
216 THE MATHEMATICAL GAZETTE. 

OPERATIONAL METHODS IN MATHEMATICAL PHYSICS. 
BY PROF. H. S. CARSLAW, SC.D. 

? 1. This essay-review of Jeffreys' very welcome and valuable Tract with 
the above title * has been written at the editor's request. Many readers of the 
Gazette must have heard of Heaviside's operational method of solving the 
equations of dynamics and mathematical physics. If they have tried to learn 
about them from Heaviside's own works, they have attempted a difficult task. 
Nothing more obscure than his mathematical writings is known to me. A 
Cambridge Tract is now at their disposal. From it much may be learned; 
but the air of mystery still-at least in part-remains. 

In every course on differential equations the student learns to solve by a 
symbolical method the linear differential equation with constant coefficients. 
He writes the equation: 

dnx dn-lx 
ao dtn + al dtn- + + anx T, 

as f(D)x =T, and he finds a particular integral with the help of the inverse 
operator. 

Part of Jeffreys' Tract deals with an extension of this method. The solution 
of the linear differential equation with constant coefficients (or equations, if 
we are concerned with simultaneous equations) is found, satisfying the given 
initial conditions, and this without the trouble of finding the arbitrary con- 
stants of the complementary function and the relation between them. In this 
section there is no serious difficulty. But I wonder if the time saved in the 
solution of the equations is worth the labour involved in learning (or teaching) 
the new method. 

The other, and more important, part of the Tract deals with something 
much more obscure, Heaviside's operational method. What this is will appear 
from an example taken from his writings,t the simple heat conduction problem, 
where a solid bounded by the plane x-O, and extending to infinity in the 
direction of the positive axis of x, has its plane surface kept at the constant 
temperature v0, the initial temperature through the solid being zero. 

In this problem we have to find v to satisfy: 
av a2v 

t=k - , whenx> 0, t> 0; ..........................1. 1 
?)t a)x2 

v=v0, when x = , t > 0, ..........................1. 2 

v=0, when x > O, t = 0. ..........................1. 3 

Putting t =p = kq2, we have 

a2v 
2 =q2v ; 

and a suitable formal solution is 
v e-qzvO 

X2 
(1 -qx+q22- ...)v . .................................1. 4 

Now p stand for - and Heaviside found that if we interpret pl, operating 

on 1, as (7rt)-, and obtain p, p', ... from pl by differentiation, the symbolical 
* Cambridge Tracts in Mathematics and Mathematical Physics. No. 23, by Harold Jeffreys, 

(Camb. Univ. Press), 1927. Price 6s. 6d. net. 

t Electromagnetic Theory, by Oliver Heaviside, vol. 2, p. 13, 1899. 
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OPERATIONAL METHODS IN MATHEMATICAL PHYSICS. 217 

solution given in 1. 4, and similar solutions of other problems of the same 
kind, do really satisfy the equations from which we start. 

In this case,* beginning with p l . 1 = - we have 

p~. I D 1 - 1 -_ 
pt (. 

. 1 (t) - 2/- 
3 1.3 1 - and pS. 1 =p. p . 1 = 2 -- t , etc. 

And p, p2, etc., operating on 1, give zero. 
Interpreting the symbols in 1. 4 in this way, we have 

2 x 1 x 3 1 x 5 } 
v: 1 /r 2 v(kt)-3 \2/(kt) 

+ 2 5 2/V(kt)- vo? 

2 X2- f e-- U =v0 (1 - 2f2v(kt) e-U du 

=o ( -Erf2v(kt))' 

with the usual notation for the " error function," 
2 e-du. Erfx= 2 Xe-du. 

? 2. Heaviside himself hardly claimed that he had " proved " his operational 
method of solving these partial differential equations to be valid. With him t 
mathematics was of two kinds: Rigorous and Physical. The former was 
Narrow: the latter Bold and Broad. And the thing that mattered was that 
the Bold and Broad Mathematics got the results. "To have to stop to 
formulate rigorous demonstrations would put a stop to most physico-mathe- 
matical enquiries." Only the purist had to be sure of the validity of the 
processes employed. 

Jeffreys (p. 47) agrees that the arguments upon which Heaviside relies are 
"in many cases suggestive rather than demonstrative." And he seems to 
think his Tract places the operational method on another plane. But, if I may 
say so, there is too much of the Bold and Broad School in the work. It leaves 
me still doubtful if it is wise to make this method one of the tools of the mathe- 
matical physicist. There is no room for mystery in mathematics. If we can 
be clear, let us be so. And for my part I consider the best way of attacking 
many of these questions is to use contour integrals. It is only in England 
and America that the mathematical physicist is afraid of the elementary theory 
of the functions of a complex variable required in this method. And surely 
he need not indulge this fear in Cambridge. To adopt the words of Heaviside, 
which Jeffreys takes for the motto of his Tract,- 

Even Cambridge mathematicians deserve justice. 

*If p stands for one would expect p-1 to denote integration. Then, for positive at' 
integral values of n, we would have 

tn tn 
p-n 1 == 

n!P r(n+l) 
If this final formula is to hold for fractional values of n, we would have 

ti t -. 1 =r(i) = 2 . 

And pi.l1 =.p- . 1 

t Cf. loc. cit., p. 4. 
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218 THE MATHEMATICAL GAZETTE. 

? 3. Turn now to Chapter I. of the Tract. This deals with the solution of 
the equations: 

ellyl + e12Y2 + ... + elnYn = 

e2lyl + e22y2 +... + e2nYn S2 
..................... 3 . 1 

: : : : ; : : : : ............ ............... 

enlYl + e?22 +Y2 + enlYn = 
- 

Sn 

where the y's are dependent variables, x the independent variable, ers denotes 

ars + brs where ars and brs are constants, and the S's are known functions 

of x. It is not assumed that ars=asr, brs=bsr, but it is assumed that the 
determinant formed by the a's is not zero, and that when x=0, we have 
y=ul, and so on, the u's being known constants. 

Now let Q stand for the operation of integrating with regard to x from 

0to x, so that Qy= ydx. 

Perform the operation Q on both sides of each equation in 3. 1. 

Then we have Qerys = (ars - + brsYs) dx 

=ars(ys - Us) + brsQYs 

=frsY s - arsus, . .. . ............................... 3. 2 

where frs = ars + brsQ .. ......................................3. 3 
Thus the equations 3. 1 and the initial conditions are together equivalent 

to the equations: 
fllY1 +f12Y2 + .* +flnYn =vi + Q S1 j 
.................. ... 

J. 3.4 

fnlYl +fn2Y2 + ... +fnnYn + QSn 

. 

where vr= aurlu + ar2t2 + ... + arnUn. 
Let A stand for the operational determinant formed by thef's, 

i.e. A= f- 2 f12,' *, fin 
f21V f229 ...* f2n 
........................ . ........................... 3 . 5 

fnl, fn2 .... , fnn 

If A is expanded by the ordinary rules of algebra, and equal powers of 
Q collected, we obtain a polynomial in Q. The term independent of Q is the 
determinant formed by the a's, and, by hypothesis, this does not vanish. 
Let Frs be the co-factor offrs in A. Then Frs is also a polynomial in Q. 

Operate on the first equation of 3. 4 with Fls, on the second with F2S, etc., 
and add. The only term in the sum which does not vanish is 

E (rsfrs)ys or Ay.s 

Therefore AYs= F1rs(Vr + QSr)3 ........................3. 6 
r=l 

And 
Ys={ Frs(vr+QS3r) 

A (Q) + 
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OPERATIONAL METIIODS IN MATHEMATICAL PHYSICS. 219 

where < (Q) and (Q) are polynomials in Q, whose degree is ordinarily one 
less than that of A(Q). 

The formal solution of 3. 7 can now be treated in the same way as the 
particular integral of f(D)y= X is found in elementary work. 

The operator on the right can be expanded in ascending powers of Q, and 
evaluated term by term; of course on the understanding that, if this gives 
rise to an infinite series, the S's are such that this series converges. 

Alternatively the expressions ' , etc., can be broken up into partial 
fractions. Since the determinant formed by the a's is not zero, we may 
denote it by A, and A(Q) takes the form A(1-a,Q) (1-a2Q) ... (1-anQ) 
where the a's are ordinarily different. 

A fraction of the type 1 - Q, operating upon a constant L, will give a term 

Leax; and, operating upon QS, it will give a term esxf Se - x dx. 
/o 

The case of repeated roots a is discussed in the text. And the argument 
is throughout quite similar to the usual treatment of the equation f(D) y =X. 

? 4. If now, with Heaviside, we write p-1 for Q, the equations 3.4 become 
(all +bllp-l)yl +(al2+bl2P-1)y2+ ..(aln +blnp-l)yn=-vl +p-l-S1 
(a21 +b21p-l,)Yl +(a22 +b22p-1)y2+ ..(a2 +b2nP-1)yn=v2 +p-lSa2 4 1 

(anl + bnlp-1) Y + (an2 + bnap-l)y2 + . * (ann + bnnp-')yn = n +p-Sn 
Multiply throughout by p, as if it were a mere number. Then we have 

(allp +:b1)yl +(a12p + b2)y2 +... +(alnP + bn)Yn =PV1 + S1 
............................................................................... .. .....4 .2 

(amnp + b1 )y1 + (an2P + bn2) Y2 + ... (annP + bnn) Yn =pv1 + Sn , 
Solve the n equations of 4. 2 by ordinary algebra, and we obtain a solution 

identical with that of 3. 7, except that p-1 will take the place of Q, and both 
numerator and denominator will be multiplied by the same power of p. 

We write this solution as 

Ys = F rs(pVr r +r) } ............................4. 3 

where Frs and the determinant A are not to be confused with the same 
operational symbols in 3. 6. 

The operators on the right of 4. 3 are of the form f(p)/F(p), wheref(p) 
and F(p) are polynomials in p, F(p) being of degree n andf (p) of the same 
or lower degree. Resolving F(p) into its n factors, supposed all different, 
we have the algebraical identity, 

f(p) f(O) f(a) 1 
pF(p) F(O)p + aF'(a)p - a 

whence f(p)f(O) + f(a) p 
F(p) F(O) a aF'a) p-a 

If this operates on unity, the term p gives rise to ear, and * 
p-a 

f(p) 1 (O) a(a) 44 F(p) 
' 
:F-- 

+ 
aF(oe . ........ .................. 

If it operates on exr, we replace ewx by P . 1. 
/p-k 

* This is usually known as Heaviside's Expansion Theorem, or the Partial Fraction Rule. 
Cf. loc. cit., p. 127. 
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THE MATHEMATICAL GAZETTE. 

Then f(p) - f(p) 
F-(p) '_(p _ 1) F(p) . 

^{ZA ^LO I f( a) 1 .f 
p(i() p- , (a - )Ft7/(() p - a 

f(!) e~x + I f((t)eax -Z^ ̂ +2)(a) eax. 
=F([) , (a - i)F'((a) 

If S is expressed as a linear combination of exponentials, we can apply this 
rule to each separately. Thus the solution applies to practically all functions 
known to physics. 

It will be seen that in this section we replace d/dx in the original equations 
of 3. 1 by p, and to the right of each equation add the result of dropping the 
b's on the left and replacing the y's by their initial values. Then we proceed 
to solve these equations by ordinary algebra, and interpret our result by 
certain simple rules. 

In this argument, in which I have followed the Tract pretty closely, there 
does not seem any lack of rigour, though there is just a little mystery left 
about p, for it is only p-1 which has been defined. It is obvious that in this 
discussion p is not just the operation of differentiation, for in that case pvr, 
etc., would vanish. 

If the reader wishes a proof on other lines, he has in Chapter II. an inde- 
pendent discussion based on Bromwich's interpretation of a function of p as 
a contour integral.* His proof for these dynamical equations is completely 
satisfactory. 

? 5. This work can be at once extended to equations of a higher order by 
breaking them up into equations of the first order. 

For example, take the equation 
d2y dy dy + ad 

+ 

by=X, ................................. dX2 dx 
where a, b are constants, and X is a function of x. The solution is also to 

satisfy y= y and = Yl, when x =0. 

Introduce a new variable z given by z =d- 

Then 5. 1 is replaced by the two equations: 

+ az by .................................. 

d x2 

Operating on these with Q, we have 

(z - y1)+aQz +bQy = X 3 
Qz -(y -y)) =0 

Thus (p+a)z+by= py +X 5 4 
z -py -pyo J 

Solving 5. 4 by algebra, we have 

(p2 +ap +b)y=(p2+ap)yo +py, +X, 

and p2 + a(p + b 
Let the roots of p2 + ap + b = be a and ,3. 

* The revived interest in Heaviside's operational method is due chiefly to a paper by Brom- 
wich on " Normal Co-ordinates in Dynamical Systems," Proc. London Math. Soc. (2), vol. 15, 
1916, and to other papers of his in which the method is freely used. 

220 
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OPERATIONAL METHODS IN MATHEMATICAL PHYSICS. 221 

Then from 5. 5, 

f (p+ +yi a yo_JJL -y --L 
(p-a)(p - (a-/) -a p 

Therefore 

1 1 3 1 
y a- ][p-(Yi - /o) p (yl-ay)} + - ..5.6 

Now P 1 . 1 = e. 
p-a 1 -aQ 

And l X = Q X= eax fXe--xdx. 
p-a 1 -aQ 

Thus 

=a t-l) (yX- 3y)eaxd-(Y?i-ay)e#x+efx X e-exdx-ex Xe -xdx . 5.7 

Worked-out examples of the solution of equations of this type are given 
on p. 14 of the Tract. It will be seen that to solve 

d2y dy + 
dx + a +by=X, 

subject to the initial conditions, we write down what Jeffreys calls the sub- 
sidiary equation 

(p2+ap+b)y =(p2+ ap)yo +py + X, 

and proceed thereafter according to quite simple rules. The work is certainly 
much shorter than when the usual method is followed. 

? 6. If Heaviside's operational method were simply that described and 
proved in ?? 3-4, it would not have been the cause of so much debate. But 
we have pointed out in ? 1 that it was used by him in the treatment of the 
partial differential equations of mathematical physics. Indeed most of his 
researches in electric waves are carried out with its aid. 

Jeffreys still leaves much that is mysterious in this connection. He deals 
a2y a2 I 

in Chapters IV. and V. with the equations c2 of wave motion and 
av D 2v at 
a =k - of heat conduction. In the case of the former he says (p. 41), " we 

are led by our previous rules to consider the subsidiary equation" 
((o2 - c2p2)y =o2f(x) +o-F(x), 

where cr stands for , p for a, and the initial values of y and a aref(x) and xat aeax' t 
F(x). And p. 53, which he devotes to the " proof," does not help us much. 

Again in the case of the heat equation (p. 55), he writes down the subsidiary 
equation 

a2v 
ov - k o =v0, 

a 
where o- at', and v = v0, when t = 0. His justification of the operational method 

is eleven lines on p. 66. 
Bromwich, on whose work he relies, admits that he has not given a complete 

proof of the validity of his solutions in the case of continuous systems. In 
his own words * all that he has done is to " establish an analogy " between 
the formulae he uses for the operational method in the solution of the partial 
differential equations and that which he has proved for the dynamical equations 
and discrete systems. 

* Cf. loc. cit., Proc. London Math. Soc. (2), vol. 15, 1916, p. 421. But see also pp. 438 et seq. 
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222 THE MATHEMATICAL GAZETTE. 

In this matter I think Jeffreys' Tract is subject to criticism. Heaviside 
was quite open about it. He belonged to the Bold and Broad School. 
Jeffreys, we take it, to be of the Cambridge School, in which Mathematics is 
Mathematics. It is true that he obtains correct solutions of the problems he 
discusses. But it seems to me that too little is said in justification of the 
method employed. 

? 7. I take as an example his solution of the problem of pp. 59 and 60 by 
the operational method, and in the next section I give the solution by the 
method of contour integrals and the standard path adopted by myself. His 
problem requires the solution of the following: 

acv k2 when 0<x<l, andt>O0 .....................7.1 
<at ax2' 

'v 
-- hv O, when x =0, and t > 0 .....................7. 2 

ax 
v =tv0, when x = l, and t > 0 ..................... 7.3 
v = v, when 0 < x< l, and t =0 7 .....................7.4 

The equation 7. 1 is replaced by the subsidiary equation 
a2v 

x 
- 2 v = - q2 , ...................................7. 5 

where t =r kq2 
Then 7. 3 and 7. 5 suggest 

v=( -A sinhq(l -x))vo, 
and 7. 4 shows that A should satisfy 

qA cosh ql - hvo(1 - A sinh ql) =0. 
Thus we have the operational solution 

(1 h sinh q( x) ........................7. 6 
q cosh ql + h sinh ql 

The values of o- which satisfy q cosh ql + h sinh ql =0 are real and negative, 
and one form of the solution is given by the Partial Fraction Rule of ? 4, 
except that in this case the denominator has an infinite number of zeros. 

Again, we may write 7. 6 as 

v[ heqx (1 e _2q(l_x))(1 
- 

h 2 7.7 
+l h-A q+he-2ql-..V .......V.. 

If the length 1 is great enough to make the terms in e-2ql, etc., negligible, 
this reduces to the first two terms, 

v [1-he-x] vo .... .............. 7.8 

Now q=4k and Bromwich's Rule (Ch. II. ?2. 1), with an obvious change 

in the notation, gives 
e-qx 1 IC+t X/ k e ( l d- ) 

q+h 27rl Vc- +hV/kexP (tt < -X. 
Put A2 = and take the corresponding path in the A-plane. 
The solution is then found to be 

v vo Erf2(kt exp(h2kt+hx) (-Erf +2hkt)} * 7* 9 
~2 VA ( kt)k 2 V/(kt) . ........ 

? 8. Now dropping all talk about operational methods and returning to 
ordinary mathematics and contour integrals, let us find the solution of the 
problem of ? 7. 
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OPERATIONAL METHODS IN MATHEMATICAL PHYSICS. 223 

It is convenient in all these heat problems to have the initial temperature 
throughout the solid zero, so we put v = v + u in the equations 7. 1 to 7. 4. 

Thus we have 
at 

=k 2?, when0< x< 1, and t> .....................8.1 

- hu=hvo, when x=, andt>0 ......................8.2 

u=0, when x=, and t>0 .....................8.3 
u=0, when 0 < x < 1, and t =0 . .....................8. 4 

Equations 8. 1 and 8. 3 are satisfied by 
Ae-ka2t sin a ( - x). 

From 8. 2 we see that A should satisfy 
A (a cos al + h sin al)=- hvo. .............................8. 5 

Then we take the standard path (P) * of Fig. 1 in the a-plane chosen so that 
at infinity on the right the argument of a lies between 0 and Jr, and on the left 
between Jr and 7r. 

-oo O 

The path (P) in the a-plane 
FIG. 1. 

It will be seen that, when we take the integral over this path (P), 

u 

- hvo e - at sina(l-x) da ...8.6 r j a cos al + h sin al a . ........ 
satisfies 8. 1, 8. 2, and 8. 3. 

We have still to prove that this value of u vanishes when t=0; that is, 
we have to show that 

j sina(l-x) da .. 
p acosal + hsinal a ...... 

is zero. 
Take the closed circuit of Fig. 2, consisting of the path (P), and the arc of 

a circle, centre at the origin, lying above this path. 

/ 

/ 
/ 

\ 

- o FIG. 2. oo 

* In this section I follow the method and use the diagrams of Chapter XI. of my book on Conduction of Heat (Ed. 1921). See also Chapter X. ?? 80-90. 
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224 THE MATHEMATICAL GAZETTE. 

The roots of a cos al +h sin al=0 are infinite in number, and all lie on the 
real axis in the a-plane, to each positive root a, corresponding a negative 
root - a. 

There are thus no poles of the integrand of 8. 7 in the closed contour of 
Fig. 2, and the integral round it vanishes. But, when the radius of the circle 
tends to infinity, the integral over the circular arc vanishes. 

It follows that 

[ asina(I-x) da 
pa cos al+h sina a 

is zero. 
Thus we have established that the function given by 8. 6 satisfies all the 

conditions of our problem. 
We have now only to express this solution in real terms. 

(i) As the integrand of 8. 6 is an odd function of a, on dividing by 2 we 
can replace the path (P) of Fig. 1 by the path (Q) of Fig. 3, since the integral 
over the dotted arcs vanishes at infinity. 

!Ir~< I 

I I 

! ! 

> 

The path (Q) in the a-plane 
FIG. 3. 

In this way we have, from 8. 6, 

hev X -eka2t sin a ( -x) da 
2t,7r q a cosal+ h sinal a 

x i-9 sina.(l -x) -iar2t 
ho- V\-- + 2- e r, , 8. 8 

1 +hl I + 
2 

(1 +hl)cos arl - arl sin a, a J 

by the Theory of Residues. 
This result corresponds to that given by Heaviside's Partial Fraction Rule. 
(ii) Again, we can write 8. 6 in the form 

etl ix 1 -e2ta(l -) da . 9 
7or'> h-,lnha a1 +ih -t( e2al 

h - a 

For a first approximation, I being large, we have 

h v e ka2t +ta d( 
Lr . p a(h - La) 

- 
-- ie --kait+LaX ( a)da.8. 

1 
L-^ 

f e ka.^+.ax('- \da . ...................... 8.10 
T7r a a+i/h 

We take the two parts of this integral separately. 
For the first, as in Fig. 4, we can deform the path (P) into the real axis in 

the a-plane and a semicircle (vanishing in the limit) at the origin. 

FIG. 4. 

FIa. 4. 
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It follows that 
I1if j c?,a,,-- da 2 ` 

s2tsin ax 
e- -a2t + -: 1- e-kata da a - I0 t7r. p (a 7a0 U 

= l- Erf (kt). .........................8.11 
2\/(kt)8 

For the second, a similar deformation of the path (P) into the line a +h h=0 
and a small semicircle at (0, - Lh), shows that 

- e-ka2t+Lax da =eh2kt+hx(1_2 1 e - ,f2t sin f(x+ 2hkt) 
L-kJ a+tX d TT 

ehkt+ x -Erf 2kt) ........................8. 12 
2\/(kt) 

Thus from 8. 10, 8. 11, 8. 12: 

v=+vo=v (Erf 2(kt) +exp (h2kt+hx) ( -Erf 2hkt) 8.13 
22/(kt)/' 2 "\' . 13 

as in 7. 9. 
In Chapter XI. of my book on Conduction of Heat a number of examples 

will be found worked out in this way. The application to the general case 
follows when the Green's Function, expressed by similar contour integrals,t 
is used. 

Sydney, Australia. H. S. CARSLAW. 

The following notes from Dr. Jeffreys and Dr. Bromwich explain them- 
selves : 

I think Prof. Carslaw has missed a point in his third paragraph, where 
he describes part of the tract as dealing with an extension of the usual 
method of finding a particular integral by means of the expansion of the 
inverse operator 1/f (D). The method I give is not an extension of this older 
method, but a substitute for it. Whereas in the older method the funda- 
mental operator is D ( = ddx), in mine it is Q or p-1, which by definition means 
definite integration. p as such is not defined, because it never occurs in actual 
solutions. The principal advantage is the much greater generality of the 
method. Whereas it is the normal occurrence for an expansion of an operator 
in powers of Q to give an intelligible and unique answer, this happens with 
a series in powers of D only in freak cases where the series happens to ter- 
minate, or where the function operated on is a polynomial or an exponential, 
and special treatment is necessary in every type of application to show that 
the result actually satisfies the differential equation. In fact I think that no 
possible difficulty in dealing with the new method would excuse persisting in 
the obscurity of the old one, quite apart from the fact that it avoids the 
troublesome solution of the terminal conditions to determine. the so-called 
arbitrary constants. 

With regard to the comparative desirability of direct operational methods 
and complex integrals, I think they both have their spheres of application. 
It must be noticed that the operational method, when applied to sets of 
ordinary differential equations, is a special case of the method developed by 
Caque, Fuchs, and Baker for linear equations even with variable coefficients, 
which is a practical method of the highest importance on its own account. 
It should be better known, partly because it gives a direct proof that solutions 
can actually be found to satisfy given terminal conditions, and partly because 
it tends to correct the idea of the average student that the solution of a 
differential equation consists necessarily and entirely in getting a formal 
answer in finite terms. I have the highest respect for complex integrals in 
their place, but their application to differential equations with variable 

* Cf. my book on Fourier's Series and Integrals (Ed. 1921) Ex. 13 p. 195. 

t Cf. Ioc. cit., Chapter X 

It follows that 
I1if j c?,a,,-- da 2 ` 

s2tsin ax 
e- -a2t + -: 1- e-kata da a - I0 t7r. p (a 7a0 U 

= l- Erf (kt). .........................8.11 
2\/(kt)8 

For the second, a similar deformation of the path (P) into the line a +h h=0 
and a small semicircle at (0, - Lh), shows that 

- e-ka2t+Lax da =eh2kt+hx(1_2 1 e - ,f2t sin f(x+ 2hkt) 
L-kJ a+tX d TT 

ehkt+ x -Erf 2kt) ........................8. 12 
2\/(kt) 

Thus from 8. 10, 8. 11, 8. 12: 

v=+vo=v (Erf 2(kt) +exp (h2kt+hx) ( -Erf 2hkt) 8.13 
22/(kt)/' 2 "\' . 13 

as in 7. 9. 
In Chapter XI. of my book on Conduction of Heat a number of examples 

will be found worked out in this way. The application to the general case 
follows when the Green's Function, expressed by similar contour integrals,t 
is used. 

Sydney, Australia. H. S. CARSLAW. 

The following notes from Dr. Jeffreys and Dr. Bromwich explain them- 
selves : 

I think Prof. Carslaw has missed a point in his third paragraph, where 
he describes part of the tract as dealing with an extension of the usual 
method of finding a particular integral by means of the expansion of the 
inverse operator 1/f (D). The method I give is not an extension of this older 
method, but a substitute for it. Whereas in the older method the funda- 
mental operator is D ( = ddx), in mine it is Q or p-1, which by definition means 
definite integration. p as such is not defined, because it never occurs in actual 
solutions. The principal advantage is the much greater generality of the 
method. Whereas it is the normal occurrence for an expansion of an operator 
in powers of Q to give an intelligible and unique answer, this happens with 
a series in powers of D only in freak cases where the series happens to ter- 
minate, or where the function operated on is a polynomial or an exponential, 
and special treatment is necessary in every type of application to show that 
the result actually satisfies the differential equation. In fact I think that no 
possible difficulty in dealing with the new method would excuse persisting in 
the obscurity of the old one, quite apart from the fact that it avoids the 
troublesome solution of the terminal conditions to determine. the so-called 
arbitrary constants. 

With regard to the comparative desirability of direct operational methods 
and complex integrals, I think they both have their spheres of application. 
It must be noticed that the operational method, when applied to sets of 
ordinary differential equations, is a special case of the method developed by 
Caque, Fuchs, and Baker for linear equations even with variable coefficients, 
which is a practical method of the highest importance on its own account. 
It should be better known, partly because it gives a direct proof that solutions 
can actually be found to satisfy given terminal conditions, and partly because 
it tends to correct the idea of the average student that the solution of a 
differential equation consists necessarily and entirely in getting a formal 
answer in finite terms. I have the highest respect for complex integrals in 
their place, but their application to differential equations with variable 

* Cf. my book on Fourier's Series and Integrals (Ed. 1921) Ex. 13 p. 195. 

t Cf. Ioc. cit., Chapter X 
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