
NONSTANDARD ANALYSIS 

This mathematical theory has restored infinitesiluals to good 

standing. They had been employed since antiquity, but often 

with doubts, to solve such probleJus as finding a circle�s area 

N
onstandard analysis, a new branch 
of mathematics invented 10 years 
ago by the logician Abraham 

Robinson, marks a new stage of develop
ment in several famous and ancient par
adoxes. Robinson, now at Yale Univer
sity, has revived the notion of the 
"infin'itesimal" -a number that is infinite
ly small yet greater than zero. This con
cept has roots stretching back into an
tiquity. To traditional, or "standard," 
analysis it seemed blatantly self-contra
dictory. Yet it has been an important tool 
in mechanics and geometry from at least 
the time of Archimedes. 

In the 19th century infinitesimals were 
driven out of mathematics once and for 
all, or so it seemed. To meet the de
mands of logic the infinitesimal calculus 
of Isaac Newton and Gottfried Wilhelm 
von Leibniz was reformulated by Karl 
Weierstrass without infinitesimals. Yet 
today it is mathematical logic, in its con
temporary sophistication and power, that 
has revived the infinitesimal and made 
it acceptable again. Robinson has in a 
sense vindicated the reckless abandon 
of 18th-century mathematics against the 
strait-laced rigor of the 19th century, 
adding a new chapter in the never end
ing war between the finite and the in
finite, the continuous and the discon
tinuous. 

In the controversies over the infini
tesimal that accompanied the develop
ment of the calculus, Euclid's geometry 
was the standard against which the mod
erns were measured. In Euclid both the 
infinite and the infinitesimal are delib
erately excluded. We read in Euclid that 
a point is that which has position but 
no magnitude. This definition has been 
called meaningless, but perhaps it is just 
a pledge not to use infinitesimal argu
ments. This was a rejection of earlier 
concepts in Greek thought. The atomism 

78 
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of Democritus had been meant to refer 
not only to matter but also to time and 
space. But then the arguments of Zeno 
had made untenable the notion of time 
as a row of successive instants, or the 
line as a row of successive "indivisibles." 
Aristotle, the founder of systematic log
ic, banished the infinitely large or small 
from geometry. 

Here is a typical example of the use of 
infinitesimal arguments in geometry: 

"We wish to find the relation between 
the area of a circle and its circumfer
ence. For simplicity we suppose that the 
radius of the circle is 1. Now, the circle 
can be thought of as composed of infi
nitely many straight-line segments, all 
equal to each other and infinitely short. 
The circle is then the sum of infinitesi
mal triangles, all of which have altitude 
1. For a triangle the area is half the base 
times the altitude. Therefore the sum of 
the areas of the triangles is half the sum 
of the bases. But the sum of the areas of 
the triangles is the area of the circle, and 
the sum of the bases of the triangles is 
its circumference. Therefore the area of 
the circle of radius 1 is equal to one half 
its circumference." 

This argument, which Euclid would 
have rejected, was published in the 15th 
century by Nicholas of eusa. The con
clusion is of course true, but objections 
to the argument are not hard to find. 

The notion of a triangle with an infinite
ly small base is elusive, to say the least. 
Surely the base of a triangle must have 
length either zero or greater than zero. 
If it is zero, then the area is zero, and no 
matter how many terms we add we can 
get nothing but zero. On the other hand, 
if it is greater than zero, no matter how 
small, we will get an infinitely great sum 
if we add infinitely many terms. In nei
ther case can we get a circle of finite cir
cumference as a sum of infinitely many 
identical pieces. 

The essence of this rebuttal is the as
sertion that even a very small nonzero 
number becomes arbitrarily large if it is 
added to itself enough times. Because 
the assertion was first made explicit by 
Archimedes, it is called the Archimedean 
property of the real numbers. An infi
nitesimal, if it existed, would be precise
ly a non-Archimedean number: a num
ber greater than zero, which neverthe
less remained less than 1, say, no matter 
how (finitely) many times it was added 
to itself. Archimedes, working in the tra
dition of Aristotle and Euclid, assert
ed that every number is Archimedean; 
there are no infinitesimals. Archimedes, 
however, was also a natural philosopher, 
an engineer and a physicist. He used in
finitesimals and his physical intuition to 
solve problems in the geometry of pa
rabolas. Then, since infinitesimals "do 

METHOD OF EXHAUSTION is employed to prove indirectly that the area of a circle with 

radius 1 is half its circumference. In the proof on the opposite page a polygon is circum

scribed on the circle (top), creating a number of triangles for which the areas can be calcu

lated readily. By increasing the number of sides of the polygon, as in polygon B and poly. 

gon N, the triangles increase in number and become thinner, and the difference in area of 

circle and polygon becomes smaller. The difference will never be zero, however, for a poly. 

gon having any finite number of sides. Standard analysis avoids this difÏculty by stating 

that, as the number of sides increases to infinity, the polygon's area approaches the circle's 

area as a limit. Nonstandard analysis avoids the concept of limit for a more suggestive ex· 

planation using a polygon with infinitely many sides, each side having infinitesimal length. 
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ot exist,  he gave a "rigorous  proof of 
his results, usi g the "method of exhaus
tion,  which relies on a  indirect argu
ment a d purely finite co structio s. 
The rigorous proof is given i  his treatise 

n t  t  o  t  o  
which has been known since antiquity. 
The use of i finitesimals, which actually 
served to discover the a swer, is in a 
paper called "O  the Method,  which 
was unknow  until its sensational dis
covery in 90 . 

a radius of one unit equals half the cir
cumference,  which we discovered by a 
logically unacceptable argument. 

We reason as follows. The formula as
serts the equality of two quantities as
sociated with a circle with a radius of : 
its area a d ha f its circumference. Thus 
if the formu a is false, one of these quan
tities is larger than the other. Let A be 
the positive number obtai ed by sub
tracting the smaller from the larger. 
Now, we can circumscribe about the cir
cle a regular lygo  with as many sides 
as we wish. Since the polygon is com

osed of a finite umber of finite tri
angles with altitude , we k ow that its 
area is half its erimeter. By maki g the 
number of sides sufÏcie tly large we 
can arrange for the polygon's area to dif
fer from the area of the circle by less 
than half of A (whatever its value is tak
en to bet; at the same time the perimeter 
of the polygon will differ from the pez

nchimedes' method of exhaustion, 
which avoids i finitesimals, is in 

spirit close to the "epsilo -delta  method 
with which Weierstrass and his follow
ers in the 9th ce tury drove infinitesi
mal methods out of analysis. It is easy to 
ex ain if we refer to our example of the 
circle as an infinite-sided polygon. We 
wish to get a logically acceptable proof 
of the formula "The area of a circle with 

  
       

               
       

   
      

  
       

  
  

  

   

PROBLEM OF WINE C SK was attacked by ohannes Kepler by means of in nitesimals 

in his p blished in stria in 1 1  and 1  

T e problem Kepler set for himself was finding the best proportions for a wine cas .  

page from a 1 th cent ry reproduction of the paper that was p blis ed in Europe is shown  

rimeter of the circle by less than ha f oÂ 
A. But then the area and the semipe
rimeter of the circle must differ by less 
than A  which contradicts the supposi
tio  from which we started. Hence the 
s pposition is im ossible and A must be 
zero, as we wished to prove. 

This argument is logically impeccab e. 
C m ared with the directness of the first 
analysis, however, there is something 
fussy, even pedantic, about it. After all, 
if the use of infi itesimals gives the right 
answer, must ot the argument be cor
rect in some se se? Even if we cannot 
justify the co cepts it employs, how can 
it really be wrong if i  works? 

uch a defense of infi itesimals was not 
made by Archimedes. Indeed, in 

"On the Method  he is careful to explain 
that "the fact here stated is ot actually 
demonstrated by the argume t used  
a d that a rigorous proof had been pub
lished separately. On the other ha d, 
Nicholas of Cusa, who was a cardinal of 
the church, preferred the reasoning by 
infinite qua tities because of his belief 
that the infinite was "the sou ce and 
means, a d at the same time the unat
tainable goal, of all knowledge.  Nicho
las was followed in his mysticism by 
Johannes �epler, o e of the founders 
modern science. In a work less well 
known owadays than his discoveries in 
astronomy, Kepler i  2 used infini
tesimals to find the best proportions for 
a wine cask. He was ot troubled by the 
self -co  tradictio s in his method; he re
lied on divine inspiratio , and he wrote 
that "nature teaches geometry by in
stinct alone, even without ratiocination.  
Moreover, his form las for the vo umes 
of wine casks are correct. 

The most famous mathematical mystic 
was o doubt Blaise Pascal. In answer
ing those of his contemporaries who ob
jected to reasoning with infinitely small 
quantities, Pascal was fond of saying 
that the heart intervenes to make the 
work clear. Pascal looked on the infinite
ly large and the infinitely small as mys
teries, something that nat re has pro
posed to ma  not for him to understand 
but for him to admire. 

The fu l flower of infinitesimal reason
ing came with the generations after 
P§scal� Newton, Leibniz, the Bernoulli 
brothers rJakob and Johann) and Leon
hard �u er. The f ndamental theorems 
of the calculus were found by Newton 
and Leibni  in the 0's and 70's. 
The first text ̄ ook on the calcul s was 
written in 9  by the Mar uis de 
L' o it¨ , a upil of LeibnÜz' and �o
hann Berno ë i's. ere it is tated at the 
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outset as an axiom that two quantities 
differing by an infinitesimal can be con
sidered to be equal. In other words, the 
quantities are at the same time consid
ered to be equal to each other and not 
equal to each other! A second axiom 
states that a curve is "the totality of an 
infinity of straight segments, each infi
nitely small." This is an open embracing 
of methods that Aristotle had outlawed 
2,000 years earlier. 

Indeed, wrote L'Hopital, "ordinary 
analysis deals only with finite quantities; 
this one penetrates as far as infinity it
self. It compares the infinitely small dif
ferences of finite quantities; it discovers 
the relations between these differences, 
and in this way makes known the rela
tions between finite quantities that are, 
as it were, infinite compared with the 
infinitely small quantities. One may even 
say that this analysis extends beyond 
infinity, for it does not confine itself to 
the infinitely small differences but dis
covers the relations between the differ
ences of these differences." 

Newton and Leibniz did not share 
L'Hopital's enthusiasm. Leibniz did not 
claim that infinitesimals really existed, 
only that one could reason without error 
as if they did exist. Although Leibniz 
could not substantiate this claim, Rob
inson's work shows that in some sense 
he was right after all. Newton tried to 
a void the infinitesimal. In his Principia 
Mathematica, as in Archimedes' On the 
Quadrature of the Parabola, results that 
were originally found by infinitesimal 
methods are presented in a purely finite 
Euclidean fashion. 

Dynamics had become as important 
as geometry in providing questions 

for mathematical analysis. The leading 
problem was the connection between 
"Huents" and "Huxions," what would to
day be called the instantaneous position 
and the instantaneous velocity of a mov
ing body. 

Consider a falling stone. Its motion is 
described by giving its position as a 
function of time. As it falls its velocity 
increases, so that the velocity at each in
stant is also a variable function of time. 
Newton called the position function the 
"Huent" and the velocity function the 
"Huxion." If either of the two is given, 
the other can be determined; this con
nection is the heart of the infinitesimal 
calculus fashioned by Newton and Leib
niz. 

In the case of a falling stone the fluent 
is given by the formula s = 16t2, where 
s is the number of feet traveled and t is 
the number of seconds elapsed since the 

WEIERSTRASS FALLING STONE: 
ROBINSON 

POSITION s = 16t' 
Set t' = 1 + 8 t . t. t is 
a positive real number. 

5'= 16 + 32M + 16(81)'. 
85 =s'-s 

=328t+16(8t)'. 
8S ;Ý =32+1681. 

Given any positive real 

number €, however small, :� ;�o:�e

< 

b
b 
� 1� ' Then 

8S ... 81 -32=1681 < 16 u € 
So 

=16'16=€' 
Instantaneous velocity = 
lim 85 =32. 8t->0 81 

• 

• 

• 

Set t'=l +dt. dt is a 
positive infinitesimal 
number. 

s' = 16 + 32dt + 16(dW. 
ds =s'-s 

= 32dt + 16 (dt)'. ds 
dt 

= 32 + 16dt. 

Since dt is infinitesimal, 

so is 16dt. 32 is a stan
dard real number. 

So 

Instantaneous velocity = 
standard part of 

ds = 32 
dt 

. 

FALLING·STONE PROBLEM is depicted as it would be solved by standard analysis (left) 
and nonstandard analysis (right). Standard analysis, exemplified by the 19th.century Ger· 

man mathematician Karl Weierstrass, computes the velocity of the falling stone at any 

instant without employing infinitesimals, defining the speed instead as a limit that is ap· 

proximated by ratios of finite increments. Abraham Robinson of Yale University, who in. 

vented nonstandard analysis, makes the computation with a modified infinitesimal method. 

stone was released. As the stone falls its 
velocity increases steadily. How can we 
compute the velocity of the falling stone 
at some instant of time, say at t = 1? 

We could find the auerage velocity 
for a finite time by the elementary for
mula: velocity equals distance divided 
by time. Can we use this formula to find 
the instantaneous velocity? In an infin
itesimal increment of time the incre
ment of distance would also be infini
tesimal; their ratio, the average speed 
during the instant, should be the finite 
instantaneous velocity we seek. 

We let dt stand for the infinitesimal 
increment of time and ds for the cor
responding increment of distance. (Of 
course ds and dt must be thought of as 
single symbols and not as d times t or d 
times s.) We want to find the ratio ds/ 
dt, which is to be finite. To find the 
increment of distance from t = 1 to 
t = 1 + dt we compute the position of 
the stone when t = 1, which is 16 X 12 = 

16, and its position when t = 1 + dt, 
which is 16 X (1 + dt)2. Using a little 
elementary algebra, we find that ds, the 
increment of distance, which is the dif
ference of these two distances, is 32dt + 
16dt2• Thus the ratio ds/dt, which is the 
quantity we are trying to find, is equal to 
32 + 16dt. 

Have we solved our problem? Since 
the answer should be a finite quantity, 
we should like to drop the infinitesimal 
term, 16dt, and get the answer, 32 feet 

per second, for the instantaneous veloci
ty. That is precisely what Bishop Berke
ley will not let us do. 

The Analyst, Berkeley's brilliant and 
devastating critique of the infinitesi

mal method, appeared in 1734. The 
book was addressed to "an infidel mathe
matician," who is generally supposed to 
have been Newton's friend the astrono
mer Edmund Halley. Halley financed 
the publication of the Principia and 
helped to prepare it for the press. It is said 
that he also persuaded a friend of Berke
ley's of the "inconceivability of the doc
trines of Christianity"; the Bishop re
sponded that Newton's Huxions were as 
"obscure, repugnant and precarious" as 
any point in divinity. 

"I shall claim the privilege of a Free
thinker," wrote the Bishop, "and take the 
liberty to inquire into the object, prin
ciples, and method of demonstration ad
mitted by the mathematicians of the 
present date, with the same freedom that 
you presume to treat the principles 
and mysteries of Religion." Berkeley de
clared that the Leibniz procedure, sim
ply "considering" 32 + 16dt to be "the 
same" as 32, was unintelligible. "Nor 
will it avail," he wrote, "to say that [the 
term neglected] is a quantity exceeding
ly small; since we are told that in rebus 
mathematicis errores quam minimi non 
sunt contemnendi." If something is ne
glected, no matter how small, we can no 

81 
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longer claim to have the exact velocity 
but only an approximation. 

Newton, unlike Leibniz, tried in his 
later writings to soften the "harshness" 
of the doctrine of infinitesimals by using 
physically suggestive language. "By the 
ultimate velocity is meant that with 
which the body is moved, neither before 
it arrives at its last place, when the mo
tion ceases, nor after; but at the very in
stant when it arrives. . . .  And, in like 
manner, by the ultimate ratio of evanes
cent quantities is to be understood the 
ratio of the quantities, not before they 
vanish, nor after, but that with which 
they vanish." When he proceeded to 
compute, however, he still had to justify 
dropping unwanted "negligible" terms 
from his computed answer. Newton's ar
gument was to find first, as we have 
done, ds/dt = 32 + 16dt, and then to 
set the increment dt equal to zero, leav
ing 32 as the exact answer. 

But, wrote Berkeley, "it should seem 
that this reasoning is not fair or conclu
sive." After all, dt is either equal to zero 
or not equal to zero. If dt is not zero, 
then 32 + 16dt is not the same as 32. If 
dt is zero, then the increment in distance 
ds is also zero, and the fraction ds/ dt is 
not 32 + 16dt but a meaningless expres
sion, 0/0. "For when it is said, let the in
crements vanish, i.e., let the increments 
be nothing, or let there be no incre
ments, the former supposition that the 
increments were something, or that there 
were increments, is destroyed, and yet a 
consequence of that supposition, i.e., an 
expression got by virtue thereof, is re
tained. Which is a false way of rea
soning." Berkeley charitably concluded: 
"What are these fluxions? The velocities 
of evanescent increments. And what are 
these same evanescent increments? They 

SYMBOL 

& V 
V 
3 

x y z 
f g h 

+ .'< 
() [I 012 

are neither finite quantities, nor quanti
ties infinitely small, nor yet nothing. May 
we not call them the ghosts of departed 
quantities?" 

n erkeley's logic could not be answered; 
nevertheless, mathematicians went 

on using infinitesimals for another cen
tury, and with great success. Indeed, 
physicists and engineers have never 
stopped using them. In pure mathemat
ics, on the other hand, a return to Eu
clidean rigor was achieved in the 19th 
century, culminating under the leader
ship of Weierstrass in 1872. It is inter
esting to note that the 18th century, the 
great age of the infinitesimal, was the 
time when no barrier between mathe
matics and physics was recognized. The 
leading physicists and the leading math
ematicians were the same people. When 
pure mathematics reappeared as a sep
arate discipline, mathematicians again 
made sure that the foundations of their 
work contained no obvious contradic
tions. Modern analysis secured its foun
dations by doing what the Greeks had 
done: outlawing infinitesimals. 

To find an instantaneous velocity ac
cording to the Weierstrass method we 
abandon any attempt to compute the 
speed as a ratio. Instead we define the 
speed as a limit, which is approximated 
by ratios of finite increments. Let >¢t be 
a variable finite time increment and >¢s 
be the corresponding variable space in
crement. Then >¢s/ >¢t is the variable 
quantity 32 + 16>¢t. By choosing >¢t suf
ficiently small we can make >¢s/ M take 
on values as close as we like to the value 
32, and so, by definition, the speed at 
t = 1 is exactly 32. 

This approach succeeds in removing 
any reference to numbers that are not 

INTENDED MEANING 
not 
and 
or 

implies 
for ali 

there exists 
equals 

variables ranging over real numbers 
variables ranging over other objects 

plus, times, less than 
parentheses 

symbols for particular numbers 

SYMBOLS EMPLOYED in the formal language L, in which calculus can be expressed, are 

translated into English in this partial dictionary. The formal language, which employs 

many more symbols than these, provides a link between the standard universe and the 

larger nonstandard universe that is a central concept of nonstandard mathematical analysis. 

82 

finite. It also avoids any attempt direct
ly to set >¢t equal to zero in the fraction 
>¢s/ >¢t. Thus we avoid both of the logi
cal pitfalls exposed by Bishop Berkeley. 
\Ve do, however, pay a price. The in
tuitively clear and physically measurable 
quantity, the instantaneous velocity, be
comes subject to the surprisingly subtle 
notion of "limit." If we spell out in detail 
what that means, we have the following 
tongue-twister: 

"The velocity is v if, for any positive 
number E, >¢s/ >¢t - v is less than E in ab
solute value for all values of >¢t less in 
absolute value than some other positive 
number Il (which will depend on E and 
t)." 

We have defined v by means of a sub
tle relation between two new quantities, 
E and Il, which in some sense are irrele
vant to v itself. At least ignorance of E 
and Il never prevented Bernoulli or Euler 
from finding a velocity. The truth is that 
in a real sense we already knew what 
instantaneous velocity was before we 
learned this definition; for the sake of 
logical consistency we accept a defini
tion that is much harder to understand 
than the concept being defined. Of 
course, to a trained mathematician the 
epsilon-delta definition is intuitive; this 
shows what can be accomplished by 
proper training. 

The reconstruction of the calculus on 
the basis of the limit concept and its 
epsilon-delta definition amounted to a 
reduction of the calculus to the arith
metic of real numbers. The momentum 
gathered by these foundational clarifica
tions led naturally to an assault on the 
logical foundations of the real-number 
system itself. This was a return after two 
and a half millenniums to the problem 
of irrational numbers, which the Greeks 
had abandoned as hopeless after Py
thagoras. One of the tools in these efforts 
was the newly developing field of mathe
matical, or symbolic, logic. 

More recently it has been found that 
mathematical logic provides a concep
tual foundation for the theory of com
puting machines and computer pro
grams. Hence this prototype of purity in 
mathematics now has to be regarded as 
belonging to the applicable part of math
ematics. 

The link between logic and computing 
is to a great extent the notion of a 

formal language, which is the kind of 
language machines understand. And it is 
the notion of a formal language that en
abled Robinson to make precise Leib
niz' claim that one could without error 
reason as if infinitesimals existed. 

Leibniz had thought of infinitesimals 
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as being infinitely small positive or nega
tive numbers that still had "the same 
properties" as the ordinary numbers of 
mathematics. On its face the idea seems 
self-contradictory. If infinitesimals have 
the same "properties" as ordinary num
bers, how can they have the "property" 
of being positive yet smaller than any 
ordinary positive number? It was by 
using a formal language that Robinson 
was able to resolve the paradox. Robin
son showed how to construct a system 
containing infinitesimals that was iden
tical with the system of "real" numbers 
with respect to all those properties ex
pressible in a certain formal language. 
Naturally the "property" of being posi
tive yet smaller than any ordinary posi
tive number will turn out not to be 
expressible in the language, thereby es
caping the paradox. 

The situation is familiar to anyone 
who has ever communicated with a com
puting machine. A computer accepts as 
inputs only symbols from a certain list 
that is given in advance to the user, and 
the symbols must be used in accordance 
with certain given rules. Ordinary lan
guage, as used in human communica
tion, is subject to rules that linguists are 
still far from understanding. Computers 
are "stupid," if you have to communi
cate with them, precisely because unlike 
humans they work in a formal language 
with a given vocabulary and a given set 
of rules. Humans work in a natrtral lan
guage, with rules that have never been 
made fully explicit. 

Mathematics, of course, is a human 
activity, like philosophy or the design of 
computers; like these other activities, it 
is carried on by humans using natural 
languages. At the same time mathe
matics has, as a special feature, the abil
ity to be well described by a formal lan
guage, which in some sense mirrors its 
content precisely. It might be said that 
the possibility of putting a mathematical 
discovery into a formal language is the 
test of whether it is fully understood. 

In nonstandard analysis one takes as 
the starting point the finite real num
bers and the rest of the calculus as 
known to standard mathematicians. Call 
this the "standard universe," designated 
by the letter M. The formal language in 
which we talk about M can be desig
nated L. Any sentence in L is a proposi
tion about M, and of course it must be 
either true or false. That is, any sen
tence in L is either true or its negation is 
true. We call the set of all true sen
tences K, and we say M is a "model" for 
K. By this we mean that M is a mathe
matical structure such that every sen
tence in K, when interpreted as refer-

FORMAL SENTENCE IN L INTERPRETATION IN 
STANDARD UNIVERSE 

INTERPRETATION IN 
NONSTANDARD UNIVERSE 

(Vx)(3y)[x= 0 Vxy = 11 
Literally: For all x, 
there exists y such that 
either x = 0 or xy = 1 . 

Every nonzero 
real number has 
a reciprocal, 

Every nonzero nonstandard 
real number has a nonstandard 
reciprocal; in particular 
positive infinitesimals have 
reciprocals that are larger 
than any standard, real num
ber, i.e., �hey are infinite. 

FORMAL SENTENCE is stated in the language L. The middle column gives its interpreta. 

tion or meaning in the standard universe; right.hand column, in the nonstandard universe. 

ring to M, is true. Of course, we do not 
"know" K in any effective sense; if we 
did, we would have the answer to every 
possible question in analysis. Neverthe
less, we regard K as being a well-defined 
object, about which we can reason and 
draw conclusions. 

The essential fact, the main point, 
is that in addition to M, the standard 
universe, there are also nonstandard 
models for K. That is, there are mathe
matical structures M', essentially dif
ferent from M (in a sense we shall ex
plain) and that nevertheless are models 
for K in the natural sense of the term: 
there are objects in M' and relations be
tween objects in M' such that if the sym
bols in L are reinterpreted to apply to 
these pseudo-objects and pseudo-rela
tions in the appropriate way, then every 
sentence in K is still true, although with 
a different meaning. 

A crude analogy may help the intui
tion. Let M be the set of graduating 
seniors at Central High School. Sup
pose, for argument's sake, that all these 
students had their picture taken for the 
yearbook, where the students all appear 
in two-inch squares. Then M' can be the 
set of all two-inch squares on any page 
of the yearbook. Clearly, with an ob
vious interpretation, any true statement 
about a student at Central High cor
responds to a true statement about a 
certain two-inch square in the yearbook. 
Still, there are many two-inch squares 
in the yearbook that do not correspond 
to any student. M' is much bigger than 
M; in addition to members correspond
ing to the members of M, it also contains 
many other members. 

Hence the statement "Harry Smith is 
thinner than George Klein," when inter
preted in M', is a statement about cer
tain two-inch squares. It is not true if 
the relation "thinner than" is interpreted 
in the standard way. Thus "thinner than" 
has to be reinterpreted, as a pseudo
relation, between pseudo-students (pic
tures of students). We could define the 

pseudo-relation "thinner than" (in quota
tion marks) by saying that the two-inch 
square labeled "Harry Smith" is "thin
ner than" the two-inch square labeled 
"George Klein" only if Harry Smith is 
actually thinner than George Klein. In 
this way true statements about students 
are reinterpreted as true statements 
about two-inch squares. 

Of course, in this example the entire 
argument is a bit contrived. If M is the 
standard universe for the calculus, how
ever, then M', the nonstandard universe, 
is a remarkable and interesting place. 

The existence of interesting nonstan-
dard models was first discovered by 

the Norwegian logician Thoralf A. Sko
lem, who found that the axioms of count
ing-the axioms that describe the "nat
ural numbers" 1, 2, 3 and so on-have 
nonstandard models containing "strange" 
objects not contemplated in ordinary 
arithmetic. Robinson's great insight was 
to see how this exotic offshoot of modern 
formal logic could be the basis for res
urrecting infinitesimal methods in dif
ferential and integral calculus. In this 
resurrection he relied on a theorem first 
proved by the Russian logician Anatoli 
Malcev and then generalized by Leon A. 
Henkin of the University of California 
at Berkeley. This is the "compactness" 
theorem. It is related to the famous 
"completeness" theorem of Kurt Godel, 
which states that a set of sentences is 
logically consistent (no contradiction can 
be deduced from the sentences) if and 
only if the sentences have a model, that 
is, if and only if there is a "universe" in 
which they are all true. 

The compactness theorem states the 
following: Suppose we have a collection 
of sentences in the language L. Suppose 
in the standard universe every finite sub
set of this collection is true. Then there 
exists a nonstandard universe where the 
entire collection is true at once. 

The compactness theorem follows 
easily from the completeness theorem: if 

83 

© 1972 SCIENTIFIC AMERICAN, INC© 1972 SCIENTIFIC AMERICAN, INC
This content downloaded from 134.225.1.226 on Mon, 21 May 2018 00:41:06 UTC

All use subject to http://about.jstor.org/terms



every finite subset of a collection of sen
tences of L is true in the standard uni
verse, then every finite subset is log
ically consistent. So the entire collection 
of sentences is logically consistent (since 
any deduction can make use of only a 
finite number of premises). By the com
pleteness theorem there is a (nonstan
dard) universe in which the entire col
lection is true. 

A direct consequence of the compact
ness theorem is the "existence" of in
finitesimals. To see how this amazing 
result follows from the compactness the
orem consider the sentences: 

"C is a number bigger than zero and 
less than 1/2." 

"C is a number bigger than zero and 
less than 1/3." 

"C is a number bigger than zero and 
less than 1/4." And so on. 

This is an infinite collection of sen
tences each of which can be written in 
the formal language L. With reference 
to the standard universe R of real num
bers, every finite subset is true, because 
if you have finitely many sentences of 
the form "c is a number bigger than 
zero and less than lin," then one of the 
sentences will contain the smallest frac
tion lin, and 1/2n will indeed be big
ger than zero and smaller than all the 
fractions in your finite list of sentences. 
And yet if you consider the entire in
finite set of these sentences, it is false 
with reference to the standard real num
bers, because no matter how small a 
positive real number c you choose, lin 
will be smaller than c if n is big enough. 

The compactness theorem of Malcev 
and Henkin states that there is a non
standard universe containing pseudo
reals R' including a positive pseudo
real number c smaller than any number 
of the form 1/n. That is, c is infinitesi
mal. Moreover, c has all the properties 
of standard real numbers in a perfectly 
precise sense: any true statement about 
the standard reals that you can state in 
the formal language L is true also about 
the nonstandard reals, including the 
infinitesimal c-under the appropriate 
interpretation. (The two-inch square la
beled "Harry Smith" is not really thin
ner than the two-inch square labeled 
"George Klein," but the statement "Har
ry Smith" is "thinner than" "George 
Klein" is true, under our nonstandard 
interpretation of "thinner than." On the 
other hand, properties shared by all the 
standard real numbers may not apply 
to the nonstandard pseudo-numbers, if 
these properties cannot be expressed in 
the formal language L. 

The Archimedean property (nonexis
tence of infinitesimals) of R can be ex
pressed by using an infinite set of sen
tences of L as follows (we use the sym
bol ">" as usual to mean "is greater 
than"). For each positive element c of R 
all but a finite number of the sentences 
below are true: 

c > l 
c + c > l 

c + c + c > 1, and so on. 

This is not true, however, for the pseu-

LANGUAGE L 

STANDARD 
UNIVERSE 

NONSTANDARD UNIVERSE 

STANDARD 
PORTION OF 

NONSTANDARD 
UNIVERSE 

ROLE OF FORMAL LANGUAGE in mediating between standard and nonstandard uni· 

verses is portrayed. Formal language L describes the standard universe, which includes the 

real numbers of classical mathematics. Sentences of L that are true in standard universe are 

also true in nonstandard one, which contains additional mathematical objects such as infini. 

tesimals. Nonstandard analysis thus makes the infinitesimal method precise for first time. 
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do-reals R': if c is infinitesimal (hence 
pseudo-real),  all these sentences are 
false. In other words, no finite sum of 
c's can exceed 1, no matter how many 
terms we take. The very fact that the 
Archimedean property is true in the 
standard world but false in the non
standard one proves that the property 
cannot be expressed by a sentence of 
L; the statement we have used involves 
infinitely many sentences. It is precisely 
this distinction that makes the pseudo
objects useful. They behave "formal
ly" like standard objects and yet they 
differ with respect to important proper
ties that are not formalized by L. 

Although the nonstandard universe is 
conceptually distinct from the standard 
one, it is desirable to think of it as an 
enlargement of the standard universe. 
Since R' is a model for L, every true 
sentence about R has an interpretation 
in R'. In particular the names of num
bers in R have an interpretation as 
names of objects in R'. We can simply 
identify the object in R' called "2" with 
the familiar number 2 in R. Then R' 
contains the standard real numbers in R, 
along with a vast collection of infinites
imal and infinite quantities, in which 
R is embedded. 

An object in R' (a pseudo-real num
ber) is called infinite if it is pseudo
greater than every standard real num
ber; otherwise it is called finite. A 
positive pseudo-real number is called 
infinitesimal if it is pseudo-smaller than 
every positive standard real number. If 
the pseudo-difference of two pseudo
reals is finite, we say they belong to the 
same "galaxy"; the pseudo-real axis con
tains an uncountable infinity of galaxies. 
If the pseudo-difference of two pseudo
reals is infinitesimal, we say they belong 
to the same "monad" (a term Robinson 
borrowed from Leibniz' philosophical 
writings). If a pseudo-real r' is infinitely 
close to a standard real number r, we 
say r is the standard part of r'. All the 
standard reals are of course in the same 
galaxy, which is called the principal gal
axy. In the principal galaxy every monad 
contains one and only one standard real 
number. This monad is the "infinitesimal 
neighborhood" of r: the set of nonstan
dard reals infinitely close to r. The no
tion of a monad turns out to be applica
ble not only to real numbers but also to 
general metric and topological spaces. 
Nonstandard analysis therefore is rele
vant not just to elementary calculus but 
to the entire range of modem abstract 
analysis. 

\Vhen we say infinitesimals or monads 
exist, it should be clear that we do not 
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We like to baby our cars. 
Because back when we were just a 

small car rental company we realized 
something. That people enjoy driving a 
really shÑ�looking car. 

So we gave them shap�looking cars. 
And they gave us their business. 

They gave us so much business that 
we're now renting more new GM cars 

than anyone else in the world. 
But other than that, we haven't changed. 
We're still faithful to your reservation 

as though it were sacred. 
We still thank you for your business 

Take advantage of us. 

with more than just a thank you. We give 
you good old S&H Green Stamps� 

And as always, no matter where in the 
world you rent one of our cars we're 
determined to rent you only one kind. 

The kind you'd be happy to park in your 
own driveway. 

10 reserve a car in the U.S. and all over 
the world call 800-328-4567 toll free.t 

National Car Rental System (in Canada it'sTilden Rent-A-Car). 'Valid on U.S. rentals only except where prohibited by law. tIn Minnesota call 612-944-1234 collect. C> National aµ Rental System,n�.1972 
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mean this at all in the sense it would 
have been understood by Euclid or by 
Berkeley. Until 100 years ago it was 
tacitly assumed by all philosophers and 
mathematicians that the subject matter 
of mathematics was objectively real in 
a sense close to the sense in which the 
subject matter of physics is real. Wheth
er inRnitesimals did or did not exist was 
a question of fact, not too different from 
the question of whether material atoms 
do or do not exist. Today many, per
haps most, mathematicians have no such 
conviction of the objective existence of 
the objects they study. Model theory en
tails no commitment one way or the oth
er on such ontological questions. What 
mathematicians want from inRnitesimals 
is not material existence but rather the 
right to use them in proofs. For this all 
one needs is the assurance that a proof 
using inRnitesimals is no worse than one 
free of inRnitesimals. 

The employment of nonstandard anal
ysis in research goes something like this. 
One wishes to prove a theorem involving 
only standard objects. If one embeds 
the standard objects in the nonstandard 
enlargement, one may be able to Rnd 
a much shorter and more "insightful" 
proof by using nonstandard objects. The 
theorem has then been proved actually 
with reference to the nonstandard in
terpretation of its words and symbols. 
Those nonstandard objects that corre
spond to standard objects have the fea
ture that sentences about them are true 
(in the nonstandard interpretation) only 
if the same sentence is true with ref
erence to the standard object (in the 
standard interpretation). Thus we prove 
theorems about standard objects by rea
soning about nonstandard objects. 

For example, recall Nicholas of eusa's 
"proof" that the area of a circle with 
a radius of 1 equals half its circum
ference. In Robinson's theory we see in 
what sense Nicholas' argument is cor
rect. Once inRnitesimal and inRnite num
bers are available (in the nonstandard 
universe) it can be proved that the area 
of the circle is the standard part of the 
sum (in the nonstandard universe) of 
inRnitely many inRnitesimals. 

Here is how the falling-stone problem 
would look according to Robinson. We 
deRne the instantaneous velocity not as 
the ratio of inRnitesimal increments, as 
L'Hopital did, but rather as the stan
dard part of that ratio; then ds, dt and 
their ratio els/ elt are nonstandard real 
numbers. We have as before ds/dt = 

32 + l6elt, but now we immediately 
conclude, rigorously and without any 
limiting argument, that v, the standard 
part of els/ dt, equals 32. A slight modi-

Rcation in the Leibniz method of in
Rnitesimals, distinguishing carefully be
tween the nonstandard number ds/ dt 
and its standard part v, avoids the con
tradiction, which L'Hopital simply ig
nored. 

Of course, a proof is required that the 
Robinson deRnition gives the same an
swer in general as the Weierstrass deRni
tion. The proof is not difÏcult, but we 
shall not attempt to give it here. 

What is achieved is that the inRni
tesimal method is for the Rrst time made 
precise. In the past mathematicians had 
to make a choice. If they used inRnitesi
mals, they had to rely on experience and 
intuition to reason cOØNectly. "Just go 
on," Jean Le Rond d' Alembert is sup
posed to have assured a hesitating 
mathematical friend, "and faith will soon 
return." For rigorous celtainty one had 
to resort to the cumbersome Archime
dean method of exhaustion or its mod
ern version, the Weierstrass epsilon
delta method. Now the method of inRni
tesimals, or more generally the method 
of monads, is elevated from the heuris
tic to the rigorous level. The approach of 
formal logic succeeds by totally evading 
the question that excited Berkeley and 
all the other con troversialists of former 
times, that is, whether or not infinitesi
mal quantities really exist in some objec
tive sense. 

From the viewpoint of the working 
mathematician the important thing is 
that he regains certain methods of 
proof, certain lines of reasoning, that 
have been fruitful since before Archi
medes. The notion of an infinitesimal 
neighborhood is no longer a self-con
tradictory figure of speech but a pre
cisely defined concept, as legitimate as 
any other in analysis. 

The applications we have discussed 
are elementary, in fact trivial. Non

trivial applications have been and are 
being made. Work has appeared on 
nonstandard dynamics and nonstandard 
probability. Robinson and his pupil Al
Ien Bernstein used nonstandard analysis 
to solve a previously unsolved problem 
on compact linear operators. It must 
nonetheless be said that many analysts 
remain skeptical about the ultimate im
portance of Robinson's method. It is 
quite true that whatever can be done 
with infinitesimals can in principle be 
done without them. Perhaps, as with 
other radical innovations, the full use 
of the new ideas will be made by a new 
generation of mathematicians who are 
not too deeply embedded in standard 
methods to enjoy the freedom and pow
er of nonstandard analysis. 
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