxwse Axagemmm Hayx CCCP,” Jleomaps Ditiiep, CHopHmE craTeit B
gecTs 250—aermst co xEa poxaenms, Mocksa, Hspar. axan. Hayx CCCP, 1958, pp. 47—79. G. K. MixHAILOV,
“Notizen iiber die unwverdffentlichten Manuskripte von LEONHARD EULER,’ Sammelband zu Ehren
des 250. Geburtstages Leonhard Eulers, Berlin, 1959, pp. 256—280.

On pp. 133—136 of EH1 i8 a first attempt on the vibrating string, by an obscure method leading to
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Before he left Basel, EuLER had written a paper, On the oscillation of elastic rings?),
[which, while failing to solve the difficult problem to which the title refers, nevertheless
obtains a major result in the theory of elasticity : derivation of James BernoviLr's law
of bending from Hookg’s law for the extension of the fibres. Although this reaches the syn-
thesis toward which JAmMES BErRNoULLI had struggled in vain, EULER does not appear to
recognize what he has done. The paper was not printed until sixty years after EULER’S
death; the derivation it contains he published first in another paper on the same subject,
written more than thirty years later (below, pp. 320, 388). For all these intervening years
the two problems, this one and the one stated in the title, are to remain untouched
by anyone else.]

no result. A false frequency for the continuous string is obtained on pp. 137—139; for the string loaded
by one mass, on pp. 139—140. On p. 146 is another false frequency for the continuous string.

2) This is asserted in § 20 of B2, Dissertatio physica de sono, Basel (1727) = Opera omnia III 1,
182—196.

Toward the end of 1726 EULER describes to DANIEL BERNOULLI the contents of De sono and men-
tions that he has calculated the speed of sound. On 24 December 1726 DANIEL BERNOULLI replies,
“Not without pleasure have I learned that you intend to write a dissertation on sound; thus you will
gshow very well how necessary is the joining of physics to higher mathematics. I doubt that anything
definite can be said regarding the speed of sound, since there is as yet no right explanation of the pro-
pogation of sound, It is not the same with the number of vibrations executed by a taut musical sinew in
a definite time, which I have no doubt at all may be determined from the laws of mechanics. I con-
jecture that our theories on this acoustic problem do not differ at all, since after the most exact experi-
ments I have found, as you do, that a string which gives out the lowest C or ut executes 139 vibrations
por socond « + « I do not know whother you have seen the considerations of TAYLOR, a most acute
FEnglish geometer,” who by “a great and abstruse argument’ has derived (75). In our special case this
formuia gives a frequency of 145/sec., “which differs much from ours.” This seems to imply that
DaNieL BERNOULLI's first attempt to calculate the frequency of a vibrating string led to a result other
than (76) and hence was erroneous, He then refers to the second of SAUVEUR’s methods, which
“demands too much exactness in observation, transcending human strength;”’ as for the first, “I
disapprove of it altogether. I will explain my method to you in person . .. Regarding the drum, I say
nothing but that it admite the same solution ag the musical sinew.”

The sources of the correspondence between EULER and the BERNoULLIS are cited below, p. 165.

3) In § 21 of E8 EurER reports that he determined experimentally that the frequency of the note
called G is 466 /sec.; in §§ 10 and 13 of E33 (cited below, p. 154) he reports a different experiment yield-
ing a = 392/sec. and ¢ = 472/sec.; in comparing these results with modern values, recall that from
surviving organs it is known that baroque pitches were at least a full tone lower than modern concert
pitch. CHLADNI, commenting on the second of EULER’s determinations of pitch just cited, writes that in
the years between 1731 and 1802 the accepted pitch had already risen by more than a semi-tone (cf.
§ 57 of op. cit. infra, footnote 2, p. 329).

1) E831, “De oscillationibus annulorum elasticorum,” Opera postuma 2, 129—131 (1862) =
Opera omnia IT 11, 378—382. The crude treatment of simple harmonic motion in § 9 suggests a very
early date; the methods and terms are unconnected to those in EULER’s published papers. Dr. Mik-
HATLOV has kindly examined the original and has written me that the handwriting and paper indubi-
tably confirm my conjecture that this work was written in EULER’s Basel period.
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1 The purpose is to calculate the period A

of oscillation of an elastic ring and hence A
to “lay the foundations for determining
the oscillations of bells and other bodies.”

2 A circular ring is supposed to oscillate

slightly, assuming an oval form (Figure < .

50), [but in fact the following analysis is

local and hence not restricted to the case
3 of a circular ring]. “The ring ..., like a

struck cord, will try to restore itself, and
in such a way that every particle is drawn
B

toward its natural position by a force

Figure 50.

proportional to its distance therefrom . .. Eurer’s diagram for an oscillating ring (1727)

If a particle is that much farther from the

(redrawn for publication in 1862)

circle, by that much more will it be drawn back to it.”” [This last is a false start ; as we

shall see now, EULER in fact applies HOOKE’s law correctly to
the extension of the filaments.]

ac is 7, and thus the increment K e in length of the element

= A
AEB
4 On the left-hand side of Figure 51 we see the ring be- .
fore it vibrates; the radius of curvature Ca is R, the
thicknoss Aa is ¢. On the right, the ring is in vibration,
and the element ab of length ds is selected so as to be equal
to its counterpart on the left. The new radius of curvature
c

A B is given by

R—r
Ry

(83) dv = He =

c

Figure 51. Diagram for EULER’s
first derivation of BERNOULLI’s

ds — 1 1 ds law from Hooxkx’s law (1727)
ods = +r R Cas . (rodrawn for publication in 1862)

6 ‘“...I suppose the joined particles AaecZ and Bbek to be elastic filaments such that the

< =4

¥ G

f
Figure 52. EULER'’s first definition
of the modulus of extension

(“Youwne’s modulus”) (1727)
(redrawn for publication m 1862)

more they are stretched, the greater force they have for
contracting themselves. Therefore the angle Eee is full of
such elements transversely disposed; these try to join the
sides Be and ee, and from the force of these threads
depends the cohesion of the parts of the matter of which
the ring is made. Let this cohesion ... be such that the
series of filaments FG = f extended to FJ =g may

sustain the weight P (Figure 52).”” [That is, f—l; is the

foroe per unit length of cross-section and per unit length
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of extension, or what is now called “YouNe’s modulus”, which makes its first appearance
heret).] Call eM =, Mm = dx. Thelittle space Mmn N will be full of filaments of length

—Z—dz. The force F, pulling Mn toward Nn is given by

P
fg

“Therefore the weight to be applied at £ and e so as to constrain the sides Fe and ee
with the same force” will be

(84) F,= dx- —::—d‘t .

z P
5 = = g2

(85) r p F, Toct x2dxdr .

[Thus we see that EULER is using “pondus”, here translated ‘“weight’, to mean ““force”,
while he uses ““vis”’, here translated “force”’, more generally to mean “effect’’. He has cal-
culated the force F to be applied at K in order to exert the same moment about e as does
F,acting at x.] Integration form z = 0 to 2 = ¢ yields the total “weight” to be applied
at I :

bt = P0gn g PR (11
(86) Welght—3fgdz—§ g (r E)ds.

[This result we recognize as

1 1
(87) .TZ’_Q(7—§), D=1,
epacialized to a rectangular cross-section when the noutral line is taken as the fibre on the
concave side, so that I = A D%, and E is “YouNa’s modulus”. Thus not only is the
Lrerey1z-VartoNox formula (61) successfully combined, at last, with JAMES BERNOULLI’S

formula (45), but also the formula (69) for initially curved rods is included.]

1) In previous theories we have encountered constants or coefficients of two types:

A. In GaLILEO’S theory, and in the work of Le1eN1z, VARIGNON, and PARENT, there is a material
constant K which is interpreted as the rupture stress; cf. (12). These theories in effect consider elastic
stress but neglect the elastic strain to which it gives rise.

B. In HooxkE’s theory, as refined by later authors, there is an elastic force defined as that force
which produces & specified strain in a given body.

What is new here is that EvLEr’s P/(fg) is a material elastic constant, i. e., a mean stress (not a
force) which produces a specified elastic strain (not rupture).

The existence of such a material constant is clearly implied by the more general considerations of
James BERNouLLI (above, p. 106), but it was not introduced explicitly by him. Its explicit appearance
in this work of EULER is easily explained : This is the first problem requiring such a modulus for a proper
solution.

For the later history of “Youna’s modulus”, see below, pp. 402—404.



11

10—11

10

146 BEGINNINGS OF GENERAL THEORIES

EvLER now wishes to calculate the force accelerating a given element toward the
center of the circle. He regards this as the product of (86) by the difference of the lengths £ ¢
at different times during the motion, calculated at the end of the major axis of the ellipse
into which the circle is deformed. He then assumes simple harmonic motion and by
elimination of the distance calculates the period. [The analysis is difficult to follow,] and
EvuLEr at first rejects the result. By rearrangement of constants he concludes that for a
ring of radius R and thickness D the frequency is given by

D E
(88) ”=Wl/?'

He is dismayed at the conclusions that the period is independent of the altitude of the ring
and that the pitch grows higher the smaller is the radius R. [Doubtless these prevented him
from publishing the paper; however, the general nature of the relation (88) is correct,
although for an inextensible ring EUvLER’s neglect of longitudinal motion is not justified
(cf. below, p. 320).]

A marginal note asserts that in order for a bell as a whole to give out the same sound,
it is necessary that R2/D = const. [Thus EULER at this early period thinks of a bell as
composed of a pile of circular rings vibrating independently. This incorrect idea he is to
exploit later (below, pp. 321).]

?1. EULER’s unification of the catenary and the elastica (1728). We now find in
St. Petersburg the two savants who will dominate our subject, nay, monopolize it, for
twenty years and more : Danter. Berxourrt and EULER, one being the son and both
being the pupils of JOHN BERNOULLI, both junior members of the academy, where in
friendly competition they discuss and solve the same problems. DaNIEL BERNOULLI,
twenty-eight years old, is already a famous scientist, while EvLER at twenty-one has
published but three papers. In February 1728 each communicates a unified theory of
flexible or elastic lines ; their papers appear consecutively in the volume containing also
Joun BErNoOULLI’S proofs on the vibrating string, described in § 18.

Dawnier BErNovuLLI’'s note is called Universal method for determining the curvature
of a thread stretched by powers following any law among themselves, along with a solution of
certain related new problems'). The first half of the paper concerns perfectly flexible lines
[and contains nothing new?)]. “To find the curvature of an elastic band curved partly by its

1) “Methodus universalis determinandae curvaturae fili a potentiis quamcunque legem inter se
observantibus extensi, una cum solutione problematum gquorundam novorum eo pertinentium,” Comm.
acad. sci. Petrop. 8 (1728), 62—69 (1732).

2) DANIEL BERNOULLI implies that up to this time only loading normal to the curve or parallel
to a fixed direction had been considered. That he was ignorant of his uncle’s unpublished work is to be
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own weight and partly by an attached weight,”” DANTEL BERNOULLI assumes the band to be
“of the same structure throughout its length, although the problem does not become much
more difficult if it is of non-uniform structure.”” The weight of the band acts at its center

1 8 8
of gravity ; hence its moment about sis gos(z — z,) = gos (x — jxds) =go [sdx.
(1} (1}

The moment of the attached weight P is Px. The total moment is related to the curvature
by the formula

(89) T = —“(;—Z- , B = “modulus of bending” or “flexural rigidity”’.

[We have seen that an equivalent result was obtained by JAMES BERNoULLI, but, always
emphasizing the tension acting on the cross-section, he never stated the law of the elastica
in this way. The more general and more explicit result (87), derived in a major special
case by EurLEr, was unpublished. In DANIEL BERNOULLI’s paper is the first explicit
recognition of (89) as the basic law of the elastica, although to derive it he does no more
than restate it'). Here also we find the first explicit appearance of &4, which EULER is soon
to call “the absolute elasticity”’. Thus (89), or its generalization (87), may justly be called
the Bernovrii-Evier formula for the bending of a beam, it being understood that refer-
ence is made both to James and to Danier. BernourLi.] Hence

(90) gafsdx+Px=2.
o r

Next DanieL BERNOULLI considers the problem from the Acta Eruditorum of 1724
(above, p.138), for which, he says, no solution has been published. We need only consider the

expected, since JaMES BERNOULLI's papers were kept from Jomn BmrnNourrr and his circle; that
DANIEL BERNOULLI should not know the general solution in the book by his senior colleague, HER-
MANN (above, p. 86), is surpriging, especially gince EULER refers to it (below, p. 149).

It is typical of DaviEL BerNoULLI that he stays close to the simplest special cases by resolving
a general load into a normal component, F,, and another, F',,, parallel to a fixed direction, thus losing
the advantages both of intrinsic and of fixed co-ordinates (§ 1). First he laboriously balances such
forces acting upon a chain of three links (§§ 2—3), then passes to the limit as the junctions approach
one another (§ 4). The result of all this we may derive at once from (40) and (42) if we observe that the
normal load is F, — Fy —d—z- , the tangential load is F, Z—g , and then eliminate 7'.

DanNIEL BERNOULLI’S examples include a generalized lintearia in which both the weight of the
fluid and the weight of the curve are considered (§§ 5—17); neglecting the latter leads to the ordinary
lintearia, “first studied by my uncle James BErRNoULLI” (§ 8); neglecting the former, to the ordinary
catenary, ‘‘first proposed to the geometers by my father” (§ 9).

1) Recall that for JaAMES BERNOULLI it was not a postulate but rather a result he attempted to
derive. For DANIEL BERNOULLI, as with most principles he considered true, it seems to be self-evident
and scarcely worthy of comment.

12
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weight P as acting at an arbitrary angle to the band ; resolving the weight into two com-
ponents P, P,,, we replace the term Pz in (90) by — P,z + sz If the density o is

non-uniform, o j’ sdx is to be replaced by j‘ Xdx, where X = j' ods. The paper closes

with the remark that “‘our most enhghtened EvuLER solved this problem, proposed to him
by me, in such a way that it would not seem possible to add anything.”

EvLer’s Solution of the problem of finding the curve assumed by an arbitrarily elastic

band loaded by arbitrary forces at its several poinis') begins

>:] right off with a “general problem2)”’ including all previously

studied cases of the equilibrium of a string or rod : To find

the differential equation of an arbitrarily elastic band fized at

one end B and loaded by arbitrary

c Ao forces along its length and by an

P arbitrary force at its other end A

(Figure 53). The “Hypothesis’ is:

F E “If two rods (Figure 54) a B, BC

C

D
Figure 53. joined at B by a spring are twisted Figure 54.

EULER’s diagram for the elastic . Evrer’s diagram for statement
band subject to arbitrary forces by the power AD into the con- of the Brrrovrrx hypothesis

1) E8, “Solutio problematis de invenienda curva quam format lamina utcunque elastica in singulis
punctis a potentits quibuscungue sollicitata,” Comm. acad. sci. Petrop. 8 (1728), 70—84 (1732) = Opera
omnia IT 10, 1—16. Presentation dates: February 1728, 22 December 1730.

Through the kindness of Professor Sprmss I have seen a copy of a manuseript by EULER which
geoms to be a preliminary version of E8 and must surely date from the period of his studies in Bagel.
This is Mscr. 02 of the Basel University Library, “De figuris quas corpora flexibilia debent induere a
potentiis quibuscungue sollicitata.” Two marginal notes by Jorn BernouwrLt describe his solution for
the catenary subject to forces directed toward a fixed center (above, p. 86). Marginal notes in another
hand point out errors, which EULER corrects in an appendix. (While the inseription on the envelops,
written by Jonw 111 Brrxourii, states that these notes are by Danisr BerwourLi, the circumstances
make this attribution unlikely.)

This paper, carried through with a kind of mathematics considerably more primitive than that in
K831, begins by considering various kinds of perfectly flexible lines. Its most interesting feature is the
faulty supposition that a plane curve which is the figure of equilibrium subject to a certain plane load
will serve as generator of a surface of revolution forming the figure of equilibrium for analogous spatial
loading. E. g., the lintearial surface is a sphere. The error is pointed out in the marginal notes. An
attempt at a direct treatment of some spatial problems is given in the appendix, to which there is no
counterpart in the printed paper E8.

Elastic problems begin only at Proposition 15, which is the “Hypothesis’ put at the beginning of
E8. Here EULER treats only the case of terminal load and obtains only the rectangular elastica.

The unification that is the dominant feature of E8 is completely lacking in this early study.

2) On p. 15 EULER mentions the special case proposed in the Acta Eruditorum for 1724 (above,
p- 138), “the solution of which no one, so far as I know, has obtained up to now, except for the most
enlightened DaNiEL BERNouLLI, who achieved the solution about the same time as I did.”
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figuration 4 BC, so as to subtend an angle 4 BA, the moment of the power AD at B
will be jointly as the elastic force at B and the angle 4 Ba. This hypothesis is commonly
assumed ; probably its truth can be proved physically when the angle is very small.” In
what follows, EULER interprets this hypothesis as implying (89). EuLER’s mechanical
principle, like BERNOULLI’S, is the equilibrium of moments about an arbitrary point on
the band ; thus the solution of the “general problem” [for a band that is either perfectly
flexible (£8 = 0) or naturally straight] is

z y (971
—Pyx+Pmy—6de$+6fXdy=—T,

(91) , \
Y= (F,ds, X=(F,ds,
0 [}

the origin being taken at the end where the loads P,, P, are applied. For the coefficient
0 EULER uses the notation Av, where 4 is a constant of proportionality and » is the
“elasticity’’, not necessarily constant.

The perfectly flexible case is obtained by setting <7 = 0. By differentiating (91)
twice, EULER obtains a differential equation for the curvature ; later he obtains the same

result expressed in terms of normal and tangential loads?) :
(92) CLEUINE R
As EuLer remarks, only HErRMANN had published anything so general (above, p. 86).
TIf F,= 0. Bursr’s first form of (92) yields
dax\2
(93) rF, (d—":> = const. ;

dx
ds
For purcly normal load, as in the cases of the velaria and the lintearia, (92) yields

F,r = const, This exhausts the familiar types of flexible lines.

While EvLER considers some other cases, he cannot effect the integrations. Some
space is given to differential manipulations showing that a given special case may be ob-
tained either from the rectangular Cartesian form or from the intrinsic form of the general

when F'y — const,, the ordinary catenary results, and when F —— — const,, the parabola,

equation.

[Comparison of these simultaneous works of EuLER and DANIEL BERNOULLI reveals
a course typical of what will follow. DANIEL BERNOULLI suggests the problem and is
perhaps the first to solve it ; his paper reproduces what were doubtless the labors of
discovery, groping from one special case to the next, and ends just before achieving the

1) To derive this directly, eliminate 7' from (40) and (42).

10
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goal. Just at the degree of generality where one must abandon the device of concen-
trating the distributed force at the center of gravity, DANIEL BERNOULLI abandons the
problem. EuLER sweeps all this aside and in his finished paper starts at the point where
Ber~ovLL left off. DANTEL BERNOULLI’s mathematics is at least as clumsy as that in the
old papers on calculus of forty years previous, and clumsier than his father’s at this same
date ; EULER’s is secure and fluent. DaNiEL BERNOULLI puts in print the preliminary
trials which ought to have been left in the notebook ; now, as for the rest of his life, he cannot
revise. Indeed, the revision and polishing that the savants of the previous century carried
to extremes is to be almost wholly abandoned in the prolific eighteenth century. In the
present case, however, EULER presents a finished and elegant treatise!) ; not only does he
unify the doctrine of elastic or flexible bodies?) to the extent it had been cultivated up to
that time, but also he is the first to publish an adequate exposition of the known special
cases?). In this, EvLER’s first published paper in our subject, shine forth the clarity, order,
and scope which beautify nearly all his writings. It is also typical of EULER’s work in me-
chanics, in contrast not only to DanteL BErRNoULLI’s but also to most of that we have
discussed up to now, that he does not bury or glide over the basic principles but brings out
(89) explicitly as a postulate.

On (91) EvLER is to found all his researches in this field for the next twenty years?).
While at the time the choice of the equilibrium of moments rather than of the equilibrium
of forces must have seemed the only way to include problems of bending, we see now that
it was an unfortunate one, for this method is little suited to further generalization. In
particular, a proper theory of motion of elastic bodies does not follow naturally from the

consideration of moments,]

22. MUSSCHENBROEK’S experimental discovery of the law of buckling in eompression
(1729). The second quarter of the eighteenth century produced not only the first attempts
at a fairly general elastic theory but also the first systematic and successful program of
experiment on the strength of materials, which is reported in MUSSCHENBROEK’s Iniro-

1) The second presentation date nearly three years after the first suggests that EULER may have
withdrawn his first attempt and replaced it by a maturer work.

2) At this time EULER uses “lamina”, “filum”, and ‘“‘corpus” as virtually equivalent.

3) Cf. our remarks above on the treatments of TAyLor, HERMANN (pp. 86—87), and DANIEL
BERNOULLI (p. 147).

4) This paper completed the general theory of plane flexible lines, though publications concerning
them continued to appear for another century. Here we mention only the exposition in §§ 561—570,
889—890 of MACLAURIN’S A T'reatise of Fluxions, Edinburgh, Ruddimans, 1742; the elegant and concise
treatment of J.-B. CLAIRAUT, “Methodus generalis inveniends catenarias,” Miscell. Berol. 7, 270—272
(1743); and the merely derivative work of KRAFFT, “De curvis funiculariis et catenariis, vel illis, quae cor-
poribus flexibilibus inducuntur, cum a potentiis quibusvis solicitantur,” Novi comm. acad. sci. Petrop. &
(1754/5), 145—163 (1760).
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duction to the coherence of solid bodies?). This work deserves the high esteem given to it by
the writers of the eighteenth century, who refer to it as the standard collection of experi-
mental data. To MusscHENBROEK is due the invention of special testing machines?) per-
mitting systematic variations of experimental parameters in an easy succession of measure-
ments. Unfortunately, all his conclusive experiments refer only to breaking ; elastic defor-
mation is described, but no definite laws are found for it. MUSSCHENBROEK is a scholarly
reader of all earlier work, including mathematical theories he does not understand fully ;
in contrast to his lucid descriptions of experiments, he makes his treatise harder to read by
inserting stretches of tedious geometrical proofs in the style of GALILEO’s school?).

MUSSOHENBROEK begins by experiments on extension. He infers GALILEO’s formula
(12) by reasoning and thus considers it sufficient, in cases where weight is neglected, to
measure the rupture force P, . In a sequence of 47 experiments on variously shaped prisms
of various woods, he measures not only P, but also the elongation and the transverse con-
traction prior to rupture ; [unfortunately he does not infer any elastic law]. In each case
he describes and illustrates the surface of rupture. He notices that fracture sometimes
occurs gradually, as if one fibre after another were breaking. The occasional inconsistency
of the results he attributes to the irregularity of wood structure.

Coming to work with metal wires, he begins to doubt (12) and decides to test it by

1) “Introductio ad cohaerentiam corporum firmorum,” pp. 421—A472 of Physicae experimentalis,
et geomelricae, . . . dissertationes, Lugduni Batavorum, Luchtmans, 1729, [x] + 685 pp.

There is an earlier work, Hpitome elementorum physico-mathematicorum conscripta in usus aca-
demicos. Lugduni Batavorum, Lugtmans, 1726, This scems to be derivative, giving no experimental
rogulte of interect but in §§ 380—395 are clear physical definitions of the terms “hard”, “‘perfectly
hard” (. e., rigid), “soft”, ‘“perfectly soft”, ‘‘flexible”, “‘elastic”, and ‘‘perfectly elastic”.

There is also a later work which includes summaries of some parts of the great treatise we describe
above. This is Hlementa physica conscripta in usus academicos, Lugduni Batavorum, Luchtmans,
1734; seo §§ 896—400. In §§ 322—329 wo find the definitions mentioned above, and also the statement
that heating a body always renders it less elastic. MUSSCHENBROEK writes that experiments of BoyLE,
HAUKSBEE, DERHAM, and others show that a body has the Same elasticity in & vacuum as in open air.

2) For tensile test of glass rods, Figs. 8 and 9 of Tab. XVII; for the tensile test of wooden beams,
Fig. 6 of Tab. XIX; for the tensile test of metal wires, Figs. 2, 3 of Tab. XX; for the bending test of
wooden beams supported or clamped at the ends and loaded in the middle, Fig. 36 of Tab. XXIITI;
for the compression test of wooden struts, Fig. 16 of Tab. XXVII; for a test of hardness, Fig. 3 of
Tab. XXVIIL

Earlier authors had performed much the same tests but with little or no precaution or plan.
E.g., on p. 480 MUSSCHENBROEK writes of MARIOTTE’s tensile test, ‘“In this method I noticed the in-
convenience that the feet of him who performs the experiment are always exposed to danger of injury
when the weight falls.”

A special machine had been designed and built by ’s GRAVESANDE for the faulty test mentioned in
footnote 1, p. 117.

3) Especially pp. 467—479, 552—610, 6256—639.

pp. 466—474

481—494

494—506



506

525—534

830—037

535

540—541

541—548,
610-—625,
639—650
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experiment, although this “will seem superfluous to the geometers.”” He prepares the wires
by drawing to a certain diameter, then softening them by heating. A series of 34 tests on
wires of copper, brass, gold, lead, tin, silver, or iron generally fails to yield P,/4 = const.,
whether 4 is taken as the area of the wire before it is tested, after it is broken, or at the
surface of rupture. His results do not always agree with MERSENNE’s (above, p. 32).
That P; does not depend on the length of the specimen MUSSCHENBROEK regards as in-
controvertible, though he does not report experiments testing it.

“I observed in all these experiments that the wires . .. took on considerable heat
when they were elongated . . . and broken ; this heat arises from the rubbing of the parts
moved upon one another and strongly pressed while the metal is thinned ...” [Thus
MUsSCHENBROEK is the first!) to write that doing work upon a deformable body heats it,
and he attributes this heating to internal friction.]

MUSSCHENBROEK attempts to infer from theory that the numerical factor in (11) may
have any value not exceeding %, depending upon the law of tension ; thus the factor must be
determined by experiment. [While the former conclusion is true, MUSSCHENBROEK s reason-
ing is faulty®?).] Experiments on 50 circular or rectangular prisms of various woods yield
numerical factors between 1/2% and 1/18. “These experiments bring out more clearly
into the daylight the fact that neither the rule of GALI.EO, nor MARIOTTE’S, nor any other,
is universal . . .”” MUSSCHENBROEK observes also that the numerical factor is almost always
less for a circle than for a square [cf. the work of PArRENT, above, pp. 111—112)].

MusscHENBROEK makes some attempt to test JaAMES BERNOULLI’s theory of the elastic
curve by experiment, but he finds that wooden beams continue to deform under load. “If it
is permissible to present so crude an observation ... Isay .. . that there are as many different
curves formed by attaching a weight as there are different woods that I have investigated.”
Also, the variety of woods obtainable from the same trunk make it uncertain whether the
gtrength determined by breaking one specimen was applicable in interpreting the defor-
mation of tho next. [Strangely, however, instead of carrying out the measurement of
deflection for metal bars,] MUSSCHENBROEK complains that he cannot study the breaking
of metal bars in bending because they are too flexible.

There follows a long series of tests of GALILEO’s proportion (13),, not only for beams
subject to terminal load but also for beams supported or clamped at both ends and loaded at
their middles. The lever arm of the weight at the instant of rupture is recorded, but the

1) Long before RUMFORD.

2) Pp. 532—534. MUSSCHENBROEK here employs a linear law, varying only the slope and the
position of the neutral fibre. Perhaps he is trying to follow PARENT (above, p. 113), but he does not
seem to understand the problem, as he does not consider the contribution of the compressed parts at
all, nor does he apply PARENT’s condition that the area under the curve of tensions equal that under
the curve of pressures.
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vertical deflection of the beam is not. There are hundreds of measurements, terminating in
a systematic program on beams of oak or pine 10” or 11” broad, 10” to 15” deep in steps of
17, 6’ to 40’ long in steps of 2’. In general, the agreement is not satisfactory; MusscHEN-
BROEK finds a dependence on depth as Ds, where the exponent a is less than 2 and varies
from one wood to another. Only for glass is GALILEO’s proportion (13), verified. Mus-
SCHENBROEK finds that clamped beams are many times stronger than supported beams,
but he is unable to infer a specific law.

The climax of MUSSCHENBROEK s work is the series of experiments numbered 222 —248,
“the first in this doctrine of the firmness of compressed bodies,”” which are summarized in
the criterion for failure in compression stated in Proposition 119 : “Parallelepipeds of the
same wood . . ., compressed along their lengths, exert forces of resistance which vary in-
versely as the square of the length, directly as the thickness of the side that is not bent, and
directly as the square of the side that is bent.” I. e.,

D*B
B

[Thus the law of failure in compression is entirely different from that for failure in tension.]

(94) P, @

MusscHENBROEK’s conceptual explanation regards the strut as compressed elastically,
though of course in ratio less than that of the compressing weight?!), until the internal
pressures transmitted through the irregular, porous structure of the wood result in
bending ; when the compression is increased, the strut ‘“breaks in the middle, where it is
bent the most,” and this latter assertion is verified in the experiments. [Thus MUssCHEN-
DROEK ig the first to distinguish buckling from breaking ; cf. the remarks of HERON and of
LEONARDO DA VINCI (above, pp. 18, 20). Furthermore, he is the first to discover by experi-
ment any non-trivial relation in the strength of materials?®). It seems unlikely, however,
that the dependence on B and D given by (94) can be correct?) ; the striking dependence
on } is now classical.

To derive from theory a formula of this type will be a major achievement of EULER
in 1742 (below, p. 211)%).

1) The reason given is that of JAMEs BERNoULLI, above, p. 106.

2) GALILEO’s proportions seem to have been inferred from conjecture rather than experiment;
HookE’s law is merely linear and follows as a first approximation from most theories. The proportion
(94) represents a different order of achievement.

3) If (94) is true, there is a material constant of the dimensions [force]/[length]. On the other
hand, if we assume the existence of an elastic modulus £, by dimensional analysis follows

ED*B ,/D B
T

P = 1’1

EULER’s theory (below, p. 404) gives f = const. (provided &8 = EI).
4) MUSSCHENBROEK’S treatise ends with a discussion of the bursting strength of pipes (pp.

654—662

652—0653
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23. DANIEL BERNOULLI’s discovery of the simple modes and proper frequencies of
vibrating systems (1733), and related work of EuLER. Before describing the beautiful
discoveries DANIEL BERNOULLI is soon to make concerning vibration, we mention some
earlier work of EULER. The introductory material on acoustics given in his great essay
on musicl) seems to derive in large part from his reading and from his researches in
Basel before 1727. EULER is the first author since MERSENNE to assert rules for furnishing

a collection of strings such as to give out equable sounds. First, the ratios % of all

strings should be the same. For a material of density ¢ we have pgAl = W = weight of
the string = gol; hence if all strings are of the same material, we should adjust them so

that % has the same value. Since the loudness depends on the amplitude, and the amplitude

depends on the place and the amount the string is struck initially, we should strike all
strings at the same place. Then the loudness will depend only on the amount of striking
force. The loudness of the sound transmitted in air depends upon the speed acquired by
the particles of the air, and this is to be estimated from the maximum speed of the string,
in its turn proportional to 7'/l [but this I do not follow, since for given amplitude the

maximum speed is proportional to » and hence to% l/ % ]. Combined with the above, this

yields% = const., or% = const. That is, for equable sound we should have 4 o« and

T o 1. By (10), the sounds will then be reciprocally proportional to the lengths. “This
rule will have great use in the construction of musical instruments.” [It is justly criticized
Dy DANIEL BERNOULLI?).]

663—668) and an attempt to measure the hardness of wood by the amount of energy, supplied by
impacte of a ball of given mass and speed striking the handle of a chisel, necessary in order to cut
through a specimen of given size.

On po. 508—524 he continues the experiments of pkr RfaTMUR (above, p. 58) and shows that
twisting always notably weakens the total strength, but he cannot form a definite law. He finds to his
surpriso that the thinnest animal fibres have the greatest breaking stress; e. g., the finest fibres of
cocoon sillz are stronger than gpider silk, which in turn is stronger than human hair.

1) E 33, Tentamen novae theorie musicae ex certisstimis harmoniae principiis dilucide expositae,
Petropoli, 1739 = Opera omnia ITT 1, 197—427. The work was complete, or nearly so, in 1731.

The rules for equable sound are given on p. 158 of Notebook EH]1 (cited above, p. 142), apparently
written before the letter of 1726 to DaNiEL BErRNOULLI which we have quoted above, p. 143. It appears
that EULER inferred these rules from experiment.

2) On 28 January 1741, just after he had first seen the work, he wrote to EuLER “I have con-
jectured from some passages that you have not read MERSENNE . .., who has very curious experi-
ments . . . I have wondered if for hearing it is not required that the tympanum be tuned to the sound
perceived, which office the muscles can do with extraordinary speed and from which many phenomena
may be deduced. On p. 10 it is said that the sound is most pleasant in strings as taut as possible. This
question MERSENNE treats [cf. above, p. 31] and gives only half this degree of tension for the sweetest
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“We have said that the sound will be less pleasing if the string is not tense enough,
for then the travel in vibrating is too great and thence the air is moved rather as a wind
than induced to execute oscillations . . . Also, as is known, the great vibrations are not
isochronous with the lesser, so that the sound at first is lower and does not remain the
same. Thence it easily happens that the whole string does not produce its oscillations all at
once, but one part reaches its maximum speed and its point of rest faster, another slower,
whence the sound is inequable and rough . . .”

For similar bells of like material, EULER repeats [MERSENNE’s] rule »oc1/ vw,
[equivalent to (9)].

For prismatic rods or bars, “the sounds seem to depend upon the length in this way,
that each fibre stretched along its length should be regarded as vibrating by itself.”” Thus
voc 1/12, [but how EULER infers this law he does not disclose, nor does he make clear
to which kinds of vibrations he regards it as applying?). No dependence on cross-sectional
area or form is mentioned.] ‘“Finally, the frequencies of prisms of different material depend
not only on the specific gravity, but also he who would determine the sounds them-
selves from theory must know the rule of the cohesion and stretching of the material.”

EULER says that ‘“both from theory and from experience’’ we know that a string can
vibrate in halves, thirds, fourths, etc., thus giving out its harmonics. [The experiments of
SAUVEUR were well known, but no theory of any kind for the overtones was in print when
this book was written. Perhaps EvLER refers to still unpublished work of DANIEL BER-
NouLLl, which we now describe.]

Before leaving Petersburg in 1733, Danter. BERNOULLI had communicated?) his
Theorems on the oscillations of bodies connected by a flexible thread and of a vertically sus-
pended chain®). The remarkable results in this paper establish him as the discoverer of the
stmmle modes and proper frequencies of an oscillating system. He has observed the ‘“‘very

sound . . . From what he says it is clear that the greatest tension ig the least pleasant, and I think too
that the sound will be not at all constant in strings as taut as possible, since the elongations are not
proportional to the stretching forces, while not far from rupture everything must be very irregular.
That the breaking forces are proportional to the thicknesses of the strings is not confirmed by experi-
ence . . . Experience shows also that nearby a high sound is louder, while far away a low sound is
louder.”

1) For longitudinal vibrations, such as the foregoing text suggests, it is false, the correct law

11/E A .
being » o TV? . To prove that for transverse elastic oscillations of a bar the correct scaling law
D1/E

isy ¢ 77 V— will be a great later achievement of EULER in several steps, beginning in 1735 (below,
p- 169). Both these laws are consistent with MERSENNE’s law (9).

2) This is confirmed by EULER in § 3 of E49, cited below, p. 162.

3) ‘“T'heoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae,”
Comm. acad. sci. Petrop. 6 (1732—1733), 108—122 (1740).
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irregular” motions of a hanging chain; [since establishing the equations of motion for
such a system seemed out of reach of methods then known,] he decides “to determine into
what curve the chain should be bent so that all its particles, be-
ginning to move at once, would simultaneously reach the vertical 'ﬁ
passing through the point of suspension : for I understood that in
this way the oscillations would be equable and such as to have a
definite period of oscillation . .. In the solution I have used new
principles, and besides that I wished to confirm the theorems with
experiments ... We shall consider only very small isochronous
oscillations, but for the experiments it is allowable to use some-
what greater ones without noticeable error.”

Theorems 1 and 2 concern the weightless cord loaded by two
equally spaced weights of equal mass and assert the existence of

two possible modes of vibration, shown in Figure 55, with amplitudes

b .. n/qLc

(95) ‘@’—1:1:1/— 1'=2~1n-l/%]/4——~:l:l/§, Figure 55.

BH Danier. Bernourrr’s
drawing of the two

whoro ! == AC, the whole length. In the “collaborating” mode,  simple modes of vibra.
. . . . tion for a string loaded

corresponding to the upper signs, the oscillations are but slightly by two weights

faster than for a simple pendulum of the same length, while

for the “‘contrary’” mode they are very much faster. These

and frequencies satisfying

A

results are confirmed by experiments. Theorem 3 asserts
for two weights at distances AH =«l, HF = gl,

%+ p=1, and with masses yM and O6M, where B¢~ H
y + & = 1. (9b)is generalized by

_ yla=5 +6:I:V‘iﬂ"7/f5+[oc+l3(7'—fS

BH .
g FéoC

(96) -~

yo Lt _9_]/ LF Vapyd + ot fly —O)F

27 V 1 2afy

Theorems 4 and 5 concern the case of three weights 1 .

CF Fi

. . _ gure 56,

(Figure 56). Then if 2= R ¥ may be taken as any o oo o e’ deawt g of the
three simple modes of vibration for

one of the three roots of a string loaded by three weights

97) 423 — 12224+ 32+ 8=0,

while D@ — 32* — 22 — 2. The frequencies are then

(98) v:EI;V%-sz—zw) .
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The roots of (97) are calculated numerically. Theorems 6 and 7 generalize the results to
the case of three weights of unequal magnitude at unequal distances. Among the corollaries
we note only the particularly elegant one that follows by taking CF = 0 in the second
mode, thus yielding [HuYGENS’ and] JOEN BERNOULLI’S result (77);.

There follows a ‘“‘general scholion”: “I can give
A A A similar equations for four, five, or as many bodies as
desired : Always the equation rises to as many dimen-
sions as there are bodies . .. this law appears from the
| method I have used.”
- 1 Theorem 8 asserts that for a wuniformly heavy
" NE M hanging cord of length I, in ‘“‘uniform oscillations”
G (Rigure 57) the displacement y at a distance z from the
bottom is given by the series we should now denote by
(99) y=11,(2)/%),
o
e where % = CF and where « is so chosen that
DANIEL BERF}‘;g;::LIS'Z' drawings of (100) Jo (2 V;i) =0.
the first three simple modes of vibra-

tion for the eontinuoug heavy eord

[This is the first appearance of “Brssern functions”.] By
a mothod for solving transcendental equations DANIEL BERNOULLI gave in the preceding
volume he caleulates that the [largest] value of « is given by

& 1
(101) = 0,691 [= T,E] .
According to Theorem 9, the period is that of a simple pendulum of length « ; 3. e.,
179
(102) == VL.
Alternatively,
(103) o« = the subtangent C P at the bottom,

as is immediate from the series for (99). Thus the chain oscillates more slowly than a
pendulum of the same length. An experiment performed on thread loaded by many
small equidistant leaden weights confirms (102) and (103).

Moreover, the equation (100) ‘‘has infinitely many real roots, and also the chain can
be bent in infinitely many ways so as to execute uniform vibrations ; the value of « takes
on smaller and smaller values until it virtually vanishes. In all cases the length of the

11,13
12, 14

15

16

17
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isochronous pendulum is «, or the subtangent C'P; thus the corresponding oscillations
are almost infinitely rapid.”” The modes?!) may be distinguished by the number of inter-
sections with the vertical [i. e., nodes]; in the first, there are none besides the point of
support. In the second, there is one, in the third, two, eic. For the second mode BERNOULLI
gives the following approximations :

%: 0,13 [:6%1], ﬂﬁ: 0,19, g= 0,47, %{%=—§— .

“The arcs cut off between two neighboring points of intersection will be greater, the higher
up the chain they are. However, in a chain of virtually infinite length the highest arc
will not differ sensibly from the figure of a taut musical string, since the weight of this
arc is as nothing in respect to the weight of the whole chain?). Nor would it be difficult to
derive from this theory a theory of musical strings agreeing with those given by TaYLoR
and by my father . .. (above, §§ 9—10). Experiment shows that in musical strings there
are intersections [i. e., nodes] similar to those for vibrating chains . . .”

[This passage makes it plain that DANIEL BERNOULLI has in his hands a direct theory
of the simple modes and proper frequencies of the vibrating string, as yet given by no one,
but he has not worked out the details. Later he will have heavy grounds to regret that he
lot his ideas lie undeveloped.]

(104)

Theorem 10 concerns a heavy chain of length I suspended from a weightless cord of
length A. If f is the amplitude at the junction z =1, then3)

x
" o= MCIE )
Jo(2]/%) *
Theorem 11 gives an equation for the proper frequencies when a concentrated mass is
fixed at the point where the chain is joined to the cord4).

1) While DANIEL BERNOULLI does not use this term here, he has used it above in eonnection with
discrete systems.

2) In the terms of BrssEL functions, the above passage asserts that the positive roots of J,(2¥z)
are infinite in number, that the interval between them increases, and that for large z we have
Jo (21/;) ~ f(z) sin g(z), where f and g are virtually constant functions.

3) BeErNouLLI does not define 4, but the above seems the obvious explanation; the series written
by BErNoOULLI is that we denote by (105),, but linearized with respect to 4, though he does not say
that A/1is small, and in fact for his following example he takes 1 = [. He gives also a rational fraction
which he says is a first approximation to the largest value of « satisfying (105),, but there is no reason
why this problem of proper frequencies should differ from the preceding.

4) I am unable to verify the result. In § IX of the paper cited below, p. 159, DANIEL BERNOULLI
says that the proof follows by adding a suitable constant in the previous result. That this is so appears

from (148).
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Theorem 12 concerns the chain of non-uniform thickness. The weight is now g X' (x); 25
then the equations determining the shape and frequency are

Y _ 1 V?

The case g2 = x/l gives (99); the case g X = x2/I> gives the series we should now 26
write as?)

(107) y = 221(%)—*.71{2 ]/?) , (2 %’): 0.

[In differential form, (106) and its special case g Z' = z/l are

d [ dy a d ( dy _
(108) &%<Z%)+y’%‘—0, a%<x%~)+y—0]

The paper ends with a ‘“‘general scholion” warning that the oscillations must be small 27
if this theory is to apply. This means, for example, that in the middle drawing of Figure 57
we must have FC << C B. Finally, “if these pendulums are set in rotary oscillation they
will take on the same forms as here determined, and they will complete their rotations in
double the time as if they oscillated in a single plane?).”

[The results in this remarkable paper show that DaNTEL BERNOULLI has mastered the
phenomenon of simple modes and proper frequencies for vibrating systems of considerable
generality. He ig the first to explain by theory of any kind the sequence of overtones a
single vibraving body may emiv. He clearly and explicitly states that for the systems he
treats the £* mode has % — 1 nodes. His reference to the vibrating string in § 21 suffices
indeed to explain the existence of its harmonic sounds. It is curious that he does not make
any use of SAUVEUR’s terms (above, p. 121). What is missing from DANIEL BERNOULLI’S
theory is all reference to the displacement as a function of time and any suggestion that the
simple modes, which he explicitly recognizes as special motions, may be superposed to form
more complicated ones.]

In the next volume appear DANIEL BERNOULLI'S Proofs of his theorems concerning
the oscillation of bodies connected by a flexible thread and of a vertically suspended chain?).
These rest upon a new principle of mechanics, giving a method for calculating the accelera- 1

1) From our description of this paper and of the work of EULER to be described below, p. 164
et seqq., it is plain that the history of BEsskL functions given in Ch. I and other passages of WATSON’s
A treatise on the theory of Bessel functions, Cambridge, 1922, is not complete, especially as regards the
earliest researches.

2) This proposition, due in principle to HuveENs, we have proved above, footnote 3, p. 48.

3) “Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et
catenae verticaliter suspensae,” Comm. acad. Petrop. 7 (1734/1735), 162—173 (1740).
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tions from the accelerating forces in a constrained system. “Think that at a given instant
the several bodies of the system are freed from one another, and pay no attention to the
motion already acquired, since here we speak only of the acceleration or the elementary
change of motion. Thus when any body
changes its position, the system takes on
a configuration different from that it
would assume if not freed. Therefore

A T

imagine some mechanical cause to restore
the system to its proper configuration,
and again T seek the change of position B

i _
s

ariging from this restitution in any body.
From both changes you will learn the
change of position in the system when
not freed, and thence you will obtain the
true acceleration or retardation of each
body belonging to the system.” [This
obscure statement contains the famous
Principle D’ALEMBERT is to lay down, E

in scarcely clearer form, as the general Figuro 58

law of mechanies in 1743. Ag we ghall Diagram for Daniern BERNOULLI’S analysis of the simple
modes of a string loaded by two weights

see in our analysis of D’ALEMBERT’S
work in § 26, the Principle itself is a general statement of an idea created by James
BrrNovLLI for his solution of the problem of the center of oscillation in 1703.]

When we try to follow the proof in the special case for two masses, we discover that
it rests upon the balance of forces. [Besides BERNoULLY’s figure we put a drawing from
which the argument seems clearer (Figure 58). In what follows, we replace BERNOUTIY'S
infinitesimal distances by accelerations and omit his awkward geometrical calculations.]
(a) Suppose the lower link be freed ; then the tangential acceleration of m is gsin6, ~g0,,
while M moves straight downward with acceleration g. (b) Now restore the lower link ;
then to make M move on the tangent to the arc y, an acceleration along the link must be
supplied. To the lowest order in 6, this acceleration is g, and hence the resulting accele-
ration is g0, along the tangent. But

. — 11+ L x
02wsm62kfyz—Lﬂ=f[ yl_l_w_yl_l__<L+?;1).
Hence

109 = Y
(109) accel. of M (L+l)g'
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(c) The acceleration g along the lower link imparts to m an accelerating force of magnitude

Mg and hence an acceleration % g along the link. Thus results an acceleration tangent to

the arc ¢, in the amount %— gsin f ~ % g % . Combined with the result (a), this yields

(110) accel. ofm—-(-y—1————— -—)g.

[Thus far, the analysis is general though clumsy from obscurity of principle along
with an unfortunate selection of variables. Now comes, as always in this early work,
TAYLOR’s assumption:] the accelerations are as the displacements. This yields

By 2
l L % Y

(111) —_— = = .

y M =z L

Peawr " (1 )ute
This is a quadratic equation for yi . Since y, = (1 + £) 9, + z, two values for the ampli-

1
tude ratio 72 result. From (110) we obtain the frequency » = l/g l/ 1 2
Y1 m L A

These results prove Theorems 1, 2, and 3.

For three bodies, a similar argument is applied: First the bottom mass may be freed,
then that next to the bottom.

For the general cage, BERNOULLI hag perceived a general rule, [apparently by in-
duction from the cases of six and seven weights]. Number the masses from the bottom, and
let 0, be the angle between the link connecting M ;, with M., and that just above it. Then

n
accel. force on M, < X 6, ,

k=1
n M].
(112) accel. forceon M, X 0, —==+6,,
k=2 M2
accel, force on M, o z 0, — U, + M, 6, ,
k=3 Ms

Assuming the accelerations are as the distances then yields as many linear equations as
there are unknowns [and thus an equation of degree n] satisfied by the proper frequencies.

From (112) we read off the result for the continuous case, since the angle of contact
2

is _‘;;;22 , where z is the distance measured from the bottom. That is,

(113) accel. force at x o f &y dx dzy .
¥ dat

If this is set proportional to y, (108), results, whence follows Theorem 8. To calculate the

III
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period, all we need is the accelerating force at the bottom ; this, by analogy to (112),,
3

. d%y . dy .
is f dat dr = — T | oo This proves Theorem 9.
0
When the density is not uniform, analogy to (112) yields
1
dzy 2 dy
(114) accel. force at z o _/‘—d_x—f dx — & G
z dz

whence (108), follows.

[These two papers are as fine as any DANIEL BERNOULLI ever wrote, and they bring
a magnificent contribution to the theory of vibrations, one indeed scarcely equalled by any
other work. It is instructive to follow the difficult and clumsy steps by which BERNoULLI
demonstrated his results. In addition to being as great an expert on mechanics as any then
living, he was an especially thorough student and admirer of Newton’s Principia, Those
who parrot the conventional view that NEwToN’s principles suffice to solve all problems of
mechanics should read these papers, from which it is most plain that if such be the case,
DANIEL BERNOULLI, at least, did not know it in 1733. In fact, the method of “NEWTON’s
equations” is due to EvrEr and will first appear in his work of 1744—1750 (see § 35,
below).] )

Evrer, indeed, is immediately able to obtain DANIEL BERNOULLI’s results more ele-
gontly, but his mothod is only slightly different. In his paper, On the oscillations of a
flexible thread loaded by arbitrarily many weights'), he writes, “Several years ago, when the
most enlightened [DANIEL] BERNOULLI was residing here, there was raised between us the
guestion of the curvature of a chain oscillating about one fixed end. But experience taught
us that those curves may be most irregular and various, whence we considered the prob-
lem not only most difficult but even exceeding human strength unless some restriction
is imposcd. Therefore we turned our attention to infinitely small oscillations . . ., not
seeking . . . all [such] oscillations but only those in which the several parts of the chain
oocupy & vertical line or natural state simultaneously. We observed indeed that more often
the oscillating chain is never entirely displaced to one side only . . ., but we foresaw that
the oscillations could be adjusted initially in such a way that the several parts would reach
the vertical simultaneously. From this we set up the following problem : T'o find the cur-
vature of a chain oscillating in such a way that its several parts reach the vertical simultaneously,
and to find the length of the simple pendulum that executes its oscillations in the same time.

“The chain . . . is to be regarded as a thread, perfectly flexible, devoid of gravity, and
loaded by infinitely many little weights. And the chain is wont to be regarded in this way

1) E49, “De oscillationibus fili flexilis quotcunque pondusculis onusti,” Comm. acad. sci. Petrop.
8 (1736), 30—47 (1741) = Opera omnia IT 10, 35—49. Presentation date: 31 January 1735.



EULER ON SIMPLE MODES (1735) 163

when the shape of a chain hung up by its ends, or the catenary curve, is sought. There-
fore . . . the thread is to be regarded . . . as loaded first by one weight, then by two, then
by three, . .., whence . . . the conclusion can be extended to the case of infinitely many
little weights . . . Before his departure the most enlightened BERNoULLI gave his solutions
without proofs, and just now he has sent us the proofs. Indeed, since at that time he, his
father, and T discussed these questions, I too obtained solutions agreeing excellently with
his, but since I see now that his method is quite different . . ., I will explain mine here . . .”
Beginning with a simple pendulum, EULER observes that in any configuration

accelerating force displacement
weight " length of pendulum

(115)

and this is applied in all the cases which follow. In Figure 58, EULER sets up a straightfor-
ward balance of forces. The tangential force on M is M0,, that on m is m6, — M . EULER
observoes that for a simple oscillation the length I as calculated from (115) must have the
same value for each body in the system, viz

mb— MB _ M6, 1

116 = = .
(116) mY, My, L+«
Forming tan 6, shows that 60,~ sz = Y2 z y‘; forming tan 6, shows that
6, ~v % _— %2_;5 , and hence B — -ij = %— — -%i . HTL Substitution in (116) yields
the quadratic

(117) WX+ X1 —A—W—-AW)—1=0,

whore W — M|m, X — yy/y1, 4 = L[l. Therefore just two values of the ratio X are
possible. If the displacements conform initially to one of these values of X, they will con-
tinue to do so, the point P will therefore remain stationary, and L + « will be the length

of the equivalent simple pendulum. With X a root of (117), L + « may be calculated

from (116); in fact, L +a = XL/(X —1).

EuLER’s results on the weighted string are much the same as BERNOULLI’s but go
beyond them in that EvrLEer obtains the explicit solution for the case of n equally spaced
and equal weights. His result, which we here express in the notation of “LAGUERRE
polynomials™, is?)

1) The introduction of these functions, too, is due to DaNieL BerNourLrr and Eurer. Note
that comparison of EULER’s solution for the loaded string with DaNIEL BERNOULLI’s for the continu-
ous string suggests at once the famous limit formula

Lim I, (%) = J,2V7) ,

along with a corresponding relation for the zeros.

7—14



15—20

21—22

923

%

164 BEGINNINGS OF GENERAL THEORIES

(118) yk+1=9IL,c<%->,k=0,1,...,n—1,

where U is the displacement of the lowest weight (k = 0), y, is the simultaneous dis-
placement of the k" weight, a is the distance between weights, and the frequency is

given by v = % |/ % . [EULER gives this result very briefly; it is plain from his analysis
that the circular frequencies w of all the modes are determined from the roots of

a

(119) Lﬂ(z)=0, w =2

For the continuous case, EULER easily derives (108), and the results (99)—(102).
For (108), he obtains a general first integral. He notes that for « < 0 the curve given by
(99) is not suitable because it becomes infinite [i. e., it violates the hypothesis of small
displacement, no matter how small is 9]. The entire curve for 2 = 0 is appropriate for
representing the semi-infinite continuous chain, [but the figure he gives is crude and does
not show the diminishing amplitude and nodal distance].

The remainder of the paper treats the case when ¢ =2ZX"oc 2. From (108), follows then
x dy  dy |y
(120) nt 1 det Vae T =0
and the first integral reduces to a Riccati equation. If » = — }, we get the solution

' 2z
(121) y = A cos |/—(;— .

For general n, EULER derives the series solution of (120) we should now write in the nota-
tion of BESSEL functions as

(122) Y=g"TLevD, g=-010T,

1.2

[bhiv is the first appearance of “BesskrL functions” of arbitrary real index?). EULER does
not discuss the mechanical interpretation but rather derives the integral form

1 2n—1 1
6"(1 —18)"z  cosh (2t I/—(n—a—)—x) dat

1 2n—1
JA —) "2 dr
(]

(123) % =

[This is perhaps the earliest example of solution of a second-order differential equation by

1) The result (121) 1s equivalent to
J_&(z) = (%)% cosz .
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a definite integral. The result itself, slightly transformed, is usually called “Porsson’s
integral representation’, viz

1 7
2 (32)” %j' cos (2 sin @) cos®*® pdp.

(124) SO =y Tt 4

The order of discovery in the foregoing works we cannot ascertain. Comparing them,
we find DANTEL BERNOULLI’s clearer in respect to the phenomena being explained, EvLER’s
clearer in the analysis. Although EULER mentions the sequence of proper frequencies and
modes?), ho fails to give them the emphasis they deserve ; BERNOULLI sees that they are
representative of a phenomenon occurring in all vibrating systems. While EULER’s derivations
are clearer, BERNOULLI’s contain deeper undeveloped possibilities. As far as principle is
concerned, both researches are incomplete, and to about the same extent : Both investi-
gators failed to establish the equations of motion and failed to connect the simple modes
with more general motions. The permanence here, then, lies in the phenomenon rather than
the analysis used to derive it ; thus it is the achievement of DANIEL BERNOULLI, and it is

a very great one.]

24. DANIEL BErNouLLY’s and EULER’s first caleulations of simple modes and proper
frequencies for the transverse vibrations of bars (1734—1735). [Just before the papers
described above were written, there began between the two authors the most interesting of
all correspondences®) concerning mechanics, for after leaving Russia DANIEL BERNOULLI

1) Contrary to the assertion of BURKHARDT, § 3 of op. cit. ante, p. 11.

Z) Five sources for the correspondence of Burer with Joan and Danrer and Jorn ITT Ber-
NoUrLLI have been available to me:

L P.-H.Fuss, Correspondence mathématique et physique de quelques célébres géoméires du X VIII éme
gidelo 2, St. Pdtersbourg, 1843.

I1. G. EnustrOM. “Der Briefwechsel zwischen Lrovearp Euier wnd Jowann I Brrwoviil,”
Bibliotheca Math. (3) 4, 344—388 (1903); 5, 248—291 (1904); 6, 16—87 (1905).

III. G.ENESTROM, ‘“‘Der DBriefwechsel zwischen Lronzarp Burer wnd Danier Brrnourrl,”
Bibliotheca Math. (3) 7, 126—156 (1906—1907).

IV. In the BErRNoULLI Archive at Basel are photostats of a number of letters, some unpublished,
from all parties.

V. In the BERNoOULLI Archive at Basel are transcripts of the passages omitted by Fuss (No. I).

For assistance in using Nos. IV and V I am deeply indebted to Professor SpIESS.

I have been informed that a great deal of relevant manuscript material is preserved in the
archives of the Academy of Sciences, Leningrad.

In seeing DANIEL BERNOULLI'S remarks only in translation, the reader loses the pleasure of savor-
ing the private dialect he employs. E. g. on 6 June 1729 he writes to EULER, ‘“P. S. Weil ich aus dero
ersterem gesehen, da Sie sonderlich rein toiitsch zu schreiben sich beflissen, als zweifle ich nicht, ich
werde Dero keiische ohren sehr mit meinem undermengten frantzésichen & lateinischen wdortern
verletzt haben, weswegen sehr umb verzeihung bitte. ade noch einmahl.”
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exchanged problems and solutions with the friend he left behind. Apparently these letters
put in writing the kind of communication that passed orally between the two great geo-
meters when they were colleagues in Petersburg. While not going so far as to conceal
their methods from one another, they chose on the whole to disclose results and discuss
phenomena. Thus it often turned out that their ideas were different though the results
were more or less the same, and thus, at first, double publication resulted. While both
were annoyed by the delay, sometimes as much as eleven years, between the writing of a
paper and its appearance in the Petersburg Memoirs, in fact it ensured their monopoly of
the field of oscillating systems for a decade : No one learned even their results through
publication until they themselves were far ahead on more difficult problems. During this
period EvLER continued also the correspondence he had begun with JoEN BERNOULLI,
his teacher and the father of DaniEL. The two correspondences interlace to some extent,
especially since old JoEN BERNOULLI conceals much of his doings from his son, who some-
times writes to St. Petersburg to find out what his father and colleague in the University
of Basel is up to.

Nothing of interest ') concerning our subject appears] until 18 December 1734, when
Daxter. BERNOULLI says he has studied the small vibrations of a horizontal uniformly
elastic band with one end fixed in a wall, “but I am not very pleased with my solution.”
On 4 May 1735 BERNOULLI thanks EULER for having read to the Academy his paper,
described above, on the hanging chain. BERNOULLI now has shown, he says, that the trans-
verse displacement y of an elastic band fixed at one end in a wall satisfies the differential
equation

4
(125) K g—oﬁ =Y,
whoro K* is @ vonstant, Has Hurer thought about this subject? “But this matter is very
slippery, and T should like to hear your opinion on it,” BErNOULLI says the “‘logarithm”

2
soticfioo (126) as woll as K? % =y, “but no such [logarithm] is general enough for the
present business.”

1) The correspondence begins tamely. From Paris on 22 September 1733 Danrer. BernourLr
writes that he has determined the form of equal resistance for a horizontal beam loaded by gravity and
an attached weight. He promises to send a memoir on this subject to the Academy. On 18 February
1734 EvLER replies that ‘“The . . . problem concerning the form of beam . . . requires a theory of break-
ing such as that given by your honorable uncle, and as it seems to me he treated this very problem”
[this last is a lapse of memory on EULER’s part]. ‘“However, the complete working out and application
is surely the most beautiful and the most difficult in this subject, and thus I await with pleasure the
dissertation your worship has promised on this subject.” From EULER’s letter of November 1734 and
BEerNoULLI’s of 18 December 1734 we learn that a memoir of BERNOULLI’s, which might well be the
promisod one concerning solids of equal rosistance, was lost in the post.
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In his reply?), written before June, 1735, EULER says he has already derived (125)
and the more general equation

4@___% T Y
(126) K dat Jdx fydx 4 « § xdy ,
X 0 o @

valid for a heavy bar [and including (108), as the special case when K = 0].

EuLER, too, is unable to integrate (125) except in series. [These are two great mathe-
maticians who have just shown themselves not fully familiar with the exponential func-
tion ; we must recall that this is 1735!] He applies the end conditions

(127) Jyde =0, [dx [ydx = 0;
we should now write his series solution in the form

(128) Y = Q[[(cos% -+ cosh %) — %(sin% -+ sinh %)] ,

where b is determined by the condition y = 0 when = =1, viz
.1 —
sin -+ sin y'd

(129) b= 7 T
cos - + cosh-f

[but not until four years later is EULER to recognize his series as representing these
simple expressions]. “By this method it would not be very difficult to solve the same
problem when the band is not taken as everywhere equally thick and equally elastic.”

Shortly thereafter EurEr completed 4 new and easy method for the very small oscil-
lations of rigid or flexible bodies?), presenting a new approach ‘“of the greatest generality

1) Undated, unpublished, included in Source IV cited on p. 185. In this letter Evrkr gives a
darivntion of the equation (108), for the heavy hanging cord; this derivation, using the method of E8
(abovo, p. 148) and honce differont from thet in E49 (dated 31 January 1735, cited above, p. 162),
ig that published in E40 (dated 27 October 1735, cited in the next footnote). This new method, essen-
tially, rests upon a special case of what is now called “D’ALEMBERT’s principle”, but it is applied to the
balance of moments rather than of forces. Thus it is close to the ideas of JAMES BERNOULLI’S great paper
of 1703.

In his answer, dated 4 June 1735, DANIEL BERNOULLI writes ‘I have still other mechanical prin-
ciples beyond [that] of the change of the system from the force of gravity and its subsequent restitu-
tion, from which principles I have solved the problem of the vibrations of a flexible chain; thereafter,
[that] of the change of the system from continued motion and subsequent restitution, which I have
not as yet published anything, etc.”’ This passage, again, suggests D’ALEMBERT’s principle.

2) E40, “De minimis oscillationibus corporum tam rigidorum gquam flexibilium methodus nova et
facilis,” Comm. acad. sci. Petrop. 7 (1734/5), 99—122 (1740) = Opera omnia II 10, 17—34. Pre-
sentation date: 27 October 1735.
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and so well founded in the principles of statics that by its aid not only did I solve with
remarkable ease questions of the oscillations of an elastic band and of a hanging cord, but
also I can very quickly set in order all things connected with oscillations.”” EULER con-
siders only very small oscillations ‘““because these, not only for a simple pendulum but also
for any body, are isochronous ; only very rarely may larger oscillations be compared with
those of a pendulum.” The new method consists in combining the ideas of EvLER’s two
previous papers. First, by (115) the accelerating force is expressed in terms of the length
of the isochronous pendulum. This is then put into the equation expressing balance of
moments ; for continuous lines, this is (91). [Thus, again the equations of motion are
avoided.] The first part works out the radius of gyration for a rigid body by this method.
EuLrEr is able to show that his principle, if applied with sufficient caution and ingenuity,
yields all previously known results concerning the centers of oscillation of various bodies.

For an elastic band fixed at one end in a vertical wall and oscillating in a horizontal

plane, by (115) the accelerating force on the element dz is given by F, dx = %y—dx,
where y is the displacement. Substitution in (91) yields

DB Ldy g F0®
(130) T~£Z—Ja7_7§dxgdydx'
Differentiation yields (125), with
. all . _ 1 2
(131) K oy [equivalently, » Pl l/ — -

The rudimentary state of the theory of differential equations is shown by EULER’s
atatoment concerning the simple equation (125) :] “But from this differential equation of
fourth order it is very difficult to derive anything toward understanding the oscillation of
elastic bands.” [Without giving any reasons,] EULER proposes for the free end, z = 0,
the conditions (127) along with y = . [In what follows the conditions he actually uses
are

3,
(132) y=u, Yo, LY _o;
the second and third follow from (130).] For the end at the wall, where x =1 and y = 0,
he proposes dy/dw = 0, “as required by the nature of the spring, which cannot be bent
through a finite angle except by an infinite power.” EULER is still unable to integrate (125)
except in series; in addition to (129), by applying the condition dy/dz =0 at z =1
he obtains a result we should now write as

1 1
(123) b — cos—I-(—Jreoshf

.1 . l
— sin - -+ s1nh—K-
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Between (129) and (133), b is to be eliminated ; EULER simply indicates the resulting 39
series of powers of (I /K)* which must vanish ; [in the notations used in (129) and (133),
this equation is

(134) 14+ cosécoshtf=0, Czjl{—].

EvuLER gives the approximate root
4

(135) tw |/§ )

From (131) follows

g T g
(136) v= o Vo =2 Vo *

whence EULER concludes that “for various elastic bands of the same uniform thickness . . .
the periods will be directly as the squares of the lengths of the bands and inversely as the square
roots of the absolute elasticities.”’ [Thus appears a proof of the law EuLkr had asserted,
though without sufficient qualification, in his Music (above, p. 154). EULER fails to state
that there are infinitely many possible frequencies, although for the similar problem of the
heavy banging cord he has mentioned this fact.] He suggests obtaining the ratios of 40
elasticities of two substances by comparing the periods of oscillation of bands of the same
dimensions. [Thus at last we encounter an explicit case to substantiate LEIBNIZ’s per-
voption that the elastic and acoustic properties of a body are connected (above, p. 63).
EuLER’s proposal, while neglected in his own day, is widely applied in ours.]

When the weight of the band is taken into account, it being supposed that the band 41
points vervically downward when in equilibrium, we have F, = — ¢g, and (91) now
yields (126), with K again given by (131),.

Evnnr shows also that application of (91) and (115) to the vibrating string yields a2—a3
(76) and (75), which “the most enlightened Tavror . . . and JoH~r BerNoULLI . . . obtained
from far different principles?).” The paper concludes with a derivation of the equation 47
for transverse vibrations of a rod with both ends pinned. [The result, of course, should
again be (125), but EvLER makes an error in sign.

Thus by a single method all known oscillation problems were united, and new solutions
were obtained. To include in a common scheme not only flexible and elastic oscillations but
also rigid ones, the method of moments was surely the only possibility. It is easy to see
today that this method is ill adapted for further progress toward the general principles of
motion of continuous bodies and that EvLER’s early work, while elegant and efficient for
the immediate aim, is a false start.

1) The dynamical principles are indeed different, but all three authors are alike in assuming, in
one way or another, that the restoring force is as the displacement.
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In the foregoing exchange of letters and subsequent paper by EULER we have seen
the first example of what is now to be the typical phenomenon : BERNouLLI and EULER
discuss a problem, and each achieves a measure of success. Within a few months, EvLER has
worked his form of the solution into a clear, finished paper including a sequence of gener-
alizations!). DANIEL BERNOULLI publishes nothing but goes on to new problems, often
accompanied by experiments. One essential part of mathematical research he fails to
appreciate, namely, that a work is not finished until it is published. Ideas that seem clear
and final to the thinker often show on paper as but the beginning of the research. Years
later he will come to regret his indolence. He will see his ideas rediscovered or developed
not only by EULER but also by the inimical p’ALEMBERT and LAGRANGE, whereupon, in a
vain attempt to reestablish the brilliant work he had done in younger years, he will quickly
write it up and publish it, stubbornly refusing to see in the later researches of others any-
thing of value beyond his own old and now primitive ideas, ideas which if shaped and
presented when fresh would have earned him a greater name in the history of mechanics

AC::C than in fact he has-]

» (B
25. Further researches on the elastica; EULER’s general solu-
tion for linear vibration problems (17356—1739), On 26 October
1735 DANIEL BERNOULLI writes to EuLER, ‘“Your remarks on the
vibrations of an elastic band agree with mine. The most important
thing to calculate is this (Figure 59): Given the length of the
. elastic band BD or BE, given its weight [i. e. attached weight]
P, given the distance D E, which is the measure of its elasticity 2),

to find the absolute number of vibrations in a given time.”
» EUuLER considered this letter so important that he wrote a
summary of it, amplified by his own analysis solving the
problem3). [It seems strange that neither EULER nor DANIEL
BerNouLLI mentions that this special case is included in JamEs

b

Figure 59,
Dmmangx‘zl;om's defi. BERNOULLI's formulation (above, p.101). Instead,] EULER sets

“i°i°in°§1$‘3f§ﬁ’é"“ of up the problem afresh and thus reaches (57) with 4 ab = —[2

1) As DanterL BErNOULLI wrote him on 4 June 1735, “Be assured that I esteem your judgment
above all, especially sinee from what you say you also have applied yourself to mechanics at the same
time, and everything you understand you deepen at once.”

2) In this sense EULER interpreted BERNOULLI’S “‘cuius ope elasticitas habetur’; another pos-
sible meaning is that from the displacement produced by a given weight the elasticity (s. e. elastic
modulus) may be calculated.

3) E830, “Recensto litterarum a Cl. D. Bernouvcrrio Buasilea die 26. Oct. 1735 ad me datarum una
cum annotationibus meis,”’ Opera postuma 2, 125—128 = Opera omnia IT 11, 374—377. In the latter
publication part of Brnwourrr’s lottor is adjoinod,
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and a? = 223/P. [Just as had JamEs BEmrNouLLl for the rectangular elastica
(above, p.95),] EULER integrates (57) in series, obtaining the first terms of a power series
for the end displacement & = y(I) as a function of $I*°P/<8. Approximate solution for
D yields

BP PP 1
(137) DB = iy 81 & 3¢9 12T 82
T e B

Combination with EuLER’s formula (186), after readjustment of units, yields the solution
to the problem posed by Ber~ourLI. [This is the earliest solution for small deflection of
an elastic beam.

Here we see DANIEL BERNOULLI, as usual, preferring to express all results directly in
torms of measurable quantities, while EULER prefers quantities leading to the maximum
formal conciseness :] EULER adds the remark, “In place of an experiment of this kind, it
geems apter to me to determine the value of the letter &7 directly from the number of
oscillations, easily discerned by observation.” [The tradition of elasticity, both theoretical
and experimental, has followed EvrLer. His absolute elasticity <7 is now adopted uni-
versally as the measure of susceptibility of a beam to bending, though the concept is
usually refined by splitting £Zinto a modulus of the material and a geometrical property of
the cross-section : 4 = K I, as in (86).]

Daxter, BErNoOULLI's younger brother, Joun IT BErRNoULLI, won the Paris prize of
1736 with his Physical and geometrical researches on the question : How does the propagation
of light take place')? Much of this work concerns mechanical vibration problems. There are
two kinds of equilibrium, illustrated by a body connected to two springs : In ‘‘forced equi-
librium . . ., a body is held in equilibrium by two tense springs, which make equal efforts to
dilate themselves in opposite directions . ..,” while in “‘idle equilibrium . . . the body is
lovatod botwoon two loose or released springs, so that it remains in equilibrium, or rather at
rest, simply because it is pressed neither on the one side nor on the other. The “General
Proposition’ agserts that any body slightly displaced from a position of forced equilibrium
will execute a periodic and isochronous motion. JOHN II BERNOULLI’s graphical argument
shows that he considers only the case when both springs obey the same law, so that the
total force on the body is F = f(z) — f(— x). In effect, he replaces F' by the first two
terms of its power series expansion, so that

(138) F=f(0) + «f (0) +--- — [f(0) = 2f (0) +---1,
= 22f(0) + - -~

1) Recherches physiques et géometriques sur la question; Comment se fait la propagation de la lumiere,
Pidce qui a remporté le prix de I'acad. . . ., Paris, 1736 = Recueil des pidces qui ont remporté les prix
de l'acad. .. .8 (1752). In the correspondence between JoEN I BERNOULLI and EULER, this work is
discussed in the letters of 2 April, 27 August, and 6 November 1737.
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From the “known property” of forces proportional to the distance, the motion is iso-
chronous. “Hence . . . the flutterings of an elastic body, when it is in a state of compres-
sion . . ., are isochronous when the body has just been struck or violently disturbed . . . It
must be remarked that forced equilibrium is absolutely necessary in order that the flut-
terings, large or small, be isochronous.” The argument seems to rest on assuming that the
total force is an even function of the displacement ; in eriticizing this passage, DANIEL
BERNOULLI soon thereafterl) asks, ““is it not plain” that the force is an odd function?
[In respect to the theoretical and experimental laws of elasticity, all this shows poorly in
contrast to the searchings of the previous generation, but Joux IT BERNOULLI’s attempt is
apparently the earliest to describe the nature of small oscillations subject to a general
non-linear spring.]

Joux II BERNOULLI’s treatment of small longitudinal oscillations?) follows closely
his father’s analysis of transverse oscillations, leading to (78). For a conical string, he agserts
[but does not demonstrate] the differential equation

(139) ¢ g;yz — oy,

While he is unable to integrate this, he says that ‘“methods of approximation show very
certainly that conical strings . . . vibrate more rapidly than those of uniform thickness,
other circumstances being equal.’’ [This is false, as will appear from later results of EvrLER
(below, p. 302).]

Three years later arose a new problem which would seem unconnected but in fact gave
rise to important researches in our subject. On 24 May 1738 DANIEL BERNOULLI writes to
EULER that certain mechanical problems lead him to wish to find among all isoperimetric
curves that for which {7™ds— minimum or maximum, where 7 is the radius of curvature.
On 30 July EULER communicates his solution of this problem to Joun BernourLi®). On

1) In § XXVIII of “‘Recherches mécaniques et astronomiques sur la question proposée par I’Aca-
démio Royalo dos Scionves pour Pannée 1745, La meilleure maniére de trouver Uheure en mer, par obser-
vation, soit dans le jour, soit dans les crepuscules, & sur-tout la nuit, quand on ne voit pas Uhorison,”
Recueil des pieces qui ont remporté les prix . .. 6 (1752).

2) Cf.Part IL E of my introduction to EULER’s Opera omnia IT13. In § LVIII Jorn II BERNOULLI
repeats the old assertion of TAvr.or (above, p. 131) that a string deformed into a triangle will assume
the form of a sine curve after a few vibrations.

3) The problem is mentioned also in JoEN BERNOULLI’s letter of 11 October 1738 to EULER, in
DanieL BerNourLL’s letter of 9 August to EULER, and in EULER’s of 13 September to DANIEL BER-
NoULLI. The results are stated on pp. 368—359 of Notebook EH3 (cited above, p. 142). With his
customary dispatch, EULER prepared his results for publication in E99, “Solutio problematis cuiusdam
a celeb. DAN. BERNOULLIO propositi,”” Comm. acad. sci. Petrop. 10 (1738), 164—180 (1747) = Opera
omnis I 25, 84—97; presentation date: 9 September 1738. This paper begins: “In the last letter that
the famous DanNieL BERNOULLI sent me from Basel, dated the 24th of May of this year,” efc. In § 10
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8 November DaNIEL BERNOULLI writes, ‘“This problem of mine is very real, and I was led
to it by some phenomena of nature, and it includes the most general equation of the elastica
when ds is regarded as constant. But if d¢ is taken as constant, then the elastica, as I can
show, is of such a nature that . . .

ds® .
(140) fmé? = max. or min.

I will send my reflections on this subject another time, Thus I wonder why my father in
his inclosed letter?) says that which the proposer of the problem himself did not know, ete.”

On 20 December 1738 EULER writes to JOHN BERNoOULLI, ‘I have recently noticed a
singular property of the rectangular elastica,” viz (in the notation of (50)) %)

- d : 2d
(141) ﬂ.y%=/l/ljx4. xreaxr =%n!
)

e V1 —
0

‘““which observation seems to me most noteworthy’’3). Three days later he writes to DANIEL
Bervournl, “Meanwhile I am very curious to learn from your Worship what use this
problem may have in discovery of the elastic curves. For superficially I see well that these
curves have @ maximum or minimum in the course of bending, of the kind the catenary
has, as the one whose center of gravity falls lowest among all isoperimetric curves.

“YWhat does your Worship think of the property of the rectangular elastica I com-
municated to your father . ..,” viz (141). “I have come across this most obliquely and
against all expectation . . .”” EULER mentions that the result came up in the course of his
investigations on sequences, and he gives a long list of such multiplication formulae.

The nature of the minimum principle DaNtEL BERNOULLI explains on 7 March 1739.
“T have today a quantity of thoughts on elastic bands, . . ., efc. . . . On the first occasion I
will show how these [variational] problems include the curvature of the elastica.” For the

b2

Evrer considers the special case when m = — 2 but without the isoperimetric restriction; the solu.
tion then leads to JAMES BERNOULLI'S quadrature (49), “whence it is learned that the curve satis-
fying it is an elastica normal to the axis...”.

1) In the correspondence we often see old JOEN BERNOULLI gloating over his son’s inferiority to
EuLER.

2) This “new property of the elastica’ is derived as a corollary of a more general result and illus-
trated by a diagram on p. 398 of Notebook EH3.

3) On 7 March 1739 JorN BErRNOULLI replies, characteristically, that he himself in earlier days
has shown that the sum of the two quadratures in (141) could be expressed in terms of the length of
an ellipse. With his usual frankness, EULER writes on 5 May 1739 that such properties as (141) “‘seem
to me more noteworthy in proportion to the indirectness of the route by which they are proved or
discovered.” JoEN BERNoULLI’s property, on the other hand, is one of those things that ‘“‘comes of
itself as soon as one looks for it.”
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general equation for the uniform band, naturally straight and elastic, it is necessary that

(140) holds. “For I can show that any band forced into a state of given curvature must be
endowed with a potential live force equal to f ;f—;;:;—z , and I think that an elastic band
which takes on of itself a certain curvature will bend in such a way that the live force will
be a minimum, since otherwise the band would move of itself. I plan to develop this idea
further in a paper ; but meanwhile I should like to know your opinion on this hypothesis.”
On 5 May KEuLER replies, “That the elastic curve must have a maximum or minimum pro-
perty T do not doubt at all . . . but what sort of expression should be a maximum was
obscure to me at first ; but now I see well that this must be the quantity of potential forces
which lie in the bendings : but how this quantity must be determined I am eager to learn
from the piece which your Worship has promised?) . ..”
~ On the same day EULER explains to JoEN BERNOULLI the method by which he dis-
covered (141) : multiplication of series [so as to obtain an infinite product,] followed by a
““gspecial manner” of integrating 2).
By the accidental observation that a watch when hung up sets itself in vibration
as a pendulum, KrRaFFT3) reopened the problem of forced oscillations. The subject
as it was conceived concerns only a single oscillator and thus does not properly

belong in this history. However, recalling the crude state of the theory of a single free

1) Daren Berwourrr is largely absorbed in his own problems and frankly gives up the attempt
to follow his friend’s diverse researches. Also he seems to forget rather quickly the contents of previous
letters, In this letter EULER finds it necessary to remind him that “on an occasion your Worship
provided’ he long ago read a piece on the vibrations of elastic bands (doubtless E40, above, p. 167)
and had told Daxrer. BeErNouLi of the content.

® 1
2) This is the method by which EULER calculated X e It is given in E122, “De productis ex
=1

wnfinitis factoribus ortis,”” Comm. acad. sci. Petrop. 11 '(‘1739), 3—31 (1750) = Opera omnia I 14,
260—290. There (141) appears as a special case of & more general formula for the product of two quad-
ratures. A proof using gamma functions was given by ToDEUNTER, § 59 of op. cit. anfe, p. 11.

DANIEL BERNOULLI took no note of EvLER’s relation (141) until 12 December 1742, when he
indicated it to be of little interest to him because obtained as ““a corollary and as if @ posteriors,” and on
20 March 1745 only “Your last proof . . . is indeed easier than the first one.”” These remarks are symp-
toms of DANTEL BERNOULLI’S growing dislike for pure mathematics. While he had been a leading mathe-
matician in his youth, by the end of this history we shall find him a confirmed enemy of all that is not
“ugeful’’ and, as a corollary, left behind in the development of physical principles expressed by partial
differential equations.

On the other hand, with his usual feeling for important clues, EULER seems particularly proud of
(141); he communicates it to CLATRAUT in an undated letter of 1742—1743, and he comes back to it
again and again, until finally it reveals itself to him as only a special case of the addition theorem for
elliptic integrals he is to discover later (below, p. 357).

3) “De novo oscillationum genere,” Comm. acad. sci. Petrop. 10 (1738), 200—206 (1747). The
theory in this paper is confined to calculation of moments; no motions are determined.
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harmonic oscillator scarcely two decades previous?), we notice in passing the development
of this second necessary preliminary to a full theory of elastic vibrations. Since the time of
BEECKMAN and GALILEO (above, pp. 26—27, 34—35)2), the phenomenon of resonant

1) This is confirmed by EULER’s labored discussion of it in the first part (§§ 9—21) of the paper
we are just about to consider.

2) A related but more elaborate problem, which may be idealized as that of free oscillation of
two elastically coupled pendulums, or as that of the motion of two pendulums attached to the arms of
a balance, or as that of oscillation of one pendulum driven by a harmonic generator acting at the end
of a spring, had been raised by HuvGENS in the earliest days of his pendulum clocks. In a letter to
R.F. pE SLusE of 24 February 1665 he mentions “the remarkable sympathy of my clocks, just dis-
covered.” A part of his letter of 26 February 1665 to his father found its way into print: “Extrait d’une
lettre de la Hayo le 6. Fevrier 1665, J. des Sgavans 1 (1665—1666), No. 11 (16 March 1665), Amster-
dam ed. 148—150 = (Buvres b, 244. Two clocks having pendulums of nearly equal length are found,
when hung up one or two feet apart, to come into perfect consonance within a half hour; if this con-
sonance is forcibly broken, it reestablishes itself; while if the two clocks are separated by a distance of
fifteen feet, one gains 5 secs. per day upon the other. The agreement does not imply that the pendulums
swing parallel to one another; rather, they swing in opposite senses. HUYGENS attributes the pheno-
menon to “a kind of sympathy, . . . an imperceptible agitation of the air, produced by the motion of
the pendulums.” However, when he placed a large baffle between the clocks, the effect was not at all
diminished.

(On 27 February 1865 Hovarns wrote to the same effect to Sir ROBERT MORAY; according to
BIRCH, History of the Eoyal Society . . . 2, 19 (1756), this letter was read to the Royal Society on 1 March
1664,/6, whereupon the Society directed that experiments be instituted to soe if “this pretended sym-
pathy” were “magnetical” and also ‘‘whether three or four watches do the same, that two do.” On
pD. 14—15 of Phil. Trans. 1, No. 1, 6 March 1664/5, is printed part of the letter but nothing concerning
sympathy. Huveens’ letter to Morav of 27 March 1665 shows that the publication in the Journal des
S¢avans was without his knowledge and contrary to his wish.)

In his letter of 6 March 1665 to MorAY, HuveENS describes experiments showing that ‘“‘the
sympathy . . . does not come from the motion of the air but from the said small disturbance’ imparted
by the mechanism to the case and can be nullified by sufficiently firm mounting. According to BmrcH,
#bid., 21, this letter was read to the Royal Society on 8 March; the only recorded response 1s the utter-
ance of doubts that pendulum clocks are accurate. Pp. 162—163 of the Journal des Sgavans 1, No. 12,
28 March 18865, carry an elaborate retraction of HuyaENSs’ first conjecture.

On 6 October 16656 R. PAGET in a letter to HUYeENs speaks of ‘‘the sympathetic or homotonic
oscillation of your clocks™ as being “‘not unlike the harmonic motion of musical strings,”

On p. 509 of op. cit. ante, p. 126, pE LA HIRE in 1692 recalls HUYGENS’ observations and attrib-
utes to him the explanation that the beam connecting the clocks ““fell into a motion midway between
the two, which it communicated back to the pendulums,” and DE 1.A HIRE adds a muddy experiment
of his own.

Just before KRAFFT'S observation, J.ErLrLicorT rediscovered HUYGENS' phenomenon. In his
paper, “An account of the influence which two pendulum clocks were observed to have on each other,”
Phil. Trans. London 41, No. 453 (1739), 126—128 (1742), ErricorT finds a baffling variety of in-
fluences; e. g., one clock may stop dead. In his “Further observations and experiments concerning the two
clocks afore-mentioned,” ibid. 128—135, ELLicoTT has come to realize that the vibration is communi-
cated to the cases and thence to the common flooring, efc. This Fellow of the Royal Society seems to
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oscillation had been recognized, but for the motion of a naturally oscillatory system subjected
to a periodic force, no theory of any kind existed. EULER at once reduces the problem to
its essentials and in the paper, On a new kind of oscillations?), considers the sinusoidally
driven harmonic oscillator :

(142) Mz 4+ Kx = F sin wgt
First he obtains the solution by quadratures. Then he remarks that in one special case this

solution must be replaced by another which shows that “‘after an infinite time these oscil-
lations grow out to infinity and run over an infinite space.” Somewhat taken aback, he
approaches the whole problem anew by integration in series and obtains the same results ;
this time he introduces formally the dimensionless ratio of driving frequency w, to natural

frequency o = VK|M,
.,

(143) n= —w—d ,
whose significance he recognizes only at the very end. For n = 1 he verifies his earlier
solution. After further experimentation with special cases, he finally realizes that “among
all these cases the one when [n = 1] deserves the greatest notice ; in it, the space in which
each ogeillation is contained increases continually and finally grows out to infinity. This
effect is all the more to be wondered at, since it occurs in this special case alone and arises
from finite forces. Therefore, if it can conveniently be reduced to practice, it seems to
allow tho invention of perpetual motion.”” One has only to apply to a cycloidal pendulum
an “automaton’’ having the same period and then to overcome resistance and friction suf-
ficiently that the oscillations, though not increasing, at least perpetually conserve the same
amplitude.

EULER is unable to classify the results for valuos of # other than 1 but infers that the
oscillations will be ““the more irregular®’ the more the ratio n “fails of commensurability.”

[Thus EurEr obtains the first theory of resonance. The paper reads like an excerpt from
a notebook. The brilliant discovery it contains might have been better understood had
EuLer withheld the long calculations in favor of a clear explanation of the results. His

have some vague notions of the principles of mechanics, but he proceeds in the pragmatic way favored
in England at this time and hence finds nothing but a mass of bewildering details. His floundering
explanations show that he has no idea how one might study precisely, either by theory or by rationally
designed experiment, the simplest vibration problems.

1) E126, “De novo genere oscillationum,” Comm. acad. sci. Petrop. 11 (1739), 128—149 (1750) =
Opera omnia TT 10, 78—97. Presentation date: 30 March 1739. In this work, as EULER wrote on 5 May
1739 to JouN BrrwovurLLI, he found “such various and wonderful motions as would surely fail to be

suspected until the calculation was completed.”
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(14

recommendation for an “automaton’ passed unnoticed by the ‘‘practical”” men of his
time but furnishes a key to the resonant circuits of today.]

We have seen above that neither EULER nor DANIEL BERNOULLI could integrate
except in series the simple differential equation (125) governing the form of a vibrating rod.
On 15 September 1739 EULER writes to JoEN BERNOULLI, ‘I have recently discovered an
extraordinary way of integrating differential equations of higher order all at once, so that
right away a finite equation results.” [What EULER has found is the method of obtaining
the general solution for a linear differential equation of n'® order with constant coefficients

by superposition of particular solutions of the form e?*.] Let the equation be

and let p stand for a real root or a pair of complex roots p = & 4+ ¢ of the polynomial

equation
(145) S Apk=0.

k=0
Then the parts of the solution corresponding to p are, respectively,
(146) y = Cer=, 2@ (( cos fx + D sin fx),
[but EvLER does not consider the case of repeated roots. While he does not mention any

general connection with vibration problems,] he uses (125) as the first example, obtaining?)

2 -2 . & X
(147) y=0CeX + De K+Esm—K—+Fcosf

1) On 9 December 1739 JorN BERNOULLI reminds EULER that long ago he had introduced a
similar notation for the exponential function and that he had solved certain equations of this kind.

d
He will not accept Burer’s method when there are complex roots; for example, for k* cl:z +y=0,

& will be “impossible or not real.” On 19 January 1740 Eurer replies, “I fell upon my solution unex-
pectedly, nor before that had I any suspicion that the solution of algebraic equations could be so useful
in this business.” What is important is that EvLER’s method is general; he is not interested in solving
“here one equation, there another,” but of course he easily writes down the general solution of JorEN
BErRNoOULLI'S example.In reply to a further objection regarding imaginaries from BERNOULLI on
16 April, EULER on 20 June tries to pass off the whole matter by saying his method and BERNOULLI’S
are essentially the same. On 31 August BErNOULLI refuses to drop the subject: “I ask that you answer
categorically, as is right among friends,”” whether the solution of the example is not wrong because the
roots of p* + k* = 0 are “purely imaginary or impossible.”” On 18 October EULER says “I do not
remember ever to have said that your method is not general enough . . ., but rather that it is incon-
venient becausg the integral often involves imaginaries.” As for EULER’s solution of the special case,
“I answer categorically . . . that it is right,” and he goes on to explain the use of the formula 2 cos x =
e+2/=1 | ¢—2/=1 for obtaining such solutions and reconciling them with others. The matter is men-
tioned again in JoEN BERNOULLI’S letters of 18 February and 28 October 1741.
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Apparently EvLER informed DANIEL BERNOULLI of some of his results on the forced
oscillator and on the solution of linear differential equations with constant coefficients.
The relevant letters are lost or at least not presently available ; DANIEL BERNOULLI sent
EuLER some comments?!) which from their style appear to have been written for publi-
cation. On forced oscillations BERNOULLI gives his own method of obtaining the solution
[but does not discuss the results or mention the phenomenon of resonance, though his
solution is obviously invalid when n = 1]. As for vibrating bands, he says that the solution
(147) in terms of circular and hyperbolic functions is due to EULER; [his qualification of
EULER’s method as “indirect’ is just, since the “direct’ methods, 4. e. transformation and
successive integration, when applicable, imply a proof of completeness, while EULER’s
method, since a uniqueness theorem had not been established, though indeed exhibiting
a solution with a sufficient number of constants, did not show that no other solutions
were possible]. After deriving a solution of drs/dv™ = f»s, DANIEL BERNOULLI says
¢. .. this equation is plainly the same as yours, which you wrote out for me, without cal-
culation or method. Although I had not thought about this problem before reading your
letter, I cannot now say that I should have achieved the details therefrom, nor do I ask
that you believe me. Meanwhile you will see from the following example [¢. ., the general
case,] not the least vestige of which you supplied, that I am not straying from the right
path. Nor was brought to my attention anything of what you write you have communi-
cated to my father on this subject.”” For the general differential equation with constant
coefficients, DANIEL BERNOULLI then obtains the general solution?), including the modifi-
cation for the case when there are repeated roots. '

[Tn evaluating older studies of vibration problems and also those that appeared in
the next few years we must constantly remember that this simple method3) of solving the
typical differential equations of the subject, the method that is now second nature, was

not known.]

1) “Bxcerpta ex litteris a DANIELE BERNoOULLI ad LEONHARDUM Huter,” Comim. acad. sci.
Peotrop. 18 (1741/1743), 1—16 (17561). In this undated paper DaANIEL BERNOULLI says that he has not
yet communicated his work on vibrating bands to the academy, though he had by this time confirmed
his solutions by experiments. His two papers on this subject appear further on in the same volume and
are described below.

2) Indeed EULER’S solution is obvious; when he communicates it to CLAIRAUT on 31 October
1741, CLAIRAUT in his response of 4 January 1742 is easily able to provide a derivation. Often the
obvious is not noticed.

3) EuLERr’s finished exposition is given in E62, “De integratione aequationum differentialium altio-
rum graduum,” Misc. Berol. 7, 193—242 (1743) = Opera omnia I 22, 108—149. Presentation date:
6 September 1742.
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26. The first differential equations of motion: JoaEN BERNoULLI’S and D’ ALEMBERT’S
treatments of the hanging cord (1742—1743). DANIEL BERNOULLI’s views on the subject of
small oscillations were meanwhile maturing. His Remarks on composite oscillations, especially
those that take place in bodies hung from a flexible thread) begin by distinguishing simgple
from compound oscillations. For the former, all parts of the system have the same period,
while for the latter, for example in the case of the bodies hung from a weightless cord, the
different parts have different [. e. incommensurable] periods. But even for bodies whose
oscillations are compound in general, it is possible to assign a constant proportion to the
displacements in such a way that a simple oscillation results. ‘“Moreover not only reason
but also very many experiments lead me to assert that composite oscillations always tend
more and more toward this state of uniformity and fall into it automatically, in some cases
more quickly and in others more slowly, in some indeed very quickly. Thus for example a
musical string cannot make unequal [¢. e. non-periodic] vibrations unless it does so from
the start, such being the more non-regular the swifter they are, while the string once set
into vibration soon composes itself to the curvature necessary for isochronous motion.”
The number of possible modes equals the number of bodies in the system ; each mode yields
an isochronous motion, but for each of these the frequency is different. “But the state of
uniformity to which the oscillations of the body are most prone is that in which the oscil-
lations are the slowest possible.”

[To understand this passage?), we must realize that BERNOULLI thinks that a general

1) “Commentationes de oscillationibus compositis praesertim iis quae fiunt in corporibus ex filo
Hexili earepensie,’” Comm. acad. sei. Potrop. 12 (1740), 97—108 (1750). In his letter of 5 November 1740
to EULER, DANIEL BERNOULLI writes that this paper had been finished three months earlier.

2) In the previous year DANIEL BERNOULLI had expressed the same ideas less clearly. See § 14
of his ““De motibus oscillatoriis corporum humido insidenvium,” Comm. acad. Petrop. 11 (1739), 100—115
(1760)y whoro, aftor montioning that “‘uniform and equable motions can occur in infinitely many
wayr,’” he goon on to say that ‘“‘unless, howover, the soveral bodios are brought out from the vertical
line in the proper proportion, when they begin to move the oscillations will be irregular, inconstant,
disturbed, but nevertheless they tend more and more to a state of uniformity. These remarks serve
also for understanding the trembling motion of sounding strings: For the sound of one and the same
string may be made up out of many tones.”

EULER expresses this same view in §§ 20—30 of E159, cited below, p. 181. “Since a [flexible]
body can move not only about the fixed axis O, from which it hangs, but also about any junction, . . . it
can be disturbed from its state of equilibrium in innumerable ways; since all these . . . are equally
possible initially, the resulting oscillatory motions will be very diverse ... But the greater peculi-
arity . . . is that the several parts . . . do not simultaneously return to the position of equilibrium . . . In
such motions, even though reciprocating, nevertheless the oscillations cannot be perceived distinctly,
and therefore it will not be possible to employ the previous method, which assumes the existence of an
isochronous simple pendulum. Nor indeed are the principles of mechanics yet sufficiently developed
as to allow us to reduce to calculation . .. such irregular motions ... But however much these oscil-
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motion of a string is not periodic. Moreover, he has not simply fallen into TAYLOR’s old
error (above, p. 131) ; whatever his “reason’ may be, he says that experiment teaches him
that a vibrating system quickly settles into its fundamental mode. In modern terms, this
is an assertion that the higher modes are damped more severely than is the lowest mode.
This may be true. If so, it furnishes some physical justification for confining attention,
in a theory which neglects friction, to the fundamental mode or at least to the simple modes.
In regard to the principles of mechanics, however, it is a retreat.]

“Similarly, a taut musical string can produce its isochronous tremblings in many ways
and even according to theory infinitely many, though these are difficult to obtain, and
moreover in each mode it emits a higher or lower note. The first and most natural mode is
that when the string between oscillations produces a single arch ; then it makes the slowest
oscillations and gives out the deepest of all its possible tones, fundamental to all the rest.
The next mode demands that the string between two oscillations preduces two arches on
the opposite sides, and then the oscillations are twice as fast, and now it gives out the octave
of the fundamental sound.” Higher modes are similarly described. [DANIEL BERNOULLI
does not present a calculation of these results from theory, but it is plain that he has per-
formed it (cf. above, p. 158). His earlier remarks (above, p. 158), combined with the
foregoing digression from the subject of the present paper, make the only published basis
for his later olaim of priority for calculation of the higher modes of the vibrating string
(below, p. 255)%).]

DanieL BERNOULLT here considers a heavy rigid rod of arbitrary line density sus-
pended by a weightless rod linked to an arbitrary junction upon it. In Figure 58 m is now
the point of junction, and the lower segment, which may extend above m, is the heavy rod.
[BERNOUTLI’s analysis is now clear ; instead of basing it on his own mechanical principle
of 1734 (above, p. 160),] he first balances horizontal forces acting on the rod and then
balances moments about m. [Thus the method is essentially that of Evrer’s paper E 40
(nbove, p. 167).] Tho avcclerating foree, as usual, is taken as proportional to the displace-
ment. Thus regult two equations, from which the constant of proportionality may be elimi-
nated, yielding a single quadratic equation for the length « in Figure 58. Since the point P
remains fixed, the values of & yield the proper frequencies for the two modes. BERNoULLI
explains these modes clearly and explicitly, besides deriving the limit cases when /L = oo,
L/l = oo, or the point of suspension is the center of gravity of the rod.

lations are confused and irregular at first, experience shows that soon they subside into uniformity, so
that all parts reach the configuration of equilibrium simultaneously and the oscillations, provided they
be very small, may be compared with those of a simple pendulum.”

1) MACLAURIN, writing some two years later, seems to be unaware of the existence of the higher
modes; see § 929 of op. cit. ante, p. 150.
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It is easy to extend these results to the case when the suspended mass is any rigid
body : All one has to do is consider a rod of such a line weight that the center of gravity and
the center of oscillation coincide with those of the given body.

Before he had seen this paper, EvLER had already completed his own treatment of
this problem and a class of others of its kind. His paper On the oscillatory motion of flexible
bodies?) contains among other things a more straightforward analysis of the problem with
which DANIEL BERNOULLI's paper ends. Taking moments about the junction, EvLER
equates the moment of the weight to the moment of the restoring forces, thought of as
acting at the center of inertia and calculated from (115). A second equation results from
the balance of moments about the point of suspension. Hence follows a quadratic equation,
whose solution gives the two proper frequencies.

1) E159, “De motu oscillatorio corporum flexibilium,’”” Comm. acad. Petrop. 13 (1741/3), 124—166
(1751) = Opera omnia IT 10, 132—164. Presentation date: 20 August 1742. In § 6 EULER observes
that for a general restoring force f(x) we have f(x) = f(0) 4+ «f(0) 4+ ---, and hence for small
oscillations about equilibrium (f(0) = 0) a linear law of force results. Cf. the partly erroneous treat-
ment of Jorx IT BErNouULLI, p. 171 above.

Some of the subjects of the two papers described in the text above are discussed in the corre-
spondence, On 12 April 1740 Evien writes ‘“The problem which your Worship proposes [in a lost letter]
regarding the oscillations of a body hung on ring is included among the oscillations of a heavy rope of
non-uniform thickness, to tho ond of which a rigid body is attached, and thus it can be solved by the
game method.” On 30 April DANIEL BERNOULLI, perhaps without having received the foregoing, in-
quires “Have you also looked into the problem of the oscillations of a body hung on a flexible thread?
In which case I should like to know if your solution agrees with mine; I have recently . . . sent it to
you..." Again there is a gap in the correspondence. On 15 September EvLEr writes, “Your Worship’s
problem of the oseillation of a body hung on a weightless thread I have not originally taken into account
with sufficient attention, but now the more I consider it the more important and useful I find it, since
without it I should never have been able to determine ¢orrestly the oscillations of a sphere hung on &
throad « + + I had to think & long time before I ¢ould apply my goenoral method to that kind of oseil-
latory motion . . .”* He goes on to explain the solution that we describe above from § 33 of his paper
K159, leading to the same result as DANIEL BErNoOULLI’s. “Regarding these things please note that I
have just now for the first time put them on paper, from which I see easily that I could have explained
them much more distinetly, systematically, and briefly, wherefore please pardon this disorderly
explanation.” On 5 November BERNOULLI states that EULER’s method and his own are virtually the
same. On 7 March 1742 BErNoULLI implies that EULER has described a new work on the oscillations of
bodies suspended by flexible threads. Presumably this is E159.

On pp. 121—123 of Notebook EH 3 EuLEr writes an attempt, of course abortive, to treat the
forces acting on linked bodies directly, without use of the tension. The idea seems to be that the actual
forces are the same as those that would be sufficient to produce an accelerated motion in which the
figure remains unchanged. This note, written probably in 1736—1738, helps us to perceive how great
is the advance presented in E159.

A first attempt at the first problem solved in E159 is given in pp. 46—49 of Notebook EH4.
Two methods are used, the second being that given in the finished paper.

14

33—38



41—43

44—45

46~—49

50—5+4

182 BEGINNINGS OF GENERAL THEORIES

To treat in the same way the oscillations of a heavy body suspended from a heavy
flexible cord, EULER takes moments both about the junction and about an arbitrary point
on the cord and cleverly derives the following equation for the form of the cord, gener-
alizing (108), :

(148) W+ 52 dw( + )

W being the weight of the suspended body. EULER gives the beginning of a series solution
for the case of uniform line weight and discusses some approximations.

The same method applies to the case of two arbitrary rigid bodies linked together.
There are two possible modes, in one of which the compound pendulum moves as a rigid
body. For three linked bodies, a cubic equation results. While EULER sees that an equation
of degree n will result for the case of n links, the formal complications are too great, and
he abandons the problem here.

The papers we have described were not published until 1750 and 1751. Priority in
publication for the solution to the problem of a body swinging from a weightless rigid link
belongs to old JoEN BERNOULLI, who included it in a miscellaneous collection of mechani-
cal problems?) he hastened into print?) in his collected works in 1743. [The method is essen-
tially that used in the above works by his son and by Evrer. The solution is correct,] the
two modes are obtained, [but there is no discussion of the mechanical significance of the
results]. As for problems with a greater number of bodies, the same method will work,
but the details he leaves “to those calculators who have plenty of time.”

By this time Danier Berwournr’s and EuLer’s analyses of the weighted hanging
cord, written nearly a decade ago (above, pp. 155 —164), were in print. It might seem super-

1) ““De pendulo luzxato, et de ejus reductione ad pendulum simplex {sochronum,” Art, LVI of “Pro-
positiones variae mechanico-dynamicae,” Opera omnia 4, 253-386 (dated 1742, published 1743).

2) On 20 October 1742 Danier BerNouLLI writes to EvLer, “The collected works of my father
are being printed, and I have just learned that he has inserted, without any mention of me, the dyna-
mical problems I first discovered and solved (such as e. g. the descent of a sphere on a moving triangle,
the linked pendulum, the center of spontaneous rotation, efc.) . . . If it seemed necessary that I keep off
the suspicion that I had plagiarized my father, I should have to justify myself. However, if your Wor-
ship thinks that my silence in the Academy at Petersburg would do no harm, it would not be distasteful
to me. Before this Mr. BULFFINGER reproached me that I had gotten all from my father and done
nothing by myself, but in fact I borrowed not a word from him.” On 12 December 1742: “The problem
of the motion of linked pendulums is so easy that neither the discovery nor the solution of it should
bring much fame.” On 4 September 1743, when he had finally seen his fathet’s wotks in print: *“The
new mechanical problems are mostly mine, and my father saw my solutions before he solved the prob-
lems in his way ...” It is of course entirely plain that priority of discovery for the problem of the
liked pendulum belongs to Dantpy Benwourur and Evres independently.
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fluous for JoEN BERNOULLI to issue his own solution?!), the more so since in his typical
style the old man does not mention that anyone else had ever

N treated the problem. When we examine his paper, however,
just after the usual restriction to small isochrone vibrations
we read, “but first we shall consider the matter generally.”

F In Figure 60 let M, and M, be the masses at L and K, 314
let HG = z,, MI = x,, GL = s;, MK = s,. The condition

" { that the length LK equals the length Ik is pl = ok =dz,

G say. Then if ¢, =/ NLF and ¢,= / oKk, we have
dx = ds, sin ¢, = ds, sin ¢,. The force of the weight Mg
along IL is Mg ‘28 the opposing force arising from the

VA tension 7 in the link LK is T sin o= T—g~— Hence the
1 8
I £
M _/(— resultant accelerating force?) along IL is M,g le T %:—7— .
1
Figure 60. “Hence, therefore, by a dynamical principle’ 3)
JorN BmERNoULLI’s notations
for analysis of the motion of a dxl dx . dv,
string loaded by two weights  (149) A [MI T, -7 %1—] =9 Tsy

where v, is the velocity of M, . Integration yields

g%, — - [ Tde = 2%,
I,
(150) X
g, + A fTdx = }},

where the second equation follows in the same way. Solving for 7' yields

~ 0 zydst — zyded
(151) L= W95 57 g ¥ ddst

315
Balance of normal forces acting on M, yields

B dw\f_ ~[dz,
(152) T cos Q2 = T V]. —_ (—E-) = .Mgg 1 ("3};) .

Eliminating 7' between this result and (151), we have
xyds — z,dsi / ds3 — dx
(153) M 31,058 F Masy — | & —do

1) “De pendulis multifilibus,” Opera omnia 4, 313-331 (dated 1742, published 1743).

2) Perhaps by & slip, BERNOULLI writes ‘‘vis acceleratrix’ for what his formulae show to be
““acceleratio”.

3) “Ex Principio Dynamico” may mean ‘“by the principle of dynamies.”
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While the remaining analysis concerns small isochronous motions [and hence leads to
nothing beyond what EvLER and DaNiEL BERNoULLI had done long ago, in the foregoing
we see the first use of “NEwron’s second law” to obtain complete differential equations of
motion for a flexible body. Moreover, the equations are correct for finite motion, and this
is the first complete set of differential equations of motion for a deformable system. It is a great
advance in principle?).]

There follows a noteworthy attempt to treat Y1 My,
systematically the small motion of a weightless
hanging cord loaded by n equidistant and equal
weights, but in the end only the case n = 3 is
worked out. This time JoEN BERNOULLI observes
that it is easier to get equations such as (150) Y,
directly from the principle of live forces rather
than from statics.

A second treatment rests on [Huycewns']
observation, said to follow ‘“from the nature of
small oscillations”, that the compound pendulum

assumes the same form in conical oscillation as in
lateral (¢f. abovo, pp. 48—49). A simple direct solu-
tion thenresults by considering the conical case and
balancing the centrifugal forces against the tensions.
JoHN BERNOUT.LI works out in detail only the case

Figure 61,
Sketch realizing JoaN BERNOULLY’s descrip-

we shall put his words into equations. Figure 61 tion of the equations for circular vibration

n =3, but he describes the gencral casc, and here

i i of a string loaded by n weights
shows the forces to which the &*" weight is subject.

F, is the centrifugal force, 7', is the tension in the k'8 link from the bottom. Then, with
the understanding that 7', = 0, the balance of vertical and horizontal forces gives

Fo=Tysinpy — Ty sing; 4

(164)
Troos g = Mg + Ty 008 @py -

For a gyration of permanent form, the centrifugal forces ¥, must satisfy
(155) F,= M,y,o*, o*= const.

Jor~ BrrNoULLI describes the foregoing balance of forces clearly but writes down equa-

1) For the parallel but more far-roaching improvement JoEN BErNoULLI achieved in hydro-
dynamics just afterward, see my Introduction to I.. EULERT Opora omnia IT 12, p. XXXVI.
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tions only for the case of small motions, so that cos ¢, ~ 1 and (154), yields

k
g=1
since sin @, = —y—"-—aégﬂ , where a, is the length of the k! link, (154), becomes
k
— k-1 — —
(157) %ysz=Mklk_£k¢1_+ ZMa[y" Yorr | Yo ya] .
g 14” g=1 @q Qg3

Jorn BERNOULLI carries out essentially the above calculation but always in terms of
ratios, so that w? /g is eliminated all along. Thus there result » — 1 quadratic equations
for the unknowns ¥,. The length of the equivalent simple pendulum is then the distance 328
from the bottom weight to the point where the extension of the last link meets the vertical :

e L2 N
Yy — Yo
[Thus in this second method appears every element but one necessary for an exact and

general treatment : To find the equations of motion, the centrifugal force F; should be
replaced by the inertial force with components — M, z,, — M,¥y;.]

To obtain the equation for the continuous heavy cord, JouN BERNOULLI balances the 329
centrifugal force against the weight on a finite section of the chain and so derives (106),.

Finally, Jorx BERNOULLI gives a third method, ‘“the most natural of all”. This con- 330—331
sists in calculating the accelerating forces as before but then equating them to a constant
factor times the displacement. The result is the same as (157) ; the difference is only that
here the lateral motions are treated directly.

[This is the last we shall hear of Joun BERNoOULLI, who died six years later at the age
of eighty-one. The work just described, while in essence a revision!) is a remarkable
achievement. The first method obtains the differential equations of finite motion for the
compound pendulum, this being the earliest example of such equations for a non-rigid
system; the work goes as far as the energy integrals for finite motion; but the generaliza-
tion 0 % bodies is not really clear. The second and third methods, which are essentially
the same as far as principle is concerned, introduce a fized rectangular Cartesian co-ordinate
system for the first time in problems concerning systems of any generality?). While
they recall Jorn BERNOULLI's treatment of the loaded vibrating string, that analysis,
like the later ones of DaniEL BerNourrl and EULER on the present problem, used
normal and tangential components and was not carried out sufficiently to obtain
the full set of equations except for small motion. Here the principles are expressed

1) We recall that in younger days JoEN BERNOULLI was quick to issue elegant new proofs of
results discovered at length by his brother Jam=s.
2) For the importance of this step, see the discussion of the principles of mechanics in § 35.
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so generally as to yield at once the correct general equations for the accelerating forces in
the case of » bodies, but no differential equations are obtained since the special hypotheses
replacing the general reaction of inertia are introduced from the start. A nearer miss would
scarcely be possible. With some astonishment we see also that the old man is more skillful
in marshalling and directing the different forms of the principles of mechanics than is his
son or even EULER. On the other hand, he shows little interest in the nature of the solution
and does not discuss the proper frequencies at all.

At the age of twenty-four, there enters our scene now a talented but sinister per-
sonality who is to make in six years?') a sequence of brilliant discoveries but thereafter
will write endlessly in what seems today no more than a dogged attempt to confine the
capacities of mathematics and to belittle the solid work of others.] This is D’ ALEMBERT.
The year before, he had communicated his famous Principle of dynamics to the French
Academy. In 1743 appeared his T'reatise on Dynamics?), in which the principle is applied
to some problems not previously solved by other means. The first of these is that of the
compound pendulum, or the cord loaded by discrete weights, [so that D’ ALEMBERT shares
with Jomx BerNovULLI the achievement of being the first o obtain differential equations of
motion for a constrained but non-rigid system].

The “General principle for finding the motion of several bodies which react upon
cach other in any way’’ reads as follows?): “Let 4, B, C, etc. be the bodies which con-
stitute the system; suppose that the motions @, b, ¢, &c. be impressed upon them, but
that they are forced because of their mutual reactions to change into the motions a, b,
¢, &c.... Decompose each of the motions a, b, ¢, &c. impressed upon each body into two
others: a, 3 b, f; o, w; do., whioh are such that if only the motions a, b, c, &c. had
been impressed upon the bodies, they would have been able to retain these motions without
interfering with one another; and if only the motions o, B, =, &c. had been vmpressed wpon
them, the system would have remained al rest. It is clear that a, b, ¢ will be the motions
which those bodios will take on in virtue of their reaction.”

[Generations of readers have been baffled by this statement, but it can be deciphered.
D’ALEMBERT is a notorious schizograph: the elegant directness of his belles-lettres, often
seen also in the prefaces to his seiontific works, never enlightens the thick penumbra of

1) After his essay on fluid motion, finished in 1749, D’ALEMBERT’S positive contributions to
mechanics cease, except for one or two interesting details here and there in the voluminous polemic
literature to which he devoted the rest of his scientific thought.

2) Lraité de Dynamiquo, dana lequol los lotw do Péquilibro & dw mouvement des corps sont réduites
au plus petit nombre possible, & démontrées d’une maniére nowvelle, & o I’on donne un principe général
pour trouver le mouvement de plusteurs corps qui agissent les uns sur les autres, d'une manidre gueleongue,
Paris, David P'ainé, 1743. 2nd ed., 1758.

3) § 50 of op. cit.