
lens properties which may not have been noted pre-
viously. They make possible a quick and comprehen-
sive comparison of the characteristics of different
lenses or of lenses of the same type with different di-
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Fig. 8-Spherical aberration of lenses: Variation of focal
distance with aperture.

mensions. Such a comparison is shown in Fig. 7 which
shows the effect of changing the ratio of aperture di-
ameter to aperture spacing in an aperture lens. In this
figure, object distance and image distance are meas-
mxed from the first aperture, A is the aperture diam-
eter, and D is the axial distance between apertures.
C. Aberration Characteristics
Some typical aberration curves as determined

graphically from the screen patterns are shown in Fig.
8. These show the decrease in focal distance as the ray
separation from the axis is increased. Such curves are
about the same for all lenses. These curves are nearly
universal in that the reduction in focal distance is ap-

proximately a percentage function of the focal distance
itself. A sample curve showing the spread of spot pro-
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Fig. 9-Aberration curve: Variation of minimum
spot size with aperture.

duced by aberration is shown in Fig. 9. This is also
nearly a universal curve.

IV. CONCLUSIONS

The methods proposed here are improvements on
previously proposed methods from the standpoint of
simplicity, ease of execution, and accuracy of results.
The new representation of lens characteristics tells the
whole story of the lens at a glance. The experimental
method permits simultaneous determination of focal
characteristics and aberration properties.

A More Symmetrical Fourier Analysis Applied to

Transmission Problems *
R. V. L. HARTLEYt, EELLOW, I.R.E.

Summary-The Fourier identity is here expressed in a more sym-
metrical form which leads to certain analogies between the function of
the original variable and its transform. Also it permits a function of
time,for example, to be analyzed into two independent sets of sinusoidal
components, one of which is represented in terms of positivefrequencies,
and the other of negative. The steady-state treatment of transmission
problems in terms of this analysis is similar to the familiar ones and
may be carried out either in terms of real quantities or of complex
exponentials. In the transient treatment, use is made of the analogies
referred to above, and their relation to the method of "paired echoes" is
discussed. A restatement is made of the condition which is known to be
necessary in order that a given steady-state characteristic may represent
a passive or stable active system (xctual or ideal). A particular neces-
sary condition is deduced from this as an illustration.

A NEW formulation of the Fourier integral iden-
tity is derived and compared with the familiar
ones and its properties are discussed. The ap-

plication of the resulting analysis to transmission
problems, steady-state and transient, follows.

*Decimal classification: 51OXR11O. Original manuscript re-
ceived by the Institute, August 8, 1941.

t Bell Telephone Laboratories, Inc., New York, N. Y.

MATHEMATICAL RELATIONS

Comparison of Alternative Forms
The Fourier integral identity may be written in the

form

where

1 800
f(t) = s,12 fdcr ,d l1(w) cas wt,

(co) = V27rf dtf(t) cas ot,

(1)

(2)

cas x = cos x + sin x,

is an abbreviation for cosine and sine. This is to be
compared, from the standpoint of symmetry, with the
more usual forms,

1 zoof f
f(t) =-dw doe f(ae) cos ( - a),

2ir 00 0

(3)
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or its equivalent,

I Px
f(t) = Jf2 dW[A(w) coscwt + B(w) sin ct],

1 rx
A (X) = V dtf(t) cos ct,

\27r _30
I rX

B(c) = f' dt f(t) sin wt,

and
=c

f(t) = -\--7 0 dco C(co) exp (iwot),

tive values of co is identical with that over positive. If
then we regard (3) as an analysis of f(t) into sinusoidal

(4) components, we may say that one half of the value of
the function is represented by components for which
co is positive and one half by those for which it is nega-

(5) tive. In (1) however we note that

(6)

(7)

C(co) = ,J dtf(t) exp (- icoi).

To derive (1) and (2), we write

0t(co) = A(co) + B(c).
Then (2) follows from (5) and (6). Since A (X) is an
even function of w and B(cc), an odd,

1 rX
0= dw [A(cc) sin wt + B(w) cos cwt.

If we add this to the right member of (4) it reduces to
(1).
Equations (3) to (6) are similar to (1) and (2) in

that, when f(t) is real, all the other quantities are also
real. They differ in that the variables t and cw enter the
equations symmetrically in the latter and not in the
former. Equations (7) and (8) resemble (1) and (2)
more closely in form. They differ in that the symmetry
of (7) and (8) is marred by the difference in sign of the
two exponents. Also when f(t) is real, C(X) is complex,
and vice versa.
We may then set up the following expressions for

the even and odd components of f(t) and #(cc):

v(f)=12 [f(t) + ft- t] (t > f), )ot

=u Sdw V,(w) COS cot=._ dw {1(w) COS wt,

(10)
Jc ( 1 fs

= ,J dx {0o(X) sin wt=-\/27 4A(c) sin wt,
.\/ 27r c0o c2r _o

4e(cc)= [+(C) + t( c)], (Cc> 0),
___ C00 1 roo (1

I dtfe(t) cos ct= J dtf(t) cos ct,
-\/2r -\/2r _00

¢o 2= [41[)'(Ct)-+(-@) ] (@ > 0), (12)1 [ )- (c] 1 (2
1 dt fo(t) sin ct= f dtf(t) sin cot.

V27r J \/27rV2

Equations (3) to (6) differ from (1) and (2) also
with respect to negative values of cc. Since the first
integrand in (3) is an even function of cc, the com-
ponent of f(t) corresponding to integration over nega-

cas (-cot) = -/2 cos (-t - I),

-V2cos (/t±),7r
=-0/ cos wtc + ),

(13)

and

cas (cot) -=V sin(ct + ) .

We may, therefore, say that a pair of equal positive
and negative values of Xc in (1) correspond to a pair of
components which vary as the sine and cosine of the
same angle. Thus (5) and (6) represent a resolution
into sine and cosine components each of which is
further resolved into components corresponding to co
and -c, whereas in (1) these two resolutions are ac-
complished together.

This difference gives rise to a corresponding one in
the functions of co by which a given function of t may
be represented. Equation (4) suggests that use is made
of two functions, A (co) and B(w), each defined for both
positive and negative values of co. However, in view
of their evenness and oddness, they are completely
determined by their values over either range alone. In
(1), on the other hand, we have a single function 1(cw),
the value of which for -w is independent of that for
co; and so it must be defined over the entire range of co.

Analogous Functions of Time and Frequency
The symmetry of (1) and (2) makes possible some

analogies between functions of t and cw. The discussion
of these may be simplified, without loss of generality,
if we identify t with time and co with angular frequency.
It will be further simplified if we replace co by 2ir times
the cyclic frequency v, writing (1) and (2) as

r0
f(t) = f dv 4?(v) cas-2rvt,

_0

(v) = dtf(t) cas 27rvt,
-00

(14)

(15)

where

b(v) = V/2 4t(27rv) = V'2r A(X).

We have interpreted equations such as (1) and (4)
as representing a resolution off(t) into sinusoidal com-
ponents. We may also interpret (2), (5), and (6) as
representing the resolution of their respective functions
of frequency into components which vary sinusoidally
with frequency. For example in (5) (as modified), the
component corresponding to a particular instant t1 has
the form dtf(t1) cos 2irti, as shown in Fig. 1. This value
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of t determines the amplitude, d! f(ti), and is itself
equal to the number of cycles per unit frequency
range. Its reciprocal 1/ti is the frequency range occu-
pied by one cycle-of the sinusoid. This role of ti is the
analog of that of the frequency vi of a single frequency
component of f(t) as given by (4). It seems logical

spaced at intervals of dp, each of a height equal to the
corresponding value of 4(v). The same succession of
pulses would result from the well-known resolution of
ID(v) into a succession of infinitesimal pulses of length
dv, each of a finite height, given by the average value
of 4(v) over the particular interval dv. Also, from sym-

Fig. 1

therefore to refer to one of these sinusoids on the fre-
quency scale as a single instant component of +(v) and
to the corresponding instant as the instant of the com-
ponent.
The resolution of +(v) may follow either the familiar

method, as in the foregoing example, or the alterna-
tive one described above. It would seem that our intui-
tions would be best satisfied by that resolution in
which the values of f(t1) andf(-ti) best maintain their
separate identities in the components of qS(v). From
this standpoint the newer analysis is preferable. In
(2) the components corresponding to instants ti and
-ti constitute a pair of sine and cosine components as
in Fig. 2. The corresponding pair in (5) and (6) are
found by compounding the components of instants t,
and -t1 for the sine and cosine separately. The ampli-
tudes of the resultants are proportional tof(ti) -f(-tl)
and f(ti) +f(-t1), respectively. Here the identities of
the positive and negative instants are pretty well lost.

If we apply the Fourier analysis to a function of
time of the form

fJ(t) = A cas 2irvlt,
the resulting function I1(v) is zero except at vi where
it has an infinite value such that

'11(vj)dp = A.

Thus the transform of a cas function of time of finite
amplitude is a finite pulse of infinite height and in-
finitesimal length. When the function f(t) comprises
an infinitude of cas components, as indicated in (14),
the amplitude of each component is infinitesimally
small. For example, the component of frequency vi,
say, has an amplitude of dI(vI)dv. The transform of this
component then is an infinitesimal pulse of finite
height 1(vl), and length dv located at vP. Suppose that
we transform in the same way all of the other cas com-
ponents of f(t). The result is a succession of pulses

Fig. 2

metry, if we analyze f(t) into pulses f(t)dt, and trans-
form these individually we get the same sinusoidal
components of (P(v) that we do if we transform f(t) into
4?(v) and analyze it into sinusoidal components. In
general, the amplitude of a sinusoidal component of a
function is equal to the magnitude of the corresponding
pulse of its transform.

Close approximations to sinusoidal components of
a time function are in common use. More rarely ex-
perimental use is made of an approximate pulse in the
form of a current of finite duration, the magnitude of
which is made to vary inversely as the duration as the
latter is decreased. The transform of such a wave ap-
proximates to a sinusoidal 1 function of finite ampli-
tude. If also the pulse is an even function of time and
occurs at the instant zero, the corresponding 1 func-
tion approaches a uniform finite value for all fre-
quencies.
By analogy with the Fourier series, it is obvious that

4.(v) can be represented over a limited frequency
range, by an infinite series of finite, single-instant cas
components which are finitely spaced. These cor-
respond to a series of equally spaced finite pulses on
the time scale, each of infinite height and infinitesimal
duration. The finite time interval separating the pulses
is the reciprocal of the range of frequency over which
the function of frequency is to be represented. These
pulses will be distributed over the entire time scale. If
the Fourier integral analysis be applied to this se-
quence of pulses, the resulting function of frequency
will repeat itself on the frequency scale, the interval of
repetition being equal to that over which the original
function was to be represented.
As an example of this relationship may be men-

tioned a property of telegraph signals derived by
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Nyquist.' He assumed that in a synchronous telegraph
system employing any number of elements, the dura-
tion of each signal pulse is made small compared with
the signal interval. He then showed that the spectrum
of the over-all disturbance repeats itself on the fre-
quency scale, except for a factor dependent on the
form of the pulse. Presumably if the duration of the
pulse is sufficiently decreased, the effect of its form can
be made negligible. With this assumption, the result
becomes a special case of the analog of the Fourier se-
ries relation.

APPLICATION TO TRANSMISSION PROBLEMS

In applying the foregoing to transmission problems
it will be assumed that the systems under considera-
tion are linear with constants which do not vary with
time. They will be assumed to be either passive or
stable active systems, except where unstable active
systems are specifically mentioned.

Steady-State Transmission in Terms of ,6 Components
By the steady-state characteristic of such a system

we mean a description, in terms of functions of fre-
quency, of how it transmits sinusoidal waves of vari-
ous frequencies. This amounts to a statement, for each
frequency, of the relation between some two waves
associated with the system. If they are the current and
voltage at the same point, the relation takes the form
of an impedance, consisting of a resistance and a re-
actance. As the relation between any other pair of
waves may be expressed in similar form, there will be
no loss of generality if we carry on the discussion in
terms of an impedance.
The resistance gives the ratio, to the amplitude of

the current, of the amplitude of that component of the
voltage which is in phase with the current. The react-
ance gives a similar ratio for the componen-t in quadra-
ture. When the familiar analysis is used, it is convenient
in computing the impedance to choose the current as
a sine wave of unit amplitude. The amplitudes of the
computed sine and cosine components of the voltage
then give the resistance and reactance.

If we wish to carry out the computation in terms of
the new analysis, we again assume that the current is
represented by one of the quadrature components, in
this case that of positive frequency 4I'(wi) cas colt,
(w,> 0). If we analyze this into its sine and cosine com-
ponents, compute the accompanying voltages in the
familiar way, and resolve their resultant into cas
components of positive and negative frequency, we

get VI(wc) [R(w,) cas colt + X(wi) cas (- wit) ]. (18)

Obviously, if we make i1(col) unity, the resistance is
given by the magnitude of the voltage component of
positive frequency and the reactance by that of nega-
tive frequency.

1 H. Nyquist, 'Certain topics in telegraph transmission theory,"
Trans. A.L.E.E. (Etec. Eng., April, 1928), vol. 47, pp. 617-644;
1928.

More often perhaps, we know the impedance and
wish to compute the voltage which accompanies a
given current. If the current is sinusoidal we resolve
it into cas components of positive and negative fre-
quency. The voltage accompanying the component of
frequency wc is given by (18). That accompanying the
component of frequency -xl is obtained by reversing
the sign of w, in (18). It is

- wi) [R(- wi) cas (- wit) + X(- wi) cas wit], (18')
where

R(- w) =R(l)
X(- w1) = -X(wi),

(,I > 0).

From these results it follows that if the current is a
transient which can be represented by

(19)
1 00

I = dw {(w) cas wt,
th vltgr i00

the voltage is

E--=- -1J dco A(w) [R(w) caswt+X(co) cas (-wt) j, (20)
\ -2 -00

provided R(co) and X(cw) satisfy certain well-known
conditions.
The new analysis lends itself to the use of complex

algebra in a manner exactly analogous to that of the
familiar analysis. In the familiar case we carry out the
operations in terms of exp (iwt), the real part of which
is cos ct. When this is multiplied by the impedance
R(w) +iX(w), the real part of the product gives the
voltage. In the new analysis, we recognize that the sum
of the real and imaginary parts of exp (iwt) is cas wt.
Hence if we multiply exp (iwt) by the complex im-
pedance as before, the sum of the real and imaginary
parts of the product gives the voltage. We may then
write (19) and (20) in the form

1 ro
I= real+imaginarypartof dw VI(w) exp (iwt),

o/7r~_o
1 rX

E= real±imaginary part of _ dc Z(w)i(w). exp (iwt),
-\/2ro

where i+(w) is real and Z(Qo) is the complex impedance.
An alternative method is based on the relation

(1 + i) exp (iwt) = cas (- ct) + i cas (wt).

If the real part of this represents the current, then

real part of (1 + i) Z exp (ict) = R cas (- wt) - X cas wt,

which from (18') is the voltage. Here the cas component
of negative frequency has a role similar to that of the
cosine component and that of positive frequency to
that of the sine, which is consistent with (13). It is
also consistent with the fact that it is the sine and the
positive-frequency components of current which are
accompanied by voltage. components which are equal
to the resistance and reactance, respectively. For the
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cosine and negative-frequency components the quad-
rature component of the voltage is equal to minus the
reactance.

Systems Characteristics as Spectra of Transients
It is well known that under suitable conditions the

functions of frequency which give the steady-state
characteristic of a system are identical with those
which describe the transient which accompanies exci-
tation by an ideal pulse at time zero.2 Such a transient
may be analyzed into components of positive and neg-
ative frequency, the magnitudes of which are expressed
in terms of the system characteristics. The resulting
function of frequency bears a more symmetrical rela-
tion to the time function representing the transient
than do the familiar frequency functions. This sym-
metry is found to be helpful in establishing relations
between the steady-state and transient characteristics
of a system.

Let us first review the well-known relation between
the impedance and the transient voltage which accom-
panies a pulse of current at time zero. For this purpose,
we may make use of some of the relations given above.
We shall assume that the current approaches as
closely as we wish to a finite pulse of infinite height and
infinitesimal length as discussed above. The corre-
sponding 4i function then approaches a constant finite
value. This means that the single-frequency compo-
nents of the current are all cosines of the same infinites-
imal amplitude. The corresponding components of the
voltage are each made up of a cosine component pro-
portional to the resistance and a sine component pro-
portional to minus the reactance at the particular
frequency. Formally these are the same as the com-
ponents of the spectrum of a function of time. Whether
or not they represent the spectrum of the transient
voltage, depends on whether the impedance function
is such that the integration involved in their summa-
tion has meaning. This will be true only if the im-
pedance approaches zero at infinite frequency at a
sufficiently rapid rate. In what follows we shall con-
sider only systems which satisfy this condition.
We wish now,to represent the spectrum of the tran-

sient in terms of the new analysis. Since the amplitudes
of the voltage waves are R(v) and -X(v), (v>0), those
of their components of frequencies v and -v will be
each half those values, so

(I (v) = -[R(V) - X(v) 3,

(-V) = 2 [R(v) + X(v)],
- A[R(-v) - X(- v)J.

Also
1.(v) =R(v), (21)
O(v) --12X(v). (22)

The 'I function corresponding to the transient voltage
2 R. V. L. Hartley, "The transmission of information,' Bell Sys.

Tech. Jour., vol. 7, pp. 535-563; July, 1928.

is then given by one half of the resistance minus the re-
actance. The application of this relation will next be
illustrated by some practical examples.
Echoes as Single-Instant Components
To arrive at a more concrete picture of a single pulse,

at a time other than zero, as corresponding to a sinu-
soidal function of frequency, let us consider what hap-
pens when a finite pulse of current of the kind just
discussed is sent into a distortionless line at time zero
by a generator of infinite internal impedance. First
suppose the line to be of infinite length, or terminated
in its own impedance, so that there is no reflected
wave. The voltage across the input is also a pulse, the
spectrum of which is made up of cosine components of
uniform amplitude. This is consistent with the im-
pedance of the line being a uniform resistance. Suppose
now that the distant end be opened. The initial voltage
pulse will then be followed by an echo, delayed by a
period t1 equal to twice the transmission time of the
line. Owing to the infinite generator impedance no cur-
rent will accompany this pulse and it will be reflected
as from an open circuit. Let us assume that the line
attenuation is great enough that subsequent echoes
are negligible. The first echo then constitutes a finite
voltage pulse at time t1. The ID function corresponding
to it will be a finite sinusoid, for which the number of
cycles per unit frequency range is given by t1. This may
be added to the uniform value of 'I(v) representing the
initial pulse. Since the attenuation is assumed large,
the sinusoidal part wilI appear as a ripple on the larger
uniform value. When this resultant 4' function is re-
solved into its even and odd components, we have the
functions which represent the resistance and minus
the reactance of the open-circuited line. These will
each have a sinusoidal component, the phases of the
two being in quadrature. This picture of the line im-
pedance will be recognized as that in common use for
locating points of reflection by means of the sinusoidal
variations in impedance.

Suppose now that we greatly reduce the attenuation.
The initial pulse will then be followed by a long series
of equally spaced pulses of gradually diminishing mag-
nitude. Together they constitute the analog of a Four-
ier series, with t1 as a fundamental. Each pulse will
contribute to 'I(v) a sinusoidal component for which
the number of cycles per unit frequency range is nt1
and the wavelength on the frequency scale is 1/nt1.
These combine to form a 4' function which has a sharp
peak at the fundamental resonant frequency lit1 of
the line. Also this 4' function repeats itself on the fre-
quency scale in successive intervals of 1/t1 thus provid-
ing peaks corresponding to resonance at the harmonic
frequencies. This point of view resembles very closely
that used by Mason3 in treating the steady-state
properties of circuits in terms of multiple echoes.

a W. P. Mason, "A new method for obtaining transient solutions
of electrical networks." Bell Sys. Tech. Jour., vol. 8; pp. 109-134;
January, 1929.
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Distortion in Terms of Paired Echoes

The correspondence between echoes and sinusoidal
variations in impedance was carried further by Mac-
Coll4 in a study of phase distortion. He noted that in
certain circuits the departure of the phase character-
istic from linearity was approximately sinusoidal. He
therefore assumed small sinusoidal variations in the
magnitude and phase of the transfer admittance and
showed that the resulting transient distortion of the
current could be represented by reduced replicas of the
applied signal displaced in both directions along the
time axis. More recently Wheeler5 and Strecker' have
represented the distortion of a television signal in terms
of two groups of similar "paired echoes." In one group
each pair corresponds to a sinusoidal component of the
attenuation-frequency function of the system and in
the other to a component of the phase-frequency func-
tion. The relations underlying this correspondence are
approximate and the method is applicable only when
the distortion is relatively small. Burrows7 has sug-
gested a method of successive approximations based
on MacColl's results, which increases the accuracy
and evaluates the residual error. He points out that
in the amplitude case, the relations become exact if the
amplitude itself is used, rather than its logarithm, the
transmission loss, as used by Wheeler. Still more re-
cently Strecker8 has pointed out what is obvious from
the present point of view, that the method of paired
echoes may be made to give exact results for all values
of distortion, if logarithmic relations are avoided and
the system is described in terms of its transfer im-
pedance, or admittance. As an alternative we may
represent the system by its 4 function, and analyze
this into its components of negative and positive in-
stants, in accordance with (1). The amplitudes of
these give directly the magnitudes of the resultant
echoes which precede and follow the signal by particu-
lar intervals.

Another example of the representation of pulses on
the time scale by sinusoids on the frequency scale
will be found in Kallmann's9 treatment of "transversal
filters." By adjusting the amplitudes and signs of
components corresponding to pulses having different
arrival times, he constructs a function of frequency to
fit the desired filter characteristic.

4 L. A. McColl, 'The distortion of signals by linear systems
having amplitude and phase characteristics of a certain type,"
unpublished memoranda, December, 1931.

X Harold A. Wheeler, "The interpretation of amplitude and
phase distortion in terms of paired echoes," PROC. I.R.E., vol. 27,
pp. 359-384; June, 1939.

6 F. Strecker, "tber den Einflus kleiner Phasenverzerrungen auf
die Ubertragung von Fernsehsignalen," Elec. Nach. Tech., vol. 17,
pp. 51-56; March, 1940.

7 Charles R. Burrows and C. W. Carnahan, Discussion on
Wheeler paper, footnote 5, PROC. I.R.E., vol. 27, pp. 384-386;
June, 1939.

8 F. Stecker, "Beeinflussung der Kurvenfarm von Vorgatngen
durch DaImpfungs- und Phasenverzerrung," Elec. Nach. Tech.,
vol. 17, pp. 93-107; May, 1940.

9 Heinz E. Kallmann, "Transversal filters," PROC. I.R.E., vol.
28, pp. 302-310; July, 1940.

Representation of a Stable System by a Function of Posi-
tive Frequencies Only
The pairs of functions of frequency which represent

the steady-state characteristics of linear systems have
been the subject of much study. Many years ago, Mac-
Coll questioned the need of two independent functions,
or components of a complex function. He was able to
show, in particular, that the susceptance of a passive
circuit can be computed from its conductance. Work
along this line has continued, and Bodet0 has extended
these relations to include amplitude and phase. As a
result of these studies it has come to be recognized
that the performance of a passive system or a stable
active one should be adequately described by a single
function of positive frequencies. If so there should be,
and there is, something in the nature of such systems
which makes it unnecessary to specify the 61 function
for both negative and positive frequencies.

This something is the fact that when a pulse is ap-
plied to such a system, the transient response is con-
fined to the period following the pulse. In an unstable
system the existence of a finite "response" is not de-
pendent on a corresponding finite applied "stimulus."
We saw above that the frequency characteristic may
usually be interpreted as the spectrum of the transient
response to an exciting pulse at time zero. If we call
this response f(t), t>O, then f(-t) is always zero.
From (9) and (10), then

fe(t) = fo(t) = 2f(t)
and so either f.(t) or fo(t) alone is sufficient to deter-
mine f(t). From (9), f6(t) is determined by 61,(v). But
be.(v) is an even function and so is completely described
by its values for positive frequencies. Similarly from
(10), 1bo(v) is also adequate, and so either component
of the familiar spectrum contains all the essential in-
formation. In more familiar language, the transient
response may be deduced from either the real or the
imaginary component of the steady-state response.

Necessary Conditions for a Stable System
The above result suggests some alternative formula-

tions for the conditions which must be met by a steady-
state characteristic if it is to correspond to a physically
possible passive system or stable active system. WVhen
a pulse is applied to such a system at time zero, the
transient f(t) is zero for t<O. The amplitude of a
single-instant component of the system characteristic,
(D(v), is f(t)dt. The condition, therefore, is that the
amplitudes of all such components which correspond
to negative values of t shall be zero. Also, it follows
from (13), that if 1b(v) be analyzed into sine com-
ponents of variable amplitude and phase, in accord-
ance with the familiar Fourier analysis, the condition
requires that the phases of all the components be

10 H. W. Bode, "Relations between attenuation and phase in
feedback amplifier design," Bell Sys. Tech. Jour., vol. 19, pp. 421-
454; July, 1940.
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7r/4. Again, since the even and odd functions of time
cancel for all negative instants they must be equal for
all positive instants. Hence from (9), (10), (21), and
(22), it must be true that

or

J d4oR(w) cos X 4l = J dca4X(w) sinco
-00 -00

dw R(w) cos cot = - fdw X(X) sin wt

for all positive values of t, if the characteristic is to be
realizable. This relation is given by Guillemin.11

This criterion permits certain conclusions to be
drawn regarding the paired echoes discussed by
Wheeler and Strecker. In most transmission systems
the reproduced signal is delayed by an interval t1 to be
determined by the slope of the linear component of the
phase shift. Relative to this displaced zero of time the
criterion says that all single-instant components of
40(v) corresponding to instants before -t1 must be
zero. In order then for an assumed pair of variations
in amplitude and phase to be realizable, it is necessary

that, if the variation of one quantity corresponds to
pre-echoes before -t1, that of the other must cor-

respond to equal echoes of opposite sign over this part
of the time scale.

A Particular Necessary Condition

While the satisfaction of (23) for all positive values
of t constitutes a necessary condition, its application
to a particular case involves considerable labor. It is
possible, by considering particular values of t, to de-
duce necessary conditions which are less general. As
an example of this let us derive a relation which Bode12
has established for the resistance of a circuit across the
terminals of which there is a shunt capacitance C. The
relation is

00 R(co) do, =

We assume a pulse of current of infinitesimal duration
to be sent into the circuit at time zero. The accom-

panying charge first accumulates in the shunt con-

denser and then proceeds to flow into the rest of the
circuit. We select an instant t1 so close to zero that the
part of the charge which has left the condenser is
negligible. The voltage at that instant is independent

11 E. A. Guillemin, "Communication Networks," vol. 2, John
Wiley and Sons, New York, N. Y., 1935, p. 503.

12 H. W. Bode, United States Patent No. 2,242,878, 1941.

of the rest of the circuit and is determined solely by
the condenser. So far as this instant is concerned, then,
we may neglect the rest of the circuit. This is the
equivalent of Bode's choice of a frequency so high
that the impedance is equal to the capacitive react-
ance of the condenser. We then say that the voltage is
to be zero at -ti and so (23) holds for that instant. By
making ti small enough, cos tlw may be made substan-
tially equal to unity for any value of co. If we substi-
tute - l/coC for X(co), we have

.X 0f sin t1w
f0R(c) dw = C(A- dw,

1(00 sin tc

CJ t1c,, 2C

A word of caution should perhaps be inserted re-
garding the application of this relation to physical cir-
cuits. The arrangement assumed neglects the induct-
ance of the leads which must become appreciable as
we approach infinite frequency. Once it does, the con-
denser is no longer shunted directly across the ter-
minals. If this inductance is L, it can be shown by
assuming the application of an impulsive voltage, that
the conductance G(w) is limited by the relation

(300

J G(w) dw =
JO ~~2L

instead of being infinite for all frequencies as was as-
sumed. It is evident from this that if the impedance
of an ideally lumped artificial line, having series L and
shunt C, is measured at mid-shunt, the integral of its
resistance is limited, while at mid-series, that of its
conductance is limited. However if we make it ap-
proach a uniform line by reducing L and C, both of
these limits approach infinity as they must if both R
and G are to become constant for all frequencies.

Note added in proof: Since the above was written, a
paper1" has appeared in which Wheeler, in a treatment
of unsymmetrical sidebands in terms of a zero-fre-
quency carrier, makes use of functions of frequency
which are defined independently for positive and nega-
tive frequencies, and of the resolution of these into
even and odd components. The analysis, however, fol-
lows (7) and (8) above, and the object is not, as here,
the development of a more symmetrical form of the
Fourier identity.

'3 H. A. Wheeler, "The solution of unsymmetrical-sideband
problems with the aid of the zero-frequency carrier," PROC. I.R.E.,
vol. 29, pp. 446-458; August, 1941.
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