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 PREFACE

 In the fall of I920 Mr. CHARLES A. ELLIS, at that time Professor
 of Structural Engineering in the University of Illinois, called
 my attention to the famous appendix on elastic curves by
 LEONHARD EULER, which he felt might well be made available
 in an English translation to those students of structural engineering
 who were interested in the classical treatises which constitute
 landmarks in the history of this ever increasingly important
 branch of scientific and technical achievement. He secured
 photostats of that copy of the original publication which was
 owned by the New York Public Library, and together we spent
 many delightful evenings working over the translation, and
 correcting the occasional errors of printing and calculation which
 such a first edition inevitably contained. We also examined and
 translated a considerable number of the notes in Dr. H. LINSEN-
 BARTH's admirable translation and commentary (Leipzig, I9IO).
 The Ms. was practically completed when Mr. ELLIS left the
 University in order to enter active business in Chicago. For
 some time the various drafts and annotations lay in my files,
 until early in 1932, when I was fortunate enough to secure the
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 LEONHARD EULER'S ELASTIC CURVES 73

 very competent assistance of Mr. DONALD M. BROWN, formerly
 a student of Engineering, but at present an assistant in the

 Department of Mathematics of the University of Illinois, who

 undertook to revise the translation, together with Dr. LINSEN-
 BARTH 's notes, to check all the equations and calculations,

 and occasionally to express the mathematical formulas in the
 more modern and generally current notation. It is to be hoped
 that the combination of an engineer, a classicist, and a mathe-

 matician in translating EULER'S monograph may have reduced
 somewhat the number of errors which any one of the three

 unaided might easily have made.

 Urbana, Illinois, April 27, 1932.

 W. A. OLDFATHER.

 ADDITIONAL NOTE BY DONALD M. BROWN

 Such factual errors and mistakes as were made by EULER,
 and have been pointed out by others, have been corrected in the

 body of the text, the errors themselves being indicated in the
 notes. An exception to this is the error pointed out in note 31,
 where the correction would involve the incorporation of several
 sections of the body of the text into the notes. In this case,
 since the error involved was not great enough to make any essential

 difference in the calculations, the text was included as translated,
 and the correct values have been inserted within square brackets
 immediately following the incorrect values at all places where

 errors had been made. With the exception of the error indicated
 in note 23, all the errors were pointed out by H. LINSENBARTH

 in his German translation of the text in " Ostwald's Klassiker

 der exakten Wissenschaften," vol. 175 (Leipzig, I9IO). In fact,
 all the notes, correctional, explanatory, and introductory, have

 been incorporated as translated, but several of the correctional
 notes have been modified to conform to the plan mentioned
 above of correcting the text, and indicating the errors themselves
 in the notes.

 LINSENBARTH'S admirable translation was used throughout as
 a check, and since this work includes numerous cross references
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 with the text which are not found in the original, such references

 have been inserted within square brackets.

 The facsimiles of the title page and of the figures are from

 the Harvard Library copy; they are reduced to about two-thirds

 of the original size; Figs. 26, 27, and 28 belong to Additamentum II,

 De motu projectorum in medio non resistente.
 Nothing has been omitted in this translation.

 D. M. BROWN.

 INTRODUCTION

 "It is of the utmost importance," writes Professor G. A.

 MILLER (I), "1 that those students who desire a deep mathematical
 insight should accustom themselves early to go directly to the

 original developments,-at least in those cases where the original

 developments are direct, and are found in a language which does

 not impose too great difficulties." The statement might be
 equally applicable to the same kind of student of engineering,

 and it is for such students of mathematics and of engineering

 that the present translation from the original Latin into English

 is intended.

 LEONHARD EULER (1707-1783), probably the most versatile,

 certainly quite the most prolific mathematician of all time (2),
 needs no commendation from us. CONDORCET, in his celebrated

 E1loge (3), after remarking that " all the celebrated mathematicians
 of today are his pupils," quite justly iists him as " one of the

 (i) Historical Introduction to Mathematical Literature (New York, I9I6) 74.
 (2) By early in I783, 530 studies of his had been published; by i826 the number

 had increased to 77I. In I844 a great-grandson discovered still further material
 in manuscript. (G. DU PASQUIER: Le'onard Euler et ses amis (Paris, I927) i i6).
 His complete bibliography, by G. ENESTROM: Verzeichnis der Schriften Leonhard
 Eulers (Leipzig, I9I0 and I913), lists 866 separate items, together with a volu-
 minous correspondence. The Leonhard Euler-Gesellschaft, a society organized
 for the sole purpose of publishing his works in proper modern form, produced
 its first volume in i9II, and down to date has brought out some 20 volumes.
 The completed undertaking will require 69 quarto volumes, of which 55 are
 assigned to Mathematics, Mechanics, and Astronomy, the remainder to Physics
 and Varia.

 (3) Published in Les Lettres de L. Euler a une Princesse d'Allemagne (Paris, i842),
 xlviii and i.
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 LEONHARD EULER'S ELASTIC CURVES 75

 very greatest and most extraordinary men that nature has ever
 produced."

 The treatise also to which the present study is merely an appendix
 (Methodus Inveniendi Lineas Curvas) is called by Du PASQUIER

 " one of the finest monuments of the genius of EULER," who,
 he continues, " founded the calculus of variations which has

 become, in the twentieth century, one of the most efficient of

 the means of investigation employed by mathematicians and

 physicists. The recent theories of EINSTEIN and the applications
 of the principle of relativity have greatly increased the importance
 of the calculus of variations which EULER created" (op. cit., 50-5I).

 The special interest for engineering in the present little paper,
 lies in the fact that it is the first systematic treatment of elastic

 curves, laying the foundation for subsequent studies, and of course
 most immediately for the celebrated 'Euler formula,' "which ex-
 presses the critical load at which a slender column buckles." (4)

 Referring to the Additamentum I, TODHUNTER and PEARSON

 say, " Euler distinguishes the various species of curves included
 under the general differential equation...

 dy _ _ _(a + fix + yx2) dx [p. 82 of this translation.]
 V a4- (a + Px + yx2)2

 ... The whole discussion is worthy of this great master of

 analysis ;" (5) Again, " From page 282 [P. 121 of this translation]
 to the end EULER devotes his attention to the oscillations of an

 elastic lamina; the investigation is somewhat obscure for the science

 of dynamics had not yet been placed on the firm foundation of

 D'Alembert's Principle: Nevertheless, the results obtained by
 EULER will be found in substantial agreement with those in

 POISSON's Traite de Me'canique, Vol. II, pages 368-392. The
 important equations (a) and (a') on POISSON'S pages 377 and 387
 respectively agree with corresponding equations on EULER'S "

 [pages 297 and 287 = pages 135 and 125 respectively of this
 translation] (6).

 (4) H. M. WESTERGARD: One Hundred and Fifty Years Advance in Structural
 Analysis. Transactions American Society of Civil Engineers 94 (I930) 228. Com-
 pare also remarks by S. TIMOSHENKO (ibid. 24I).

 (5) TODHUNTER and PEARSON: A History of the.Theory of Elasticity and of
 the Strength of Materials. Cambridge, University Press, i886, P. 36.

 (6) Op. cit., p. 38.
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 Referring to EULER'S Sur la force des colonnes, Memoires de
 l'Academie de Berlin, Tom. XIII, 1759, pages 252-282, TODHUNTER

 and PEARSON (7) say, " This is one of EULER'S most important
 contributions to the theory of elasticity.

 The problem with which this memoir is concerned, is the
 discovery of the least force which will suffice to give the least
 curvature to a column, when applied at one extremity parallel
 to its axis, the other extremity being fixed. EULER finds that

 Ek2
 the force must be at least 7T2 -y, where a is the length of the

 column and Ek2 is the ' moment of the spring,' or the ' moment
 of stiffness of the column'..." The volume from which this
 is quoted is intended to be a chronological development of the
 theory of elasticity, but the authors obviously overlooked the fact
 that the problem stated is precisely the one considered in section 37,
 pages 267-268 of the original Additamentum I [pages I02-I03 of
 this translation]. Hence the present work is the first known
 source of the famous ' EULER formula ' mentioned above.

 It might, in conclusion, be observed that the problem of elastic

 curves and the buckling of long thin struts under thrust was first
 worked out by EULER (8).

 W. A. OLDFATHER and D. M. BROWN.

 CONCERNING ELASTIC CURVES

 L. EULER

 i. All the greatest mathematicians have long since recognized
 that the method presented in this book is not only extremely
 useful in analysis, but that it also contributes greatly to the
 solution of physical problems. For since the fabric of the universe
 is most perfect, and is the work of a most wise Creator, nothing
 whatsoever takes place in the universe in which some relation

 of maximum and minimum does not appear. Wherefore there

 (7) Op. cit., p. 39.

 (8) LOVE: The Mathematical Theory of Elasticity. Cambridge, University
 Press, Third Edition, I920. Footnotes p. 407 and p. 4II. See also Introduction,
 P. 3.
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 is absolutely no doubt that every effect in the universe can be

 explained as satisfactorily from final causes., by the aid of the

 method of maxima and minima, as it can from the effective causes
 themselves. Now there exist on every hand such notable instances
 of this fact, that, in order to prove its truth, we have no need at
 all of a number of examples; nay rather one's task should be this,
 namely, in any field of Natural Science whatsoever to study
 that quantity which takes on a maximum or a minimum value,
 an occupation that seems to belong to philosophy rather than

 to mathematics. Since, therefore, two methods of studying

 effects in Nature lie open to us, one by means of effective causes,
 which is commonly called the direct method, the other by means
 of final causes, the mathematician uses each with equal success.
 Of course, when the effective causes are too obscure, but the
 final causes are more readily ascertained, the problem is commonly
 solved by the indirect method; on the contrary, however, the
 direct method is employed whenever it is possible to determine
 the effect from the effective causes. But one ought to make a
 special effort to see that both ways of approach to the solution
 of the problem be laid open; for thus not only is one solution
 greatly strengthened by the other, but, more than that, from the

 agreement between the two solutions we secure the very highest
 satisfaction. Thus the curvature of a rope or of a chain in
 suspension has been discovered by both methods; first, a priori,

 from the attractions of gravity; and second, by the method of
 maxima and minima, since it was recognized that a rope of that

 kind ought to assume a curvature whose center of gravity was

 at the lowest point. Similarly, the curvature of rays passing
 through a transparent medium of varying density has been

 determined both a priori, and also from the principle that they
 ought to arrive at a given point in the shortest time.

 Other similar examples have been brought forward in large
 numbers by the most eminent BERNOULLIS and others, who have

 made very great contributions both to the method of a priori
 solution, and to the knowledge of effective causes. Although,
 therefore, thanks to these so numerous and striking instances,
 there can be no doubt that in the case of all curved lines which

 appear in the solution of physical-mathematical problems, there

 enters in the character of some maximum or minimum; still this

 6
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 very maximum or minimum is frequently very hard to recognize,
 although one might have reached a solution a priori. Thus,
 although the figure which a curved elastic ribbon assumes has
 long since been known, nevertheless no one has observed as yet
 how this curve can be studied by the method of maxima and
 minima, that is to say, by means of final causes. Wherefore,
 seeing that the most illustrious and, in this sublime fashion of

 studying nature, most perspicacious man, DANIEL BERNOULLI, had
 pointed out to me that he could express in a single formula,
 which he calls the potential force, the whole force which inheres
 in a curved elastic ribbon, and that this expression must be a

 minimum in the elastic curve 1), and since by this discovery
 my method of maxima and minima as set forth in this book has

 had new light cast upon it in a marvelous fashion, and its most
 extensive application is thoroughly established, I cannot let pass
 this most desired opportunity without making clearer the appli-
 cation of my method at the same time that I publish this
 remarkable characteristic of the elastic curve discovered by the
 celebrated BERNOULLI. For that characteristic contains within
 itself differentials of the second order in such a fashion that

 the methods hitherto published of solving the isoperimetric
 problem are not capable of disclosing it.

 ON THE CURVATURE OF UNIFORM ELASTIC RIBBONS

 z. Let the elastic ribbon AB (FIG. i) be curved in any direction
 whatsoever; let the arc AM = s, and the radius of curvature
 MR R; furthermore, according to BERNOULLI, let the potential

 force contained in the portion AM of the ribbon be designated
 Cds

 by the expression J . If the ribbon be of uniform cross
 R2

 section and elasticity, and if it be straight when in its natural

 position, 2) the character of the curve AM will be such that

 in this case the expression ds is an absolute minimum.

 But since the differentials of the second order appear in the
 radius of curvature R, in order to determine a curve of this
 character we shall need four conditions, and this is precisely the
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 LEONHARD EULER S ELASTIC CURVES 79

 subject of our investigation. For since through the given ends

 A and B, an infinite number of elastic ribbons of the same length

 can be bent, the problem will not have been solved unless, in

 addition to the two points A and B, two other points, or what
 amounts to the same thing, the' position of the tangents at the
 points A and B be given at the same time. For given an elastic

 ribbon which is longer than this distance between A and B, it

 can be curved not only in such a way that it is contained between

 the ends A and B, but also in such a way that its tangents have

 a given direction through these points. Wherefore the problem

 of finding the curvature of an elastic ribbon, which is to be solved
 by this method, must be expressed thus:

 That among all curves of the same length, which not only

 pass through the points A and B, but also are tangent to given

 straight lines at these points, that curve be determined in which

 the value of ds is a minimum.
 4 R2

 3. Because the solution is to be referred to rectangular coordi-

 nates, let any straight line AD be taken as an axis, the abscissa

 AP = x, (FIG. 2) and the ordinate PM = y; then, according
 to this method, letting dy pdx, and dp = qdx, the element

 of the curve Mm will be ds- dx V I + p2. Since the curves
 from among which the curve sought has to be discovered are

 to be isoperimetric, in the first place, the expression dx V I + p2
 will have to be considered; this, compared with the general

 expression r Zdx, gives the differential value
 curvatureis dx / I + p2)

 Secondly, since the radius of curvature is dp =

 _ _ _ _ _ _2 C d s
 (I +P2)~ = R, the expression (R2 which must be a minimum,

 is transformed into ) q . Let this be compared with
 + P2)

 the general expression f Zdx, and this gives Z = e 5,

 and letting dZ = Mdx + Ndy + Pdp + Qdq, then M _ ,
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 N = o, P = 5pq p) and Q - 2) Therefore the

 differential value to be derived from the expression f 2 dX
 (I + p2)z

 will be - dP+ -Q. And so for the curve sought we shall
 dx dx2

 have the equation

 d p dP d2Q

 adX V,I +p2 dx dx2
 which, multiplied by dx and integrated, gives

 ap + -dQ
 VI +p2 dx

 Let this equation be multiplied by qdx = dp.

 apdp + Pdp = Pdp qdQ

 Since M - o, and N = o, then dZ = Pdp + Qdq, or Pdp
 dZ - Qdq.

 Substituting this value for Pdp gives

 ap?p + Pdp = dZ-Qdq-qdQ

 Integrating:

 aVI+p2 + ?p + y -Z -Qq
 Now since

 q2 2q
 (I +p) and Q (+ )

 Z=(+p2)i Qp2=
 q2

 a I+p2 + pp + y (+p2)

 Taking the arbitrary constants negatively,

 dp
 q (i+p2)4 ./ a VI +p2 + pp + ydx

 whence

 dx = dp
 (I +p2) /a \/I +p2 + pp + y
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 Then, since dy = pdx,

 dy (I+p2)5 pdp dy (I +p2)1 a ,VIp2 + + r
 These two equations would be sufficient for constructing a curve
 by means of quadratures.

 4. Neither of these equations regarded thus in general can
 be integrated, but they can be combined in a certain fashion
 so that the sum can be integrated. For, since

 d Ja VI+p2 + pp + y dp ( yp)
 d2_

 (I +p2)4 |a /V +p2+ pp +y

 then 2 |/a v/I +p2+pp+y

 (I +p2) - PX ' yy +

 Since the position of the axis is arbitrary, the constant 8 can
 be left out without any loss in generality. Moreover, the axis

 -x yy
 can be so changed that the abscissa will become X = P 2-- 2'

 ,VP2 + j3

 and the ordinate will become Y = x + PY ) Also y can
 V P2 + y2'

 be safely made equal to zero, because nothing prevents the new
 abscissa from being expressed by x. For this reason we will
 get the following equation for the elastic curve:

 2 /a vI +p2 + pp = (I +p2)4,

 which, after squaring becomes 4a V I + p2 + 4pp =2X2 V + p2.

 To introduce homogeneity, let a and p 4fl
 a2 a

 then na2p = (n2x2 - ma2) V I + p25
 whence n2a4p2 - (n2x2 - ma2)2 (I + p2)
 and therefore

 n2 X2 - ma2
 p _= ....
 = Vn2 a" - ( y x2 - ma2)2 d

 By changing the constants, and either by increasing or diminishing
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 the abscissa x by a given constant, 4) the following general
 equation for the elastic curve will be secured

 dy - (a + Px + ? X2) dx
 Va4 (a + fX + yX2)2'

 from which

 a2dx
 ds = __ __

 a a- (a + fix + yX2)2
 From these equations, the agreement of this discovered curve

 with the elastic curve already determined is perfectly clear.

 5. In order that this agreement be placed more clearly before

 the reader, I shall investigate also a priori the nature of the
 elastic curve. Although this has been done already in a most
 excellent fashion by that very great man, JACOB BERNOULLI,

 nevertheless, since this favorable occasion has been offered,
 I shall add certain things about the character of elastic curves
 and their different kinds and figures which I see have been either

 neglected by other men, or else have been but lightly touched
 upon.

 Let the elastic ribbon AB (FIG. 3) be fixed in a wall or solid
 pavement at B in such a fashion that the extremity B is not only
 held firmly, but also the position of the tangent at B is fixed.
 Now at A let the ribbon have fastened to it the rigid rod AC,

 to which let there be applied normally the force CD =P,
 whereby the ribbon is brought into the curved position BMA.
 Let this straight line AC be considered as produced for an axis,
 and, having assumed that AC - c, let the abscissa AP = x
 and the ordinate PM = y. If now the ribbon at M should
 suddenly lose all elasticity and become perfectly flexible, it would
 assuredly be turned by the force P, the inflexion being caused
 by the moment of the force P = P (c + x). The reason why
 this inflexion does not actually follow, therefore, is that the

 elasticity depends, in the first place, upon the character of the
 material of which the ribbon is composed and which I assume
 always to be the same; but in the second place the elasticity

 depends, at the same time, upon the curvature of the ribbon at
 the point M, in such a way that it is inversely proportional to
 the radius of curvature at M. Therefore let the radius of curvature
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 at M be R - (ds)3 ; here ds ---- \/dx2 + dy2, and dx remains
 - dxd2y

 Ek2
 constant; and let - express the elastic force of the ribbon at M,

 R

 which stands in equilibrium with the moment of the external

 force P(c + x), in such a manner that

 Ek2 Ek2dxd2y

 P (c + x) R - (ds)3
 This equation, multiplied by dx, becomes integrable, and the
 integral will be

 -XEk2dy
 V\IdX2 + dy2f

 whence

 - Pdx (x2 + CX + f) dy= -d ~2 yE2k4 (- x2IX2 + CX+ ?f)2
 This equation agrees absolutely with that which I have just

 secured through the method of maxima and minima from

 Bernoulli's principle.

 6. From the comparison of this equation with the one found

 before, it will be possible to determine the force which is required
 to produce the given curvature of the ribbon, since the curvature

 is contained in the discovered general equation. In other words,
 let the elastic ribbon have the shape AMB, the nature of which

 is expressed by the equation

 dy = (a + PX + yX2) dx
 V/a4- (a + f3x + yX2)2X

 and let Ek2 express the absolute elasticity of this ribbon in such

 a manner, indeed, that Ek2 at any point you please, divided by

 the radius of curvature, represents the true elastic force.

 To institute a comparison, let the numerator and denominator

 be each multiplied by Ek, so that we have
 a2

 Ek2 dx (a + Px -? yX2)
 a2

 dy -
 d /yE2k4 - E2k4 (a + Px + yx2)2

 F>/ ~ a

This content downloaded from 128.95.155.210 on Sun, 12 Nov 2017 16:15:37 UTC
All use subject to http://about.jstor.org/terms
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 Therefore

 Ek2y Ek2 a Ek2a

 a2 PC a2 and -Pf 2

 and hence the external force CD =the length a2 ,telnt

 AC= c ,and the constantf --.
 2y 2y

 7. In order, therefore, that the elastic ribbon AB, fixed in

 the wall at one end B, be curved into the shape AMB, the character
 of which is expressed by the following equation

 dy - (a + fix ? yX2) dx
 Va4 - (a + fx + yx2)2'

 it is necessary that the ribbon be drawn in the direction CD

 normal to the axis AP (assuming that the distance AC -P )
 2y

 by the force CD = Ek2y This force will act, of course,
 a2

 in an opposite direction from that shown in the figure, if y be
 Ek2 .

 a positive quantity. Because - is equivalent to the moment

 Ek2
 of the external force, the expression -,, will be equivalent to

 Ek2
 the weight, or to a pure force, which force, -a, for that reason,

 will be determined by the elasticity of the ribbon. Let this
 force be F; then the deflecting force CD will be to this force F
 as - zy is to i, for y will be an abstract number.

 8. Now in addition, the force required to keep the portion
 BM of the ribbon in its position, if the portion AM should be

 entirely cut off, can be determined from this. When this portion
 AM is cut off, the elastic ribbon becomes a rigid rod MT [FIG. 3]
 without any flexure at all, and this is so connected with the
 ribbon that it always makes a tangent at the point M, no matter
 how the ribbon may be bent. If we assume this, it is clear from

 what precedes that to preserve the curvature BM, it is necessary
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 that the rod MT at the point N be drawn in the direction ND

 by a force which equals - ak2 the direction ND will be

 normal to the axis AP, and likewise the interval AC will be equal

 to f-. And thus the distance MN will be
 2y

 ds CP ds +y X (P+2yX) ds

 dx dx 2y 2y dx

 Then

 ds a2

 dx a4-(a + PX + yX2)2

 But if this force ND, which equals k y, be resolved into
 a

 two components, NQ normal to the tangent MT, and NT along

 MT, the normal force NQ = 2-- y- dX and the tangential

 force NT 2Ek2y dy
 a2 ds

 9. But now if the part BM be cut off, leaving the part AM,
 which is drawn as before in the direction CD by the force

 - zEkY, in order to preserve the curvature AM, the extremity M,
 a2

 which is understood to be connected with the rigid tangent
 rod MN, will have to be drawn, at the point N, by a force also

 equal to - 22y, but in the direction opposite to that which
 a

 we have discovered in the preceding case. For the forces which
 will have to be applied to both extremeties of the curved ribbon
 constantly oppose each other, and consequently must be equal
 and opposite. For otherwise the whole ribbon would be moved,
 and to restrain this movement, a force would be necessary to
 cause equilibrium between these forces. Hence the forces to
 be applied at any portion of the part which has been cut off can
 be determined; these forces will preserve the curvature already
 induced.
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 io. Let AM (FIG. 4) be an elastic ribbon, to which, at A
 and M are attached rigid rods AD and MN, and to which in

 opposite directions DE and NR there have been applied equal
 forces DE and NR, which, being in equilibrium, induce the
 curvature AM in the ribbon. For this curvature an equation

 will be sought. First, therefore, let there be taken as an axis

 the straight line AP passing through the point A, and normal
 to the direction ER of the external force. Let the absolute

 elasticity of the ribbon be Ek2; and let the sine of the angle CAD
 which the tangent forms with the axis at A, and which has been
 given, equal m, and the cosine equal n, so that mi + n2 = I.
 Furthermore, let the distance AC c, and the bending force

 DE NR = P. Letting the abscissa AP = x, and the ordinate

 PM y, the character of the curve will be expressed by the

 following equation:

 d Pdx (IX2 + cX + f) dy =--2
 'VE2k4 - p2 (-Ix2 + cx + f)2

 But since the direction of the tangent at A is given, when x o,
 dy m whencetm -Pf m Pf

 - Ek2whence and andm=
 dx n n f /E2k4 p2f 2 VI-m2 Ek2

 Therefore the constant f is determined, so that f =-
 P

 and hence the whole curve is thereby determined.

 ii. To produce, therefore, the curvature of the ribbon AM,

 expressed by the foregoing equation, the force DE =- P must
 be applied to the tangent AD, at the point D, in such a way

 that AD , and in a direction parallel to the ordinate PM.
 n

 Let this force DE be resolved into two rectangular components
 Dd and Df (FIG. 5), normal to one another, the force Dd =- Pn,
 and the force Df = Pm. Now in order that the consideration
 of the straight line AD may be eliminated from the computation,
 in place of the force Dd at the given points A and B (assuming
 that AB = h), two forces Aa p and Bb = q can be substituted,

 likewise normal to the rod AB, if we let Ph = Pn.BD = nP(c-h),
 n

 and q= p + nP. In the next place, because it makes no differ-
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 ence at which point of the rod AB the tangential force Df mP

 be applied, let it be applied at the point A, where AF mP.
 Now let the force AF = r in such a way that the ribbon MA

 is acted upon by the three forces Aa =-- p, Bb - q, and AF = r.

 We shall investigate how the curvature is affected by them.

 12. First, since mP = r, P -, which value, substituted
 m

 cr nhr nr
 in the former equations, will give ph - -,and q = p + -;

 m m m

 hence - = from which equation first the position of the
 m r

 axis AP becomes known; for tan CAD = .
 q -p

 Hence

 r q-p
 M - -~,andn= - q-
 'Vr2 + (q-_p)2 Vr2 + (q-p)2

 Secondly, from the equation hp - h- hq + hp,
 m m m

 mhq hq
 it follows that c or ch - 2+(_p)2 and

 p -v Vr2 + (q p)2p
 Now since

 -mEk2 - Ek2r

 p r2 + (q p)2'
 then

 ?2 X2 hqx Ek2r
 -_ + cx + f = +
 2 2 r2 + (q-p)2 r2 + (q-_p)2

 from which the following equation of the curve sought will be

 obtained:

 r Ek2r .

 dx LVr2?(q-p)2 - hqx - x2 /r2 + (q-p)2
 dy =

 JE2k4 - [r'+ - hqx-1 x2 Vr2 + (q-p)22
 Tr2+ (q-p)2
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 Now this equation is very convenient for the most common method
 of bending ribbons when they are held either by forceps or two
 fingers, one of which presses in a direction Aa, the other in the

 direction Bb, while, at the same time, the ribbon can be stretched
 in the direction AF.

 I3. If the tangential force AF = r should disappear, the axis

 AP will fall upon the tangent AF produced, and

 dy = -dx [hqx + f (q-p) x2]
 VE2k4 - [hqx + B (q-p) X2]2

 But if the normal forces p and q should be equal, the axis AP

 will be normal to the tangent AF, because n o, and we shall

 have the following equation for the curve:

 dx (Ek2 - hqx - rX2)
 dy-

 - 2 Ek2 (hqx + r TX2) (hqx + B TX2)2

 Hence if also r = o in such a way that the ribbon at the

 points A and B be subjected to equal and opposite forces Aa

 and Bb, the character of the curve will be expressed by

 dy dx (Ek2 - hqX)
 dY - Vhq (2Ek2x -hqx2)'

 which, when integrated, gives

 /2Ek2x - hqx2

 hq

 This is the equation of a circle, and therefore, in this case, the
 ribbon is bent into the arc of a circle, the radius of which will

 Ek2
 be -

 hq

 THE ENUMERATION OF ELASTIC CURVES

 I4. Since therefore we observe that not only is the circle

 included in the class of elastic curves, but more than that, there
 is an infinite variety of these elastic curves, it will be worth while
 to enumerate all the different kinds included in this class of curves.
 For in this way not only will the character of these curves be
 more profoundly perceived, but also, in any case whatsoever
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 offered, it will be possible to decide from the mere figure into

 what class the curve formed ought to be put. We shall also list

 here the different kinds of curves in the same way in which the
 kinds of algebraic curves included in a given order are commonly

 enumerated 5).

 15. The general equation for elastic curves is

 (a + fix + yx2) dx

 d= /a4 - (a + fX + yX2)2
 which, if the origin of the abscissas be moved on the axis through

 the distance , and if a2 be written for-(or making y2 _
 2y y

 takes the simpler form

 dy - - (a + _X2) dX
 d V/a4 - (a + X2)2

 But because a4 (a + X2)2 = (a2 - a - X2) (a2 + a + X2),
 let a2 - a = c2, so that a = a2 - C2, and the equation will be
 transformed into

 (a2 - C2 + X2) dx

 dy -
 d V(c2 - x2) (2a2 - C2 + x2)

 Let the character of the curve AMC (FIG. 6) be expressed

 by this equation, and the abscissa AP =x, and the ordinate

 PM = y. Therefore, since , = o [see FIG. 3, Sec. 6], the
 direction of the force which bends the elastic ribbon will be
 normal to the axis AP at the point A, and therefore AD will
 represent the direction of the acting force. This force will

 equal 2-where Ek2 expresses the absolute elasticity.
 a2

 i6. If x = o, then dy a-c This expression
 dx cV2a2 -c2

 gives the tangent of the angle which the curve AM makes with

 the axis AP at A, the sine of which angle will equal -- 2-
 a2

 Wherefore, if a2 =xo , the ribbon will be normal to the axis AP
 at the point A, and will have no curvature, because the curving
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 zEk2
 force 2 - disappears. Therefore, in the case where a2 = 00

 the natural shape of the ribbon appears, that is, a straight line.
 This, then, constitutes the first class of elastic curves, which

 the straight line AB produced in both directions to infinity will
 represent.

 I7. Before enumerating the remaining classes, it will be

 convenient to make certain observations in general about the
 figure of the elastic curve. Now it is understood that the angle

 PAM [FIG. 6] which the curve makes with the axis AP at A,
 decreases as the quantity a2 becomes smaller, that is, the more

 zEk2 2 the curving force 2 is applied. And if a2 should become
 a2

 equal to C2, then the axis AP will be tangent to the curve at A;
 but if a2 < c2, then the curve AM, which hitherto ran downwards
 [as in FIG. 6], will now turn upwards until [as in FIG. 7] the

 point is reached where a2 =-, in which case the tangent of the
 2

 curve will fall upon the straight line Ab. But if a2 < I c2, then
 the angle PAM will be absolutely imaginary, and therefore no
 portion of the curve will exist at A. These different cases will
 constitute a variety of classes.

 I8. Furthermore from the equation it is understood (because
 if x and y are both made negative, the form of the equation is
 not changed) that the curve on both sides of A has similar and
 equal branches AMC and Amc alternately disposed, in such a
 way that A is the point of contraflexure ; whence, the portion
 AMC of the curve being known at the same time, its continuation
 Amc beyond A will be known, in as much as the latter is similar
 and equal to the former. Thus, letting Ap = AP, pm will also
 equal PM. Now in receding from A, the curve on both sides

 is bent back further from the axis, until the abscissa AE = c,
 the ordinate EC will be tangent to the curve; for if x = c, then

 dy = x. It is clear that the abscissa x cannot increase beyond
 dxc

 AE = c, for otherwise - would become imaginary. Hence
 dx
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 the whole curve will be contained between the extreme ordinates

 EC and ec, beyond which limits it cannot pass. Now therefore

 we have, so far, the two branches AC and Ac of the curve extending

 on both sides from A to the limits.

 I9. Let us see, then, under what conditions the curve may
 pass beyond C and c. To this end let us take the straight

 line CD parallel to AE as an axis, and let these new co-ordinates

 CQ - t and QM = u; then x + t AE = CD c, and

 y + u CE AD = b, whence x c - t, and y b -u,
 or dy - du, and dx = - dt. Substituting these values,

 there will arise an equation for the curve in terms of the new
 co-ordinates CQ t and QM = u; this equation will be

 du =- (a2- ct + t2) dt
 'V t (2C - t) (2a2 - 2ct + t2)

 Here it is clear, in the first place, that if t be taken as infinitely

 a2dt /t
 small, then du = and u = a /- . The latter equa-

 2a Vct c
 tion indicates that the curve beyond C begins to advance towards

 N in a way similar to that in which it extends from C to M 6).

 Now the ambiguity of the radical sign in the denominator of

 the equation shows admirably that the ordinate u can be taken

 negatively as well as positively; whence it is manifest that the

 straight line CD is a diameter of the curve, and moreover, that

 the arc CNB will be similar and equal to the arc CMA.

 2o. Now in a similar way the straight line cd produced
 through c on the other side of and parallel to the axis AE will

 be a diameter of the curve; because the branch Acb is similar
 and equal to the branch ACB. Therefore at the points B and b
 there will also be points of contraflexure as at A; whence the curve
 will extend further in a similar fashion. Therefore the curve

 will have an infinite number of diameters CD, cd, etc., mutually
 distant from one another by the same interval Dd, and parallel

 to one another; and because of this, the curve will consist of an
 infinite number of parts similar and equal to one another; and
 therefore the whole curve will be known if only a single portion
 AMC be known.
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 2I. Because the point of contraflexure is at A, the radius
 of curvature will be infinitely great at that point, which is clear
 from the nature of the curve. For since the curve at A is drawn

 by the force .Ek2 in the direction AD, at any point M, if the
 a2

 radius of curvature be set equal to R, because of the nature of

 2Ek2X_ Ek2 a2
 the elasticity, the force will be a2 - =i?7 whence R = a.

 Therefore at the point A (x = o) the radius of curvature is
 infinite; but because AE = Ae = c at the points C and c, the

 a2
 radius of curvature will equal -; in other words, at these places,

 2C

 the farthest distant from the straight line BAb, the curvature is
 greatest 7).

 22. Now although for the point C it is known that the abscissa
 is AE = c, nevertheless the distance EC cannot be determined

 except by the integration of the equation

 (a2 - C2 + X2) dx

 d (C2 - X2) (2a2 - C2 + X2)

 For if after the integration, x be made equal to c, the value of y
 will give the distance CE, which taken twice will give the distance

 AB, or the interval Dd lying between the diameters. Similarly,
 integration will be necessary to determine the length of the curved

 ribbon AC. For since, if the arc AM =s,
 a2 dx

 ds = .-, and
 i (C2 -x2) (2a2 - C2 + x2)

 its integral, evaluated at x = c, will give the length of the

 curve AC 8).

 23. Now since these formulas do not admit of integration,
 let us try to express conveniently by approximation the values

 of the interval AD and of the arc AC. To this end, let

 c2 - x2 z, whence

 (a2 Z2) dx a2 dx
 PM. = = I z and AM =s

 EZV2a2 z2 d za2a2 z2

 Expressed as a series,
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 I I { I~~~ z2 .1 3 Z4 I. 3.5 Z6 I+ -- 2 + - . g+ .- +.
 Vza2 2Z2 ( 4 a 4.8'a 48.I2 a6

 whence

 I r /a I Z I.3 Z3 1.3.5 Zr
 S =V- )' + *148*aB-~+ 48~ +.)dx, S- 2-, Z 4 4a 4.8 a 4.8.12 *a +*Jd

 and

 I (z1 I Z3 1.3 Z5 I.3.5 Z7

 Sy= V2 j) \a 4 a3 +4.8* a+ 4.8.I2 *a7 + . * *

 24. Since we desire these integrals only for the case x = c,
 in which z = o, they can be expressed conveniently by the aid
 of the circumference of the circle. For assuming that the ratio
 of the diameter to the circumference is as I is to 7r,

 J'dx J C dx 7T
 z 0 V \C2-X:2 2

 Now in the same way the following integrals will be determined 9)

 rc I 7rC2 rc I.3 'r
 J zdx = - 2 z dxc -X * 2 2 ~~~~2.4 2

 (SC I--5* c13*5*7 7r
 z5dx = 3 -6, and z7dx= _.4.6.8 CS

 2 2 2.4.62.8 2

 By the aid of these integrals we have

 A 7ra ( I2 C2 I2 32 C4 I2 3252 c6

 2'V2 +22 Za 2242 +4a4 2242626+ 86 J

 and

 7ra I2 3 c2 I23 5 c 2 2
 AD=- - - 3

 2V2 < 22 C I 2a2 242 324a4 22426258a6
 If accordingly AE = c and AD = b be given, from these equations
 the constant a and the length of the curve AC will be determined.
 Conversely also, from the given length of this curve AC, and
 from the constant a by which the external force is determined,

 it will be possible to find the distances AD and CD.

 7
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 FIRST CLASS

 z5. Since we have so determined the first class that, in the
 general equation

 (a2 - C2 + x2) dx

 d=V (c2 - x2)-(2a2 -C2 + x2)

 c = o, ora =_ , a straight line represents the natural condition
 C

 of the ribbon; and to this same first class let us refer also those
 cases for which c is an infinitely small quantity, ini such a way
 that in comparison with a it can be regarded as on the point of
 vanishing. However, because x cannot be greater than c, likewise
 x in comparison with a will be on the point of vanishing, and
 therefore the following equation will result:

 a dx

 dy V (c2 - X2)

 a x
 The integral of this is y- = arc sin c-, which is the equation

 for a trochoid curve infinitely elongated 10). Now AD will become
 Tra

 equal to 2Vi' from which the length of the curve differs only

 infinitesimally, because the angle DAM is infinitely small. Let
 the length of the ribbon ACB 4f, and its absolute elasticity

 be Ek2. Because f , the force requisite to produce . Becaue f 2 /2,
 this infinitely small curvature of the ribbon will be of a finite

 Ek2 1T2
 magnitude, and will equal ._ -; that is to say, if the extremeties A

 P 4
 and B be fastened together with a string AB, the string will

 necessarily be stretched by the force 7
 f2 4

 SECOND CLASS

 26. Let the case in which c is contained between the limits
 o and a, constitute the second class. In these cases the angle
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 DAM will be less than a right angle; for the sine of the angle

 PAM, or the cosine of the angle DAM = , - Therefore
 a2

 in this case the form of the curve will be similar to that which

 FIG. 6 represents. Since c < a, therefore -2< -; but since

 C2 tra 8f2
 -2- > o, assuredly AC = f > -ra whence a2 < 2i-
 za2 2 1/2pW
 wherefore the force whereby the extremeties A and B of the.
 ribbon are drawn together, by the aid of the string AB, will
 be greater than in the preceding case, that is the force will be

 Ek2 77.2

 greater than .k2 .-.

 THIRD CLASS

 27. In the third class I consider the unique case in which
 c = a, because in this case the axis AP is tangent to the curve
 at the point A. This class has the special name of the rectangular
 elastic curve. In this case

 X2 dx a2dx
 dy= E and ds = -

 va 4f 4 - XM

 and hence

 AC=f = ~ 12 I + 1.32 I 325 21
 AC =f=-(I+V 22 2 22 .42 4 22.4.62 8 /
 and

 AD = b- = 7 (I +_. 3 _ _2.32 5 I 2.32-52 7 _
 2 fV 2 22 1.2 22 .423.4 22.42.62 5.8 J

 Now although from this neither b nor f can be accurately
 expressed in terms of a, yet I have elsewhere pointed out that
 there is a remarkable relation between these two quantities 11).
 In other words I have shown that 4bf = wa2, or the rectangle
 formed by AD and AC will equal the area of a circle the diameter
 of which is AE. Now it will be found by introducing calculus

 that f - 5a.ir-approximately, so that a =[f; hence the force
 6 2 57T
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 by which the extremities A and B must be drawn toward each

 other will equal 2 r2 A closer approximation gives
 f2 72

 a7r
 f= I.I803206-v hence

 1ra2 a f
 b = = whence--- = I.3II006, and

 4f i.i8o32o6Vz2_ a
 b

 = 0.59896 12).
 a

 FOURTH CLASS

 28. If c > a, the fourth class will arise (FIG. 7), the ribbon
 opening out horizontally until AD = b > o. This second
 limit of c will be defined by the equation

 I2 3 + I2.2 32. 2 7 6 .

 22 I 2a2 22 42 3 4a4 22. 42. 62 5 8a6

 In this class therefore, since c > a, the curve at A will rise

 above the axis AE, and will form the angle PAM, the sine of
 C2 a2

 which will equal 2 Now we shall soon see that this

 angle PAM is less than 400 -4I'; since if it reaches this value,
 the interval AD disappears, a case which I refer to the fifth class.

 Hence in the fourth class are included the curves in which the
 c2

 value - is contained between the limits i and i.65I868. Now

 the form of these curves is understood from the figure, provided
 C2

 only that it be observed that the closer 2i approaches the latter

 limit I.65I868, the shorter the interval AD will become, and the

 closer the end points A and B will be brought to each other.
 Therefore it can happen that the humps of the ribbon m and R
 and likewise M and r are not merely mutually tangent, but even

 intersect, and intersections of this kind will be repeated inde-

 finitely until all the diameters DC and dc coincide and merge
 with the axis AE.
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 FIFTH CLASS

 29. If this happens, the fifth class (FIG. 8) will arise,. the
 character of which will be expressed by the equation between

 the co-ordinates AP = x and PM =y,

 dy - W -: ,2X2d
 (c2 X2) (2a2- c2 + 2)

 the following relation existing between a and c, viz., that the
 C2

 interval AD = b = o. Let -= v, and then v must be

 defined by the following equation:

 .3 V+ 3- 5 v2 + ___I 3 3- 5 7V3 +
 2.4 2. 2. 4- 4 2. 2- 4 4. 6 6

 Let there be sought first, by methods familiar to everyone, or
 else by mere trial, the limits between which the true value of v
 is contained, and these limits will be found to be v = o.824,

 and v o.828. But if now both of these values be substituted
 in the equation, from the two errors which are certain to arise,

 it will finally be concluded that v o.825934 -= 2 whence

 C2 C-a
 i = I. 65i868, and o-= o.65i868; andsince this expression

 a2 ~~~~~a2

 equals the sine of the angle PAM, it will be found from the

 tables that the angle PAM = 400 -4I'; and therefore twice this,
 or the angle MAN, will equal 8I? -22'. Wherefore, if the extre-
 mities of the elastic ribbon be brought toward each other until

 they touch, they will form the curve AMCNA 13), [FIG. 8] and
 the two extremities will form at A an angle = 8I0 -22'.

 SIXTH CLASS

 30. If the two extremities A and B of the ribbon, after they
 have been brought together, should be drawn apart in opposite

 directions by an increased force, there will arise the curve of
 the shape AMCNB (FIG. 9) which constitutes the sixth class.
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 C2
 Therefore in the curves belonging to this class-, > o.825934;

 2a2

 but a < i. For if c2 = 2a2, there will arise the seventh class,

 to be explained in a moment. In these curves the angle PAM

 which the curve makes with the a-xis at A is greater than 400 -41',

 iSC2-a2
 but less than a right angle; for since its sine is , because

 c2 < 2a2, the sine is necessarily less than i, and hence the
 angle PAM cannot become a right angle unless c2 = aa2.

 SEVENTH CLASS

 3I. Now let c2 = 2a2, in which case the seventh class is

 constituted, and the character of the curve will be expressed by
 the equation

 dy= (a2- X2) dx
 xV 2a2-X2

 from which it is gathered that the branches A and B of the curve
 (FIG. io) are extended indefinitely, in such a way that the straight

 line AB becomes the asymptote of the curve. Therefore each
 branch AMC and BNC will become infinite, as is understood
 from the series discovered above for the arc AC; for

 AC= 7a ( I2 I2. 32 i2. 3252
 AC = _ (I+ -2S+ 22~;+ 2-46 + )

 zVa ~~ 22?2242?2 246

 the sum of which series is infinite. If therefore the length of

 the ribbon AC be finite and equal to f, it is necessary that a =o,
 and hence also CD = c = o; therefore the ribbon after it has
 been curved to a knot, in this case will be extended again in a
 straight line, for which an infinite force will be needed. But if

 the ribbon be infinitely long, it will form a knotted curve
 converging to the asymptote AB, CD being equal to c. Now
 the equation for this curve can be integrated by the aid of
 logarithms, for

 C C + V C2 - X2
 Y = / C X2 - --log -

 taking t b ahx
 taking the abscissa x on the diameter DC in such a way that
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 DQ = x and QM = y; for the ordinate y disappears when

 x = CD = c; also at the knot 0 the ordinate disappears.
 To find this point let us put

 2 V c 222- - 2 / C2 _. X. C + A/ C2 2
 I= og +V X

 C X

 Let q be the angle whose cosine is -and whose sine is VC -
 c c

 then 2 sin + log tan (450 + 0 ).
 2

 The logarithm must be taken from a table of natural logarithms.

 If a table of this kind be lacking, let there be taken from a table
 of common logarithms the logarithm of the tangent of the angle

 (450 + k), from the characteristic of which let IO be subtracted,
 2

 and let the remainder be co; by so doing

 2 sin = 2.30258509 c 14).
 Taking common logarithms once more, we have

 log 2 + log sin 0 = log w + 0.3622156886,
 or log sin 0 = log X + 0.06II856930.
 By trying this artifice, a value of the angle q very close to the
 true value will soon be secured; whence by the rule of the false

 value the true value of the angle qb will be determined, and from
 it the abscissa x = DO. Now in this way the angle qb is found

 to be 730 -I4' -I2", whence it results that x = 0.2884I9I, and
 V c2 -~~~~~~~~~~

 560 -X -- 0.9575042. But the angle QOM is 20 - 900-
 c

 560 -28' -24", and therefore the angle.MON =- II20 -56' -48".
 Therefore, since in the fifth class the angle at' the knot was
 8I0 -22', in the sixth class the angle MON at the knot will be

 contained between the limits 8I0 -22' and II20 -56' -48". In the
 fourth class, if the knot appears, its angle will be less than 8I0 -22'.

 EIGHTH CLASS

 32 Now let C2 > Wa2, and C2 = 2a2 + g2;since a2 = 2 -2
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 the equation of the curve will be

 (x2 - C2 - a g2) dx
 dy - -- - -

 -V (C2 - X2) (X2 -g2)
 By this equation the eighth class is expressed (FIG. ii), and
 if the straight line dDd represents the direction of the external
 force, then x = DQ, and y = QM. First therefore, it is clear
 that the ordinate y cannot be real unless x > g; but x cannot

 exceed the straight line DC = c, whence, putting DF g,
 the whole curve will be contained between the straight lines

 parallel to dd drawn through the points C and F, and these lines
 will be tangent to the curve. Now it is indifferent which one
 of the straight lines c and g be the greater, provided only that they

 be unequal; for the equation is not changed if the straight lines c
 and g be interchanged. Furthermore this curve will also have
 an infinite number of diameters parallel to one another DC,
 dc, dc, etc., and also straight lines which are drawn through
 the individual points G and H, likewise normal to dDd 15).
 But nowhere along the whole curve will there be a point of
 contraflexure, and therefore the continual curvature will progress

 in both directio-ns indefinitely, as the figure shows; and the angles
 MON, mon, etc., which are made at the knots will be greater

 than II20 -56' -48".

 NINTH CLASS

 33. Since in the eighth class are contained not only the cases
 in which g2 < C2, but also those in which g2 > C2, there remains

 but the one case in which c = g; in which case, because CF = o,
 the curve is reduced, vanishing into space. But on the other

 hand, if we take c and g both as infinite, but in such a way that

 their difference is finite, the curve will occupy a finite space.

 Therefore, to find this curve, let g = c - 2h, and x = c - h -t,
 and, because c - oo , but the quantities h and t are finite,

 C2 g2 c2 g2
 + C2 2 ch, and x2 -C--_- 2- ct;
 2 2 2 2

 Then C2 - -2 -c (h + t), and X2 - g2 = ac (h - t), from
 which the following equation
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 tdt

 dy= Vh2 ---t2
 for the circle will result. Therefore the elastic band in this case
 will be curved into a circle, as we have already observed above.
 Wherefore the circle will constitute the ninth and last class.

 34. Now that we have enumerated the classes, it will be easy,
 in any given case, to determine to which class the curve belongs.
 Let the elastic ribbon be fixed in the wall at G (FIG. I2), and
 from the end A let there be hung the weight P, by which the
 ribbon is curved into the shape GA. Let the tangent AT be
 drawn, and the whole decision will have to be sought from the
 angle TAP. For if this angle be acute, the curve will belong
 to the second class; but if it be a right angle, the curve will
 belong to the third class, and it will be an elastic rectangular
 curve. But if the angle TAP be obtuse, yet less than 1300 -41',
 the curve will belong to the fifth class; if, however, the angle TAP
 be greater than I300 -41', the curve will belong to the sixth class.
 Now it would belong to the seventh class if the angle should
 be equal to two right angles, but that cannot happen. This class,
 therefore, together with the following classes, cannot be produced

 by hanging a weight directly to the ribbon.

 35. Now in order that it may appear how the remaining
 classes can be produced by curving the ribbon, let a rigid rod AC
 be firmly fastened at A, the end of the ribbon fixed at B (FIG 3),
 and let the weight P, which draws in the direction CD, be
 appended at C. Let the interval AC be h, the absolute elasticity
 of the ribbon be Ek2, and the sine of the angle MAP which the
 ribbon makes with the horizontal at A be m. All this being

 stipulated, if we let the abscissa AP = t, and the ordinate
 PM = y, the following equation will be found for the curve

 dt (m E k2 - Pht Pt2)
 I. dy =

 I/ E2k4 (m E k2- Pht B pt2)2
 Now let CP = x = h + t, whereby the equation is reduced to
 the form which we have used in the division of the classes, viz.,

 dx (m E k2 + 2 Ph2 - P x2)
 II.dy - 2)2

 E2 4 -(m E k2 -tBP2 ff p x)
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 102 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN

 which, compared with the form

 dx (a2 - C2 + xk2)

 dy = v (c2 - -x2) (2a2 - c2 -+ x2)

 or III. dy _ dx(a-c2+x2) ,16)
 V/ a4 - (a2- C2 + x2)2

 will give BPa2 = Ek2, or a2 _ 2Ek and Pc - P P42 = m Ek2

 + BIPh2; therefore

 C2 ,2(I + m) E k2

 36. Therefore the curve will belong to the second class if

 2mEk2 - 2mEk2
 + h2<o,orP< h2

 Hence unless the angle PAM be negative, the force P will have
 to be negative, and the rod at C will have to be drawn upwards.

 - zmEk2
 The curvature will belong to the third class if P

 h2

 The fourth class will appear if 2mEk2 + Ph2 > o, but at the

 same time 2mEk2 + Ph2 < 2aEk2, a being equal to o.65i868.

 But if P 2(a - m)Ek2-, then the curve will belong to the fifth

 class. If, however, Ph2 > 2(a - m)Ek2, but at the same time
 Ph2 < 2(I - m)Ek2, the curve is to be referred to the sixth class.
 The seventh class will arise if Ph2 -2( - m)Ek2. The eigth
 class will be obtained if Ph2 > 2(I - m)Ek2. Wherefore if the
 angle PAM be a right angle, because i - m = o, the curve
 will always belong to the eighth class. Finally, the ninth class
 will arise if h = oo , as I have already observed above.

 STRENGTH OF COLUMNS

 37. That which has been observed above about the first

 class can help us judge of the strength of columns. For let

 the column AB (FIG. I3), sustaining the load P, be placed
 vertically upon the base A. If the column be so constituted
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 LEONHARD EULER'S ELASTIC CURVES I03

 that it cannot slip, nothing else need be feared from the weight P,
 if it be not excessively great, except the bending of the column;
 therefore in this case the column can be considered as elastic.

 Let the absolute elasticity of the column be Ek2, and let its height

 AB 2f4 a. As we have seen above in section 25, the force
 necessary to bend this column even in the least degree is

 3r2Ek2 if2 =*Ek2.
 4f2 a2

 Therefore, unless the load P to be borne be greater than E7r2k2
 a2

 there will be absolutely no fear of bending; on the other hand,
 if the weight P be greater, the column will be unable to resist
 bending. Now when the elasticity of the column and likewise
 its thickness remain the same, the weight P which it can carry
 without danger will be inversely proportional to the square root
 of the height of the column;. and a column twice as high will
 be able to bear only one-fourth of the load. This principle can,
 therefore, be applied in the case of wooden columns, since they
 are subject to bending.

 DETERMINATION OF THE ABSOLUTE ELASTICITY BY EXPERIMENT

 38. Now in order that the force and' the bending of any
 elastic ribbon whatsoever may be determined a priori, it is necessary
 that the absolute elasticity which we have hitherto expressed
 by Ek2, be known. This can be conveniently determined by a
 single experiment. Let the uniform elastic ribbon, the absolute
 elasticity of which is to be investigated, be fixed at one end F,
 in a solid wall GK (FIG. 14), in such a way that it is held
 horizontally, for here we may neglect the weight of the ribbon.

 To the other end H let there be hung any weight P by which
 the ribbon is curved to the position AF. Let the length of the
 ribbon AF = HF f, the horizontal distance AG = g, and
 the vertical distance GF - h, all of which values will be known

 by experiment. Now let this curve be compared with the general
 equation

 (C2-a2_X2) dx
 dy V(C2-X2) (2a2-0c2+x2)'
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 104 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN

 in which, if a and c have been determined by f, g, and h, the

 curving force P will equal 2 . Therefore the absolute elasticity
 a2

 Ek2 = Pa2.

 39. Because now the tangent at F is horizontal, dy _
 dxc

 and therefore x = c2- a2. Hence AG = g = V C2 - a2,
 and a2 = C2 g2; and therefore

 dy (g2-x2) dx
 V (c2-x2) (C2-2g2+X2)'

 and if we let x = g here, y will have to be equal to GF h, or
 s = AF = f; whence

 ds (c2 -g2) dx
 V(c2 x2) (C2-2g2+X2)

 Now if the weight P be taken as very small, so that the ribbon
 be depressed only a very little, then c will become a very great
 quantity, and therefore

 4- (C4 c2g2 + g2 x4)-i

 V(C2 -x2) (C2 -2g2+2)

 I g2 3g4 g2X2 3g4x2 X4 3g2x4
 c2 C4 2C+ Cd 8 2C6 8 ?C

 and therefore by integration we have approximately

 (C2 -g )X (C2 -g2)g2x 3(c2-g2)g4X (c2 g2)g2x3
 S _ + 4-.- ? 6 6

 C2 C 2C6 3c6

 (C2 g2)g4Xs (c2-g2)X5 3(c2 -g2)g2x5
 ?8 I oc6 IoC8

 and

 g2x g4x 3g9x g4x3 g6x,3 g2X5 3g4X5
 c2 C4 2c6 3C6 C8 I OC6 I Oc8

 Xs3 g23 g4X3 g2x5 3g4X5 X7 3g2X7

 3C2 3C4 2C6 5C6 5C8 14C6 I4c8

 Now letting x = g, we have

 f -g + 15C4 17) and h== 3C2+ 3C4
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 LEONHARD EULER'S ELASTIC CURVES I05

 Therefore if the straight line FG = h be called into use

 = gS C2 = -
 3n

 g (2g2 -3gh)
 and a2 =  3h

 Whence the absolute elasticity is secured as

 Ek2 _Pg2 (2g - 3h)
 Ek2= ~6h

 This value will differ hardly at all from the true value, provided
 that a not too great curvature of the ribbon be caused.

 40. Now this absolute elasticity Ek2 will depend in the first
 place upon the character of the material out of which the ribbon
 has been made; *whence one material is said to have more
 elasticity than another. Also, in the second place, it so depends
 upon the breadth of the ribbon that the expression Ek2 ought
 everywhere to be proportional to the breadth, other things being
 equal. But thirdly, the thickness of the ribbon contributes a
 great deal to determining the value of Ek2, which seems to be
 composed in such a way that, other things being equal, Ek2 is
 proportional to the square of the thickness. Therefore, taken
 all together, the expression Ek2 will have a total ratio composed
 of the ratio of the elasticity of the material, the breadth of the
 ribbon, and the square of the thickness. Hence by experiments
 in which it is possible to measure the width and thickness, the
 elasticity of all materials can be compared one with another
 and determined.

 CURVATURE OF ELASTIC RIBBONS OF VARIABLE CROSS SECTION

 41. As hitherto I have taken the absolute elasticity Ek2 as
 constant throughout the whole length of the ribbon the curvature
 of which I have determined, so the solution can also be made
 by the same method if the quantity Ek2 be taken as a variable
 in any manner. In other words, if the absolute elasticity of

 the ribbon AM (FIG. 2) be any function S of the arc AM = s,
 and if the radius of curvature at M be R, the curve AM, which
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 the ribbon takes on, will be so constitu.ted that among all other

 curves of the same length, J S is a minimum. This case

 will therefore be solved by the second general formula 18).
 Let dy = pdx, dp - qdx, and dS = Tds. Among all curves

 in which fdxA/ V + p2 is of the same magnitude., that curve is

 to be determined in which f S _dx
 J (I + P2

 is a minimum. The first formula, fdx AV I + p2, gives for

 d p
 differential value -- -.

 dx V/ I + p2'

 The second formula f Siqdx 5,compared with C Zdx, will

 Sq2

 give z (I + pT)s
 Now if we let dZ = Ldl + Mdx + Ndy + Pdp + Qdq, where
 1I= f [Z]dx, then d[Z] = [Mdx + [Nldy + [P]dp, and

 _ q2Tds

 LdrI (I + p2) T

 whence L = p2)51, and dni= ds =dx 'V I + p2.

 Therefore [Zl =V:I + p2, [M]= o, [N] =o, and __I__

 But then M =o, N = o, and also P S and

 _ Sq _ _ _ _ _
 Q ,so that dZ= + Pdp +qQdd

 ( +p2)'1 + Pdp +Qd

 Now let Ldx q2Tdx q2dS 42.NwltJ zs_ J ( + p2)7 .9( + p2)3
 and let H be the value of this integral when x = a. The
 consideration of the constant a will soon disappear again from

 rq2 dS
 the calculation. Therefore V - H - f ( + d2)S whence
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 LEONHARD EULER'S ELASTIC CURVES 107

 the differential expression will become -ddx [P]V +d 2Q
 dx dx dx2

 Wherefore from these two differential values, the following

 equation for the curve sought will arise

 d p dP d d2 Q dx = + dx + dx [P] V- -dx dx VI+p2 dx dxdx
 This, being integrated, gives

 ap__ dQ
 + PP?I[PIV dx--

 + p2 dx
 or

 ap + H p q a Adq dQ
 V Ap2 .1Vx?p2 - /I +p21 (I+ p2)3 P x

 The constant H can be absorbed into the arbitrary constant a,

 whereby the constant a disappears from the calculation. On this

 account, the following equation will result:

 ap_ dQ p q2dS
 V P2 dx VI +p2 (I +p2)3

 43. Let this equation be multiplied by dp qdx, and there
 will result

 a pdp pdp q____
 g 2+ P dp = Pdp-qdQ- pPdp q2)

 q2 dS

 Now since dZ-(I +p2)5 + Pdp + Qdq,

 q2 dS
 then Pdp = dZ - Qdq + p2)2
 If this value is substituted, the following integrable equation will

 result:

 a pdp q2 dS
 v + 2+ fl dp dZ -qdQ -Qdq-

 pdp2 q2 dS V I + p2 J (I 4 p2)3
 the integral of which is

 +pVf2dS a \/ I + p2 + p p + y = Z-Qq - A I + P2J I+p33
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 Sq2 ( qjdS

 oraVi +P2+PP+Y=7 +p2)s VI+PJ(.p2.3
 In order to eliminate the integral sign, divide the equation by

 V I + p2 and differentiate again, obtaining

 p dp y pdp 2 q2dS 2 Sqdq 6 Spq2dp _

 (I+p2) (I+p2)3 (I+p2) (I+p2)- ('+P2)4

 which, multiplied by ( + P2) , gives
 2q

 ,6 dp y pdp qdS+Sdq 3 Spqdp
 + I o0.

 2q 2q (I + P)2 (I+p2)9
 The integral of this, because dp = qdx, and dy pdx, will be

 Sq a + ,8nc + (I+p2)2
 But ( + P2) is the radius of curvature R; whence, by doubling

 q

 the constants fi and y, the following equation will arise:

 S
 R = a + fix yy.

 This equation agrees admirably with that which the second or

 direct method supplies. For let a + fix - yy express the
 moment of the bending power, taking any line you please as
 an axis 19), to which moment the absolute elasticity S, divided
 by the radius of curvature R must be absolutely equal. Thus,
 therefore, not only has the character of the elastic curve observed
 by the celebrated BERNOULLI been most abundantly demonstrated,
 but also the very great utility of my somewhat difficult formulas
 has been established in this example.

 44. If, therefore, the curve be given which a variable elastic
 ribbon, acted upon by the force CD = P (FIG. 3) forms, the
 absolute elasticity of the ribbon at any point can be found.
 For, taking the straight line CP, which is normal to the direction
 of the force, as an axis, and putting CP = x, PM = y, the arc
 of the curve AM = s, and the radius of curvature at M equal
 to R, because the moment of the force with reference to the
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 LEONHARD EULER S ELASTIC CURVES IO9

 point M is Px, then R Px, and therefore the absolute elasticity S,

 at the point M, is PRx. Hence, since the radius of curvature R

 is known at every point when the curve is given, the absolute

 elasticity at any point becomes known. Therefore, if the material
 of the ribbon together with its thickness be everywhere the same,

 but the width is variable, because the absolute elasticity is

 proportional to the width, the width of the ribbon at every point

 is learned from the form of the curve.

 45. Let the triangular tonguelet fAf (FIG. I 5) be cut out

 of an elastic ribbon of uniform thickness. Since the width mm
 at any section M is proportional to the length AM, if we let

 AM = s, the absolute elasticity at M will be proportional to s.
 Let the absolute elasticity be Eks, and to the ribbon fastened

 at the endff horizontally in a wall let there be hung, at the point A,
 the weight P, by which the median straight line AF is bent into

 the curve FmA (FIG. I4), the character of which curve is sought.

 Now on the horizontal axis let the abscissa Ap = x, the ordinate
 Eks

 pm = y, and the arc Am = s; then Px -R in which R
 denotes the radius of curvature at m. Let this equation be

 ds3
 multiplied by dx, and because R assuming dx as

 -dEksdx2 d2y
 constant, we have Px.dx - d2y

 ds83

 Pxdx sdX2.d2y
 or Ek + - -ds3- -

 d sd2y sdyd2s sdX2.d2y
 But since -- sdy =d - ds3 + dy = + dy,

 dyd2y
 and because d2s = -, then

 ('sdx2d2y sdy

 J ds3 ds Y
 Whence by integration,

 Px2 - sdy
 + a = +Y.

 2Ek ds
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 z Ek
 46. Let dy =pdx, so that ds = dx VI + p2,and-p = c;

 P

 x2 SP
 thena + -_ v I and therefore

 a V/ I + p2 2V I + p2 y vI+P2

 p cp p
 This, differentiated, gives

 adp 2 x dxV I + p2 x2 dp - dyv +p2

 p2 Vf I + p2 Cp Cp2 V I + p2 p
 __ dp -y dp

 p2 V I + p2 p2v I + p-
 2pxdx (I + p2) x2

 Hence a - y results.
 cdp c

 Let dp be taken as constant and differentiate; then

 2 pXd2x (? +p2) 2pdX2 (I+p2) 2 xdx (?+3p2) 2xdx
 -pdx c + + - >4 cdp cdp c c

 or

 cdxsdp ? zxsd2x (I + p2) ? zdx2 (I + p2) ? 6pxdx - o
 A further solution of this equation is impossible. The most

 simple equation for the curve is the following:

 yds - sdy Px2

 ds 2Ek'

 for when x = o, both y and s must vanish, and the constant a =o

 THE CURVATURE OF ELASTIC RIBBONS WHICH IN THEIR

 NATURAL STATE ARE NOT STRAIGHT

 47. In the previous discussion the curvature of a ribbon,
 whether uniformly elastic or not, is determined if it be subjected

 to a single force, and, which is especially to be noted, if the ribbon
 be naturally straight. But if the ribbon in its natural state be
 already curved, then it will certainly take on a different curvature
 due to the acting force. To find this, one must know its natural
 shape in addition to its elasticity and the acting force. Let,
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 therefore, the elastic ribbon Bma (FIG. i6) be naturally curved;
 let the elasticity of it be everywhere the same, viz. Ek2, and let

 it be curved by the force P into the shape BMA. Through the

 point A let there be drawn the straight line CAP normal to the

 direction of the acting force, and let this line be taken as the

 axis; let also the distance AC = c, the abscissa AP - x, the

 ordinate PM = y; and the moment of the acting force at the

 point M be equal to P(c + x).

 48. Furthermore let the radius of curvature of the curve

 sought be equal to R at the point M; let the arc am in the natural

 state be AM = s, and let the radius of curvature at the point m

 be r; this radius, because the curve amB is known, will be giveni
 by the arc s. At M, therefore, because the curvature is greater,

 the radius of curvature R is less than r, and the excess of the
 elementary angle over the angle in the natural state will be
 ds ds

 R--, which excess will be the effect produced by the acting
 r

 force. Wherefore p(c + x) = Ek2 ,which, since r is

 given by s, will be the equation of the curve sought; and this

 considered thus cannot be reduced to one of the previously

 described classes.

 49. Therefore let us assume that the ribbon has a circular

 shape amB in its natural state; r will be the radius a of that

 circle, whence P(c + x) = Ek2 ( Let this equation be

 multiplied by dx and integrated; then [see sec. 5 towards the end]

 p ss2 - dy X
 E22- + C:C + f -ds- a IEI2 (2 ?c ?f ds a'

 Ek2
 will arise, which, if c -P be written for c, will go over into

 P 0) dy

 Ek2 2 +C + ds

 This is the same equation that we discovered above for the ribbon
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 which was straight in its natural condition [sec. 5]. Let, therefore,

 the ribbon which is circular in its natural condition be curved

 into the same curves which are produced for the ribbon that

 is straight in its natural state; of course, the place of the application

 of the force, or the distance AC = c will have to vary for each

 case according to the given law. Therefore the same nine classes

 of curves will appear for the figures which the ribbon that is

 circular in its natural state can produce, and these we have

 enumerated above. For the circular ribbon, if the distance AC

 be taken as infinite, can be drawn first into a straight line

 [see class 9]; then any force whatever applied in addition will
 produce the same effect as if it were applied alone to the elastic

 ribbon which was straight in its natural state.

 50. Now let us assume that, whatever be the natural shape

 of the ribbon, the point C is infinitely distant, in such a way

 that the moment of the acting force be everywhere the same,

 and let the moment, when divided by Ek2 be taken as b- then

 I I I I I I

 andb r b R r and R +b

 Hence F R iT +fr

 is the amplitude of the arc AM, just as expresses the

 amplitude of the arc am, precisely as the celebrated JOHN BER-
 NOULLI is accustomed to use the term amplitude in his superb

 treatise De motureptorio 20.) Let therefore + ? be the arc

 in the circle whose radius equals i, which, because r is given

 by s, will also be a known function of s. Hence the rectangular

 co-ordinates x and y will be found in such a way that

 ds s d

 x = Jds sin b + f-~)and y - ds cos +
 whence the curve sought can be constructed by quadratures.

 5I. IHence the figure amB (FIG. 17), which the ribbon must
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 have in its natural state, can be determined, so that by the

 force P, acting in the direction AP, it can be unfolded into the

 straight line AMB. For letting AM = s, the moment of the

 force acting at the point M will equal Ps, and the radius of
 I

 curvature at M will be infinite by hypothesis, or R- = . Now

 the arc am in its natural state being equal to s, and the radius
 of curvature at m being taken as r, because this curve is convex

 to the axis AB, the quantity r must be made negative. Hence
 Ek2

 Ps = -, or rs = a2, which is the equation of the curve amB.

 I r ds s2
 52. Therefore, since -=-,then - ;or the amplitude

 r a2 ~~r 2a2

 of the arc am will vary as the square .of the arc itself. Hence
 the rectangular co-ordinates x and y for the curve amB will be

 S2

 In other words, in a circle whose radius is i, the arc -- will
 a2

 have to be cut off, the sine and cosine of which must be taken
 to determine the co-ordinates. Now from the fact that the
 radius of curvature constantly decreases the greater the arc am-- s
 is taken, it is manifest that the curve cannot become infinite,

 even if the arc s be infinite. Therefore the curve will belong
 to the class of spirals, in such a way that after an infinite number
 of windings it will roll up at a certain definite point as a center,
 which point seems very difficult to find from this construction.

 Analysis therefore must be considered to gain no slight advantage
 if anyone should discover a method by the aid of which at least

 an approximate value can be assigned for the integrals fds
 ('ds

 sin -_ , and ds cos -, in the case where s is taken as infinite.
 2a2 ) a2

 This seems to be a not unworthy problem upon which mathe-
 maticians may exercise their powers 21).
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 53. Let 2a2 = b2, and since

 S2 S2 S6 sio s14

 sin 1~ -----V +- -- b2 b2 31 b6 +5! b'0 71 b4?

 S2 54 S8 S12
 and cos - - zb b 6! b +

 the co-ordinates x and y of the curve sought can be conveniently
 expressed by infinite series; for

 S3 S7 Sll S15

 3 b2 3l 7 b6 5! II bG 7! I 5 b14
 S5 S9 S13

 and y - s -.. + +
 21!5bM 4!9 bs 6! I3 b12

 from which rapidly converging series, unless the arc s be assumed
 to be very great, the approximate values of the co-ordinates x
 and y can be determined sufficiently closely. But what values x
 and y acquire if the arc s be taken as infinitely great, can in no

 way be determined from these series.

 54. Therefore, since putting s =- oo makes a very great

 difficulty, aid can be brought to the inconvenience by the following
 S2 bdv

 method. Let v, then s - b V/ v, and ds whence

 b rdv b rdv
 x = Icd--sin v, and -- cos v. And now I declare

 2J vV 2, vV

 that the values for x and y when s = oo will be discovered by
 the following integral formulas:

 b C I_ _

 X r dv ( == --- + -

 2 e \V is "V 2 il+ v

 I

 + . .. sin v,
 V3 7 + v

 and y dv - +
 2z t} +V v V 27T+V

 I_!
 - +____)+ Cos V 22)

 f 3 fr + v i
 if after integration v be taken as equal to ir, where ir denotes an
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 angle equal to two right angles. In this wvay, therefore, the

 placing of s oo is indeed avoided; but on the other hand,
 the infinite series

 I I I I

 - +

 %V A/ VrT+ V A/2'nr?- v V3 T+v
 is introduced into the calculation, and since the sum of this series

 is as yet unknown, the resolution of the knot is still subject to

 a great difficulty.

 THE CURVATURE OF AN ELASTIC RIBBON AT INDIVIDUAL

 POINTS UNDER THE ACTION OF ANY FORCES WHATSOEVER

 55. It will be convenient also to study the curvature produced

 in an elastic ribbon by several forces, or indeed by an infinite

 number of forces, by the same method already given for studying
 the curvature of any elastic ribbon whatsoever if it be acted

 upon by a single force at a given point. But since it is not yet
 established just what expression in these cases is going to be
 either a maximum or a minimum, I shall use merely the direct
 method, in order that from the solution itself it may perchance

 be possible to discover that property which is either a maximum

 or a minimum. Therefore let the elastic ribbon that is straight
 in its natural state be brought into the position AmM (FIG. i8),

 first by the finite forces P and Q acting in the directions CE

 and CF normal to each other, and then by the infinitely small
 forces applied to the single elements m,u of the ribbon, and
 acting in the directions mp and mq parallel to CE and CF; all
 this being stipulated, the character of the curve produced in

 the ribbon AmM is required.

 56. Let the straight line FCA produced be taken as an axis,

 and let AC = c, the abscissa AP x x, the ordinate PM y,
 the arc of the curve AM --= s, and the radius of curvature at M

 be R; let the absolute constant of the elasticity of the ribbon
 be Ek2; and the sum of the moments arising from all the acting

 moments with respect to the point M must be equal to R .
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 Now in the first place, from the finite force P acting in the

 direction CE there arises the moment P(c + x), acting in that

 direction in which the elastic forces are equilibrated. The moment
 Qy, arising from the other force Q, tends in the opposite direction,
 from which, due to the finite forces P and Q taken together,

 there arises the moment P(c + x) - Qy. Now let there be

 considered any intermediate element mp, and let its corresponding
 abscissa Ap -, and the ordinate pm =- ; let the force acting
 upon the element m,u in the direction mp be dp, and the force
 acting in the direction mq be dq; then the moment of these
 forces about M will be (x - C) dp - (y - -i) dq.

 57. Therefore to find the sum of all the moments, the point M,
 and consequently x and y, must be, for the time being, considered
 as constants, while only the co-ordinates g and X with the
 forces dp and dq are regarded as variable. Therefore the sum
 of the moments arising from the forces acting upon the arc Am
 will equal

 xp -f dp - yp + f -qdq,
 where p expresses the sum of all the forces acting upon the
 arc AM applied in the direction parallel to pm, and q expresses
 the sum of all the forces acting upon the arc AM applied in the

 direction parallel to Ap. But f Cdp = Cp - f pd~,
 and f'Jdq= --- q-f qd&q,
 whence the sum of the moments arising from the forces applied

 to the arc AM will be (x - Q)p + f pdg - (y-- -9)q fqd'r.
 Now let the point m move to M; then g = x, -q y, dg = dx,
 and dij = dy; whence the sum of all the moments taken throughout
 the whole length of the arc AM will equal J pdx - J qdy.
 Wherefore, for the curve sought, the following equation will
 be obtained:

 k _ p (c ? x) - Qy +f pdx J qdy.

 Here p expresses the sum of all the vertical forces, or those
 acting in the direction of the ordinates MP, and q expresses
 the sum of all the horizontal forces, or those acting in the

 direction of MQ parallel to AP, throughout the whole arc AM.
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 LEONHARD EULER S ELASTIC CURVES II7

 58. If the expressions fpdx and fqdy cannot be integrated,

 the equations found by differentiation will have to be freed from
 these integral expressions, whence the following equation will
 be had:

 -Ek2dR
 -'--R2 -=Pdx -Qdy + pdx -qdy.

 But if neither p nor q can be expressed in a finite number of
 terms, inasmuch as they already express the sums of an infinite
 number of forces infinitely small, then by a further differentiation,
 the finite values p and q will have to be eliminated, so that there
 remain only dp and dq, with the differentials of the second order

 d2p and d2q.
 Now there will arise, after the first differentiation,

 dR dy __dy
 Ek2d -d dp- (Q + q) d - dq.

 Let Y co, and, when the equation has been differentiated
 dx

 again, we get

 dR

 d dq
 ~Ek2d ---R2dX =dL-d w -~~~ Ekd a d dp - dq - co d dq

 do do do

 This equation contains differentials of the fourth order.

 59. In place of the vertical and horizontal forces p and q,
 let two forces be applied to the ribbon-the one normal, MN = dv,
 and the other tangential, MT = dt [FIG. i8]. Hence

 dp = ddxdv + dy dt and dq = dx dt dydv
 ds ds ds

 and because dy wdx, and ds dx V I + w2,
 dv w dt dt Cl)dv

 then dp -v _ t - and dq d
 \I+ 2 A/ I + l2\ 2 AI+ ,2 VI+w2 VNI+w2' VI +c2 v+7

 When these values are substituted in the last equation of the
 preceding paragraph, the following equation will result:

 dR

 Ek2d R2dX -dt 2 Cl dv dv

 dv I + cW2 V I + /2 ddo
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 This equation becomes integrable when multiplied by VI + c2.

 For the sake of brevity, let z dR
 R2dX s

 then

 dv- I + =-2) [d_ dZV + o2_

 dco

 CoZ I-
 + .

 V I + (,,2 2 R2_.

 =- Ek2 F1fd dR__ L do R2dX VI ? +wC,2 ?2R2]

 But'since R - + ) -dx, then dw = ( + 2) -dx, and
 dw R

 by substituting the value of dw we shall have, because dx A/I + co2
 ds,

 Rdv R dRi
 A-t- ds = Ek2 [-"R' R d _dR

 ds L2R2 ds R2dSj

 Therefore by transposing, the following equation will arise

 Rdv I R d R
 t + A~ ---= Ek2 _.d.

 6o. Now in the first place, it is clear that if the elastic force

 Ek2 should vanish, the. ribbon would be transformed into a
 perfectly flexible filament; and hence all the curves which a

 perfectly flexible filament can form when acted upon by any
 forces whatsoever are included in these equations. Thus
 if a filament be merely drawn downwards by its own weight,

 then q = o, and p will express the weight of the string AM,

 and therefore, by the first equation of section 58, p d Q a

 constant, and P = o, which is the general equation for catenary
 curves of every kind. Now if a perfectly flexible filament be
 acted upon at various points by forces, the directions of which
 [FIG. I8] are normal to the curve itself, in such a way that, at
 the point M, the filament be drawn in the direction MN by a

 Rdv
 force dv, then, because t = o, it follows that = A, a constant.

 d,s
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 LEONHARD EULER'S ELASTIC CURVES I19

 This is the general property of trough-shaped curves, and of

 all curves in which acting forces of this kind appear.

 ON THE CURVATURE PRODUCED IN AN ELASTIC RIBBON

 BY ITS OWN WEIGHT

 6i. I return now to elastic ribbons about which there is

 offered the following investigation, which is especially worthy of

 note, viz., the kind of a figure an elastic ribbon takes on when

 curved by its own weight. Let AmM [FIG. i8] be the curve
 which is sought, and because only vertical forces due to gravity

 are acting upon it, P = o, Q = o, q = o, and p will express
 the weight of the ribbon AM, wherefore, if F be the weight of

 a ribbon of length a, because the ribbon is assumed to be
 Fs

 uniform, p - ; whence the character of the curve will be
 a

 expressed by the following equation [from sec. 58]
 - Ek2dR Fs dx

 R2 a

 Cds ds
 Let the amplitude of the curve be u-R = u; then R =

 JR du'

 and dx = ds sin u; whence, assuming the element ds as a constant,
 the following equation will be found:

 Eak2 d2u
 s ds sinu- F o

 F ds

 which, as far as appears at first glance, cannot be reduced further.

 62. Now especially worthy of note is the curve which a fluid
 of considerable depth produces in an elastic ribbon (FIG. I9).
 Let AMB be the figure sought, and letting AP = x, PM- y
 and AM - s, the element Mm will be drawn in the normal

 direction MN by a force proportional to ds; whence dv = nds,
 and dt = o. Hence the vertical force dp = ndx, and the horizontal
 force dq = - ndy; whence p = nx, and q - y; and therefore
 the equation [of section 57] becomes
 Ek2

 = P (c + x) - Qy + 'inx + nz2
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 The co-ordinates x and y can be increased or diminished by

 constant quantities in such a way that the equation for the curve
 takes on the following form:

 x2 + y2 = A +B
 R

 Now if this equation be multiplied by xdx + ydy, and if we

 put dy = cdx, it becomes integrable, for

 fxdx + ydy J x? + y y - Cox ydx - xdy

 J R e} (I + C0)2), A 2VI+ ds

 Because of this, by changing the constant after integration, we

 shall have

 (X2 + y2)2 = A (x2 + y2) + B (ydx - xdy) + C

 Let V X2 + y2 = z, and y = uz; whence x = z V i - u2; z2dU / Z2dU2

 therefore ydx - xdy =- , and ds = dz2 +

 Therefore by placing

 du Bz2dr
 __ dr, then z4_ AZ2 C = - _

 v I _U2 VdZ2 + Z2 dr2
 and hence

 du dz (z4- Az2 -C)
 dr = V

 I 1 U 2 Z A/ B2 Z2- (z4 - AZ2 -C)2
 Therefore this curve, if A - o and C = o, will be algebraic,

 for we shall have the following equation

 du z2 dz 3Z2 dz
 VI -u2 VB2 - Z6 3Va6 z6

 which, being integrated, gives

 I . Z3
 arc sin u - arc sin -,

 3 a3

 or - 3U- 4U -3 -
 a8 ~~z ZS

 whence Z6 3a3 yz2 - 4a3 y3.

 Or, since z2 x2 + y2, (X2 + y2)3 - 3a3x2y a-y3, or

 X6 + 3X4y2 + 3X2y4 + y6 = 3a3x2y - a3y3.
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 ON THE OSCILLATING MOTIONS OF ELASTIC RIBBONS

 63. Now from all this the oscillating motion of elastic curves

 brought into motion in any manner whatsoever can be determined.
 The illustrious DANIEL BERNOULLI first began to investigate this

 assuredly most important topic, and some years ago sent me the

 problem of determining the oscillations of an elastic ribbon

 fastened at one end in a solid wall, the solution of which I have

 published in " Commentarii Petropolitani " Vol. VII, (I740).
 Since that time, not only has it been my good fortune to treat

 the problem in a more convenient fashion, but also, through

 consultation with the celebrated BERNOULLI, a number of other

 questions and considerations have been added, the elucidation

 of which, because of the relation of the subject matter, I shall

 here add. Now when the vibratory motion is sufficiently rapid,

 a musical tone is given by the vibrating ribbon, the pitch of
 which, and its relation to other tones, will be determined by

 these principles, with the aid of the theory of tones. And since
 the character of tones is very readily subject to experiment, by

 that fact the agreement of calculation with truth can be investigated,

 and the theory can be confirmed. In this fashion our knowledge

 of the nature of elastic bodies will be enlarged in no small

 measure.

 64. Now it must first be noted that here our study is directed

 only to very small oscillations; and the interval through which
 the ribbon passes in oscillating is, as it were, infinitely small.
 But the utility and the application is not at all diminished by this

 limitation; for not only would oscillations be deprived of isochro-

 nism if they should take place through large spaces, but more than

 that, the formation of distinct tones, and that is what we are

 here primarily considering, requires very small oscillations.

 I therefore consider here, in the first place, a uniform elastic
 ribbon, naturally straight, one end of which is firmly fixed at B

 (FIG. 20) in an immovable pavement, in such a way that the

 ribbon, when left to itself, has the upright position BA. Let

 the length of this ribbon be AB = a, and its absolute elasticity
 at each point be Ek2; its true weight we either neglect, or else
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 we cause it to be fixed in such a fashion that its position cannot
 be disturbed by gravity.

 ON THE OSCILLATIONS OF AN ELASTIC RIBBON FIXED
 AT ONE END IN A WALL

 65. Now this ribbon, acted on by any force whatsoever,
 performs very short vibrations passing through very small intervals
 Aa on either side of its natural position BA. Let BMa be any
 position, whatsoever which the ribbon occupies while oscillating.
 Since this is only an infinitely short distance from its natural
 position BPA, the straight lines MP and Aa will at the same
 time represent the paths which the points M and a traverse,
 or rather these straight lines, when compared to the true paths,
 will differ from them by an infinitely small amount. Now to
 determine the oscillatory motion, it is absolutely necessary to
 know the character of the curve BMa which the ribbon takes
 on during oscillation. Therefore let AP X x, PM = y, the
 arc aM = s, the radius of curvature at M be R, and the very
 small interval Aa -= b; also, from the conditions mentioned,
 the arc s will be approximately equal to the abscissa x, and
 accordingly dx can be taken for ds; for in comparison with dx,
 dy will be on the point of vanishing. And since, by assuming
 dx as constant, the general expression for the radius of curvature

 dss is, in the present case R =d2 for the curve BMa turns
 dxdyfothcuvBM tun
 its convex side to the axis BA; and because the ribbon has been
 firmly fixed in a wall at B, the straight line AM will be tangent
 to the curve at B.

 66. All this being stipulated, in order to determine not only
 the character of the curve BMa, but also its oscillatory motion,
 let f be the length of a simple isochronous pendulum; for not
 only the nature of the case, but also the calculations to be
 instituted will show that the very small oscillations are isochronous.
 The acceleration by which the point M of the ribbon is drawn

 toward P will be PM . Wherefore, if the mass of the whole
 f f
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 ribbon be taken as M, which is expressed by the weight, the

 mass of the element Mm = ds - dx is Mdx .--; whence the moving
 a

 force drawing the element Mm in the direction MP is Mydx
 af

 and thus the forces by which the individual particles are actually
 brought into motion will be known, not only from the curve BMa,
 but also from the length f of the simple isochronous pendulum.
 But, since the ribbon is, as a matter of fact, incited to motion

 by the elastic force, when this is known, and the nature of the
 curve is known, the length of the simple isochronous pendulum
 will also be determined by them.

 67. Therefore, since the ribbon is moved exactly as if there
 had been applied to each element Mm of it, in the direction MP,

 forces equaling Myd, it follows that, if to the single elements Mm
 af

 of the ribbon, equal forces Mydx should be applied in the opposite
 af

 direction Mir, the ribbon in the position BMa would be in a
 state of equilibrium. Hence the ribbon while oscillating will
 undergo the same curvature which it would take on when at
 rest, if at the individual points M it should be acted upon by

 the forces Mydx in the direction Mr.
 af

 Therefore by the rule discovered above in section 56 [and 57]',
 let all these forces applied throughout the arc aM be collected, and

 there will appear the sum M ydx, which must be substituted

 in the place of p. Wherefore, since the remaining forces P, Q,
 and q which appeared there [sec. 56] are on the point of vanishing,

 the character of the curve will be expressed by the equation

 EEk2 M
 whence we shall secure - =- dx f ydx.

 R af ydx.
 dx2 Ek2_d2y _M r

 But since R =-, then = -- dx fyvdx.
 d2y dx2 a
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 Ek2_d-3y M
 Differentiating,- = - dx f ydx,

 dx2 af
 and by differentiating again, the following differential equation

 of the fourth order wIll appear: Ek2 d4y My wi d4y - ~~af
 68. By this equation, therefore, the character of the curves

 BMa is expressed, and from that, if it be adapted to the case
 presented, the length f will be determined. That being known,

 the oscillatory motion itself will become known. But first the

 equation must be integrated, and since it belongs to the class of

 differential equations of the higher orders, the general integration
 of which I have shown in Vol. VII of the " Miscell. Berol.,"
 the following integral equation will be found by substituting,

 Ek2af for the sake of brevity, c4 for

 x-X x x
 y = Aec + Be c + Csin .- + Dcos c, where e denotes a

 C C

 number the hyperbolic logarithm of which is i, and sin -, and
 C

 x x
 cos - are assumed to denote the sine and cosine of the arc -X in
 C c

 a circle, the radius of which is i. But then A, B, C and D are
 four arbitrary constants introduced by four integrations, which
 must be determined by adapting the calculus to the present case.

 69. Now the determination of the constants will be insitituted
 in the following fashion. First, when x - o, y -= b; hence the
 following equation will arise: b - A + B + D. Secondly,

 since c4d2y dx fydx, and f pdx = o for x - o, hence
 whnx ==o Q =-o u d2y

 dwt2

 d2y Ax. B -- C x D X
 - Cc + --C srn - - ----CO cos

 dx2 - C2 c2 e C2 C C2 c

 whence the second equation appears, namely A + B - D o.

 c4d3y r disappears, Thirdly, s'ince --=Iydx, then when x = o, - iapas
 dxA .1 dx3
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 c3d3y X x x
 and AeF - Be7- Ccos - + Dsin -, whence the third
 dxc3 c c

 equation A - B - C = o appears. Fourthly, if x = a, y - o,
 a a

 and Aec + Be-T+ Csin --+ Dcos- o 0. Fifthly, because AB
 c c

 is tangent to the curve at the point B, when x = a, dY_ o-
 dx

 4a

 whence the fifth equation Aec-_ Be J + Ccos - - Dsin a = O
 c c

 appears. From these five equations the four constants A, B, C,
 and D will be determined; and that on which the hinge of the

 matter turns, the value of c = ./EM2f will be found, from which
 M

 the length of the simple isochronous pendulum will be secured,
 whereby the durations of the oscillations will become known.

 70. From the second and third equation, the constants C and D
 will be expressed in terms of A and B thusly: C = A-B,
 and D = A + B. These values, substituted in the fourth and
 fifth equations, will give

 Aec + Be--cs + (A-B) sin + (A + B) cos-= o, and
 C C

 4 ~~~a
 Aec -Bei- + (A-B) cos--(A + B) sina 0, from

 C C

 which we secure

 a . a a aa
 -e7- + sin -cos e c + cos 7-+ sin -

 A c c c c

 B a a a a
 ec + sin + cos --- ec + cos -- sin -

 c c c c

 whence the following equation will be obtained:

 (e ~ = o,Corea a a
 + ea e/ cos a cos -+ ze c + cos - =0.

 c c c

 -a I sn a a C
 nis gives e c =

 a
 Los _

 c
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 a ~~~~~~a
 However, since ec is a positive quantity, then cos- will be nega-

 C

 a
 tive, and the angle - will be greater than a right angle.

 71. From the last equation it is seen that an infinite number
 a

 of angles - will satisfy it, due to which angles an infinite number
 C

 of diverse modes of oscillations of the same ribbon arise. For
 the curve can cut the axis AB at one or more points before it
 touches the axis at B; from this fact there is an infinite number
 of modes of oscillations equally possible. Since we are here
 primarily considering the case in which B is the first point when
 the ribbon crosses the axis AB, this case will be satisfied by a very

 a
 small angle a satisfying the discovered equation. Since this

 C~~~~~~

 angle is greater than a right angle, let = 2 + 0, in which +
 C 2

 a
 is less than a right angle. Hence, because sin -= cos i, and

 a a
 cos - = - sin i, we shall obtain the double equation e c

 i Cos

 sin 0
 a a

 which gives either e c tan i i, or e = cot
 The second equation will give the smaller value for the angle i,
 and will be adapted to the case proposed.

 72. The following possible modes of oscillation will be found

 if the angle a is greater than two right angles and less than
 C

 three right angles. Let a 3 - I . Then sin a
 C 2 C

 a _

 cos 0, and cos sin q, whence
 c

 I-* ? Cosb a -a eC- c - COS + or e -- tan -f or e c w coti#.
 sin 0
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 In a similar way, other modes of oscillation will be found by

 a 5rV a 7 17r letting - = - + I; - - - ; etc.
 c 2 c 2

 From all these, if the hyperbolic logarithms be taken, there

 will arise the following equations:

 I. --- + _ log cot i II. + + log tan iq
 2 2

 III. 3 -qb log cot IV. 3- - log tani
 2 2

 V. 5-+ + log cot VI.I5 + =logtani
 2 2

 2 2

 etc.

 Now the third of these equations agrees with the second, for

 let i = - j, then cot i = tan i 0, whence the third

 equation passes over into- = 0 =log tan i 0, which is the
 2

 second equation. In the same way the fourth equation agrees
 with the first; the fifth and the eighth agree; likewise the sixth

 agrees with the seventh, etc. WVherefore only the following
 different equations will appear:

 I. - + =logcotj0 II. - + = log tan Io
 2 2

 III. 5-+ - = log cot j 0 IV. 5-- + =log tan j 0
 2 2

 V.9-+ + = log cot I VI.9~-+ 0 = log tan I

 etc.

 73. Now the hyperbolic logarithm of any tangent or cotangent
 of an angle is found by taking the tabular [common] logarithm
 and subtracting ten from it 23), and multiplying the remainder
 by 2.302585092994. In order to shorten the labor, it will be
 convenient to use logarithms again. Let u be the hyperbolic

 logarithm of the tangent or cotangent of the angle i b which is
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 sought. From the tables let the [common] logarithm of the same
 tangent or cotangent be taken, and let this value, diminished by
 ten 23), be v. Therefore, since u=2.302585092994 v, we shall get,
 by taking common logarithms, log u log v + 0.3622156886.

 This logarithm being found, since u = + i, we have log
 2

 u = log (_ + O). To evaluate this, the angle k must be expressed
 2

 in radians, just as ir is expressed in the same fashion, where

 X= 3.1415926535, and hence - = 1.57079632679. Now the
 2

 angle b will be expressed in the same way if it be changed to
 seconds, and if from the logarithm of this number there be
 subtracted constantly 5.3144251332 24); for thus the logarithm
 of k will appear, from which, by going back to numbers, the

 a.
 value of b is secured. Now for every kind of oscillation, - will

 C

 constantly equal u --- + .
 2

 74. This advice having been given for instituting the calcula-
 tions by approximations, the value of the angle f will be secured
 without difficulty for any kind of oscillation. For by assigning
 any values you please to b and determining by calculation

 n + b, and log tan i or log cot i i, soon the approximate
 2

 value of b will be known.
 If now the limits of the angle k be removed as far as you

 please, then closer limits will be found immediately, and from
 these the true value of b. Thus for the first equation

 a = + = log cot i b, I have secured the following limits
 C 2

 for the angle b: 170 -26' and 170 -27'. From these, by the
 following calculation, the true value of b itself will be obtained.

 0 + 170 -26' -0" 170 -27' -0"
 in sec. - 62760" 62820"
 log = 4.7976829349 4.7980979321
 subtract - 5.3144251332 5.3I44251332
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 log = 9.48325780o7 - 10 9.4836727989 - I0

 = 0.3042690662 0.3045599545

 iT = 1.5707963268 15707963268

 irX + + | 1.8750653930 I.8753562813

 i = - 80 -43' -0" 80 -43' -30"
 v = log cot +- o0.8I44034109 o.81398I9342
 log v - 9.9I08395839 - 10 9.9I06147660 -I

 add 0.3622I56886 0.3622I56886

 log u 0.2730552725 0.2728304546
 a

 U = - i.875233I540 I.8742626675
 C

 difference + I6776I0 -10936138
 From these errors of the two limits is is concluded that

 = I70 -26' -7.98", and I ir + - = 1070 -26' -7.98".
 C

 But since

 0 ~ = 62767.98"
 log = 4.7977381I525

 subtract 5-33144251332

 log = 9.4833130193 - o
 therefore b - 0.3043077545

 add- =.5707963268
 2

 + a # + -X a~ _ i.8751040813
 2 C

 This being found, then A = tan 1 = 0.1533390624 25).
 B2

 Therefore the ratio of the constants A and B is found. From

 which also the ratio of the remaining constants will be known
 in relation to them.

 75. There still remains the first equation b A + B + D.
 This equation, since D = A + B, becomes b = 2A + 2B, and
 therefore A + B = i b.

 A
 Since therefore = tan q, B (i + tan c)= b, and
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 B b b
 2 + 2 tani 2 (I+ tan i )

 Whence from tan j i = 0.1533390624 the several constants of
 the equation will be determined in the following fashion:

 A tan 0j? 0.1533390624
 b 2 (I + tan i 0 2.3066781248
 B I I.0000000000 Bf = . .ooooo
 b 2 (I + tan i 2.3066781248
 C - i + tan i b --o.8466609376

 b 2 (I + taniq0 2.3066781248

 D I +tani _ 1.1533390624

 b 2 (I + tan j 0 2.3066781248
 These being found, the character of the curve aMB which

 the ribbon takes during oscillation will be expressed by the
 following equation:

 y A x B - C x D x
 - e c + e c + bsin - + - cos -- .

 b b b b C b C

 76. As to the velocity of the oscillations, it will become
 a

 known from the equation a 1.87510408l3. For the sake of
 C

 brevity, put n = I.87510408l3, SO that a = nc; and since

 M where -- expresses the specific gravity of the ribbon

 and Ek2 the absolute elasticity, by the method which I have

 used hitherto, a" = n4 Ek2 af and on that account f = 4 i M
 M ~~~~~n,' Ek2 a

 from which the length of a simple isochronous pendulum will
 vary directly as the fourth power of the length of the ribbon,
 directly as the specific gravity, and inversely as the absolute
 elasticity. Let g be the length of a simple pendulum oscillating
 in a single second in such a way that g = 3.16625 Rhenish feet.
 Since the durations of the oscillations *of the pendulums are
 proportional to the square roots of the lengths of the pendulums,
 the time of one oscillation made by our elastic ribbon will be

 -f seconds = gEk . - . Whence the number of oscilla-
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 tions produced in one second will be

 n2 / a  a

 a2J Ek2M

 This number expresses the pitch of the tone which the ribbon

 produces. Therefore the sound produced by different elastic

 ribbons fastened at one end in a wall, will be proportional to

 the square root of the absolute elasticity, inversely proportional

 to the square root of the specific gravity, and inversely proportional

 to the square of the length. Wherefore if two elastic ribbons

 differ only in length, their tones are inversely proportional to

 the square of the lengths; in other words, a ribbon twice as long

 will give forth a tone two octaves lower. Now a tense chord

 twice as long gives forth a tone only one octave lower, if the

 tension remains the same. From this it is clear that the tones

 of elastic ribbons follow a very different ratio from that of the

 tones in tense chords 26).

 77. As to the character of the curve aMB continued beyond

 the ends a and B, it is clear, in the first place, that the curve

 beyond a advances in such a way that it is continually diverging
 from the axis BA. For taking x as a negative quantity,

 y Bec + Ae- Csin --- + Dcos--.
 c c

 Now here, all the limits are positive, because only the coefficient

 C previously had a negative value [sec. 75]; whence while x
 increases, y must also increase, because the number B is greater

 x x
 than A, and so the term Bec prevails. Now as soon as - has

 x
 reached even a moderate value, then the term Be increases in

 such a degree that the remaining terms, in comparison with it,
 disappear, as it were. For this reason, because the radius of
 curvature of the curve at B does not equal infinity, for
 E k2 M C
 -R = --f-f dx f y dx and hence the curve at B will not have

 a point of contraflexure, and will advance further on the same

 side of the axis AB, and by increasing the abscissa x beyond

 BA = a, the first term Ae c soon becomes so great that the
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 remaining terms can be regarded as zero in comparison with it.

 78. Therefore this is the first mode of oscillation among those

 innumerable ones to which the same ribbon may adapt itself.

 The second mode, represented in FIG. 2I, whereby the ribbon

 fixed at B crosses the axis AB at one point 0, will be deduced

 a 1 3 7T
 from the equation- ==- += log tan ior --3 -=

 C 2 2

 log cot 1 +. Here, by means of certain experiments, I have disco-
 vered that the angle is contained between the following limits:

 10 -2' -40" and 10 -3' -0". From this as above the true value
 of k itself will be secured.
 0 I?10-2 1-40 ft?0-3 1-0/
 in sec. 3760" 3780"
 log 3.575I878450 3.5774917998
 subtract 5.3144251332 5.3144251332

 log k 8.26076271I8 - io 8.2630666666 -I

 = 0.018228994 0.0oI83259571
 3T 32f 4.7123889804 4.7123889804

 2

 37T a
 - - 4.6941599860 4.6940630233

 2 C

 i = 31 -20f 3I -30"1
 log cot i = 2.0402552577 2.0379511745

 log v = .3096845055 0.3091937748
 add 0.3622156886 0.3622156886

 log u 0.671900I941 0.6714094634

 U = 4.6978613391 4.6925559924

 a 4A694I159986o 4.6940630233
 C

 error + 37013531 - 15070309
 From these errors the true value of the angle k is found to be

 10 -2' -54.213 ", and a 2680 -57' -5.787"". Since therefore
 C

 ek = 3774.213

 log 3.576826406i
 subtract 5.3144251332
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 log = 8.2624012729 10

 0 o 0.OI82979009
 IT 289o 3-.- - 4.7123889804
 2

 -s -- 4.6940910795
 2 C

 Therefore the tone of a ribbon oscillating in the first case will

 be to the tone of the same ribbon vibrating in this case as the
 square of I.8751040813 is to the square of 4.6940910795, or as

 i to 6.26689I, or, in least integers, as 4 iS to 25, or as I is to 6 _4.
 '5

 Whence the latter tone will be just about 2 octaves plus a fifth
 plus a half tone higher than the former 27).

 79. For the following cases of oscillations of the same ribbon,
 in which the ribbon cuts the axis AB at two or more points while
 oscillating, the angle k becomes much smaller; thus for the third
 case the following equation is secured

 57? + = log cot i _ a
 2 C

 ? + 0t
 Therefore, since e = cot i i, because k is an extermely
 small angle,

 e2 e 2 (I + e + 2 +-6-+
 z 62

 I - 2 2 k
 and cot i = # -

 Hence approximately,

 e2 _ ,or -=e 2X

 or more closely

 0 __ o5 28), whence a=5+ 5lT
 I + a e2 |C 2 2 + eZ2

 The latter term is extremely small. In a similar manner for the

 fourth case of oscillations, approximately
 - 77

 C 2 7 2--
 c 2
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 Since these second terms are on the point of vanishing, the values

 of will be I, -, etc., which will differ less from the true
 C 2 2

 values the farther they proceed.

 CONCERNING THE OSCILLATIONS OF A FREE ELASTIC RIBBON

 8o. Let us now consider an elastic ribbon fixed at no point,
 but free or lying upon an extremely smooth plane or, neglecting
 gravity, existing in a vacant space. Now it is readily apparent
 that a ribbon of this kind can receive an oscillatory motion, while
 the ribbon acb (FIG. 22), curving itself, passes alternately on
 one side and the other side of the position of rest AB. Therefore
 the oscillatory motion may be defined in the same way in which
 it was defined in the preceding case, provided only that the

 calculations be adapted to this case in the necessary manner.
 Therefore let acb be the curved shape of the ribbon which it
 assumes while oscillating, and ACB the shape of the same ribbon
 in the state of equilibrium through which it passes in each
 oscillation. As before, let the length of the ribbon AB = a,
 the absolute elasticity be Ek2, and the weight or mass equal to M.
 Then let the abscissa AP = x, the ordinate PM = y, the arc
 aM = s, which will correspond with the abscissa x in such a way
 that ds = dx; from this the radius of curvature at M will be

 R d -. Further, let the first ordinate Aa = b. All this
 dy

 being stipulated, by instituting the same process of reasoning as
 before [sec. 66 and 67], we shall arrive at the same equation

 E k2 M Ek2d2y
 R=-yj cdx ydfxy dx2
 R af B k_af

 8i. Therefore, if we take E -k - = c4, where f, as before,

 expresses the length of a simple isochronous pendulum, we shall
 have, by integrating, the following equation for the curve:

 x wx x
 y Ae c + Be c + Csin-+ Dcos-.

 C c

 This will be adapted to the present case as follows
 First, when x = o, y = b, and hence b = A + B + D. Second.
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 c4d2 y ('d2y
 since - dx f ydx, then = O when x = o, whence

 arises A + B - D = o. Thirdly, since dY- f ydx,

 then d?2i=o when x = o, whence A - B- C o.
 dx3

 d3 y
 Fourthly, if x = a, f ydx, or df must vanish, because f ydx

 dxv3

 expresses the sum of all the forces drawing the ribbon in a

 direction normal to the axis AB, and if this sum were not equal

 to zero, the ribbon itself would undergo a local motion contrary

 to the conditions instituted; for this reason, therefore,

 -. -a a a
 Aec - Bec - Ccos - + Dsin O.

 C C

 Fifth, since the ribbon is free at the end B, it cannot have any

 curvature there, and therefore dY = o when x = a, whence
 dX2

 a -aaa

 Aec + Bec -- Csin --Dcos - = o.
 c c

 By taking these five conditions into the computations, not only

 will the four constants A, B, C, and D be determined, but also

 the value of the fraction a will be found; from which the length
 C

 of the simple isochronous pendulum f will become known.

 82. From the second and third of these equations,

 D = A + B, and C = A - B, and these values, substituted
 in the equations above, will give the following:

 a -aaa
 Aec - Bec- (A-B) cos - + (A+B) sin = 0, and

 C C

 Aec + Beic (A-B) sin - (A+B) cos -o.
 C C

 From these it is found that

 -a a a -a a a
 ec-cos-sin--- -e c -sln --+ Cos-, A c c c c

 B aa . a .a a a
 ec _ Cos + sln e - sn- cos-.

 C C C C
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 from which the following equation is secured:

 a1- a -- a a Iisin -
 2- e c Cos e Cos -- o, or e

 C C COS

 Whence the following equations will be found:

 a 7T

 I.~~ -- __ X 0 -log tan
 C 2

 a
 which gieves - = o for the natural position of the ribbon 29),

 C

 a _l

 c 2

 I- - = = log cot i
 C 2

 IV. ~a 57 + = log cot iq

 C 2
 IV. a=7+ =log coti

 VI. - 9 k = log cot

 C 2

 etc.

 83. These equations again indicate innumerable modes of
 oscillations. In the second of these the ribbon will cut the
 axis AB only once; in the third, twice; in the fourth, three times,
 in the fifth, four times, and so on. From this it is understood
 that the second, fourth, sixth, etc. modes are not adaptable to the
 present case. For since in these the number of intersections
 is uneven, the position of the ribbon, while oscillating in the second
 mode, would be such as FIG. 23 represents, in which mode,
 however small the sum of the forces acting throughout the whole
 ribbon tends to become, nevertheless the ribbon would acquire
 from them a rotary motion around the center point C, because
 the forces applied to each half aC and bC would combine to
 produce the same rotary motion in the ribbon. For this reason,
 since the rotary motion must be absolutely excluded, the shape
 of the ribbon which is taken on during oscillation ought to be
 of such a character that not only the sum of the acting forces
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 applied to the whole ribbon equals zero, but also that the sum

 or their moments tends to vanish; and this is obtained if the
 curve at the center point c (FIG. 22) be given a diameter cC.

 This takes place if the curve cuts the axis AB in two, in four,

 or in general, an even number of points; from which the 3rd,

 5th, 7th, etc., equations only, will give us satisfactory solutions 3c).

 84. This limitation will be found to be contained in the very
 statement of the problem if we admit only curves of the kind
 that have the straight line Cc as a diameter, that is, in which
 the value of y would be the same if (a - x) should be written
 in place of x. Therefore let us substitue (a - x) in place of x
 in the general equation, whence

 a -x a x a x a x
 y =Ae c e c + Be c e c + Csin--cos----Ccos--sin-

 a x a x
 + Dcos cos + Dsin-- sin

 c c c c

 Since this equation must agree with the equation
 x -x x

 y =Ae c + Be C + Csin-- + Dcos---,
 c c

 therefore
 a& a a a

 Ae c=B, C (I + cos =-) Dsin -, and C sin --- D (i -

 a
 Cos-).

 A -
 The last two equations are identical. Since therefore = e c

 when this value is compared with the expression in section 82,
 there will appear

 -a a a a a a a
 e cCoS---- Sin I - e c cos --- + e c sin --, or

 c c c c

 a a a a
 a I + Cos---- + sin i + sin--- cos--- -a c c c c

 a a a a
 i + cos -- -sin cos--- I sin- ---
 c c c c
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 a I -snsin
 85. Therefore ec = c

 Cos-
 C

 All this is contained in the equation previously found [sec. 82].
 I + Si f-

 a c

 e = Cosa4
 C

 Merely one half of the cases shown above [end of sec. 82], in
 other words those which have uneven numbers, will state the
 present problem. Wherefore, since the first equation comprises
 the natural state of the ribbon, all the modes of oscillations will
 be comprised in the following equations:

 a _31T a w+ qy_log coti
 c X

 II. ~a 7,f+ f log coti
 C 2

 aII. +r+ - log cot
 C 2

 etc.

 Therefore the first of these equations will give us the first and
 principal mode of oscillation, for which the value of the angle
 will be found by approximation, in a way similar to that used
 before. Now the limits of the angle 9 are soon found to be
 IO _O' -40" and 10 -i' -o", from which, by the following calculation,
 the true value of # is secured.

 0 - I -o -40I IO-0ItO
 in sec. 3640"t 366o"

 log = 3.56IIOI3836 3.56348I0854
 subtract = 5-34425I332 5-3I4425I332

 log ck = 8.2466762504- IO 8.2490559522 10

 = O.OI76472I80 O.OI7744I807

 32 4.7I 23889804 47I23889804
 2

 iT a

 3 - + = 4.730036I984 4.730I33I6II
 2 C

 = 30 -20" 30'-30"
 V 2.0543424742 2.05I9626482
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 log = 0 .3I26728453 O.3I2I6945IO
 add = 0.3622I56886 0.3622I56886

 log u = o.6748885339 o.674385I396
 a

 U _ = 4.7302983543 4.7248i86037
 c

 error = + 63634I + 53145574

 63634I

 Difference 52509233

 From this it is seen that the true value of + is not contained

 between those limits, but is somewhat less than I -0'-40" 31).

 None the less, however, it will be found from these errors.

 For let Io -O' -40" -n"; then

 20"t :52509233 n": 63634I, whence

 2423 d
 10,000

 = o -0' -39.7576"
 or _ 3639.7576"
 log 3.56IO7246I5

 subtract 5.3I4425I332

 log = 8.2466473283 IO

 1 O .OI76460428
 7T

 3--= 4.7I23889804
 2

 3--- + + = = 4.7300350232 [correct value 4.7300408]
 2

 86. Let this number be equal to m, so that

 Ek2af 4 m4Ek2af a4 I M
 C4- M--- and so that a4 =-M andf - 4 2*

 MM fm4Ek2 a

 Hence in the same way the number of oscillations produced
 by this ribbon in a single second will be

 m2 a
 - Ek2-

 where g = 3.i6625 Rhenish feet. Now if the same ribbon be
 made to produce a tone when it is either free, or has one end B
 fixed in a wall, the tones will be in the ratio of n2: m2, or as the
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 square of the numbers i.875Io408I3 and 4.7300350232 [correct

 value 4.7300408], or as i is to 6.363236. The ratio of these

 tones will be approximately I I: 70. Therefore the interval

 between these tones will be two octaves plus a fifth plus a half tone.

 If the free ribbon be taken twice the length of the fixed ribbon,

 the interval between the tones will be about a minor sixth.

 L-= 7- instead of 7?]
 5 45 44

 87. The value for the fraction a_being found, the equation
 C

 for the curve which the ribbon forms during oscillations, hitherto

 indeterminate, may now be determined; for

 a I -sin-.. a I a
 e ' = a C ,and Ae c -B; hence B ' A,

 Cos C Cos C--

 A (cos -c- + sin a --

 Cos C~

 A (cos - sin a+ I) D=A+B- C a
 C05<

 Now

 2A (cos sin a+ I)
 b = A + B + D 2D= C

 Cos -- COa

 whence

 A- b COS, ,a,_ b (+ i + sin Ca Cos -

 2 (Cos y sin-c +I) 4sina

 B - b (I sin a_~) _b (-I +sin - - + cosa a ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . a 2(CO8TS1fl4 _4) 4OSn4
 b (coi + sin b I I sin

 C +cos-?-) _ b(I-cos-C-)
 2 (cos c - sin cI) 2 sin -c
 b bsin-?
 2 a,sin- c

 These being substituted, the following equation will arise:

 Y e' cosn + Ie- I sinn )
 b 2(In in_a +COS *,-))
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 (I - c a \) sin c + sin a Ox

 2 sin ac

 88. Now because the straight line Cc is the diameter of the

 curve, let there be taken, from the central point C, the abscissa

 CP = z, then x - la - z, whence
 x a -z I- z a

 e C 2c c i-sinT ~ C ec Co e C -e 2 e c J Ising, and e - e c cs
 COS c I -Sin a

 whence

 x -x z -z z -z

 Ae c + Be C (eY + e7 V'COSa- (I-sin ac) e c>+ ec
 b 2 (i -sina+ COS -) a(e2c+e

 a x ~ a x x a-x
 Further (i - cos----) sin -- sin - cos-+ sin - + sin

 sin ( a - --) + sin( +-).
 2c C C 2C C

 a z
 2 sin Cos

 2ZC C

 These values being substituted, the following equation will arise
 z

 z Z cos

 2y e c +e ' c
 + .

 b .a -_ a
 e2c +e2C cos-

 zc

 which is the most simple form whereby the character of the
 curve aMcb can be expressed. Now it is manifest that whether z

 be taken as positive or negative, the same value for y will appear.

 a -a 2 COS a 32)
 It is also true that e c + e 2c _ _ 2c

 V/Cos ~

 We have found that the angle --= 27IO -O' -39 3/4" [correct
 C

 value is 27IO -0' -40.94"].

 89. Setting z = o, y will express the value of the ordinate Cc.

 This gives

 I0
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 2Cc 2V/Cos a I Cc I - V/COS I-
 - ' +Aor---C= oC

 b 2 COS c Cos Aa 2 COS
 a a a

 - sec-- - sec -_ cos _.
 2 2C 2 2C C

 But Cos - sin I? -O' -39 3/4" [correct value Io -o' -40.94"]
 C

 and cos- = -sin 450-30'-19 7/8" [correct value 450-30'-20.47"].
 2c

 Hence it is found that = -0.6078I5 [correct value-o.607841].
 Aa

 Then if y = o, the points E and F at which the curve intersects

 the axis will be found; therefore

 Cos - - C 2 COS-
 e + e *; c (e2G + e2c)-

 Cos V cos- C
 2c C

 from which, by approximation

 CE AE
 _= 0.5sI685, and -A o.4483I5.

 Therefore, while the ribbon is performing these oscillations,
 these points E and F will remain motionless. Therefore the

 oscillatory motion of this kind, which otherwise, it would seem,
 could scarcely be produced in reality, can be easily produced.
 For if the ribbon should be fixed at the points E and F defined

 in this fashion, it would oscillate exactly as if it were free.

 go. If the second of the equations found above, viz.

 - 77+ + log cot i qb be treated in this same fashion, in
 C 2

 which case q will be approximately zero, then the second mode

 by which a free ribbon can perform vibrations will appear,
 that is, by cutting the axis AB at four points. Then the ribbon

 will oscillate precisely as if it had been fixed at these four points.

 Conversely, therefore, if the ribbon be fixed at these four points,
 or merely at any two of them, it will oscillate just as if it were
 free, and it will produce a much higher tone, inasmuch as it will

 be in about the same ratio to the preceding tone as 72: 32;
 that is, the interval will be of two octaves plus a fourth plus
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 the half of a semitone. The third mode of oscillation, in which

 __ =II1T + + log cot i k, will have six intersections of the

 C 2

 curve acb with the axis AB. The tone produced will be higher
 121 2

 by one octave plus a minor third, [- = 2 ,approximately]
 49 5

 and the ribbon will produce this tone if it be fixed at two of the
 six points. Hence it is clear how different tones can be produced

 by the same ribbon, according to the different ways in which
 it is fixed at two points; and if the two points at which it is fixed

 coincide with its intersections in the first, second, or third, etc.
 modes, the oscillations adapt themselves to some one of the

 following modes down to an infinite value. In the latter
 case the tone will be so high that it cannot be heard at all, or

 what amounts to the same thing, the ribbon will be absolutely

 unable to take on an oscillatory motion; or at all events, as in

 the case of a vibrating chord under which a bridge is so placed
 that its parts have no rational ratio to one another, an indistinct

 tone will be produced.

 ON OSCILLATIONS OF AN ELASTIC RIBBON FIXED AT BOTH ENDS

 9I. Now let the elastic ribbon be fixed at both ends A and B
 (FIG. 24), but in such a way that the tangents of the curve at these
 points are not fixed. To produce this case in experiment, let
 extremely sharp points Aa, and B,B be fixed to the extremities

 of the ribbon; these sharp points, when fastened to a wall, will
 render the extremities A and B of the ribbon immovable.
 In order to investigate the oscillatory motion of this elastic ribbon,
 let us take, as above, the absolute elasticity of the ribbon to be
 equal to Ek2, its length AB = a, its weight equal to M, and the
 length of the simple isochronous pendulum equal to f. Let AMB
 be a curvilinear figure which the ribbon takes on while performing
 oscillations, and let the abscissa AP == AM = x, the ordinate
 PM = y, and the radius of curvature at M be equal to R.
 Furthermore, let P be the force which the sharp point Aa

 supports in the direction Aa. Because the force by which the
 element Mm must be acted upon in the direction M,u in order
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 that the ribbon be kept in this position, is equal to Mydx the
 af'

 following equation, by the rules described above [sec. 57, 66, 67],
 Ek2 M C

 will result: -=P Px M dx f ydx.
 R afi

 But R dx,because the curve is concave to the axis; hence
 d2y

 Ek2d2y MUdx f ydx - Px.
 dX2 afJ

 Therefore, when x o, the radius of curvature R at A will be
 infinite, that is, d2y o.

 92. If this equation be differentiated twice, the same equation
 which we have found in the preceding case will appear, namely

 Ek2d4y - ydx4
 af

 But if f be put equal to c4, the integral equation will be
 M

 A. x ~~~~~x
 y-M=Ae C + Be c + Csin - + Dcos---.

 C C

 To determine this, let x = o, and since y = o at the same

 time, then A + B + D - o. Second, let x -- a, and since y
 again must be zero,

 '-l- -a a a
 Ae c + Be c + Csin-+ Dcos - = o.

 C C

 Third, since _2 must vanish when x - o, and when x ---- a,
 dX2

 we have A + B - D = o, and
 a a

 Aec + Be C Csin --- Dcos C o.

 Now the equations A + B -D =o, and A + B + D =- o,
 give D = o, and B - A, which values, when substituted
 in the remaining two equations, give
 n -a a a _a

 A (e c -e C) + Csin -=o, and A (e c -e c) Csin.- o.
 C C

 These equations cannot be satisfied unless A = o, since it is not
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 q ~a- a
 possible fore c = e c, except in the case when --= o. Then

 a~~~~~~~~~~
 indeed Csin - _ o, and here, since C cannot be put equal to zero>

 c

 a

 because there would be no oscillatory motion, sin --will be equal
 C

 a a

 to zero. Therefore c r, or c - 27T, etc., whence again there
 C C

 arises an infinite number of modes of oscillation, according as
 the curve AMB cuts the axis either nowhere except at the end
 points A and B, or at one point, or at two points, or at several

 x
 points. This is deduced from the equation y = Csin -; and

 however many points of intersection there are, they will be at
 equal intervals from one another.

 93. Since, therefore, for the first and principal mode of
 a af a4 I M

 oscillation - i-, a4 C4 4 :--= 74Ek2 Ms whencef 2 -

 Wherefore as far the length of the ribbon is concerned,
 the tones again will be inversely proportional to the square of
 the length [sec. 76]. Now the tones of this ribbon, produced
 in this fashion, will be to the tones of the same ribbon, if it be
 fastened at one end B in a wall, as IT2 iS to the square of the
 number I.875104o813, that is, as 2.807041 is to I, or, in least
 integers, as i6o is to 57, an interval which is about one octave
 plus the third half tone. If the oscillations are related according

 a

 to the second mode, in which - == 21T, the tone will be higher
 a

 by 2 octaves, but if ---- s3r, the tones will be higher by 3 octaves

 a

 and a whole tone than in the case where -- x ir, and so on 33).

 In order to adapt this more readily to experiment, it must be
 noted that here extremely small oscillations must be taken, so
 that there is no essential elongation of the ribbon. Wherefore,
 since the tenacity of the ribbon, by which it resists even a slight
 extension, without which oscillations of this kind cannot be
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 produced, introduces an alteration here, those points ought to
 be fixed in such a way that such a minute extension is not

 impeded. This results if they rest on a perfectly smooth plane.
 Thus the elastic ribbon AB, equipped at A and B with the

 cusps Aa and BPl, if these cusps be placed upon a mirror, will
 give a sound which conforms to the calculations.

 ON OSCILLATIONS OF AN ELASTIC RIBBON FASTENED

 AT BOTH ENDS IN A WALL

 94. The preceding case having been cleared up, let the

 discussion of elastic ribbons come to a close with the oscillatory
 motion of an elastic ribbon fastened in a wall at both ends A and B
 (FIG. 25), in such a way that during oscillations, not only do the

 points A and B remain motionless, but also the straight line AB

 is constantly tangent to the curve AMB at the points A and B.
 Here we must again be careful that the bolts fastening A and B

 are not absolutely firm, but allow as much extension as is required
 for curvature. Whatsoever be the forces requisite to hold the
 band fixed at the points A and B, therefore, we shall arrive at
 the following differential equation of the 4th order:

 Ek2d4y = ydMx4

 Ek2af
 the integral of which is, as above, letting M- =

 M

 x x
 y Ae c + Be ' + Csin ---+ Dcos -.

 C C

 95. The constants A, B, C, and D must be so defined that,

 taking x --= o, not only y disappears, but also dy becomes zero,
 because at A the curve is tangent to the curve AB. Now the
 same thing must also take place if x = a, whence the following
 four equations will arise:

 I. A + B + D o.
 II. A -B + C o.

 a -a a a
 III. Ae C + Be c + Csin -- + Dcos-- o

 C C
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 a =.a. a a

 IV. Ae c Be c + Ccos -- - Dsin -- o.

 From the first and second of these equations, it follows that
 C = - A + B, and D = - A - B, which values, substituted
 in the other two equations, will give
 a -a a a

 Ae c + Be (A -B) sin ---- (A + B) cos c , and
 C C

 a -a a a

 Ae c + Be c -(A - B) cos + (A + B) sin-=o,
 C C

 The sum and difference of these give, respectively,

 a a a A sin
 Ae c + Bsin -- Acos--- = o, or - a

 cos - e c

 a a a A e-a _ cos -
 and Be c -Asin- Bcos - o, or -- c c

 whence
 a -a a ' Iisin9a

 z = (e c + e C) cos-, or e = c
 c Cos-a

 V

 This equation, since it agrees with the one found in section 82,

 will be satisfied by the following solutions, infinite in number:
 a 'if a 3 7T

 I. -=- = log cot i II.-- = +- =log cot Jo
 C 2 C 2

 a 5fr a 77T
 III. - = -- = log cot IV.- =-+ + log cot io

 etc.

 96. It is impossible to satisfy the first of these equations
 a a
 unless- = go9, and therefore -= o 29); whence the first mode
 C C

 of oscillation arises from the equationa-= 37+ + log cot i i,

 a
 and since this has been treated above [sec. 85], --- 4.7300350232

 [correct value 4.7300408]. Wherefore the elastic ribbon, both
 ends of which are held fast in a wall, will make its vibrations
 exactly as if it were absolutely free. Now this agreement concerns
 only the first mode of oscillation 34); for the second mode of
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 oscillation, in which -- _ - = log cot i i, and the ribbon
 C 2

 cuts the axis AB at one point during the oscillation, does not
 have its equivalent in a free ribbon. The third mode of a

 ribbon fastened at both ends will agree with the second mode

 of a free ribbon, and so on.

 97. The latter two kinds of oscillations [sec. 9I and 94] cannot,

 for the reason given, be investigated in any suitable fashion by

 experiment. The first kind, however, [sec. 65] is not only

 extremely well suited for experiment, but also it can be applied
 to the study of the absolute elasticity, which we have called Ek2,

 of any proposed ribbon. If the tone which a ribbon of this
 kind produces when fastened at one end in a wall be noted,

 and a similar tone be produced at the same time in a chord, the

 number of oscillations produced in a second will become known.

 ss,o / Ek a If this number be put equal to the expression 2 g X

 since n is known, and the quantities g, a, and M have been found
 by measurements, then the value of the expression Ek2 will

 become known, and so also the absolute elasticity. This latter
 value can be compared with that absolute elasticity which we

 have already shown how to find from the curvature. 35) [sec. 38]

 NOTES ON THE MONOGRAPH OF

 LEONHARD EULER

 Concerning Elastic Curves

 I744

 Additamentum I to the ad Methodus inveniendi lineas curvas maximi
 minimive proprietate gaudentes.

 (Original notes by H. LINSENBARTH in " Ostwald's Klassiker der exakten
 Wissenschaften " number I75. Translation and changes from the original
 German by DONALD M. BROWN.)

 For a pertinent understanding of the older, fundamental works on elastics,
 it is necessary to know the connections of the statements contained in them with
 the methods of the Mechanics of Solids and the Mechanics of Continua.
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 The following introductory remarks should make possible, even to those readers
 who have not thoroughly studied general mechanics, a critical judgment of the
 most important of the original works on this subject.

 a) Suppose the originally straight elastic wire (lamina) to be replaced by a
 chain of infinitely small, stiff body elements, which are connected with one another
 by spigot-joints, all of whose axes are and remain perpendicular to a fixed plane.
 At the joints C and C' of any element K, the forces - and r' are transmitted
 from the preceding and following elements respectively. In addition to these

 single forces, the moments -R and R' will be transmitted at C and C', if the joints

 offer resistance to rotation of the elements about the spigot-joint axes. Let

 the resultant of the external forces acting on K be dk, and its moment with respect

 to the point of rotation C of the element K be dM. The moments of reaction

 R and R can be referred to a suitable pole 0 in the plane.
 Putting 'OC = 'c OC d, c'-c dc,r'-r - drand IF-R-= dR,

 the principles of elementary statics give, for the equilibrium of the forces on
 the body element K, the conditions:

 dr + dk o, anddR ? dJr dM = o (Pole at C).
 Introducing the element of arc ds of the equilibrium curve (axis of the curved
 inextensible wire), which connects the joint-point C, the specific quantities

 dk n dM
 K= - and m =--, which are related to the constant length of the axis, may
 ds ds

 be used instead of the absolute quantities dk and dM. In addition, taking

 dc- -. dr - = a, then the static relation takes the for + = o, and
 ds

 dR -
 2) - + ar + m = o.

 ds

 These equations appear frequently in modern literature, since they are not
 present in this explicit form in the works of the older writers (JACOB BERNOULLI,
 EULER). EULER knew these equations in their corresponding form for chains
 whose links are of finite dimensions (compare the statements by ROUTH in his
 " Dynamik," German edition, vol. 2, page 71.) He merely failed to take the
 transitional step. Compare also EULER'S statement in section 57 (page i i6).

 Equations i) and 2) are advanced by CLEBSCH, " Elastizitat fester Korper,"
 Leipzig i862, pp. 204-222, and were used to establish KIRCHHOFF's theory of
 wires. They are also found in THOMSON and TAIT " Natural Philosophy "
 Part 2, Ist ed., Oxford, I867; 2d ed., Cambridge, I895, pp. I52-I55; in LOVE
 " Theory of Elasticity," 2d ed. Cambridge, i906, pp. 370-372; and, in their
 direct relation to the theory of body chains with finite links, in the " Zeitschrift
 fur Math. und Phys." vol. 56, I908, pp. 68 ff. by K. HEUN. From a general
 point of view, they have been treated in great detail by E. and F. COSSERAT in
 "Th6orie des corps d6formables " Paris I909, pp. 6-65.

 b) Let the departure of the axis element dc in the direction of the x-axis of
 a fixed set of axes Oxy be defined by the angle e, and let the contingent angle
 of the elastic curve be denoted in magnitude and direction by do. By this

 stipulation, d is the specific rotation of the axis element dc. In addition to

 the direction of the tangent (a), let the direction of the normal to the curve, v,
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 150 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN

 be introduced. Then aq = av is the binormal (of unit length) on the plane curve,

 so that = = - -, where a,, is the radius of curvature of the elastic curve.
 ds al

 According to the hypothesis of DANIEL BERNOULLI, R = Psi, where P is a
 constant depending upon the dimensions of the cross section and the coefficient
 of elasticity.

 au au Au

 Further, let Kcx = a i = a-, m = a .

 The function u can be represented as the potential of the external force. From
 the static fundamental equations I) and 2), it now follows that

 dr dc dR dj - do du
 + - +- ( +r i- + - = o dsds ds ds ds ds

 dr- _ dc, du
 or a U rZ+P + - =0?.

 ds ds ds

 Now putting r = ras + rpv,

 dr dr, - dr - + dv
 ds ds ds

 and rd_ rd a dv
 ai ds V d
 dv_

 However, ds c a-

 - dr dra
 and it follows that =- d 'Mr + W. and ar = rp tj.

 dra+p d-W du
 From this it is seen that the equation -f + pw - + - = 0.

 ds ds ds

 is integrable, so that

 3) 1- PCu2 + ra + u = ho.
 This equation shows a certain analogy with the principle of the living force in
 kinetics.

 c) For elastic bodies with no external forces acting, u can be taken as zero. In
 this case, equation 3) takes the simplified form

 3) P&u2 + ra - ho
 The virtual work of bending is R89. From this the equation
 d dR dSe
 -ds (R80) - ds 86 + R - is formed, or with the use of equation 2),

 d
 -(RSG) = -rv8G + RSw

 Denoting the end points of the elastic curve by A and B, the integration along
 the axis of the wire gives

 R8] = J (RBc - r.80) ds.
 _ _A J
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 Setting the virtual distortion equal to zero at the boundaries A and B gives

 F tR8- rv8G) ds = o, or, since rv80 = dra,

 JB -(l2 - ra) ds = 0.

 By equation 3'), however, -ra = -f-Pw2 - ho. Hence it follows that
 rB { B

 4) 8 f PC2 ds-h? J ds = o.

 B

 According to EULER'S conception, the integral J pw ds is therefore a

 rB
 maximum-minimum with the isoperimetric condition fds = I (constant).

 From equation I) follows r = ro. Therefore ra = r cosO + r,, sine, and

 rv = -rx sinG + rY cosB.
 Usually the axes Ox, Oy are so selected that r-o

 d) In equation 3) the quantity -7ffPu2 = e, can be considered as an energy.
 The sum u + ra = u' can be considered as a modified potential energy. Setting
 e - u' = f, and defining f as the static LAGRANGIAN Function (in analogy to the
 kinetics of solid bodies), the static analogue to the LAGRANGIAN kinetic equations

 d df df

 has the form d- dw -dO =o ,and in the present case is identical with

 the equation d + rv + m = o.

 Thereby the analogy of KIRCHHOFF is presented. Further discussions on
 this analogy are found in LOVE" Elasticity " 2d ed., p. 382, and W. HESs, " Math.
 Ann." Vol. 25, I885.

 e) EULER gives the method of treating the isoperimetric problem in chapter 5
 of " Methodus inveniendi," the German treatment of which, by P. STAcKEL,
 is contained in Number 46 of " Ostwald's Klassiker der exakten Wissenschaften."

 (K. HEUN).

 Note I, page 78.

 DANIEL BERNOULLI pointed out the potential force to EULER in a letter dated
 October 2o, 1742 (letter 26 in Vol. 2 of Fuss " Correspondance mathemat. et
 physique," Petersburg, I843). He says at the close of this letter: " Since no
 one is so completely the master of the isoperimetric method (i.e., the calculus
 of variations, which EULER founded as a special branch of analysis) as you are,
 you will very easily solve the following problem in which it is required that

 ds

 F R2 shall be a minimum." DANIEL BERNOuLLI knew of EULEs'S " Method of

 finding Curves," together with the supplement on elastic curves, before its
 appearance; for he spoke about these with great interest in his letters to EULER
 in 1743. See section 63 and note 30.
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 Note 2, page 78.
 For the special formulas employed here, compare Chapters II. and V. of EULER'S

 "Methodus inveniendi lineas curvas etc." (Vol. 46 of " Ostwald's Klassiker
 der exakten Wissenschaften," edited by P. STACKEL.)

 Note 3, page 8I.
 For this transformation of the co-ordinates, let the following facts be noticed:

 The new axes are again at right angles; the new x-axis forms an angle k with
 V dY PP -v

 the old x-axis defined by tan + = -. Putting P = dX' this gives p = Vp'

 and therefore I + p2 = (P2 + y2) (I + P2) (P+ yp)2
 Substituting this value in EULER'S last equation, namely

 2 'Va V I + p2 + pp i. y
 2-Va-V-i+p2 !2~JL... = Px - =yy + 8, gives the result

 ( + p2) -

 2 'V a - + p2 + p v/ p2 + y ...............X f2 +y zVavY'~?pVj~ +7 _ xV02 + 2
 (I + P2)

 Let P,1 = V P2 + y2
 Introducing lower case letters instead of capital letters gives

 2 V a VE I?+ p2 + Pip = P1x (I + p2) .

 Again, writing P for P1 this last equation reduces to the equation given in the
 text.

 Note 4, page 82.

 P I 2
 Put n =y, x = x1 + M - ay

 The quantities a, P, y, used here are, of course, different from those given at
 the beginning of this section. This gives

 n2x2 - ma2 = y (a + Pxt + yX12), and therefore
 dxl (a + PX1 + yX12)

 Va4 (a + fiX1 + yX12)2
 Omitting the subscript on x gives the next to the last equation in section 4 of
 the text.

 Note 5, page 89.
 Here EULER is thinking of NEWTON'S famous enumeration of curves of the

 third order. In the following discussion, AP (Fig. 6) is always the direction
 of the positive x-axis, and AB the direction of the positive y-axis. AB is also
 the direction of the external force. In section 5 the direction of the external
 force is parallel to the negative y-axis.

 Note 6, page 9I.
 The shape of the curve in the neighborhood of C can be also derived as

 u = a -, so that u2 = a2 represents a parabola. The curve, near C,
 C C

This content downloaded from 128.95.155.210 on Sun, 12 Nov 2017 16:15:37 UTC
All use subject to http://about.jstor.org/terms



 LEONHARD EULER S ELASTIC CURVES I53

 is approximately a parabola. If x is made very small in the original equa-

 a (a2 - c2) dx a 2 - c2 tion, then dy =,and therefore y =x, that
 c AV 2a2 - c A,/ 2 a2 -C2

 is, the curve has the form of a straight line in the neighborhood of A. This

 also follows from the fact that A is a point of flexion of the curve; for we have

 d2y a4

 dX2 = 2X V(c2 - X2)3 (2a2 - C2 + x2)3, which vanishes for x=o.
 The curve has flexion points for no other values of x.

 Note 7, page 92.

 The elastic curve has been treated in a few places, although not in detail, in
 "Methodus inveniendi lineas curvas " by EULER. (Vol. 46 of " Ostwald's Klas-
 siker der exakten Wissenschaften," pp. IIO, III, 127, 131.) In chapter 5, par. 46,
 EULER demonstrates the important property, that of all the curves of the same
 length which all pass through the same two points, the elastic curve is that one
 which, when rotated about an axis, generates the solid of greatest volume. He

 a2
 also mentions there the relation R =-: the radius of curvature is inversely

 2X

 proportional to the abscissa.

 Note 8, page 92.

 x c2 a2 C du

 If - = u, and 2 -a2 k2, then s - V za2- c2 V(I-u2) (ik2u2)

 that is, according to the definition of LEGENDRE, s is an elliptic function
 of the first order. By the same substitution, y is transformed into

 V2/ i-k2u2 du a2 du
 Y - a\/ 2a2 -C2 1/ I1 2 a 2 A/ 2- a C2 _ c (I-U2 ) (i - k2U2)
 The first member is an elliptic integral of the second order, and the second
 member is another such integral of the first order. Therefore the integration
 for s and y cannot be put into a condensed form.

 Note 9, page 93.

 The notation of the limits of the definite integral has been added for brevity,
 although they are not found in EULER'S work, the notation being first adopted
 by FOURIER in I822, in the " Traite analytique de la chaleur."

 Note IO, page 94.

 a x yA/ 2
 y - arc sin - gives x - c sin . In modern terminology, the

 2 c ~~~~~~a

 curve represented by this equation is called a sinusoidal curve. By the term
 trochoid is now meant a curtate or prolate cycloid; the sine curve can be
 considered as a special case of a curtate cycloid.

 Note Ii, page 95.

 With the aid of the Legendrian relation KE' + K'E - KK' = ir, the EULER
 relation 4bf = ir a2 is easily derived. (For the necessary formulas on the
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 elliptical integrals for this, compare for example, E. PASCAL "1 Repertorium
 der h6heren Mathematik," German ed. by A. ScHEPP, p. I56.) We have

 (a a2dX

 f OV (a- X2) (a2 + x2)
 Putting x = a coSqb gives

 a C do a
 = KJ I -S2Sj?2 = K. Further,

 b a xdx fDa dxVa/ +x J0 a a2dx

 J -a 2- -)(a 2 + x2') V a- x 8 - a-x2) (a2+x')
 Again, putting x = a coso, then

 a a

 b = a J dg I Bsin2, /-K = _ - (2E- K).
 As the formulas show, the complete integrals K and E belong, in this case, to

 the modulus k2 = j, and therefore i - k2 = I also. Putting i - k2 for k2
 in E and K transforms them into E' and K'. Here, therefore, K = K', and
 E = E'. The above LEGENDRIAN relation gives as a result the equation:
 KE' + K'E-KK'=2KE-K2=K(2E-K) = fir. Butbf = Ia'K (zE-K),
 and therefore 4bf = 7ra2. Another proof is found in TODHUNTER, " A History
 of the Theory of Elasticity," Cambridge, i886, Vol. I, p. 36.

 Note 12, page 96.

 In this calculation, the author has made an error. EULER puts b
 a a

 i.ir8o3206 instead of b = 1.830 --(this has been corrected in
 \/ 2 X I~~~.I803206 -%/ 2 (

 the text).

 It then follows that b = o.59896, that is, approximately o.6. From this follows
 a

 the formula f =-56 .i In EULER'S text is given the incorrect value
 6 2

 b
 _- = 0.834612.
 a

 Note r3, page 97.

 W. HESS treats the problem of elastic curves as an analogue to the oscillation
 of a pendulum, and gives a series of figures on the possible forms. (Mathem.
 Annalen 25, I885).

 The direction of the force in EULER'S curves of the fifth class, that is, the per-
 pendicular from A on AP, (Fig. 8), forms, in EULER's work, the angle
 900 + 400 41' = I300 41' with the curve. Hess gives 129.30. He took this
 angle from LEGENDRE'S Table of Elliptic Integrals; it consists of finding the
 value of the modulus k2 for which 2E - K vanishes. H. LINSENBARTH, editor
 of Volume 175 of " Ostwald's Klassiker der exakten Wissenschaften," says,
 in Note 25, p. 117 of that work, " As the editor has convinced himself, this gives
 also in this manner the value 1300 41', and in addition the verification of the
 calculation from EULER'S equation for v shows that EULER calculated correctly,
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 since otherwise the value 0.826I would obtain for v, instead of EuLm's value

 o.8259."

 Note 34, page 99.

 Here the well known relation loge n = logl0 n. loge io has been employed.

 loge IO = 2.302585. At the end of the section, L QOM is set equal to 20900o

 To derive this, let L QOM = p. Therefore tanp =

 dy 1c2 - $2 I-2cos82
 _ . ..--.. Setting x=c cos8 gives tanq>- 2snC cosO .
 xdx 'c2 22i cs

 Therefore tanq = cot (I800 - 20) = tan (26 - 900). Hence p = 29- 900.

 Note ii5, page ioo.

 If c is interchanged with g, the curve remains unchanged. Therefore the
 shape of the curve near G must be similar to the shape near C, except that the
 curvature at C is greater than at G. The perpendicular from G to Dd is therefore
 also a diameter of the curve, as is the perpendicular from C to Dd.

 Note i6, page I02.

 Equation I is the equation at the end of section 5, if x is replaced by t, h by c,
 and if mEk2 = -Pf. This relation is derived at the end of section I O. If the
 origin is translated from A to C, then I goes into II. The normal equation (III)
 of the elastic curve does not change, since in it only dy, and not y is moved when
 the x-axis is displaced parallel to itself. The origin will then be a suitable point
 of the straight line AB (Fig. 6). In this figure, the external force acts in the
 direction AB, as is the case in II at the point C. The change of sign before

 the dx in II is accounted for by the fact that in figure 3, section 5, the force acts
 in the direction of the negative y-axis, while in figure 6 it acts in the direction

 of the positive y-axis. (See note 5.) Therefore, since II and III are referred
 to the same co-ordinate axes, these equations can be brought into agreement.

 Note 17, page IO4.

 In this calculation EULER has made an error (corrected in the text). He used
 only the first four terms of the series expansion given in the text, and obtained

 the following value for f:

 37g5
 f= - 3 C4 which is less than g. From a glance at the figure, it is evident

 30C

 that f is greater than g. EULE seems to have overlooked this fact. The value
 for k is the same in both cases. The detailed calculation given in the text is
 not given in the original.

 Note i8, page io6.

 Here EULER refers to the formulas given in his " Methodus inveniendi lineas
 curvas," Chapter IV, sec. 7, II, p. 132.

 Note I9, page Io8.

 This relationship can be proved in detail as follows: Let any straight line CP,
 (Fig. 3) whose equation is Ax + By + C1 = o, be the axis. Then the moment
 of the force P at the point M (corresponing to the developments in sec. 5) equals
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 P.CP. Let the point M have, for the time being, the co-ordinates t and -q, giving
 the equation of MP as A (y -'q) - B (x- ) = o. If the point C be given
 the co-ordinates x = k, y = 1, then Ak + Bl + C1 = o, and the length of

 A (Il-q)-B (k-)
 the perpendicular from C to MP, i.e., CP, is given by A21-+9 B2

 The moment P.CP is, if t and -q be again replaced by x and y,
 P (Al - Bk) BP AP

 + B2 + V 2 2 x - V 2 + y, corresponding to a + ,V/A2 + B2 A2 + B2 A2 +B2
 fx - yy in the text.

 Note 20, page I12.
 The monograph of JOHN BERNOULLI " De Motu Reptorio " is found in the

 Acta Erudit., Aug. 1705 (Works I, p. 408.)

 Note 2I, page 11 3 .

 EULER himself further exercised his powers on both of these definite integrals,
 for he says in Vol. 4 of the " Institutiones Calculi Integralis " (Petersburg, 1794)
 on p. 339: "I recently found by a happy chance, with the aid of a quite unique

 Ct decose ar a dlsinso F
 method, that (see also sec. 54) J also A 2

 The curve analyzed here is the one whose natural equation is rs = a2

 This has been called the Klothide by CESARo. Particulars on this, and figures,
 which appear also in the above mentioned work by EULER, are found in LORIA
 " Spezielle algebraische und transzendente Kurven der Ebene," German ed.
 by F. SCHIYTTe, Leipzig, 1902, P. 458.

 Note 22, page 114.

 Namely, consider the interval from zero to infinity to be divided up into the
 following parts: i. from o to ir, 2. from i to 21T, 3. from 21r to 3'r, etc. Then

 b " dv sin v {82X dv sin V r3 dv sin v

 X=2----J +jv + f v V +. .
 Putting v = vL + i in the second integral, v = V2 + 2ir in the third integral,
 etc., gives

 b [ r dv sin v 1 dv1sinv r dv2sin V
 2 L IJo N\/ v J VV,1 +s lr v V2 + 2XT

 Since the relation between the variables is immaterial in the definite integral,
 v can be put equal to v = vL = V2 = V3 = ... Similarly the value for y may
 be obtained.

 Note 23, page 127.

 The Latin text reads "...; indeque auferendo logarithmum sinus totius,...,"
 or " and subtracting from it the logarithm of the entire sine," instead of " and
 subtracting ten from it " as given in the text. The original is apparently a misprint
 of some nature. The reading in the text conforms to the method of procedure
 as given in sec. 31.
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 N"ote 24, page 128.

 Let p transformed into seconds give the number ,B. Then, in radians,

 'k5'=P Th6 2- Therefore log log log-This last logarithm is
 x8o.6o2 ITf

 5.3i44... This explains the appearance of this number in sections 73, 74, and 85.

 In order to get loge coti e EULER used the known formula loge cotj # = I
 M

 log,5 cot,ck. To carry out the multiplication on the right side, he again used

 common logarithms. Log10 M= 0.362215... From this the appearance of this

 number in the second part of the tabular calculations is understood. At the

 end of the calculations, EULER used the reguli falsi, as also in sec. 85.

 Note 25, page 129.

 A
 The formula - = tangp, which has not as yet been derived, is easily found

 in the following manner: Adding the first two formulas of sec. 70, which contain
 only A and B, gives

 a
 - ~~~a a

 2Ae C 2 Bsin - + 2Acos.5 = o, or, since sin - = cos p, and
 c c c

 a
 a

 cos - -- sin p, and e c = cot-hV,
 c

 A A
 cos ' = B (cotgp - sin') = - cot- (I - 2sin21')

 B ~~B

 or cos > = A cot7g9p cosqp. Therefore B = tan-h,.

 Note 26, page 131.
 Here EULER refers to the difference between the oscillations of bodies which

 are elastic due to stretching-a taut chord, corda elastica, and those which are
 elastic due to stiffness-an elastic ribbon, lamina elastica.

 Note 27, page 133.
 If the lower tone is C, then the higher tone is slightly lower than G sharp.

 If C has the frequency N, then G sharp has the frequency 245 N (that is, 6 AO6
 instead of 6 4 as according to EULER'S calculations). See the note on section 79.

 Note 28, page 133.
 5ir 5-rr 5ir

 Approximately e 2 (I + p) = . Therefore e 2 + ck e 2 =

 5Sr

 By the first approximation in the text, however, c e 2 = 2.

 2 2
 Therefore = e 2 + 2, i. e., =5

 x + ie2
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 Letting v = 2 t/gEk h , then to the various modes of vibration a2

 correspond the tones having the frequencies
 5 2 7 2

 I.8I52 V, 4.69 V, 92 ( -) V, ..... All these tones

 have been sought out experimentally by CHLADNI, (" Akustik," Leipzig 1802,

 PP. 94-103). They are, Ls he also found for the following cases, in the best
 agreement with EuLmE's results.(See note 30.)

 Note 29, page 136.

 a
 The case - = o, which appears frequently in the following sections, is

 c

 derived as follows: Since a is not zero, then c = xo . That is, since c4 =
 Ek2 af,

 M ' fmust equal 00 . The corresponding isochronous pendulum is infi-
 nitely long, and the time for one oscillation is infinite. An infinitely long time
 is needed to produce an oscillation in the ribbon, i.e., it remains at rest.

 Note 30, page 137.

 Only the case of the oscillation with one knot point, represented in Fig. 23,
 is excluded in free elastic ribbons, not the others. DANIEL BERNOULLI expressed
 his astonishment at EULER'S error in a letter of Sept. 4, 1743. (Letter 30 in
 the " Correspondance math. et physique," by Fuss). " These oscillations arise
 freely, and I have determined various conditions, and have performed a great
 many beautiful experiments on the- position of the knot, points and the pitch
 of the tone, which agree beautifully with the theory. I hesitated whether I should
 not strike out from the supplement the few words which you say about the matter."

 In the " Acta Acad. Petrop. " 1779, Part I, P. 103, EULER again takes up the
 investigation of oscillating ribbons from other points of view, and admits of
 oscillations with an uneven number of knot points without more ado. There
 he also treats six classes of oscillations, with consideration of the ends of the ribbon
 -whether free, fixed on supports, or set in a wall-while here he treats only
 four classes. LoRD RAYLEIGH, in Chapter VIII of the " Theorie des Schalles "
 (German ed. by Fr. NEEsEN, Braunschweig I879), gives a comprehensive presenta-
 tion of the transversal oscillations of elastic ribbons. In that very place, for
 instance, he considers the free oscillations with three knot points. See also
 STIEHLKE, " Poggendorf's Anrnalen " vol. 27, and A. SEEBECK, " Abhandl. d.
 Kgl. Slichs. Gesellschaft der Wissensch." I852.

 Note 31, page 139.

 The deviation in the left table is incorrect. It should read - 2621559, namely
 4.73003... - 4.73029... The angle S, then, does lie between IO-O'-40" and

 IO-I'-O". Letting c = IO-O'-40" + n, the rule of false values gives ,,=

 53 7 +25-59 . This gives n = 0.9402, and hence 10 = b-o'-40.9402".
 This value appears, for example, in RAYLEIGH'S " Theorie des Schalles," vol. I,

 p. 298 ff. Then -- = 4.7300408 for the correct value. Since the mistake has
 C
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 no influence until the fifth decimal place, the further numerical values are correct
 to that place. In this and the following section, the correct values are inserted.

 Note 32, page 141.

 a a 2 COS-
 2c 2c 2 C

 EuLERhad, incorrectly, e + e = + -. Since
 A/ a

 cos--

 a a
 2700-'-40.94", then cos - = cOs 1350-0'-20*47` is necessarily negative.
 c 2 C

 Therefore the right side of the formula has a positive value, as must be true

 a a

 a _ (I -sin-) + cos--- e 2c +e 2- = ec v/e VL=(c c
 t/ a a COS ---t I sin_!.

 This value has already been used to calculate

 (A e c + Be-c ). Introducing half angles,

 2 a a a
 4 2 Cos (2C) -2 Cos 2 C sin 2 C

 e 2c + e-: cos a / a a . a a
 / -__sn + COS2--. - 2sm ---- cos
 C / 2 C 2 C 2 C 2C

 az a a a
 2 cOS (cos --- sin ) 2 cos

 2 C 2 C 2 C 2 C
 - - ______. For the second

 a a

 root in the denominator, sin------ - cos- is used, since this value is positive.
 2C 2 C

 The formulas of sec. 89 are changed from EULER'S text to the correct values
 derived here. The last formula is correct in the text, and hence the numerical

 Cc
 values are correct. A- is negative, since in Fig. 22 these ordinates have opposite

 directions.

 Note 33, page I45.

 It should be noticed about the tone intervals under consideration that:
 i6o

 i) the first interval,-is, in the C-major scale, the interval from the base note

 C to F sharp of the next higher octave (2.78 instead of 2.8I); 2) the second
 interval, 4:I, is that of the base tone C to the C two octaves higher; 3) the third
 interval, 9:i, reaches from C as the base note to the note D which lies three octaves
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 higher. In connection with the practical working out of these oscillations, which
 ]EULER considered difficult, see CHLADNI, " Akustik," p. 99.

 Note 34, page I47.
 This agreement takes place for all modes of vibration. EULER's differing

 statement comes from the fact that he rejects, for free ribbons, the oscillations
 for an uneven number of knots. See note 30.

 Note 35, page I48.
 These experiments, which are very important for technique, have been performed

 in a most fruitful fashion. However, the formulas given here do not lead to
 useful results, since they do not take into consideration the cross section of the
 elastic ribbon. See, for example, KuPFmER, " Recherches exp6rimentales sur
 1'6lasticitd des m6taux." St. P6tersbourg, i86o.
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