
MONSTROUS MOONSHINE

J. H. CONWAY AND S. P. NORTON

A quick summary of the recent amazing discoveries about the Fischer-Griess
"MONSTER" simple group.

Section 1. History.

In 1973 Bernd Fischer and Bob Griess independently produced evidence for a
new simple group M of order

246.32O.59.76.112.133.17.19.23.29.31.41.47.59.71

= 8080,17424,79451,28758,86459,90496,17107,57005,75436,80000,00000.

We proposed to call this group the MONSTER and conjectured that it had a
representation of degree 196883. In a remarkable piece of work, Fischer, Livingstone
and Thome [6] have recently computed the entire character table on this assumption.
The MONSTER has not yet been proved to exist, but Thompson [18] has proved its
uniqueness on similar assumptions.

Here are some observations (roughly in chronological order) that are now known
not to be mere coincidences:—

(A) M. J. T. Guy observed a certain symmetry in the character table of the
monomial group 2 1 2 M 2 4 of [5].

(B) We pointed out long ago that the elements of M2 4 have "balanced" cycle-
shapes, so that (fbPc1... is the same as (N/ay(N/b)p(N/cy... for some N.
Example 12.2.4.82, for whichN = 8.

(C) For each prime p with (p —1)|24 there is a conjugacy class (called p— below)
of elements of M, with centraliser of form p1 + 2d.Gp, where p.Gp is the
centraliser of a corresponding automorphism of the Leech Lattice.

[The symbol px+2d denotes an extraspecial p-group, and Id = 24/(p— 1).]

(D) For the same p, there is a second class p +, and the characters of p + and p — in
the minimal faithful representation differ by pd. (Similar properties were
observed for elements of order 2p.)

(E) Ogg [15] noticed that the primes p dividing \M\ are just those for which the
function field determined by the normaliser of ro(p) in PSL2(U) has genus
zero, (t)
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f Very recently A. Pizer [16] has shown that these primes are the only ones that satisfy a
certain conjecture of Hecke (1936, op. cit.) relating modular forms of weight 2 to quaternion
algebra theta-series.

[BULL. LONDON MATH. SOC, 11 (1979), 308-339]
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(F) McKay noticed that one of the coefficients in the g-series

j =^-1+744+196884^f + 21493760g2 + ... =^arq
r, say,

is 196883 + 1, and Thompson [17] found that the later ar are also simple
linear combinations of the character degrees/, of M:—

i = / i , «i = / i+ / 2 5 a2 = / 1 + / 2 + / 3 , «3 = 2ft+2f2+f3+U

Our Tables 1 and la, extracted from [6] and [19], give/r and ar.

(G) Finally, the Lie group E8 has dimension 248 = 744/3.

Section 2. The main conjectures

As usual, we write T for the group PSL2(Z) of all linear fractional transformations

az + b

cz+d
(a, b,c,de Z, ad—bc= 1)

and r o (N) for the congruence subgroup of all elements with JV|c. The modular group
F acts on the upper half-plane, and leaves invariant the field of rational functions
of j . Various other discrete subgroups of PSL2(U) give rise to function fields that
are of genus zero and so can be expressed in terms of a single function analogous to j .
For instance this happens for T0(N) in the cases N ^ 10.

In all cases that concern us, the group contains the map z-+z+l, so that the
functions can be written in terms of q = e2niz. We call such a function normalised
if its g-series begins q~1+0+aq+bq2 + ..., so that the normalised function for T is
not;, but J =j-144.

Thompson proposed that the coefficients in the g-series for J be replaced by the
representations of M that they "suggest", so that we obtain a formal series

in which the Hr are certain representations of M that we call its head representations.
Hr has degree ar as in Table la, and, for example, i/_x is the trivial representation
(degree 1), while Hi is the sum of this and the degree 196883 representation.

Thompson also suggested that on replacing the Hr by their character values Hr(m)
for various elements m of M we obtain other functions that might be worth
investigating. We have now evaluated these to the q10 term for every meM, and
the results fully justify this idea. In fact we conjecture:—

The series
Tm=q-1+0+H1(rn)q+H2(m)q2 + ...

is the normalised generator of a genus zero function field arising from a group between
T0(N) and its normaliser in PSL2(U). The modular groups that arise have a certain
natural parameterisation, described later, and there are many formulae for the modular
functions in terms of the eigenvalues of certain automorphisms of the Leech Lattice.

The correspondence between MONSTER conjugacy classes and the genus zero
function fields described above is quite remarkable, and at one stage we conjectured
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that it was essentially 1 to 1. Although this is now disproved, the following points
deserve mention:—

(0) A MONSTER element and its inverse have the same Thompson series, as
do the two distinct conjugacy classes of elements of order 27.

(1) Although there are no further equalities between these series, there are some
linear dependences, for example

T 6 + +2T 6 _ = T6+2 + T6+3 + T6+6

(and similarly for other 4-groups found from Table 3). Oliver Atkin has veri-
fied our guess that there are exactly enough of these dependences to bring
the dimension down to 163. (See Section 8.)

(2) From column 3 of "Antwerp IV s Table 5" [1] one can extract the genus of
all function fields corresponding to involutory subgroups of the normaliser
of F0(N) for N < 300. The last genus zero entry in that table is for the
normaliser of ro(119), and indeed 119 is the largest order of any element
of M. All genus zero cases but three, the "ghost elements" 25Z, 49Z, 50Z
of our Table 2, correspond to elements of M. There is some hope of
making the correspondence exact by adding functional conditions, because
the modular functions in just these three cases have abnormal product
formulae. Of course, this correspondence includes observation E.

(3) Our parametrisation for the modular groups suggests various relations between
the classes, illustrated in our Table 3, and various identities between the corres-
ponding modular functions, of which observations D and G are consequences.

(4) There are various correspondences between automorphisms of the Leech
Lattice and MONSTER classes, which give rise to interesting formulae for
the appropriate modular functions. Fixed-point-free automorphisms play
a special role here, and there are connections with observation C. We can
also deduce observation B from observation A and properties of the modular
functions concerned.

(5) Of course the condition that Hr be a MONSTER representation of degree ar

does not determine Hr uniquely (for example, each Hr could be a multiple
of the trivial representation). Even when we restrict attention to cases with
small multiplicities ambiguities soon arise. However, the additional pro-
perties noted above have resolved these up to H10, and, in principle,
completely. One of the decompositions suggested in [17] has had to be
altered.

(6) Had our conjectures been available some time ago they would have afforded
an easy route to the computation of the MONSTER character table. It
has not escaped our attention that the BABY MONSTER characters have
not yet been found, and that the conjectures might help us to find them!
Perhaps they could later be verified using the Brauer-Tate theorem.

(7) The resulting notations Tm= Tn\h+e>fig> and tm— Tm +constant for
certain modular functions are convenient in their own right, and happily
generalise some that have already been used (e.g., Birch [4]).



MONSTROUS MOONSHINE 311

Section 3. The normaliser of T0(N).

It is a curious fact that the divisors h of 24 are precisely those numbers h for which
xy = 1 (mod h) implies x = y (mod h). We shall use this fact to give a simple descrip-
tion of the normaliser of T0(N) in PSL2(U) which does not seem to be generally
known. Let h be the largest divisor of 24 for which h2\N, and let N = nh.

Then from the rather complicated description of the normaliser in [3] it can be
deduced that it consists exactly of the matrices

iaeb\h\ (a b\
, = , , say, fore

\cn de ) [c a) e

with the understandings that the determinant of the matrix is e > 0, and that r\\s
means that r\s and (r,s/r) = 1. (We call r an exact, unitary, or Hall divisor of s.)

Since these matrices can be multiplied by the rule

a b\ (a P\ (aua+bxy avfi + bwd)
} . { \ = u times { >

c d) e \y 8} e [cwoc+dvy cxfi+dud} vw

(where e = uv, e = uw, n/h = uvwx, and u, v, w, x are coprime) they do indeed form a
group, up to scalar multiplication.

(a b\
Moreover, the conditions for { } to be in r o (N) are simply that

\c die

b = c = 0(mod h)

and also

e = 1 = ad — bc(n/h), so that ad = 1 (mod h)

whence

a = d (mod h)

by our "defining property of 24".

So we see that I ,1 ero(iV) just when e = 1 and I , | is congruent modulo h

to an invertible scalar multiple of the identity. It follows that < , 1 and { ~}

lie in the same (left or right) coset of T0(N) just when

e = e and a = ka,b = kfi, c = ky, d = kd (mod h)

for some k invertible mod h, and so this set of matrices really does normalise

ro(N).
From the indices given in the last theorem of Atkin-Lehner [3], we see that it

is the full normaliser in PSL2(U), while the normaliser in PSL2(C) or PGL2m)
can be obtained simply by removing the condition e > 0.

Section 4. Subgroups of the normaliser

A number of subgroups deserve special mention.

(0) The map z -> — \/Nz, which we call the Fricke involution, is in the normaliser,
and extends T0(N) to a group we call the Fricke group, in which ro(JV) has
index 2.
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(1) Provided N = nh, where /i|24 and h2\N the matrices

a b/h\ (a bi a b/h\ (a b)
I I = { > of determinant
\cn d I \c dj 1

form a group, even when h is not the largest divisor of 24 with this property.

Since this group is a conjugate of T0(n/h) by L .1 we shall call it T0(n\h).

(2) The set We of all matrices of the form

fae b\ I a bh)C )-(
\cN del I

, where e||JV, and the determinant is e
ch d J e

is a single coset of ro(JV). We have the relations

e f
We

2 = 1, FFe Pfy =WfWe= Wg (mod ro(iV)), where g =
(e,f)

which show that these cosets form a subgroup of the normaliser that we call
the involutory normaliser. They are called the Atkin-Lehner involutions for
T0(N), and we can regard the Fricke involution as the special case WN.

I n h\
with a given value of e forms a

c 'e . (h 0\
single coset of ro(«|/i), which is of course the conjugate by j n . I of an
Atkin-Lehner involution for To(njh). We shall therefore call we an
Atkin-Lehner involution for T0(n\h), and this time the Fricke involution
is wnlh.

In this language we can summarise our results:—

The full normaliser of T0(N) in P5L2(K) is obtained by adjoining to the
group T0(n\h) [which is a conjugate of T0(n/h)] its Atkin-Lehner involutions
[which are conjugate to those of T0(n/h)].

(4) We shall use the notation

for the group obtained from T0(n\h) by adjoining its particular Atkin-
Lehner involutions we, wf, wg,.... We further abbreviate this notation (and
similar notations later) by:—

(i) omitting " \h" when h = 1

(ii) writing T0(n\h)+ when all e\\n/h are present

(iii) writing T0(n\h)- when no e (except 1) is present.

Of course, the " —" in (iii) is optional, but is often included for greater
clarity.



MONSTROUS MOONSHINE 313

Section 5. The modular groups for elements of M

If m e M and q = e2niz, then the Thompson series

Tm = q-1+0+Hi{m).q+H2(m).q2 + ...

(in which Hr(m) is the character of the rth head representation at m) defines a function
of z which determines four subgroups of PSL2(U) with varying degrees of interest:

F(m) consists ju'st of the elements of PSL2(U) that fix Tm,

E(m) of the elements that multiply it by hth. roots of 1,

D(m) of the elements that multiply it by any roots of 1,

C(m) of elements that convert it to functions (ATm + B)/(CTm + D).

We call F(m) the fixing group and C(m) the converting group, and use the term
eigengroup for E(m) rather than for the distended eigengroup D(m) because the latter
seems to be of less interest in this context.

Now an element meM determines a number N in any of three ways:

(1) as the level of the group F(m),

(2) as the least N with z -• z/(Nz+1) in F{m),

(3) as the unique N with z -> — l/Nz in C(m).

Having determined N, we write h = N/n, where n is the order of m, and observe
that in fact h is always an integer, h\2A, and h2\N.

Then we conjecture:—>

E(m) has the form T0(n\h) + e,f,g,...
F(m) is a certain subgroup of index h in this.

[It is easy to see that C(m) is the normaliser of F(m) in PSL2(U), and we are not
very interested in D(m), which is occasionally larger than E(m).] To specify F(m)
exactly it will suffice of course to specify the eigenvalue X by which a given element
of E(m) multiplies Tm. We believe:—•

(0) X = 1 for elements of ro(iV), so is constant on cosets of T0(N),

(1) X = 1 for all the Atkin-Lehner involutions of T0(N) inside E(m),

(2) X = e~lnm for the coset { J (i.e., e = I, a = b = d = I, c = 0 (mod h)),

(3) X = e±2ni/" for the coset [ J (i.e., e = \, a == c = d = 1, b = 0 (mod /*)),

the sign in (3) being + if z -> - l/Nz is in E(m), - if not.

It can be checked that the cosets in (2) and (3) generate T0(n\h), so that (0-3)
completely determine X, and therefore the exact fixing group F(m).

We shall use the symbol



314 J. H. CONWAY AND S. P. NORTON

as a name for the set of MONSTER elements m for which E(m) has the form

T0(n\h) + e,f,g,....

By the remarks in Section 2, this set is a union of one or two conjugacy classes, and
we loosely call it a class. We abbreviate its name in similar ways to those in which we
abbreviate the names for groups.

Section 6. Relations between the classes

Our parametrisation shows up a number of relations between the classes. In
particular, the power maps are very simply expressed:—

The dth power of n\h + e,f,g,... is of class ri\ti+ e'J',g',..., where n' = n/(n,d),
h' = h/(h,d), and e',f',g',... are the divisors of n'/h' among the numbers e,f,g,....

In the case that d\h we call m the dth harmonic of md, and we call the elements
with h = 1 the fundamental elements. The general element, of class n\h + e}f,g,...
is therefore the hth harmonic of a fundamental one of class (n/h) + e,f,g [In a
slight divergence from musical terminology, fundamentals are their own first
harmonics, rather than zeroth harmonics.]

If m' is the dth. harmonic of m, then for an appropriate choice of the functions
tm and tm. we have

E(rri) is the conjugate of E(m) by
id 0\
I I

F(m') contains the corresponding conjugate of F(m) to index d.
If M + e is the class obtained from class M under symmetrisation by a further

Atkin-Lehner involution we, then for an appropriate choice of the functions tM and
fM+e w e have

E(M + e) = E(M) extended by we

F(M + e) contains F(M) to index 2.

Each line of Table 3 illustrates a number of such relationships, and makes a
simultaneous choice of the appropriate functions. The typical line starts with the
symbol for a fundamental element of class m followed by a formula for the appropriate
tm, and then gives the Atlas names for all harmonics of m (including m itself), followed
in parentheses by their symmetrisations (with the relevant constants k).

Some lines also give, after a semicolon, additional product formulae for the
fundamental tm (with different constants), and at the end of the table there are some
cases of "pseudoharmonics", for which tm.(z) = [t,n(dz)]1/d, but our other conditions
for harmonics are not all satisfied.

Thus the first line of the table tells us that \A and 3C are the first and third
harmonics of the identity, with functions tlA = ; , t3C = (j(3z))1/3. From the second
line, 2B, AD, 6F, SF, 12 J, 24 J are the harmonics of 2—, with symmetrisations

hA = tin + 4096/t2B, t4B = UD+64/f 4B.
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The symbol l24/224 tells us that the appropriate function to use for class 2B is

r,(z)2*/ri(2z)24 = T2B-24,

and so a product formula for its dth harmonic is [n(dz)jrj(2dz)]2*/d.
The table is complete for all harmonics, pseudoharmonics, and symmetrisations

within M, and displays all product formulae for the tm in terms of factors rj(kz).

Section 7. Relations with the Leech Lattice

There are several correspondences between automorphisms of the Leech Lattice
L (see [13], [5]) and elements of M. Because L is a rational lattice, we can use
Frame's "generalised permutation" notation, [7], in which we say that an auto-
morphism n has shape a" bp.../cyds... meaning that its eigenvalues can be obtained
by removing those of a permutation of cycle-shape cyd6... from those of one of
shape a*tf...

We then write

rjn(z) for rj(azY n{bzf\../,(«)' t,(dz)\..
Ln for the sublattice of L fixed by n, and
0n(z) for the 0-function of Ln, namely £ unq

n,

where un is the number of vectors of norm In in Ln.

Then it seems that there is always a class of elements nx in M whose Thompson
series has a form 6n(z)/rjn(z).

Some of the product formulae in Table 3 arise in this way from cases in which
n acts fixed-point-freely on L, so that 0n = 1. But to understand some of the others,
we shall need to study the groups p. Gp of our observation (C) in more detail.

If % is a fixed-point-free automorphism of L of prime order p , its eigenvalues
must be the p — 1 primitive pth roots of unity, each repeated 24/(p — 1) = Id times.

[The fact that this number is even follows either from a case-by-case analysis

(Id — 24 12 6 4 1) o r ^r o m ^ater s t a t e m e n t s l Now since % and the complex number
ep = e2ni/p have the same minimal polynomial fp~1 + /p~2 + ... + f+ l over 1,
we can define v.f(ep) = v.fin) for each veL and each polynomial f(t) el[t], and
so turn L into a 2<i-dimensional lattice over 1[ep]. The automorphisms of L that
preserve this structure are just those that commute with 7t, and they form the group
p.Gp of observation (C).

[We use an extended form of the notation first introduced in [5], under which the
symbols

n cyclic
p" elementary abelian

. , , . denote . groups of those orders.
p1 + ia extraspecial
[n] unspecified
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while A.B just means a group with a normal subgroup of type A whose quotient
has type B.]

When we factor by the ideal generated by ep — 1,1[ep] becomes the field of order p,
and so L becomes a vector space L(p) of dimension Id over this, or equivalently an
elementary abelian group of order p2d. It follows that Gp has an action on this group,
so that there exists a group p2d.Gp. Moreover, a suitable complex multiple of the
inner product on L yields a symplectic inner product on L{p)t so that there exists
a group pl + 2d.Gp with the property that for x,yep1 + 2d we have

x'1 y'1xy = mx'*

where m is the central element of pl + 2d and x. y the symplectic inner product of the
images of x and y in L(p).

Now it happens that the centraliser in M of an element m of class p— is a group
p1 + 2d.Gp of just this form. The particular cases are

21 + 2 4 .G2 (G2 the Conway simple group -1)

31 + 1 2 .G3 (G3 = 2.Sz, Sz = Suzuki's sporadic simple group)

5 1 + 6 . G5 (G5 = 2 .HJ, HJ = the Hall-Janko simple group)

71 + 4 .G7 (G7 = 2A7, the Schur double cover of An)

131 + 2 .G 1 3 (G13 = SL2(3), the double cover of AA).

It appears that if n is an automorphism of L whose p-part is the central element of
p.Gp, then the element nt of M considered above can be taken as an element of
pl + 2d.Gp whose p-part is the central element of this group, and which has the same
image in Gp as n does.

However, it seems that the correspondence between n and ni is not the only one of
interest. If n is an element of p.Gp of Frame-shape cfb0..., there is usually an
element np of M with product formula

a*bp...l(pay(pby...

Thus, if n is the automorphism x -> — x of L, regarded as an element of 2.G2, it
has Frame-shape 22 4/l2 4 , so that n2 has product formula

(224/l24)/(424/224) = 2 4 8 / l 2 4 4 2 4

which we see from Table 3 corresponds to MONSTER class 4 + . In these calcula-
tions, the Frame-shape to use is that corresponding to the representation of p.Gp on
a 2d-dimensional lattice over 1[ep].

There appear to be similar correspondences n -> nn for non-prime n—we shall
not go into more detail here. Since p.Gp (or more generally n.Gn) is not always a
rational group, the automorphisms involved are not always expressible in Frame's
notation, and the obvious generalisation of our remarks (which works!) involves
^-functions evaluated at points of the form nz+(a/b). A number of such formulae,
not all obtainable in this way, are given in Table 3a.

We show in Section 11 that the number of product formulae of this type for a
given function Tm(+constants) is at most equal to the number of finite values taken
by Tm at cusps. The formulae of Tables 3 and 3a show that this bound is attained
for all functions Tm except those corresponding to the three ghost elements 25Z,
49Z, 50Z. The "missing" formulae in these cases are also given in Table 3a; they
involve a slightly generalised kind of ^-function.
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Michael Guy's symmetry of 212 M2 4 shows that that group has an element of
shape (2a)a(2by.../aabp... whenever M2 4 has one of shape (ftf.... The "balance"
property of M2 4 now follows from the fact that the corresponding //-function
product formula is inverted by the Fricke involution z -» — l/2Nz. (See Section 11.)

A more complicated formula apparently enables us to compute tm for any m in
the centraliser Gx = 2 1 + 2 4 . C 1 of an element of class 2 — . We regard m as the image
of two elements % and — n of the central extension Go = 2 1 + 2 4 . C 0 of Gl5 and can
then define rjn,Ln,6n as above, since the quotient group Co acts on the Leech
Lattice. Also, since any vector v of Ln has a natural image in the group 224, it may
be called symmetric or skew according as the two corresponding elements of
2 1 + 2 4 are fixed or interchanged on conjugating by n. If we define

0n~ (?) = Yv e LB ±gnorm(l>) (+ for symmetric v, - for skew v)

then our formula is

where 5n is the value at n of the unique character of degree 21 2 for Go that restricts
irreducibly to the extraspecial group 21 + 24.

We make the following remarks:

(0) tm is well-defined by the formula, since it is symmetric in n and — n.

(1) Classes of Gx that fuse in M should yield the same function Tm, but the formula
may well give different constant terms for tm.

(2) It follows from its expression in terms of eigenvalues that the coefficient of
q" in l/rin(z) is a character of Go, and it can be seen that the coefficients in
0n~(z)+dn.8J2z) are characters of G0 obtained by induction from linear
characters of various subgroups. These remarks entail that the coefficients in
our formula are characters of Gx. •

(3) We have not been able to find similar formulae for the centralisers of elements
of classes 3 — , 5 — , 7 — , and 13 — . If this could be done, it would, in virtue
of the Brauer-Tate theorem, go a long way towards establishing our main
conjecture that the coefficients of the Tm are characters of M.

Section 8. The replication and other formulae

Let us write J(z)= Tx(z) =j(z)-744 = q'1 +a1q + a2q
2 + .... Then for any

prime number p the expression

/ z \ /z+\\ /z + p—1\
K(z) = J(pz) + j(—) +J{ +... + JI—-—

\p / \ P / \ P /

is invariant under T, which permutes its p +1 arguments. Since it has no poles inside
the upper half-plane, it is actually a polynomial in J, whose coefficients can be found
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from the leading terms. We deduce that there is an identity of the form

- J(pz)} = f{J) + apq + a2pq
2 +... .

P

Such identities exist also for composite multipliers, and apparently always have
character valued versions, which we call replication formulae, obtained by replacing
each ar by a suitable value of Hr Here are the first few cases:—

KT2-T(2)(2z)} = {H2q+H4q
2 + ...}+Hi (duplication)

KT3-T(3)(32)} = {H3q+H6q
2 + ...}+H1T+H2 (triplication)

- T(4)(4z)- Tm(z)- T(2)

|{r5-T(5)(5z)}

where T = Tm(z), TM = Tm,,, and Hr = Hr(m). To obtain the n-plication formula, set

/ nz+dr\
K(z) = Y, J I —I— I > summed over d\n and 0 ^ r ^ d

and replace ar by Hr(m"/d) inside K(z) and by Hr(m) outside (including appearances in
the coefficients of/).

Comparing powers of q we obtain many identities, for example

Q ^ 2 H j H6 = H 4 2 y

H8 = H5+H2H1+H2
2~ H9 =H5+H3Hl+H2

2+Hi
l2i:i

H i0 = H6+H4,Hl+H3H2 Hi2 = H^-^H^H^ +2H3H2+H2Hl

Hl2 = Hy+H5H1+HA,H2+H3

from the duplication and triplication formulae, where

H2- = \{H2(m)-Hr(m
2)}HW = \{Hr\m)-Er{m2)}'

Although it seems that the a-plication and ^-plication formulae agree at Hab, we
get new relations in other cases when there are two formulae for the same Hn. For
example, our two formulae for Hl2 show that H-, can be expressed in terms of
i/1,H2,H3,//5, and similar methods show that the same is in fact true of all Hn. We
can also find a number of relations, of increasing complexity, between H1,H2)H3,
and Hs.

When the fixing group F(m) contains the involution wp, the two sides of

/z\ /z+l\ /z+p-l\
Tm(z) + Tm l—j + Tm I j +... + Tm ^ j = TmP(z)

will have the same invariance group and leading terms, and must therefore be equal.
Between this compression formula and the corresponding replication formula we can
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eliminate some terms to get an expansion formula, of which the prototype is

J(z) + J(2z) = T2 + \z)+T2 + (z)-2

Some other instances, providing expressions for Tm as roots of polynomials
involving Tm«, have been used in Table 4a.

There are other types of compression formula in which the symmetrisation
involves some Atkin-Lehner involution or is achieved in other ways, for example

/ z \ /

r2+(z)=r2_(2)-r2_(_)-r2_(

+T
8 +

The same type of argument can be used to establish the linear relations between the
Tm that were mentioned in Section 2. If JV is one of 6, 10, 12, 18, and Wa, Wb, Wc are
the three Atkin-Lehner involutions for T0(N), then the functions

Ti rri rri rri fTT^

N- AN+ 1N + a JN + b JN + c

have the respective forms

/, f+f(Waz)+f(Wbz)+f(Wcz), f+AW.z), f+f(Wbz), f+f(Wcz)

and so we have

2TJV_ + TN+ = TN+a+TN+b+TN+c.

The relation

2^30+15+^30+ = ^30 + 6' 10, 15+^30 + 3, 5, 15+^30 + 2, 15, 30

is exactly similar, and there are two more equations

2T8_ = T4_ + r4 |2 2T16_ = T8_ + T8|2

which can be regarded as four-group relations of this type in which the missing terms
correspond to functions that symmetrise to zero. The last relation

^12 + 3 + ^12|2+ ~ ^12|2 + 2 ~ ^12|2 + 6 = 2 ( T 1 2 - + T24.+ — 7^4 + 8 ~ ^24 + 24)

is more difficult, but since Fo(24) has genus 1 we can use the theory of elliptic functions
to show that the difference between the two sides has no poles, and so is zero. The last
three relations were discovered by Atkin, who has also shown that there are no more.

Section 9. Moonshine for other groups.

Various groups G, often derived in some way from centralisers of elements of M,
have moonshine properties of their own. In other words, to each element geG there
corresponds a series

defining the modular function for which the fixing group F(g) contains some T0(N)
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and determines a function field of genus zero. Most of the properties we found for
M extend, though there are some differences:

(1) The fixing group does not always contain T0(N) normally.

(2) The Fricke involution need not lie in the converting group.

(3) The replication formulae need certain modifications.

(4) There are additional multiplicative properties for certain groups, and for
these the most natural hr(g) are generalised characters.

Multiplicative moonshine. We discuss (4) first. The group Gp of Section 7 has a
central element — 1, and two algebraically conjugate representations 0 + and $_ of
degree Id — 24/(p-1), except that 0 + = 0_ for p = 2. For this group, every tg has
a multiplicative formula:

in which

char±(4) = (l-qe1)(l-qe2)... (i-qe2d)

where the e's are the eigenvalues of g in the representation 0 ± , and the sign is the
Legendre symbol (n/p). With this definition it can readily be shown that hr(—g) is
a character, while hr(g) is only a generalised character, but certain properties of the
replication formulae show us that it would be wrong to exchange the two functions.
However, there is a bonus: for these groups ho(—g) = —hQ(g) is also a character of
G, namely that afforded by the basic representation (j)+.

Immaterial moonshine. For the groups 2B, 3JF2 4 ' , E, F, H, M12 of Table 2a, we
seem always to get proper characters, and the constant term ho(g) is immaterial,
just as in M.

The fixing groups of the new modular functions are less restricted than those
that arise from M. For example, in 2B there is an involution corresponding to the
function 0 — 1728)*, and which we therefore call 2|2, but although Jf4 is in the eigen-
group, it is not in the fixing group and therefore has eigenvalue — 1 rather than + 1 .
A seventh root, 14|2, of this element arises in both IB and H, and has similar
properties. In F there is an element we call 5|5, since its fixing group has index 5 in
FO(5|5), but the latter is not the eigengroup, and does not even contain the fixing group
normally. Our naming system rapidly breaks down, and in fact it seems that the
possible fixing groups are all the discrete extensions of T0(N) for which the corres-
ponding function field has genus zero. We shall say more about such groups in a
moment.

When algebraic irrationalities arise in the coefficients, there are new problems,
like the need to distinguish between (j>+ and <f>- above. We have noticed that when
Tg involves quadratic irrationalities, and G is derived from the centraliser of an
element of order p in M, then the part {Hnq+H2nq

2 +...} of the w-plication formula
must be replaced by its algebraic conjugate whenever (n/p) = — 1. Presumably this
rule has a natural extension to other groups and higher degree irrationalities, if
indeed these arise.
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Abstract replication. If T =q~1+H1q+H2q
2 +... generates a genus zero

function field corresponding to some group containing T0(N), there will usually be
several groups G with elements g for which T = Tg. We say that these elements have
type T, and call T a type (even if there is no g with T = Tg).

The replication formulae, as just amended, can now be used to define certain
functions T(2), T(3), ..., T(n), which we call the duplicate, triplicate,,..., n-plicate of T.
Of course, if T is the type of some meM, these will just be the types of the square,
cube, ..., nth power of m, so that our abstract definition has captured at least some-
thing of the multiplication in M.

If G is derived from the centraliser of some element of M of order s, and
T = Tg, then it seems that indeed T(n) = Tgn whenever (n,s) = 1. But if («, s) > 1,
then n-plication often yields an element in another group, usually the Monster
itself. For example, the quintuplicate of the type T5|5 is J(z), and so corresponds to
the identity element, not of F, but of M. Since J(z) is its own n-plicate for every n,
we call it the identity type, and say that T5|5 has replication order 5, while elements of
any order n prime to 5 in F have replication order 5n.

Many questions arise about this abstract replication of modular functions. Is
the tf-plicate of the Z>-plicate equal to the afe-plicate ? Does every type have a well-
defined and finite replication order? What is the proper treatment of algebraic
irrationalities? And so on.

It is a famous assertion of Galois that PSL2(p) has a subgroup of index p only
for p = 2, 3, 5, 7,11. We have already mentioned the types t2\2> t3\3, ts\5, and remark
that f7)7 and ^njn arise respectively in Held's group and Ml2. The exact corres-
pondence of these with the Galois exceptions appears to be significant.

Finally, we ask whether the sporadic simple groups that may not be involved in
M (those discovered by Lyons, O'Nan, Rudvalis, and the three Janko groups Ju J3

J4) have moonshine properties. There is an exceptional involutory automorphism
of the algebraic curve for FO(37) that might be relevant for the Lyons group. Is there a
similar period three automorphism for the case FO(67)+ ?

Section 10. The genus zero problem

Helling [9] has shown that the groups Fo(«) + for square-free n are maximal
discrete groups, and that every discrete group A commensurable with F can be
conjugated into one of these groups. Moreover, if the function field for A is of
genus zero, so is that for Fo(«) + , and it is easy to see that the conjugating element
can be taken in the form z -> (pz+q)/r where p, q, r are integers with no common
factor.

The question as to which groups between F0(N) and its involutory normaliser
F0(JV)+ give genus zero is an old one. Fricke ([8], p. 367, but accidentally omitting
59) lists cases when the Fricke normaliser T0(N)+N gives genus zero, and Ogg [15]
has used techniques from algebraic geometry to show that Fricke's list (with 59
inserted) is complete for primes (and offers a bottle of Jack Daniels' for an explanation
of why the primes that arise are just those dividing \M\!) More recently, Kluit [12]
has shown that there are no cases other than those appearing in Table 5 of [1], which
are of course just the cases with h = 1 in our Table 2. See also Kluit [11].

The corresponding discussion for the non-involutory part of the normaliser does
not seem to be available in the literature. However, our remark that the full normaliser
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of T0(N) is conjugate to the involutory normaliser of T0{njh) makes a fairly elegant
discussion possible. In particular, the largest JV for which the full normaliser of
T0(N) has genus zero is JV = 242.119 = 68544.

However, we are concerned also with groups not containing any T0(N)
normally, and the correct requirements seem to be:—

(1) A contains some F0(JV).

(2) the function field for A has genus zero.

(3) the translation z -> z+k is in A exactly when k is an integer.

(4) the coefficients in the canonical Hauptmodul T for A are algebraic integers.

We conjecture that there are only finitely many groups with these properties.
Larissa Queen has computed the first few terms of Tg for all g in various finite groups
(E, F, H, M12, ...) and for the elements of smallest order in the infinite Lie group
£8(IR). In most cases the corresponding modular groups are easily identified. On the
basis of these results we conjecture that there will be three or four hundred cases
in all (171 of which appear in M). It would be very interesting to have a complete
list, and to study the replication maps between them.

Section 11. Description of the tables

Table 1, copied from [6], gives the degrees ft of the irreducible characters of M.

Table la gives first, copied from [19], the coefficients ao-a24. in the ̂ -series for;.
Beside this are given the decomposition numbers for the Head characters H.^ to H9

in terms of the MONSTER irreducibles ordered as in Table 1.

Table 2 is our class list for the MONSTER. Its columns give:—

column heading contents

name ATLAS name of the conjugacy class of m

primepowers ATLAS names for the prime powers of m
F letter assigned to the class of m in [6]
symbol our parametrisation n\h + e,f,g,...
centraliser order of the centraliser of m
D Dill is the "Euler characteristic" of F(m), i.e.,

2n/3D = area of fundamental region of F(m).
C cusp number.

The term ATLAS refers to the Atlas of Finite Groups that we are preparing with
R. T. Curtis and R. A. Parker, in which classes of elements of order n in any group
are named nA, nB, nC, ... in descending order of their centraliser sizes. The number
D can be used to find the index of one of the groups F(m) in another that contains it.

Table 2a supplements Table 2 by giving structural details of the centralisers of
elements of small order. It also gives decimal forms for the centraliser orders that
were too long to fit in Table 2 itself.
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Table 3 gives all products for tm expressible only in terms of r\(kz) for various k.
It also illustrates various relations between the classes in a way described in more
detail in Section 6. This table can be used to derive a formula for any class in any line
from one for the fundamental class.

Table 3a gives additional product formulae involving ri(kz+c), c ^ 0, and some
transformation rules for such functions. The three formulae for 25Z, 49Z, 50Z involve
a further generalisation explained in the table.

If n(z) is one of the product formulae for m in Table 3 or 3a, then n(z) = Tm — k,
and since n(z) does not vanish in the interior of the upper half-plane, Tm must take
the value k at a cusp. Since Tm takes the value oo at the cusp ioo, the number of such
product formulae for a given m is therefore at most C— 1, where C, given in Table 2,
is the number of equivalence classes of cusps under F(m). Study of Tables 3 and 3a
shows that the bound is always attained, so that no more such formulae are to be
expected.

It is also possible to see from these tables how the Atkin-Lehner involutions
transform the tm. The well-known formulae

tl(z+l) = e.r,{z), iK-l/z) = *

where e = e2n{/24, imply that for j I in F we have
\c d!

r, (—) = n{z).(cz+d)±.B«°>b>c'd\
\cz+dJ

and using this one can show that to within algebraic factors that largely cancel in our
calculations, the elements of T0(N) leave all r\(ez) (e||JV) fixed, while the Atkin-
Lehner involutions of T0(N) permute them in the obvious way. For instance, when
JV = 6, we find that W2 interchanges r\(z) with rj(2z) and */(3z) with rj(6z) to within
such algebraic factors, and therefore fixes the product formula l424/3464 = t6+2

but inverts I6 36/26 66 = t6+3 of Table 3. [A more detailed calculation shows that
W2 takes t6 + 3 to 81/f6 + 3.]

Table 4 gives numbers H_t{m), ...,H10(m) for each meM. For r # 0, Hr(m) is
the coefficient of qr in 7̂ ,, (i.e. the value of the rth head character at m), while H0(m)
is the Rademacher constant for Tm. The Rademacher constant of a modular function/
is the complex number c for which / + c lies in a certain complex vector space. This
is the unique space that is invariant under the positive elements of PGL2(Q) and has
codimension 1 in the space of all modular functions belonging to groups com-
mensurable with F.

Table 4a provides sufficient additional formulae to identify Tm for every meM.
Several of these are consequences of our expansion and compression formulae
(Section 8), while others involve the 0-functions of certain 2-dimensional lattices.
The Table is self-explanatory. Some of the formulae are due to Fricke, and some to
Atkin.
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Table 1

1
196883

21296876
842609326

18538750076
19360062527

293553734298
3879214937598

36173193327999
125510727015275
190292345709543
222879856734249

1044868466775133
1109944460516150
2374124840062976
89R0616927734375
8980616927734375

15l78t 47608537368
3 96 60 520 552 0 7 742 5
60 3 5980 05 76 57935 0

251098487132187500
29056 84 2180 5 921077
33604 1615485626050

2 500435214254428856
29864 SO82540720 4125
350 34 34 66 0 075 044931
350 34 34 660 0 75 04 49 81
36057 18753596 95312 5
845 68 36 34 35 80 310400
87541 9 38 22112 57 8125

2 658 599 09 50 72164 062 5
30815545786259524745
3156981730712269960S
A 737 750 36066 48 7844 0 0
4 960 97 1291 I 192 813665
7 731 66192739 28 12 5000

130 4 153 50 420342 96875 0
1=594 3076739132 582 85 0
172 39 94 342 01593 354 756
17 239 9434201593 354 756
2R6243267692724436144
28624 32 6 7692 7244 86144
379913824694312370176
(4055836416726362 2626
64055 83 641672 63 62262 6
C4335 69 25 889917747200
6C1170144025469730622
69117014 40 25 469730622
7 760971922771375 0000 0
<T 184382 3 3727 730 974 72 0

120124 170 09084 48 332364
13530068 07137 391674 26 8
14e027947 7146 61523 4375
14P02794 7714 6615234375
1 76 P. 13 080 25831 26953125
1768130802583126 953125
23 517536 41814 605 34 8320
2 3 829874 17506 242 421875
45 6719 91769124864 000 0 0
45671991769124864 00000

55780^7210155766 091776
656655 5764 392010 419123
7 226910 36 263122 0 62500 0
1014527 4012942412 42 8800
12810 00 5542 62 3250 817856
1979591391240 8993711352
2180 364 775 7861753 43 7500
2467 08 3 360 29 60142 274 950
31714653744S4 7491 918600
4120 9 55 6844 092914 062 500
4294040 2913709544921 375
4 2940 40 29 U 709544 921375
6068376 205 2 057587 326 065
7066034634 1309333984 375
7066034 634130S333934375
8 6551489469 2332738490 00
9106838 73 8330 2451493925

I 14212876389603002704443
115192 83 1337 135016250000
1 4657573743 J884098045700
14961479414P226010902528
149614 79414 9 22 6010 902 528
161649111002260792 968750
16164911100226C792968750
191259085113459945312 500
19125918 51134 59945312 500
2180 28 40 2153522030021 875
2 2032647690 9636307 378168
2 60799 52 410 708376 7968750
2 6079952 410 708376 7968750
261575 621299360905463750
2 77540 48129452 8814140 625
3 03379 03 324 7015311718 750
33115081 49951 U217 581 480
3 51532 203 38 273 2066094 4 00
391009081837477378329600
392 6116519 750656 00 000 000
4 33528 69456059 6978525184
59778752 2207315571 077947
597787522207315571077947
6 00020 77268 5 064502392 907
62687740 3613887304 040448
626877403613887304040448
65515923107 3705404921875
6 8976322 2744 895005949242
6 89 76 322 274 4 895005949242
689766 72 6179 55 5080994223
689766 726179555080994223
1037605886984697481755304
136154912610 5752982272875
1599110 38 786355 8882812500
166 268618048 38 65572 016128
218169418 5821505680397 072
22 163430 209133519 66796 875
2477548750555298068681 032
32 82510 54 0283631442175104
353729 279 6538741415 074900
3619209050774375426792424
40 04308 27 482 327 0400 000000
423931565297900S728125000
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492 6670 17 4323 484 0 6 968320 0
5334 0 46 16 2569 208 35 2215625
5514132424e8I 463208443904
551413242 4 38146320 8443904
5514132424881463208443904
7118465328761788475375616
737 5892500409609408203125
7 56715157€£4245242578125 0
7 567 1515765424 524 25781250
7 85093495 92 07 940 6 0 00 0000 0
8394037047155083487634450
8674260875527017S3CC65100
9416031e58681585751556096
9479 49 57 45 80 530565312 5000
9 5922 98143 650 890 25517158 4
9 592298 143650 890 25517158 4
9 5925 843 86 9185829 7565772 8

10 02 38 54 99 81714 890 8 398437 5
12650882 10046618703370625 0
14 93016428 356304896 0 000000
16 1094 07 26 92210325656 30370
226266 2136 5 I€0537099927552
24 546 384719 2898 25 59 818669 5
2 750 1917609709 1022 4718750 0
2 9 734941419909382 1€2 87 4368
336 843 8883 03599810445 3120 0
33 722191327 00 26 68 157047380
37 310715211546624 00 00 0000 0
384717957392 565650 80 575180
4173894 1 1512 43 953 80468750 0
4176 2322736385 8 20 15562500 0
4 2 001454087554 51516750349 0
4 2 60 14 748 6 0 639579665 8 9639 7
43 52713 0990147981755651072
50 57254 2024949598 4037 5000 0
51324 35 C3855580974140 62500
5635643 3 273146 6750 05489152
58 4 37 394 633 227 52618 33 2160 0
62 0380 574 86 79224913 25 74080
63750812845035828C79008441
64326163427522624205703125
€6 550339 5143 56152 0 0 00 0000 0
6 5084 9590080050364 31224066
7 461221352 97203836 54779356
774 2339 6454 853 064 646 282250
8 3974774459050 3356 30 8 5937 5
8 620 66 2168 0 577 8349118 7500 0
88943820620288343 2616 72393

103 3541042439127 27763051456
1 15165 062362 004 4336 2 50 00000
121 17079 5 24 0 938738 7834 1692 5
124058385593021471188320256
12 4982156 07 27 47647 2 57 29280 0
12551726485013604824239681 1
1295 72518017902 934 396 764160
130 2871352€6e37289237316743
13522 6984222789977095703125
136 107€44194473772613203125
136574e7487436080603604188 9
136574 87 4874360 8 060 36041 88<S

138988549876584520148320256
161561864971 17111328754 0625
163216709 66 719636771093 75 00
172 24 885239 765174565343 7500
17386 5305 25 19 7214044 7 26 5625
175867626588794162227008203
17796631777 36 33 11141787C812
158 2 0390 0044 42 38454 944 82560
POO 390867219082687273984375
?03314261261157852274218750
2074670ft9840006711558 59375 0
21249 0247553365721772656250
24186 694143879 5926688759808
P58823477531055064045234375
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Table \a. Coefficients of the j-function, and head character decompositions.

1

5
26

114
474

1894
7318

27406
99710
53074

3

22

146
874

4872

25497
26142

93121
62842

59912

38786
49976
11377
30712
41659
53186

2
33

425
4465

40149
17644

56739

21191
31371

01011

82738
91646

77242
41315
78844
80123
24889
31813
51362

93718
56142

1

214

8642

02458
32026

20233

69940

08866
02297

33095

14995
96857

17981

94105
57818

14450
07752
47865

41688
33900
75192
46549

26935
70998

degree =
1

(744)

96884

93760

99970

56256

40600

00096

71935

56000
84420

93600

19294

75360

42520

25184
43075

58560
45160

13920
13250
28800
45696
29920
33820
77376

O-i,

ao>
a i >

Ol,

a3.
0 4 ,

«5>

" 6 .

0 7 >

as,
ag,

0 1 0

flu

«12

Oli

fl14

« 1 5

0 1 6

<*17

0 1 8

0 1 9

" 2 0

02 1

0 2 2

« 2 J

a,A

decomposition

W-,
Wo

w,
w2
w3
w4
w5
w6
w7
w8
w9

= 1
_ 7

= 1
= 1

= 2

= 2
= 4

= 4

= 7

= 8
= 12

/ ,

(/„ =

1

2
3
5
7

11

15
23

h

1
1
2
3
5
7

12
16

h
= n'th

1
1
2
3
6
8

14

h

0
1

1
3
4
8

h

1
1

3
4
8

12

h
MONSTER

1
1
2
4
7

fi

1
2
4
7

/„

1
1 1 0 1
3 2 1 1

f<i f\ o / i l / i;
character.)

0 0 1
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Table 2. Class list of M.

name (primepowers)

2/1(1/1)
2B{IA)
3/1(1/1)
3B{IA)
3C(\A)
4/1(25)
4B(2/4)
4C(2B)
4D(2B)
5/1(1/1)
5B(IA)
6/4(3/1, 2/4)
6B(3B, 2B)
6C(3A, 2B)
6D(3B, 2/4)
6£(3B, 2B)
6F(3C, 2B)
7/1(1/1)

8/l(4C)
8fl(4/4)
8C(4B)
8D(4C)
8£(4C)
8£(4D)
9A(3B)
9B(3B)
10-4(5/4, 2-4)
IOB{5A, 2B)
10C(5B, 2-4)
10D(5B, 2B)
10£(5B, 2B)
11-4(1-4)
12-4(6C, 4-4)
12B(6£, 4-4)
12C(6/4, 4B)
12D(6F, 4/1)
12£(6C, 4C)
12F(6B, 4D)
12G(6D, 4B)
12//(6£, 4C)
12/(6£, 4C)
127(6F, 4£>)
13/4(1/1)
13B(l/4)
14/1(7/1, 2-4)
14B(7-4, 2B)
14C(7£, 2B)
15-4(5/4, 3-4)
15B(5-4, 3B)
15C(5B, 3B)
15Z)(5B, 3C)
16/4(8-4)
16B(8£)
16C(8£)
17/1(1-4)
18-4(95, 6D)
1&B(9A,6D)
]8C(9A, 6£)
18£>(9B, 6£)
18£(9J3, 6£)

F
A

A
B
B
A
C
B
A
C
D
B
A
D
B
E
A
C
F
B
A
D
B
A
E
C
F
A
B
D
E
A
B
C
A
G
B
F
1
H
E
A
C
D
J
B
A
B
C
A
D
C
A
B
C
A
B
A
C
A
B
E
D

symbol
1

2 +
2 -
3 +
3 -
3|3
4 +
4|2 +
4 -
4 | 2 -
5 +
5 -
6 +
6 + 6
6 + 3
6 + 2
6 -
6|3
7 +
7 -
8 +
8|2 +
8|4 +
8 |2-
8 -
8 |4-
9 +
9 -
10 +
10 + 5
10 + 2
10+10
1 0 -
11 +
12 +
12 + 4
12|2 +
12|3 +
12 + 3
12|2 + 6
12|2 + 2
12 + 12
1 2 -
12|6
13 +
1 3 -
14 +
14 + 7
14 + 14
15 +
15 + 5
15 + 15
15|3
16|2 +
1 6 -
16 +
17 +
18 + 2
18 +
18 + 9
1 8 -
18 + 18

D
2

3
6
4
8
6
6
6

12
12
6

12
6

12
12
12
24
18
8

16
12
12
12
24
24
24
12
24

9
18
18
18
36
24
12
24
12
18
24
24
24
24
48
36
14
28
12
24
24
12
24
24
36
24
48
24
18
36
18
36
72
36

C
1

1
2
1
2
1
2
1
3
2
1
2
1
2
2
2
4
2
1
2
2
2
1
4
4
2
2
4
1
2
2
2
4
1
2
4
1
2
3
2
2
3
6
2
1
2
1
2
2
1
2
2
2
2
6
3
1
4
2
4
8
4

centraliser
24632O597611213317.19
23.29.31.41.
242313567211
24 639547211.
221317527311
214320527 u
2 1 5 3"5 3 7 2 13
2 3 4 3 7 5 3 7 .11 .
22 736527213.
23 4345.7
22 733527.13
2 1 4 3 6 5 7 7 .11 .
2833597
2 1 9 3 1 O 5 2 7 . 1 1
2 1 4 3 8 5 2 7 . 1 1 .
2 2 1 3 8 5 . 7
2 1 4 3 1 3 5

214395
21 5355.7
21O33527417
34325.76
222337
21 9335.11
214335213
219325
2223
214337
2 6 3 i . 5

2 4 3 . i

2 U 3 2 5 4 7 .11
21 43253

2 8 3.5 6

2833537
2 8 3 .5 4

26335.112

215365
2 n 3 7 5
2 " 3 5 5 . 7
2 U 3 4 7
21 533

29335.7
2936

2 " 3 3 5
2 .o34
29325
2433132

233.133

29325.72

2 '°3.72

24325.72

2635527
233652

243352

233253

2I 23
213

213

233.7.17
2437

2536

2635

2435

2435

47.59.71
.13.17.19.23.31.47
13.23
.13.17.23.29
.13
.19.31
23
17

19

.13
13

1

=
=
=
=

=
=

=

=
=

—

=
=

=

=
=
=

=
=
=

=

1194
223
174
11
8
4
3
2

11
1

27
1

39360
94880
18240
61216
84736
83840
73248
76480
82944
23040
73008
52728
28960
50528
35280
21600
45800
10800
9000

12288
8192
8192
2856

34992
23328
15552
3888
3888
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name (primepowers)

\9A(\A)
20/1(100, 4/1)
20B(\0A, 40)
20C(10£, 4A)
200(100, 4£>)
20£(10D, 4D)
20F(10£, 4C)
21-4(7/1, 3/1)
210(70, 3/1)
210(7/1, 3C)
21D(70, 30)
22/1(11/1,2/1)
225(11/4, 2B)

*23AB{IA)
24/1(12/1, 80)
240(12£, 8/4)
24C(12/, 8/4)
24D(12£, 8D)
24£(12D, 80)
24F(12F, 8F)
24G(12G, 8C)
247/(12//, 8D)
24/(12/, 8£)
247(127, 8F)
25/1(50)
26/1(13/1, 2/1)
260(130, 2B)
27/1(90)
21B{9B)
28/1(14/1, 40)
280(140, 4/4)
28C(14B, 4C)
28D(14C, 4D)
29/1(1/1)
30/1(15C, 10D, 6B)
300(15/1, 10/1, 6/1)
3OC(15/J, 100, 6C)
3OD(150, 100, 60)
3O£(15D, 10D, 6F)
3OF(15C, IOC, 6D)
3OG(15C, 10£, 6£)

*3U0(l/4)
32/1(160)
320(16C)
33/1(11/1,30)
330(11/1, 3/4)
34/1(17/1, 2/4)
35/1(7/1, 5/1)
350(70, 50)
36/1(18C, 120)
360(18D, 120)
36C(180, 12G)
36£>(18/), 12/)
38/4(19/4, 2/1)
39/1(13/1. 3/1)
390(13/1, 3C)

*39CD(130, 30)
40-4(200, 8C)
400(20/4, 80)

*40C£>(20F, 8D)
41/1(1/4)

F

A
E
D
A
F
C
B
C
B
D
A
A
B

AB
F
G
D
H
I
E
A
B
C
J
A
B
A
A
B
B
C
D
A
A
0
F
G
£
D
A
C

AB
A
B
B
A
A
B
A
0
C
A
D
A
C
D

AB
C
D

AB
A

symbol

19 +
20 +
20|2 +
20 + 4
2O|2 + 5
20|2 + 10
20 + 20
21 +
21 + 3
21|3 +
21 + 21
22 +
22 + 11
23 +
24|2 +
24 +
24 + 8
24|2 + 3
24|6 +
24|4 + 6
24|4 + 2
24|2 + 12
24 + 24
24|12
25 +
26 +
26 + 26
27 +
27 +
28|2 +
28 +
28 + 7
28|2 + 14
29 +
30 + 6,10,15
30 +
30 + 3, 5, 15
30 + 5,6, 30
3013 + 10
30 + 2, 15, 30
30 + 15
31 +
32 +
32|2 +
33 + 11
33 +
34 +
35 +
35 + 35
36 +
36 + 4
36|2 +
36 + 36
38 +
39 +
39|3 +
39 + 39
40|4 +
40|2 +
40|2 + 20
41 +

D

20
18
18
36
36
36
36
16
32
24
32
18
36
24
24
24
48
48
36
48
48
48
48
72
30
21
42
36
36
24
24
48
48
30
36
18
36
36
54
36
72
32
48
48
48
24
27
24
48
36
32
36
72
60
28
42
56
36
36
72
42

C

1
2
1
4
2
2
3
1
2
1
2
1
2
1
2
2
4
4
2
2
2
4
4
2
3
1
2
3
3
1
2
3
2
1
2
1
2
2
2
2
4
1
4
4
2
1
1
1
2
4
8
2
6
1
1
I
2
1
2
4
1

centraliser

223.5.19
21O3.52

273252

2 6 3.5 3

283.52

2*3.52

263.5
23335.72

2.3273

2332?2

23327
2*3.5.11
263.11
233.23
2833

2932

2733

2832

2732

2533

2 5 3 3

2632

273
2532

2.5 3

2*3.13
233.13
2.3 5

35

253.72

273.7
277
233.7
3.29
2*3352

253252

26325
233252

23325
2*3.5
243.5
2.3.31
27

27

2.3311
223211
2317
223.527
2.5.7
2*3*
233*
2333

2332

2219
2.3313
3213
2.3.13
2*52

265
2*5
41

1140
76800
28800
24000
19200
1200
960

52920
6174
3528
504

2640
2112
552
6912
4608
3456
2304
1152
864
864
576
384
288
250
624
312
486
243
4704
2688
896
168
87

10800
7200
2880
1800
360
240
240
186
128
128
594
396
136

2100
70

1296
648
216
72
76
702
117
78

400
320
80
41
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name (pnmepowers)

42/1(21/1, 14/4, 6/1)
42B(21D, 14C, 6£)
42C(21C, 14B, 6F)
42D(21B, 14C, 6C)

*44/lB(22B, 4/1)
45/4(15B, 9/4)

*46/lB(23/lB, 2B)
*46CD(23/1B, 2/1)
*47/4B(l/4)
48/l(24B, 16/1)
50/4(25/4, IOC)
51/4(17/1, 3/4)
52/1(26/4, 4B)
52B(26B, AD)
54/1(27/1, 18/4)
55/4(11/1, 5/1)
56/4(28C, 8/4)

•56BC(28D, 8F)
57/1(19/4, 3C)

*59/lB(l/l)
6O/1(3OB, 20B, 12C)
60B(30C, 20/4, 12/1)
60C(30G, 20C, 12B)
6O/)(3OG, 20F, 12//)
6O£(3OD, 20D, 12F)
6O/r(3O£, 20£, 127)

*62AB(31AB, 2/4)
66/l(33B, 22/4, 6/4)
66B(33/1, 22B, 6B)
68/1(34/4, 4B)

*69AB(23AB, 3/1)
70/1(35/4, 14/1, 10/1)
7OB(35B, 14C, 10D)

*7UB(1/1)
78/4(39/1, 26/1, 6/4)

•78BC(39CZ), 26B. 6B)
84/1(42/1, 28/1, 12C)
84B(42B, 28D, 12F)
84C(42C, 28B, 12D)

*HAB(29A, 3/1)
*88/lB(44B/l, 8B)
*92/4B(46/lB, 4/4)
*93AB{31BA, 3C)
*94/4B(47/lB, 2/1)
•95/lB(19/4, 5/1)
*104/lB(52/4, 8C)

105/4(35/4, 21/4, 15/4)
110/4(55/1,22/4, 10/1)

*119/4B(17/1, 7/4)

25Z(5B)
49Z(7B)
5OZ(25Z, 10£)

F

C
A
D
B

AB
A

BD
AC
AB
A
A
A
B
A
A
A
C

AB
A

AB
D
E
A
B
F
C

AB
A
B
A

AB
B
A

AB
C

AB
B
A
C

AB
AB
AB
AB
AB
AB
AB
A
A

AB

?
7
7

symbol

42 +
42 + 6, 14,21
42|3 + 7
42 + 3, 14,42
44 +
45 +
46 + 23
46 +
47 +
48|2 +
50 +
51 +
52|2 +
52|2 + 26
54 +
55 +
56 +
56|4 + 14
57|3 +
59 +
60|2 +
60 +
60 + 4, 15,60
60+12, 15,20
60|2 + 5, 6, 30
60|6 + 10
62 +
66 +
66 + 6, 11,66
68|2 +
69 +
70 +
70+10, 14, 35
71 +
78 +
78 + 6, 26, 39
84|2 +
84|2 + 6, 14,21
84|3 +
87 +
88|2 +
92 +
93|3 +
94 +
95 +
104|4 +
105 +
110 +
119 +

2 5 -
49 +
50 + 50

D

24
48
72
48
36
36
72
36
48
48
45
36
42
84
54
36
48
96
60
60
36
36
72
72
72

108
48
36
72
54
48
36
72
72
42
84
48
96
72
60
72
72
96
72
60
84
48
54
72

60
56
90

C

1
2
2
2
2
2
2
1
1
2
3
1
1
2
3
1
2
2
1
1
1
2
4
3
2
2
1
1
2
1
1
1
2
1
1
2
1
2
2
1
2
2
1
1
1
1
1
1
1

6
4
6

centraliser

23327
23327
233.7
2.327
2511
335
2323
2223
2.47
253
2.52

3.17
2313
2213
2.3 3

2.5.11
247
237
3.19
59
23325
2*3.5
233.5
233.5
223.5
223.5
2.31
223.11
2.3.11
2217
3.23
225.7
2.5 .7
71
2.3.13
2.3.13
223.7
223.7
223.7
3.29
2311
2223
3.31
2.47
5.19
2313
3.5.7
2.5.11
7.17

?77
777
777

504
504
168
126
352
135
184
92
94
96
50
51
104
52
54
110
112
56
57
59
360
240
120
120
60
60
62
132
66
68
69
140
70
71
78
78
84
84
84
87
88
92
93
94
95
104
105
110
119

777
777
•m
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Table la. Additional information for small order elements.

(MONSTER)
(BABY)
(Conway)
(Fischer)
(Suzuki)
(Thompson, Smith)
(Conway)

(Harada, Norton)
(Hall, Janko)
(Fischer)
(Suzuki)

(Held)

(Mathieu)
(Tits)

(Higman, Sims)

(Hall, Janko)

(Mathieu)

centraliser structure
8080 17424 79451 28758 86459

2
2

5

2.B 8305
2 1 + 2 4 C 1

3 .F 2 4

3 l + I 2 . 2 . S z
3 x £

4 . 2 2 2 . C 3

{4xF4(2)}.2
4 .2 1 5 .2 8 .S 6 (2 )
4 . 2 1 2 . G 2 ( 4 ) . 2

5 x F
5l+6.2.HJ
3 x 2 . F 2 2 . 2

6.Sz
>1 + 1 2 . 3 2 . i ; 4 ( 3 ) . 2
. 3 1 + 8 . 2 1 + 6 . l / 4 ( 2 )
. 3 1 + 4 . 2 1 + 6 . l / 4 ( 2 )

3 x 2 1 + 8 . / l 9

1 xH
7 1 + 4 . 2 . / l 7

8 .27 .26 . l / 3 (3) .2
8 .2 ' ° .M 1 2

8x 2 F 4 (2 )
8 .2 9 .2 4 . / l 6

[2223]
8.26.t/3(3)

9.31 + 4.S4(3)
[ 2 4 3 n ]

5 x 2 . H S . 2
X 2 1 + 8 . ( / 4 5 X / 1 5 ) . 2

2 . 5 1 + 4 . 2 1 + 4 . / l 5

5x2.HJ
2.5 I + 2 . 2 1 + 4 . / l 5

l l x M 1 2

and order
90496 17107
96296 24528

13 95118
37656

57005
52382
39126
17127

1429
272

8317
26

1

75436
35516
33632
57198
61507
23783
58427
48901
4870

824
36515

9
77474

269
48
13

2

80000
10880
81715
51638
75402
16636
33096
28269
49291
43239
45600
45000
10198
00729
15794
06069
16124
2786

82127
847

7927
7785
1437
235
125
30

566
28

8870
184
120
60
4

10

00000
00000
20000
78400
49600
16000
96000
31200
36640
42400
00000
00000
52800
85600
99520
40160
31360
91840
10400
07280
23456
67680
69600
92960
82912
96576
87040
34352
40000
32000
00000
48000
80000
45440

class
\A
2A
2B
3/1
3B
3C
4/1
4fi

4C
4D
SA
5B
6-4
6B
6C
6D
6£
6F
7/1
IB
8/1
8fl
8C
8D
8£
%F
9/1
9B

10/1
10B
10C
10D
10£
11/1



MONSTROUS MOONSfflNE

Table 3. Relations between the classes

331

Symbol

1
2 -
2 +
3 -
4 -
4 +
5 -
6 -

6 + 2
6 + 3
6 + 6
6 +
7 -
7 +
8 -
8 +
9 -
9 +
1 0 -

10 + 2
10 + 5
10+10
10 +
1 2 -

12 + 3
12 + 4
12 + 12
12 +
1 3 -
13 +
14 + 7
14+14
14 +
15 + 5
15 + 15
1 6 -
16 +
1 8 -

18 + 2
18 + 9
18+18
18 +
19 +
20 + 4
20 + 20
20 +
21+3
21+21
22+11
24 + 8'
24 + 24

Formula

) = r + 744
l 2 4 /22 4

r+104
l l 2 / 3 1 2

l8/48

2 4 8 / l 2 4 4 2 4

l6/56

2339/ l369

2834/ l468

1s 3/2. 6s

l424/3464

lb36/2666

21 231 2/1I 261 2

T+14
l4/74

r+9
l442/2284

2 8 48 / l 8 88

l3/93

312/1696

2 .5 5 / l .10 s

2452/l2104

135/2.1O3

1222/521O2

1454/241O4

2656/l6106

T + 4
4462/22124

334/1.123

134.62/223.123

1232/42122

144464/2434124

3444/l4124

212612/163646126

12/132

r + 3
1373/23143

2474/l4144

7 + 6
1252/32152

3353/l3153

128/2.162

2686/l444164

6.93/3.183

229/1.182

126.9/2.3.182

1.2/9.18
136293/2332183

2393/l3183

3464/l22292182

r + 3
12421O2/22522O2

4252/l2202

28108/l44454204

1.3/7.21
3272/l2212

l 2 l l 2 /2 2 22 2

l26.8212/2.324.243

2.328212/124.6.242

24 + 224262122/123282242

Harmonies and Symmetrisations

1/1, 3C
20(4096 : 2/1), 40(64 : 40), 6F, 8F, 127, 24J
2/1, 40, 8C
30(729:3/1)
4C(256: 4/1), 80(16:80)
4/1, 80, 120, 24£
50(125:5/4), 150
6£( - 8 : 60)
6£(9:6C)
6£(72:60)
60(81:6/1), 12G(9: 12C), 24G
6C(64:6/1)
60(1:6/1), 12F(1:12C),24F
6/1, 12C
70(49:7/1)
1A, 21C
8£(32 : 8/1); 412/2488, 21 0 / l 44284

8/4, 16/4
90(27 :9/1)
9/4
1 0 £ ( - 4 : IOC)
10£(5 : 100)
10£(20: 10O)
10C(25:10/1)
100(16: 10/1), 200(4:200)
100(1 : 10/4), 20£( - 1 : 200), 30£, 60F
10/4, 200, 40/4

12/(-3:12£) ; 1.4269/2333126

12/(4:120) ; 273/ l 3426.122

12/(12:12//)
12£(16: 12/4), 240(4 : 24/1); 2666/ l23244124

120(9: 12/1); 214/153.456212, 13436I8/2639129

12//(1 : 12/1), 24//(l : 24/1); 2 6 6 6 / l 5 3 .4 .12 5

12/1, 24/1
130(13: 13/1)
13/1, 390
140(8: 14/1), 42C
14C(1 : 14/1), 280(1 : 28/1), 560C
14/1, 28/1
150(9:15/1)
15C(1: ISA)
160(8: 16C); 86/42164, 258/l242162

16C, 320;41O/122383162

18O(-2: 18/4)
180(3 :18C)
180(6: 18£)
18/1(9: 180)
18C(4: 180); 126892/2434184, 36/l . 2 .6 2 9 . IS
18£(1 : 180)
180, 36C
19/4, 57/4
20C(5:20A); 1.4.1010/225520S, 28/ l 3435.20
2OF(1:2O/1), 40CO(1 : 400); 24104/ l 34.5.203

20/4, 400
210(7:21/1)
210(1 :2\A)
220(4: 22/1)
24C(3 : 240); 2242/l. 3.8.24, 1.638.123/2.334.243

24/(-l:240);4464/1.223.8.12224,
253.8.125/134363243

240, 48/4
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Symbol Formula Harmonies and Symmetrisations

2 5 -
26 + 26
26 +
28 + 7
28 +
30+15

30 + 6,' 10, 15
30 + 3,5,15
30 + 2, 15,30
30 +
30 + 5,6,30
31 +
32 +
33 + 11
34 +
35 + 35
36 + 4

36 + 36

36 +

39 + 39
42 + 6, 14,21.
42 + 3, 14,42
42 +
44 +
45 +
46 + 23
50 + 50
56 +
60+12,15,20
60+4, 15,60

60 +
66 + 6, 11,66
70+10, 14,35
78 + 6,26, 39
92 +

2 -
3 -
4 -
6 -

6 + 3
12 + 4
14 + 7

1/25
22132/12262

r
1.7/4.28
261 46 / 1343732 83

3.5/2.30
1.6210215/223.5.302

l26.10.152/223.5.302

l363103153/233353303

1.3.5.15/2.6.10.30
3.5.6.10/1.2.15.30
7 + 4
2232102152/l25262302

7
23163/124.8.322

1.11/3.33
7 + 2
5.7/1.35
1.4.18/2.9.36

4.9/1.36

1.4.6169.36/2436126184

3.13/1.39
l262142212/223272422

2.6.7.21/1.3.14.42
7 - 2
24224 / l 242 l l 2442

3 2 1 5 2 / 1 . 5 . 9 . 4 5
1.23/2.46
2.25/1.50
2.4.14.28/1.7.8.56
1.12.15.20/3.4.5.60
2.3.5 .12.20.30/1.4 .6 .10.15.60

2262102302/1.3.4.5.12.15.20.60
2.3.22.33/1.6.11.66
1.10.14.35/2.5.7.70
1.6.26.39/2.3.13.78
22462/1.4.23.92

7 + 40
7+15
22 4 / l 841 6

2834/ l 468

2339 / l 369

7 - 2
1343618/2639129

7 - 2

25Z(5:25/1)
26B(l:26/4), 52B( - 1 : 52X)
26/1, 52/4, 104/4B
28C(4:28B);23143/f.427.282

28B, 84C
3OC(2:30/1)
30G( - 1: 30C)
30G(2:30F)
30/1(1 : 30B)
3OC(4:3OB)
30F(l : 30B)
30B, 60/1
3OD(1:3OB),6O£( 1:60/4)
31/1B, 93/4B
32/1
33/1(3:33B)
34-4, 68/1
35B(-1:35/1)
36B(3:36/1); 3.12.186/629J363,
253.12.18/1242629.36
36D(1:36/1);4.689/2233123182,
233.12.183/124.629.362

36/4;2632122186/l3436493363,
2234124182/12426492362

39CD(1:39/1)
42B(1 : 42/1), 84B( 1:84/1)
42D(1:42/1)
42/1, 84/1
44/1B, 88/43
45/1
46/1 B(2:46CD)
50Z(l : 50/1)
56/1
60D(l:60B); 2.6.10.30/3.4.5.60
60C(- 1 : 60B); 63103/2.3.5.12.20.30
243.5.12.20.304/l24262102152602

60B
66B(1 : 66^4)
70B(l : 70A)
78BC(1 : 78A)
92/1B

2B, 4C
3B, 9B
4C, 8£, 16B
6£(9:6C), 12/ ( -3 :12£)
6£( -8 :6D) , 18D(-2: 18.4)
6C, 12£
12B, 36B
14B, 28C
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Table 3a. Additional product formulae.

class formulae

8D
9B

16B
18/1
18D
18Z)
18£
24D
24H
25/1

21AB
32/4
32B
36B
36B
36D
40CD
50/1
54/1
25Z
49Z
50Z

(U)422/4482

(li)3/93

(U)22.82/43162

( l i ) W l . 2 / 3 4 6 4

(H)26.9/(2f)3.18
(2f)29/(H)182

(Ii)(2|)2.9/I2182

(U)2(3i)2 22 62 8.24/4512s

(liX3&6.8/2.4.12.24
(li)(lf)/1.25

(H)(3f)/1.27
(li)(2|)2.16/1.4.8.32
(l|)(ll)42162/2.8432
(H)(4i)18/(2f)9.36
(2|)53.12.18/(H)2(4i)2629.
(H)(4|)2.18/1.6236
(U)(5|)8.10/42202

(li)(lf)(2i)(2f)/52102

(H)(2i)(3f)(6|)/3.6.9.18
(H)(lf)/(lf)25
(lf)(^)(lf)(l4)/74

52102/(H)(2|)1.50

36

(4 forms)
(3 forms)
(4 forms)

All formulae except those for 25Z, 49Z, 502 are
( a\

valid up to a constant factor when I N - I is interpreted
\ o)( a\

as t][Nz+-\. All formulae are valid under the
\ bj

interpretation

where

and

nn = 1 (mod b) if (n, b) = 1,
n = n (mod b) if (M, b) # 1 .

All formulae except those for 25Z, 49Z, 50Z have
two algebraically conjugate forms, while these cases
yield the numbers indicated. The conjugate forms can
be found by applying the permutations

(I 1\ (1 1\ (I I 4 i\

\1 7 7 7 7 lh\ \8 8/V8 8/ •

There are some useful transformations:—

= (2N)7(N)(4N)

= (5N)6/(N)(25N)
= (7N)8/(A/)(49N)
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Table 4. Values of head characters.

4.4
1
8

276
2048

11202

49152
184024

614400

1881471

5373952

14478180
37122048

1A
1
3
51
204
681
1956
5135
12360
28119
60572
125682
251040

10/1
1
4.
3

22
56
177
352
870
1584
3412
5952
11442

1/1
1
24

196884

21493760

864299970
20245856256

333202640600

4252023300096
44656994071935

401490S86656000

3176440229784420

22567393309593600

AB 4C AD
1 1 1
0 0 0
52 20 -12
0 0 0

834 -62 66
0 0 0

4760 216 -232
0 0 0

24703 -641 639
0 0 0

94980 1636 -1596
0 0 0

IB 8/1
1 1

~ 2 4
2 36
8 128

-5 386
-4 1024
-10 2488
12 5632
-7 12031

8 24576
46 48308

-36 91904

;

<

2/1
1
8

4372
96256

1240002

10698752

74428120
431529984

2206741887

10117578752
42616961892
1665- )4106240

5/1
1
4

134
760
3345

12256

39350

114096

307060
776000

1867170

4298600

8B
1
0
12
0
66
0

232
0

539
0

1596

10B IOC 10D 10£
1 1 1
4 1 11
1 i 3
6 -3 21

-8 6 62
17 2 162

-32 2 378 -
54 -5 819 -

-80 -16 1680
116 12 3276 -

-192 2 6138 -
290 17 11145

1
l

1
2
2
2
1
0
4
2
5

0

11/1
1
2
17
46
116
252
533
1034
1961
3540
6253

SB
1

-1
9
10

-30
6

-25
96
60

-250
45

-150

8C
1
0
0
0
26
0
0
0
79
0
0
0

12/1
1
2
15
32
87
192
343
672
1290
2176
3705

IB
1

-8
276

-2048
11202

-49152
184024

-614400
1881471

-5373952
14478180

-37122048

6/1
1
2
79
352
1431
4160
13015
31968
81162
183680
412857
864320

8£>
1
0

-4
0
2
0
8
0

-1
0

-20
0

12B 12C 1
1 1

-1 0
6 7

-4 0
-3 15
12 0
-8 71
-12 0
30 106

-20 0
-30 273

3/1
1
6

783
8672
65367
371520
1741655
7161696
26567946
90521472
288078201
864924480

6fi 6C
1 1
7 -2
78 15
364 -32
1365 87
4380 -192
12520 343
32772 -672
80094 1290
185276 -2176
409578 3705
871272 -6336

8£ 8F
1 1
0 0
4 0
0 0
2 -6
0 0

-8 0
0 0

-1 15
0 0
20 0
0 0

\7D 12£ 12F
1 1 1
0 0 0
0 - 1 6
8 0 0
0 7 21
0 0 0
28 -9 56
0 0 0
0 10 126
64 0 0
0-23 258

3B
1

-3
54

-76
-243

1188
-1384

-2916

11934

-11580

-21870
79704

6D
1

-1
-2
28

-27
-52 -

136
-108

-162

620
-486 -

-760 -

9/1
1
3
27
86
243
594
1370
2916
5967

11586
21870
39852

12C 12//
1 1
0 3

-2 14
0 36

-3 85
0 180
8 360
0 684

-2 1246
0 2196

-6 3754

6£
1
1
6
4

-3
-12
-8
12
30
20
•30

-72

3C
1
0
0

24 S
0
0

4124
0
0

34752

12/

_

_

1
0
2
0
1
0
0
0
2
0
2

0
0

6F
1
0
0

-8
0
0
28
0
0

-64
0
0

9B
1
0
0
5
0
0

-7
0
0
3
0
0

127
1
0
0
0
0
0

-4
0
0
0
0

19240 -408 - 1 0 19662 2 10654 6336 72 0 0 0 0 0 62( 0 0
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13/1 13B 14/J 14B 14C ISA 15B 15C 15D 164 16B 16C 17/1
1 1 1 1 1 1 1 1 1 1 1 1 1

12 -If 1 - 1 | 1 - i 2 0 0 0 2 *
12 - 1 11 3 10 8 - 1 9 0 4 0 8 7
28 2 20 - 4 24 22 4 19 - 2 0 0 16 14
66 1 57 9 51 42 - 3 42 0 10 2 34 29

132 2 92 - 1 2 100 7 0 - 2 78 0 0 0 64 50
258 - 2 207 15 190 155 11 1 4 6 - 1 24 0 112 92
468 0 312 - 2 4 340 246 - 6 249 0 0 0 192 148
843 - 2 623 39 585 421 - 1 1 429 0 47 - 1 319 246

1428 - 2 932 - 5 2 984 722 20 695 2 0 0 512 386
2406 1 1674 66 1606 1101 - 1 5 1125 0 84 0 808 603
3900 0 2464 - 9 6 2564 1730 - 1 6 1749 0 0 0 1248 904

18/1 18B 18C 18D 18£ 19/1 20/1 20B 20C 20D 20£ 20F
1
4

6
8

17
32 0 2 0 0 30
54 10 - 1 - 2 13 51
80 0 0 0 0 80

116 28 - 4 4 24 124
192 0 2 0 0 190
290 30 5 - 6 39 281

- 4 644 - 3 6 0 684 522 408 0 - 2 0 0 410

21A 21B 21C 21D 22A 22B 23A 24/1 24B 24C 24D24E 24F 24G 24H 24/ 24J

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i - i o v j - f 1 0 I -i- o o o o o i o
6 - 1 0 5 5 1 4 3 3 0 - 1 0 0 0 2 4 0
6 - 1 3 8 6 -2 7 0 8 2 0 0 0 0 0 6 0

15 1 0 16 16 4 13 3 11 - 1 - 1 0 3 - 1 5 11 0
30 2 0 26 20 - 4 19 0 16 - 2 0 0 0 0 0 18 0
41 -1 8 44 41 5 33 7 31 4 - 1 4 0 0 8 28 0
66 3 0 66 50 -6 47 0 40 -2 0 0 0 0 0 42 0
111 -1 0 104 97 9 74 18 5 8 - 2 2 0 6 -2 14 62 0
146 -1 11 152 116 -12 106 0 96 6 0 0 0 0 0 90 0
222 -2 0 229 197 13 154 21 125 -4 1 0 0 0 22 128 0
336 0 0 324 246 -18 214 0 176 -4 0 0 0 0 0 180 0

25/4 26/1 26B 21A 21B 28/1 28B 28C 28D 29/1 30/1 30B 3QC 30D 30£ 30F 30G

1
0
2
1
0
2
1
0
0
1
0

1
1
7
10
27
38
82
108
207
278
486

1
-1
3

-2
3

-6
10

-12
15

-22
30

1
0
0
1
0
0
1
0
0

-1
0

1
2
6
13
24
42
73
120
192
299
456

1

I
6
10
21
36
61
96
156
232
357

1
0
2
0
9

1
_l

1
-2
2

1
0

-2
0
1

1
0
3
0
6

1
A

5
10
18

1
1
4
5
10

1

4
4
10

1
1

3
6
9

1
1
3
5
9

1
1
3
5
9

1
0
3
0
1

1
1
3
4
9

1
0

-1
0
1

1
0
2
0
3

1
4
5
3
4
7

1
_ 4

3
-1
0

1
i
4
2
6

1
-i
0

-2
2

1
6

3
4
5

1
0
0
2
0

1
2

3
3
8

1
~ 3

1
-1
2

16 12 14 12 12 0 12 0 0 10 0 10 -2 10 0 8 -2
25 26 22 20 20 7 15 -1 6 17 0 15 3 15 3 16 2
36 28 32 27 27 0 24 0 0 22 -3 18 -2 22 0 17 -3
55 51 46 42 42 7 39 3 9 32 9 37 5 29 0 33 5
75 60 66 57 57 0 52 0 0 44 -9 30 -6 36 6 35 -5
110 102 93 81 81 18 66 -2 14 62 3 57 5 53 0 59 5
150 116 128 108 108 0 96 0 0 80 -3 70 -6 72 0 65 -7
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3M
1

4

3
3
6
9

13
18
27
34
48
63

40/4
1
0
0
0
1
0
0
0
4
0
0
0

32/1
1
1
2
4
6
8

12
16
23
32
42
56

40B

50/1
1
l

2
1
2
2
5
4
7
7

12
10

60/1
1
0
2
0
0
0
1
0
1
0
3
0

1
0
2
0
1
0
2
0
4
0
6
0

32B
1
0
2
0
2
0
4
0
7
0

10
0

40C
1
0
1
0
2
0
3
0
4
0
5
0

51/1

60B
1

0
2
2
2
3
2
5
6
5
6

1
i

1
2
2
2
5
4
6
8
9

10

33/1
1

~ 4

- 1
1

- 1
0
2

- 1
- 1

3
- 2
- 2

41/1
1

2
2
3
4
7
8

11
14
19
22

33B
1
l

2
4
5
6

14
14
20
30
37
46

42/1

52/1

60C
1
2

1
1
2
2
2
3
5
5
5
7

1
0
0
0
2
0
2
0
3
0
2
0

1

4

2
2
3
2
9
6

11
14
18
16

60£
1

_
-

]

(

(

(
_

_
_

34/1
1
4
9
3
2
5
6

12
12
22
22
39
40

42B
1

- i
1
0
0

- 2
4

- 2
0
0
1

- 4

52B
1
0
1
0
1
0
2
0
2
0
3
0

35/1
1
l

1
4
6
6

10
10
19
22
32
40

35B

42C
1
0
0

-1
0
0
0
0
0

-1
0
0

54/4

> 60£

.

)
)
)

1
0
1
0
1
0
1
0
1
0
3
0

1
1

1
1
3
2
4
3
6
5
9
8

1

4

2
3
5
6

10
12
18
23
31
39

50F
1
0
0
0
0
0
1
0*
0
0
0
0

36/1
1
1
3
2
3
6

10
12
15
22
30
36

42D
1

8

1
3
3
4
7
7
9

15
16
20

55/1
1
l

2
1
1
2
3
4
6
5
8
9

36B
1
0
0

- 1
0
0
1
0
0
1
0
0

44/1
1
2

1
2
4
4
5
6
9

12
13
18

62/1
1
i
4
1
1
2
1
3
2
5
4
6
5

36C
1
0
1
0
3
0
2
0
7
0
6
0

ASA
1

i
2
1
3
4
5
6
7

11
15
17

56/1
1
l

1
2
1
2
3
4
5
6
8
8

66/4
1
6

2
0
1
2
2
2
4
2
5
6

36D
1
1
2
3
4
6
9

12
16
21
28
36

38/1

1
1

1
2

2
2
5
4
9
8
6
6

25
26

46/1
1

_ i

0
- 1

1
- 1

1
- 1

2
- 2

2
- 2

56B
1
0
0
0
1
0
0
0
l

0
0
0

66B
1

1
1
1
2
2
3
3
3
4
6

39/4

46C
1
l

2
1
3
3
5
5

10
8

14
14

1
2

3
1
3
6
6
9

15
15
21
30

39B

47/1

57/1
1
0
0
1
0
0
1
0
0
1
0
0

58/1
1
0
1
0
1
0
0
0
2
0
1
0

1

i
1
2
3
3
5
5
8
9

12
14

1
0
0
1
0
0
3
0
0
3
0
0

39C
1
i

2
2
4
5
7
9

13
16
22
27

48-4
1
0
1
0
1
0
3
0
2
0
3
0

59/4
1

f
1
1
2
2
3
3
4
5
6
7

69/4
1
j.
4
1
1
1
1
3
2
2
4
4
4
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70/1
1

6
1
0
2
2
2
2
3
2
4
4

70B
1

-A
0

- l
l
0
0
0
0

- 1
1

- 1

104/1
1
0
0
0
0
0
0
0
1
0
0
0

71/1
1
JL

1
1
1
1
2
2
3
3
4
4

78/1

105/1
1
i
8
1
1
0
0
1
1
1
1
2
1

1
JL

1
1
1
0
2
1
3
3
3
2

78B
1
3

~ 7
0
0
0

- 1
1

- 1
1
0
0

- 1

110/1
1
JL
9
0
1
1
0
1
0
2
1
2
1

84/1
1
0
0
0
1
0
1
0
1
0
0
0

84B

119/4
1

i
0
0
1
1
1
1
1
1
1
1

1
0

-1
0
0
0
0
0
0
0

-1
0

84C
1
0
0
1
0
0
0
0
0
1
0
0

87/1
1
i

0
1
1
1
2
1
2
2
2
2

88/1
t
0
1
0
0
0
1
0
1
0
1
0

25Z

—

1
0
1
0
0
1
0
1
0
0
0
0

92/1
1
i

0
1
1
1
1
1
2
2
2
2

93/1 94/1
1
0
0
0
0
0
1
0
0
1
0
0

49Z
1
l

2
1
2
3
4
5
7
8

11
13

1
i
1 .
0
1
1
1
1
2
l
2
2

95/1
1
j .

1
0
1
1
1
1
1
2
2
2

50Z
1
i

1
2
2
3
4
5
6
8

10
12

class formula for/ = tn

3C
3C 'f=t-21t

11/1 / =
21C / =
23AB / =
17/1
21AB
21AB
54/1
49Z
49Z

Table 4a. Further formulae for the tn

, t = T 2 -24
, t = T6|3

, r = 7 9 + - 6
, ' = T22 + ii-2
. * = ^42|3 -t-7

11/1
17/1
19/1
23/16
29/1
3MB
34/1
41/1
47/1B
59/1B
71/1B

0(2,2,6)

0(1,2,20)-0(4,2,5)
0(2,2,12)

/i * JL n i - i — n i-1- n 2-2^

0(2,2,16)-0(4,2,8)
0,(|, 1,9)-0,(1 1,1)

0(2,2,24) -0(4,2,12)
0(2,2,30)-0(6,2,10)
0(4,2,18)-0(6,2,12)

= 2/;1i/17/i

= 20(2-, 2,10)/"*
= r]ir\lif
~~ *11129J
= iA^ 1 f] % ij

= 2r\lr\llf^
— 2t]lr\A.lf
= 2r]lt]41f
= 20(6,2,10)/"'
= 2rjit]llf

34/4
38/4
51/1
54/1
55/1

62/16
69 A B
87/1B
94 A B
95AB

105/1
110/4
119/1B

S(2,17) = / 2

S(2, 19) = / 2

S(3,17) = f3

S(2,27) = / 2

S(5,ll) = / 5

+ / —6
! + /-4
-2/-6
+ / —2
- 1 0 / 3

- 5 / 2 + 16/
S(2,31) = / 2

S(3,23) = / 3

S(3,29) = p
S(2,47) = / 2

S(5,19) = / 5

S(3,35)=/3

S(2,55) = f2

S(7,17) = / 7

+ / —2
-2/-3
+ /-3
+ / —2
- 3 / 3 + / -
-2/-3
+ f
-IP

- 7 / 2 - 6 / - 7

Here >/„ denotes >;(>J2), and 0{a,b,c) denotes Ig1 ( a v +6jr>+<')' ', while OA.(fl,Z?,c) or O^a.fc.c) would be the same
sum restricted to odd values of x or _y respectively. We use S(d,N) for T/v+(z)+ Tjv + (dr).
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Section 12. Postscript.

It seems to follow from Kac [10] that the properties of E8 noted in Section 9 are
suitably* generalised forms of certain identities of MacDonald [14], for which the
appropriate framework is the theory of Lie superalgebras, which are a kind of
graded Lie algebra.

Is there a Lie superalgebra that "explains" the MONSTER? Our own tentative
investigations of this possibility have not yet proved fruitful, but it is at least consistent
with the discovery made by one of us some time ago that the 196883-dimensional
representation admits a natural commutative algebra structure. There are difficulties
concerned with the portion of the Lie superalgebra corresponding to the q° term,
which should either be 0-dimensional or infinite-dimensional. Perhaps a more
"twisted" kind of algebra is needed?

Most explanations of M along these lines suggest that it is embedded in an infinite
group M1 that should be more "natural". Unfortunately there are difficulties with this
possibility as well. M1 can hardly be an infinite Lie group, and we can find no real
evidence for the existence of an infinite discrete group with the required properties.

Another possibility is that M is a Galois group. However, although there are many
pairs of mutually algebraic fields in sight, for example C(J) and C(j,t2, ...,i119+))

all the most obvious pairs, including this one, have either been rendered extremely
unlikely or actually disproved. However, such an explanation could carry with it an
understanding of the "genus zero" property, which would follow if all the Riemann
surfaces corresponding to the Tm were quotients of a universal surface of genus zero.
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