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tensor of the first rank, with respect to any nonsingular co-
ordinate transformation, which behaves in every respect
like an ordinary polar vector. If u and v are polar vectors,
then it is useful to call uXv an axial vector in three
dimensions on the basis of its formation and not on its
transformation.

A final remark is necessary in this note with respect to
the conventional view that an axial vector is related to an
antisymmetric tensor of the second rank. The definition
in Eq. (16) leads to a revision of this view. We find, rather,
that the wector operator u%X is to be the mathematical
entity which is uniquely related to an antisymmetric
tensor of the second rank. We are referring to the operation
on vectors. This can be put into mathematical form quite
generally., To do this, let us drop the restriction that
al, a2, ad®and a,, a,, a; are to be unit vectors and let them
be noncoplanar reciprocal affine reference sets, namely:

]‘Y
a,+ a8 = §; —{0’

where Egs. (17) and (18) still apply. We have the following:

Theorem. 1f A is an antisymmetric tensor, it can be
written in one and only one way as the vector operator aX
where a is a uniquely determinable vector if A is known,
as follows:

y=s

755, (19)

a=laX A-a, (20)

summation on ¢=1, 2, 3,

Proof. The tensor A is completely characterized by its
application to the three noncoplanar vectors a;, as; as.
Let us assume A-a,=b,, r=1, 2, 3. We need only show that

aXa,=%3(a*X A-a,) % a,=%(a"Xb,) X a,
=4[ (a"-a)b,—(ar-bs)a"]
=3[8D,— (2 A-a,)as =4[+ (a,-bra"]
=3[b,+b]=b, r=1,2, 3,

where we have invoked the antisymmetry of A by taking
—a, Aaa”= _{—a”.A.ar.

From the point of view favored here, the scalar triple
product
(21)

e VAW =0 TU, 0, W,

is an absolute scalar and not a pseudoscalar. In this way,
we give to three dimensional vector analysis a uniform
invariant tensor character, This is more atfractive than
that generally espoused in the literature of mathematical
physics where the discussion of two kinds of vectors based
on differences in transformation properties is the result
of an incomplete definition of the vector product. From the
physical point of view, we note that axial vectors are not
directly observable concepts but are either inferred from a
calculation or an observable effect.

In summary, there is no gainsaying the fact that right-
handed and left-handed reference systems are different
mathematically and physically. The mathematical dif-
ference is expressed by the value of the Jacobian which is
—1 and the physical difference is that the systems cannot
be superposed by translation and rotation. The definitions
in Egs. (1) and (2) express these differences. The vector
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algebra which follows from these definitions is a self-
consistent invariant tensor formulation.

L. Landau and E. Lifschitz, Classical Theory of Fields (Addison-
Wesley Publ. Co., Reading, Mass., 1951), pp. 19~20.

2 P, Morse and H., Feshbach, Methods of Theoretical Physics (McGraw-
Hill Book Company, Inc., New York, 1953), Part I, p. 10.

Two-Circle Roller
A. T. STEWART
University of North Carolina at Chapel Hill

FfVHERE is a child’s building toy which makes use of
plastic circles notched around their edges as illus-
trated in Fig. 1. After these pieces were spread haphazardly

F1g. 1. Plastic circles of a child’s building toy.

throughout our house we seldom saw at any one time more
than two pieces fitted together, the connected circles
shown in the figure. These pairs of circles have a very
striking property which brought them to my attention.
They roll easily on a slight incline showing little tendency
to find a position of staticnary equilibrium. (In addition it
should be said that the motion is a curious wobble quite
amusing to watch!) The question arises naturally: what
is the vertical motion of the center of mass during the
rolling?

This note points out that a pair of thin circles joined at
right angles with centers separated by a distance 4, equal
to ()%, the radius, does indeed roll with the height of the
cenler of mass remwining constani. Furthermore, for con-
siderable departure from the condition d=r(2)} the
vertical motion of the center of mass is very small. This
result is shown in Fig. 2. The purpose of this note is in
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Fi1G. 2. The variation of height of center of mass with the angle
describing therolling motion. See text for definition of symbols.
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part to point out this interesting behavior but more
especially to seek a simple proof of it. If any know of a
simple solution I would like to hear of it.

There are two symmetric positions sketched in Fig. 3.
In the position of Fig. 3(a) it is obvious that the height of
the center of mass, %, is

h=r/(2)t.

In the symmetric position drawn in Fig. 3(b) it is easy to
show that the center of mass is at height

h=r[(14+39)/(1+5)],

where §=d/r. The heights in these two positions are equal
if

F16. 3. The two positions
of symmetry,

1/(2)4=(14+30)/(1+5),
which yields the condition

8= (2)t=d/r.
No other position can be analyzed so easily.

For an arbitrary position, a lengthy analysis shows that
the height of the center of mass is given by

h=[r/(2¥{(1+33C) /(1 -+8C+3(8 = 1) C2 1,

F16. 4. A metal two-circle roller which performs very well.
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where C is the cosine of the angle between the line joining
the centers of the two circles and one of the radius vectors
which contacts the supporting table. (In Fig. 3(a) this
angle is 90° for both circles. In Fig. 3(b) the angle is 0°
for the lower circle and greater than 90° for the vertical
circle.) The function (2)#/r is plotted against angle in
Fig. 2. It can be seen that the above expression reduces to
h=r/(2)} for 8=(2)% so that % is invariant with rolling.
It would be interesting to know of some more direct proof
of this simple property.

Demonstration of Single Crystal Making

RoNaLD A. Aziz
University of Waterloo, Waterloo, Ontario, Canada

SIMPLE, effective classroom demonstration of the
production of a single crystal is described. A mould
is fabricated from a piece of Pyrex tubing by drawing it to
a point at one end. The tip is then ground flat until a
tiny hole (0.2 to 0.3 mm in diameter) appears (Fig. 1).

g

F1c. 1. Cross-section of Pyrex glass mould.

Using an acetylene torch, tin (99.999%, pure) is melted
within a high-purity graphite crucible. The oxides which
appear remain principally on the surface of the molten tin.
The tin is then poured into the preheated mould, and the
torch is applied to the system to ensure that the metal is
still molten. The mould is then lowered until the tip
touches an oil bath. Heat is transferred via the metal in the
channel in the tip to the oil bath, and a solid-liquid inter-
face moves slowly up the tube. A sheet of aluminum foil
may be used to insulate the tube, itself an insulator, to
avoid premature chilling of the molt. To remove the
cylindrical tin crystal, the system is placed, once cooled to
room temperature, into a liquid nitrogen bath. The tin
sample contracts away from the tube and can be shaken
free from the tube. The structure of the sample can be
revealed by placing it for a few seconds into an etch of the
following composition: 9 parts HCI, 3 parts HNO;,
2 parts HF, and 5 parts H,O (distilled). The ends can be
squared off with a spark cutter. While a single crystal
often results whenever high purity tin is used, it is found
that the “mortality rate” is reduced when this method is
employed. There may be some contamination of the
sample due to absorption of impurities from the Pyrex.



