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SUMMARY
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomol-
gusmonkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of
physiological, imaging, histological, and molecular evaluations, substantiating metformin’s influence on de-
laying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics,
DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and
applied these to gauge metformin’s effects on aging. The results highlighted a significant slowing of aging
indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective
effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neu-
rons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities.
Our research pioneers the systemic reduction of multi-dimensional biological age in primates through met-
formin, paving the way for advancing pharmaceutical strategies against human aging.
Cell 187, 1–21, October 31, 2024 ª 2024 Elsevier Inc. 1
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INTRODUCTION

Aging, a progressive process, induces tissue dysfunction and

physiological deterioration, culminating in the emergence of

age-related conditions, including neurodegenerative, cardiovas-

cular, and diabetic disorders.1–5 Notably, accumulating evi-

dence suggests that aspects of aging are malleable in rodents

through interventions including small-molecule drugs, genetic

manipulations, exercise, and diet.6–11 Metformin, a first-line

treatment for type 2 diabetes, developed from a guanidine deriv-

ative in Galega officinalis, shows promise in slowing physiolog-

ical aging across a range of models, including nematodes, fruit

flies, and rodents.12–21 Previous studies, including our own,

also demonstratedmetformin’s potential to alleviate senescence

in human diploid cells.21–25 Moreover, retrospective studies indi-

cate that metformin appears to reduce the mortality rate in dia-

betic patients.26–28 However, whethermetformin can delay aging

and ameliorate aging-related tissue degeneration in primates re-

mains unclear.

Leveraging high-throughput omics technologies, a cutting-

edge toolkit for gauging biological aging has emerged, affording

us the ability to precisely quantify aging rates at a molecular

level.29 Machine learning integration of epigenomics, transcrip-

tomics, proteomics, and metabolomics data paves the way for

‘‘aging clocks,’’ offering a means to evaluate the effectiveness

of interventions against aging.30–36 Additionally, the evolution

of single-cell sequencing technologies enhances our compre-

hension of the intricate cellular and molecular underpinnings of

the aging process and its interventions.37 Yet the potential of

metformin to catalyze systemic rejuvenation across various bio-

logical dimensions at the pan-tissue level remains to be fully

understood.

To explore whether metformin alleviates age-related declines,

we conducted a comprehensive, 40-month study assessing

adult-onset metformin supplementation in aged primates. Spe-

cifically, our investigation encompassed a broad spectrum of

analytical techniques, including physiological examinations,

medical imaging, pan-tissue histological analysis, organism-

wide transcriptomics, and single-nucleus RNA sequencing

(snRNA-seq). By quantifying these parameters and integrating

them into a comprehensive ‘‘primate aging clock,’’ we provided

evidence that metformin decelerates the aging process in male

cynomolgus monkeys across various tissues. Importantly, our

findings highlighted a notable neuroprotective effect of metfor-

min, which was further validated using a human stem cell-

derived neuronal senescence model. Our results affirm that

extended metformin administration mitigates aging in primates,

indicating its clinical potential for aging management and dis-

ease prevention.

RESULTS

Long-termmetformin treatment exhibits geroprotective
effects in primates
To assess whether long-term metformin therapy delays aging

in healthy primates, we conducted a proof-of-concept study

involving male cynomolgus monkeys (Macaca fascicularis)

aged between 13 and 16 years, roughly equivalent to approxi-
2 Cell 187, 1–21, October 31, 2024
mately 40–50 years in humans. At the start of the study, monkeys

were evenly divided by age and randomly assigned to either the

metformin or vehicle treatment groups (hereafter referred to as

O-Met and O-Ctrl). The monkeys in the O-Met group were

administered a daily dose of 20 mg/kg metformin, a standard

dosage used in diabetesmanagement for humans,38,39 while be-

ing maintained under the same environmental and care condi-

tions as the O-Ctrl group (Figure 1A). One participant in the

O-Ctrl group succumbed to kidney failure on the 1,126th day

of the study, as confirmed by a veterinarian. The remaining mon-

keys adhered to this regimen for a period of 1,200 days, approx-

imately 3.3 years, which corresponds to about 10 years in

humans.

Both groups underwent routine physical examinations every

3 months (Figure 1A). We observed that prolonged administra-

tion of metformin was not associated with compromised blood

glucose homeostasis, nor did it lead to a reduction in body

weight (Table S1). Similarly, we did not detect significant

changes in the blood cell composition or the physiological char-

acteristics of urine (Table S1).

We also included two additional control groups: young (3–5

years old) and middle-aged (10–12 years old) male adult cyno-

molgus monkeys, referred to as the Y-Ctrl group and M-Ctrl

group, respectively. Once the O-Met group had completed

1,200 days of metformin treatment, we analyzed all four groups

of monkeys for 68 biological parameters. These included

morphometric indicators (BMI and organ indices), blood tests

(routine blood tests, blood biochemical tests, and hormones),

and imaging indicators (computed tomography [CT] scans and

magnetic resonance imaging [MRI]) (Figure 1B). Taken together,

these results implied the high safety profile of long-term metfor-

min treatment (Table S1). Additionally, we noted that aging-

associated periodontal bone loss was mitigated in the O-Met

group relative to the O-Ctrl group (Figure 1C).

To evaluate memory, learning, and cognitive flexibility, we

employed the Wisconsin General Test Apparatus (WGTA)

method.40,41 In the delay task, which evaluates memory reten-

tion, the O-Met group demonstrated higher accuracy in

retrieving food after a delay compared with the O-Ctrl group,

suggesting that metformin may enhance memory in aged ani-

mals (Figure 1D). Additionally, in the object discrimination task,

the O-Met group showed superior learning abilities, indicating

metformin’s potential to improve learning in older subjects (Fig-

ure 1D). Likewise, in the object reversal learning, the O-Met

group displayed enhanced cognitive resilience relative to the

O-Ctrl group (Figure 1D).

When we investigated brain morphology using MRI, general

linear mixed models (GLMMs) revealed reduced cortical thick-

ness in aged monkeys compared with young ones, particularly

in the frontal and temporal lobes (Figures 1E and S1A). In metfor-

min-treated aged monkeys, frontal lobe cortical thickness was

preserved, with a trend toward increased thickness in the parie-

tal lobe, compared with the O-Ctrl group (Figures 1E and S1A).

Consistently, histological examination revealed that metformin

treatment enhanced the thickness of the frontal cortex, an area

that typically thinned with age in monkeys (Figure 1F). By subdi-

viding the brain into 88 regions using the CHARM5 atlas,42 we

identified 9 regions, predominantly in the frontal lobe, with a
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rescue in cortical thickness in metformin-treated monkeys

(Figures 1G and S1B). These included cortical areas important

for cognitive function (Figures 1G and S1B), namely orbital fron-

tal cortex (OFC) (i.e., areas 10, 11, and 13), lateral prefrontal

cortex (LPFC) (i.e., area 9), anterior cingulate cortex (ACC) (i.e.,

area 24a/b), midcingulate cortex (MCC) (i.e., area 24a/b prime),

and motor cortex (i.e., preSMA and SMA), with OFC and LPFC

known for roles in working memory, rule learning, and reversal

learning.43,44 Taken together, these findings, in conjunction

with enhancements in memory and cognitive function, suggest

that metformin might postpone aging-associated structural

deterioration of the brain, particularly in the frontal lobe.

Metformin alleviates aging-related transcriptional
fluctuations in multiple tissues
To gain molecular insights into primate aging and the systemic

effects of metformin intervention, we conducted organism-

wide and genome-wide RNA-seq analyses. In all, we profiled

79 tissues/organs (including the nervous, integumentary, endo-

crine, digestive, reproductive, immune, respiratory, cardiovas-

cular, muscular, urinary, and skeletal systems) of cynomolgus

monkeys of three different ages (Y-Ctrl, M-Ctrl, and O-Ctrl) and

old monkeys that received metformin (O-Met) (Figures 2A and

S2A). Initially, we performed a time-ordering analysis to dissect

age-dependent transcriptional dynamics using Mfuzz c-means

clustering. This analysis revealed four distinct clusters: cluster

1 with continuous upregulation (U), cluster 2 with continuous

downregulation (D), cluster 3 with initial upregulation and subse-

quent downregulation (UD), and cluster 4 with earlier downregu-

lation and then upregulation (DU) (Figures 2B and S2B). Genes

in cluster U were predominantly related to innate immune

response and inflammatory response, while those in cluster D

were involved in extracellular matrix organization and develop-

mental processes, reflecting a decline in tissue maintenance

and regeneration capability during aging (Figure 2B).

Next, we investigated the impact of metformin on age-depen-

dent transcriptomic changes at a tissue level. When we

compared the trajectories between young, middle-aged, and

old (‘‘Y-Ctrl, M-Ctrl, to O-Ctrl’’) and between young, middle-
Figure 1. Behavioral and imaging assessments of cynomolgus monke
(A) Illustration of the long-term metformin treatment analysis workflow in cynomo

BioRender.com and Flaticon.com.

(B) Illustration of morphometric analysis, medical imaging analysis, and blood an

(C) Micro-CT examination of alveolar bone in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met mo

ANOVA p values are indicated. Y-Ctrl, n = 6; M-Ctrl, n = 3; O-Ctrl, n = 5; O-Met,

(D) Performance of O-Ctrl and O-Met groupmonkeys in the delay task (top), discrim

Wisconsin general test apparatus (WGTA). The boxes show the median (center lin

The ANOVA p values for the delay and discrimination tasks are noted, alongside

(E) Magnetic resonance imaging (MRI) assessment of frontal lobe cortical thicknes

in cortical thickness is displayed on the frontal lobe mid-gray surface, compar

hemisphere of individual monkeys. Data for cortical thickness are presented as th

median (center line), the quartile range (25%–75%), and the whiskers (minimum

(F) Immunohistochemical evaluation of NeuN in the frontal lobe of brains from Y-C

n = 6; M-Ctrl, n = 3; O-Ctrl, n = 5; O-Met, n = 6 monkeys. The quantified data are s

test p values are indicated.

(G) MRI was employed to examine 88 brain regions in Y-Ctrl, M-Ctrl, O-Ctrl, and

changes in cortical thickness due to metformin-induced rejuvenation. A pie cha

rejuvenation across the cerebral lobes. See STAR Methods.

See also Figure S1 and Table S1.
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aged, and metformin-treated old (‘‘Y-Ctrl, M-Ctrl, to O-Met’’)

monkeys, we found that metformin intervention was associated

with global mitigation of age-dependent transcriptional dynamic

changes in all four clusters. Gene set variation analysis (GSVA)

demonstrated that metformin markedly rescued the expression

of genes in clusters U and D, with less pronounced effects in

the other two clusters (Figure 2C). To quantify the extent of met-

formin’s effect in alleviating aging, we calculated a tissue-spe-

cific ‘‘rescue score’’ (see STAR Methods). Notably, metformin

rescued most aged tissues (Figure 2D), with tissues like the fron-

tal lobe, skin, liver, kidney, quadriceps muscle, and lung

acquiring the highest rescue score across the 79 tissues in 11

systems (Figure 2D). When we used GSVA to characterize

aging rescue at a pathway level, we identified that metformin

treatment was associated with the inhibition of aging-related in-

flammatory response, apoptosis, fibrosis, and reactive oxygen

species (ROS) pathways (Figures 2E, 2F, and S2C). Conversely,

metformin treatment reactivated aging-repressed pathways

typically involved in development and morphogenesis, including

Wnt signaling, lipid metabolism, and DNA repair pathways

(Figures 2E and 2F). In conclusion, our comprehensive atlas cap-

tures tissue transcriptional profiles that unravel the global gero-

protective effect metformin exerts in primates.

Metformin attenuates various aging hallmarks across
tissues
To validate our findings, we carried out comprehensive histolog-

ical evaluations, focusing on the classic hallmarks of aging,

particularly in tissueswith higher rescue scores. Our initial obser-

vations indicated that metformin administration was associated

with reduced aggregation of senescent cells, as denoted by

fewer p21-positive cells in tissues such as the lung, liver, kidney

(both cortex andmedulla), heart, stomach, and skin of the O-Met

group relative to the O-Ctrl group (Figure 3A). Furthermore, met-

formin treatment was associated with reduced expansion of ag-

ing-related fibrotic regions in the lung, kidney, and heart when

compared with the O-Ctrl group (Figure 3B). Similarly, aging-

related accumulation of lipid peroxidation within the urinary sys-

tem, marked by 4-hydroxynonenal (4-HNE), was mitigated by
ys following chronic metformin treatment
lgus monkeys. The graphical elements in this study’s figures are sourced from

alysis in cynomolgus monkeys.

nkeys. The quantification data are shown as the means ± SEMs, and one-way

n = 6 monkeys.

ination task (middle), and reversal task (bottom) were assessed by utilizing the

e), the quartile range (25%–75%), and the whiskers (minimum and maximum).

the Mann-Whitney U test p values for the reversal task. See STAR Methods.

s in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys is presented. log2(fold change)

ed to the O-Ctrl group. Cortical thickness was obtained separately for each

e mean value across both hemispheres for each monkey. The boxes show the

and maximum), with GLMM analysis p values annotated. See STAR Methods.

trl, M-Ctrl, O-Ctrl, and O-Met monkeys is illustrated. Scale bars, 100 mm. Y-Ctrl,

hown as means ± SEMs, one-way ANOVA with Tukey’s multiple comparisons

O-Met monkeys. The visualization emphasizes areas with significant (p < 0.05)

rt illustrates the proportion of brain regions experiencing metformin-induced

http://biorender.com
http://flaticon.com
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metformin treatment (Figure S3A). Additionally, in O-Metmonkey

tissues, metformin was effective in rectifying indicators of epige-

netic instability associated with aging, such as the loss of

H3K9me3 and the up-regulated expression of endogenous

retrovirus (ERV) proteins (Figures S3B and S3C). Moreover, the

decline of fast II fibers, a key indicator of skeletal muscle aging,

was counteracted by metformin treatment (Figure S3D).

Strikingly, we detected a widespread, potent effect of metfor-

min in curbing chronic inflammation, a cardinal hallmark of aging

that underlies almost all aging-related diseases.7,9,45,46 Metfor-

min supplementation was associated with reduced aging-asso-

ciated inflammatory areas within the liver and stomach and less

immune cell infiltration in the lung, liver, and kidney (Figures 3C

and 3D).We also noted thatmetformin treatment was associated

with a blunted escalation of senescence-associated secretory

phenotype (SASP) factors, including tumor necrosis factor-a

(TNF-a), interleukin-1b (IL-1b), S100 calcium-binding protein

A8 (S100A8), and matrix metalloproteinase 9 (MMP9) across

the array of tissues examined (Figures 3E–3G and S3E). In sum-

mary, our findings underscore that metformin efficiently reduces

the emergence of aging hallmarks, including tissue degeneration

and inflammation, in primates.

Reduction of multi-omics biological age by metformin
To quantify metformin-induced deceleration of biological age,

we established computational models of monkey aging clocks

based on multi-omics data. In addition to pan-tissue transcrip-

tomic profiles, we obtained DNA methylation profiles to

construct DNA methylation clocks for tissues with top-ranking

transcriptional rescue scores. Furthermore, we generated a

quantitative plasma proteomics dataset and metabolomics sig-

natures using mass spectrometry (Figures S4A–S4E). By inte-

grating data from the Y-Ctrl, M-Ctrl, and O-Ctrl cohorts (a total

of 36 monkeys), we were able to formulate a penalized linear

model (see STAR Methods). This model enabled the estimation

of the biological age for each monkey and the calculation of

DAge as the discrepancy between the predicted biological age

and the expectation of that measurement for the monkey’s chro-

nological age.32,47 The difference in DAge between the O-Met
Figure 2. Metformin reversed age-related gene expression in a variety

(A) Schematic diagram showing 79 tissues across 11 systems in transcriptomic a

skin (BR); (7) skin (MR); (8) brain (PFL); (9) brain (FL); (10) brain (PL); (11) brain (TL

(NUPL); (17) brain (hippocampus); (18) dorsal root ganglion; (19) spinal cord; (

esophagus; (25) stomach; (26) liver (RL); (27) liver (ML); (28) liver (LL); (29) VAT (pa

intestine (ileum); (34) VAT (GO); (35) intestine (SC); (36) thyroid gland; (37) adrenal

spleen; (43) seminal vesicle; (44) prostate; (45) penis; (46) epididymis; (47) testis; (

(gastrocnemius); (52) Achilles tendon; (53) muscle (trapezius); (54) muscle (abdom

lumbar disc; (59) heart (RA); (60) heart (LV); (61) heart (RV); (62) aorta (arch); (63) aor

lung (LILL); (69) trachea (upper); (70) trachea (lower); (71) bronchus (upper); (72)

(scapula); (77) skin (back); (78) SAT (abdomen); and (79) skin (belly). The full nam

(B) Transcriptomic data clustering analysis frommonkey tissues, with the count of

mean of standardized FPKM across clusters ± SDs.

(C) Left, expression changes of age-dependent genes from monkeys upon metfo

across clusters ± SDs. Right, box plot showing GSVA score of age-dependent g

(D) The dot plot illustrates the rescue score for various aged tissues post metfo

down-regulated aging genes (clusters U and D) was quantified across monkey o

(E) Heatmap showing the rescue pathways related to aging based on GSVA sco

(F) Boxplot showing the selected rescue pathways compared with specific tissu

See also Figure S2 and Table S2.
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group and the O-Ctrl group was quantified as DAgeDiff (see

STAR Methods for details). To this end, we employed the

ElasticNet method to quantify biological age indicators,

including DNAmAge (based on DNA methylation), transcriptAge

(based on the transcriptome), proteinAge (based on the prote-

ome), and metabAge (based on the metabolome), for each mon-

key (Figure 4A; Table S3).

This analysis estimated that metformin administration resets

the proteinAge of treated monkeys by an average of�6.41 years

(Figure 4B). In tissues with a notable transcriptome aging rescue,

DNAmAgewas also rescued, including the frontal lobe, lung, kid-

ney (cortex), liver, and skin, whichwere restored by an average of

�6.10,�5.11,�4.90, �3.95, and�2.65 years, respectively (Fig-

ure 4C). Given these data, we investigated the impact of metfor-

min on biological age at the transcriptomic level in each tissue.

Our analysis revealed that the transcriptAge of all thirteen tissues

was restored to a younger state, including the Achilles tendon

(DAgeDiff �5.31 years), liver (DAgeDiff �4.14 years), bronchus

(DAgeDiff �3.71 years), muscle (DAgeDiff �3.56 years), and

lung (DAgeDiff �3.40 years) (Figure 4D and Table S3). Collec-

tively, our findings demonstrate that metformin intervention de-

lays aging across various tissues and different omic layers, as

evidenced by the measurement of biological age.

Metformin slows liver aging and enhances
hepatoprotection in aged monkeys
The liver, functioning as a metabolic organ, exhibited substantial

metformin-associated reductions in both DNAmAge (with an

DAgeDiff of approximately �3.95 years) and transcriptAge

(with an DAgeDiff of about �4.14 years) (Figures 4C and 4D).

To more precisely analyze the interventional effects of metfor-

min, we performed snRNA-seq on liver samples from the

Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met groups (Figures 5A and

S5A–S5C).

Subsequently, we developed ‘‘single-nucleus transcriptomic

aging clocks’’ referred to as sn-transcriptAge, leveraging

snRNA-seq data spanning from young to middle-aged to old

age, to characterize aging and aging deceleration at the cell-

type level.48 First, we identified differentially expressed genes
of tissues throughout the monkey body

nalysis. (1) Skin (scalp); (2) skin (FR); (3) skin (OR); (4) skin (IR); (5) SAT (face); (6)

); (12) brain (OL); (13) brain stem; (14) cerebellum; (15) brain (NUFL); (16) brain

20) median nerve (UL); (21) sciatic nerve (LL); (22) gingiva; (23) tongue; (24)

ncreas); (30) pancreas; (31) intestine (duodenum); (32) intestine (jejunum); (33)

gland; (38) kidney (medulla); (39) kidney (cortex); (40) bladder; (41) PBMC; (42)

48) muscle (back); (49) supraspinatus tendon; (50) muscle (biceps); (51) muscle

en); (55) muscle (glute); (56) muscle (quadriceps); (57) ligamentum flavum; (58)

ta (thorax); (64) diaphragm; (65) lung (RILU); (66) lung (LILU); (67) lung (RILL); (68)

bronchus (lower); (73) skin (hand); (74) BAT (neck); (75) skin (neck); (76) BAT

es of tissues are listed in Table S1.

age-dependent genes per cluster displayed. Solid lines and ribbons represent

rmin treatment. Solid lines and ribbons represent mean of standardized FPKM

enes in different groups. Wilcoxon rank-sum test p values are indicated.

rmin treatment. Initially, the gene expression of persistently up-regulated and

rgans from different groups using the GSVA algorithm.

re.

e. Moderated t tests p values using limma are indicated.
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(DEGs) by comparing any two groups among the Y-Ctrl, M-Ctrl,

and O-Ctrl cohorts with a cutoff of |log2(fold change)| > 0.25 and

an adjusted p value < 0.05, which we designated as age-depen-

dent DEGs (Table S4). Utilizing the expression matrix of these

aging DEGs as input data and the chronological ages of each

monkey as the training label, we employed an ElasticNet model

to construct single-nucleus aging clocks, which we refined using

leave-one-out (LOO) cross-validation techniques to augment its

predictive precision (see STAR Methods). By combining all cell-

type data points into a singular input matrix, we developed an in-

tegrated model predicting that metformin treatment could reju-

venate the liver by an average of 4.28 years (Figure 5B). Notably,

three specific cell types—hepatocytes, Kupffer cells, and

T cells—demonstrated an obvious rescue to a more youthful

state, with their sn-transcriptAge showing an average regression

of 5.83, 6.66, and 6.43 years, respectively (Figure 5B).

Metformin treatment markedly restored the expression of

genes that were consistently up-regulated (cluster U) or down-

regulated (cluster D) in the O-Ctrl group relative to the Y-Ctrl

and M-Ctrl groups (Figures S5D and S5E). Overall, metformin

rescued approximately 33.9% of cluster U DEGs and 21.2% of

cluster D DEGs (Figure S5F). More specifically, different cell types

are associatedwith different rescue effects, withmarginal pro-ag-

ing effects (Figure S5G). Gene function annotation revealed that

cluster D genes are predominantly involved in essential metabolic

functions in hepatocytes, including lipid transport (e.g., ABCA9,

HACL1, and SLC22A7) and lipid catabolism (e.g., HACL1,

CYP4F12, and PNPLA3), as well as amino acid catabolism (e.g.,

ARG1, GNMT, and SHMT1) (Figure S5D). These results suggest

that metformin treatment can mitigate aging-induced impairment

of liver metabolism. By contrast, cluster U genes were enriched in

pathways such as immune response (e.g., LBP, C4BPA, and

C4BPB) and the transforming growth factor-b (TGF-b) pathway

(e.g.,SMAD3, TGFBR1, and TGFBR3), aswell as inflammatory re-

sponses in multiple cell types (Figure S5D).49,50 Suppression of

cluster U genes in O-Met monkeys correlated with a reduced in-

flammatory and fibrotic state (Figure S5H).

When we ranked the proportion of rescued DEGs, along with

the Augur score (a metric that assesses the sensitivity of each

cell type to specific treatments), we identified Kupffer cells, he-

patocytes, and T cells as the top three rescued cell types, align-
Figure 3. Metformin mitigated multiple aging hallmarks across monke

(A) Immunohistochemical assessment of p21 in the lung, liver, kidney, heart, stoma

p21-positive cells. Scale bars of lung, liver, kidney, heart, and stomach, 20 mm; s

(B) Masson’s trichrome staining evaluation of lung, kidney, and heart in Y-Ctrl, M

(C) Immunohistochemical and immunofluorescent examination of CD45 of the lun

indicate CD45-positive cells. Scale bars, 20 mm.

(D) Hematoxylin and eosin (H&E) staining assessment of liver and stomach in Y-Ct

inflammatory area. Scale bars, 40 mm.

(E) Immunohistochemical and immunofluorescent examination of TNF-a in lung a

TNF-a-positive cells. Scale bars, 20 mm.

(F) Immunofluorescent examination of IL-1b in intestine in Y-Ctrl, M-Ctrl, O-Ctrl, an

(G) Immunohistochemical and immunofluorescent examination of S100A8 in lun

arrows indicate S100A8-positive cells. Scale bars, 20 mm.

The quantified data in (A)–(G) are shown as means ± SEMs, Mann-Whitney tes

comparisons test p values of (A) and (B), and lung and kidney in (C) and (D)–(G) are

(A)–(G).

See also Figure S3.
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ing with our biological age estimations (Figures S6A and S6B).

Furthermore, the top aging-related and rescued bulk RNA-seq

DEGs were primarily attributed to transcriptional changes in

hepatocytes (Figure S6C), highlighting their pivotal role in

both aging and its attenuation through metformin treatment.

Consistently, gene expression trajectories revealed that the

expression of hepatocyte-specific clusters U and D genes was

robustly restored to a youthful state following metformin treat-

ment (Figure S6D). Specifically, pathways indicative of hepato-

cyte senescence,51–55 including inflammatory responses (e.g.,

CRP, LBP, and SERPINA3), and metabolism of lipids (e.g.,

ABCB11, HACL1, and SCP2) in the O-Met group, were restored

to a state resembling Y-Ctrl rather than O-Ctrl (Figures S6E and

S6F). In line with the bioinformatic analyses, histology analysis

confirmed that increased expression of apolipoprotein E

(APOE), a lipoprotein particle component recently identified as

a biomarker of aging,56,57 was reset to a youthful state

(Figures S6G and S6H). Through Oil red O staining, we validated

that the age-associated abnormal accumulation of lipid droplets

was mitigated in the O-Met group (Figure S6H). Additionally,

metformin reduced TNF-a levels and fibrosis, which were

elevated during aging in the liver (Figures S6I and S6J). Collec-

tively, these results demonstrate that metformin protects liver

function potentially by enhancing the metabolic functions of

hepatocytes.

Metformin retards brain aging and provides
neuroprotection in elderly monkeys
With improvements noted in brain structure and function

following metformin treatment, and considering the frontal lobe

exhibited the most notable rescue in DNAmAge (Figure 4C),

our next stepwas to explore the geroprotective effects ofmetfor-

min in the frontal lobe. Using the same approach as with the liver,

we performed snRNA-seq on frontal lobe samples from all four

monkey groups (Figures 5C and S7A). As we had done in the liver

snRNA-seq analysis, we trained ElasticNet models to gauge the

comprehensive transcriptomic landscape of the frontal lobe

(Figures 5D and 5E). Intriguingly, we found that the majority of

cell types after metformin treatment reverted to a more youthful

stage, exhibiting reduced sn-transcriptAge. By integrating data

from all cell types into a unifiedmodel, wewere able to determine
y tissues

ch, and skin of Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. The arrows indicate

cale bars of skin, 10 mm.

-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 20 mm.

g, liver, and kidney in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. The arrows

rl, M-Ctrl, O-Ctrl, and O-Met monkeys. The dashed circles and arrows indicate

nd intestine in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. The arrows indicate

d O-Met monkeys. The arrows indicate IL-1b-positive cells. Scale bars, 20 mm.

g, heart, liver, and kidney in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. The

t p values of liver in (C) are indicated, one-way ANOVA with Tukey’s multiple

indicated. Y-Ctrl, n = 6;M-Ctrl, n = 3; O-Ctrl, n = 4–5; O-Met, n = 5–6monkeys in
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that metformin treatment rescued the frontal lobe of monkeys by

an average of 5.90 years (Figure 5D). Subsequently, improve-

ment of sn-transcriptAge was notably observed in inhibitory

neuron (InN) (DAgeDiff �5.59 years), excitatory neuron (ExN)

(DAgeDiff �5.45 years), as well as microglia (DAgeDiff �6.86

years), oligodendrocyte (OL) (DAgeDiff �6.79 years), astrocyte

(DAgeDiff �6.08 years), and oligodendrocyte progenitor cell

(OPC) (DAgeDiff �5.70 years) (Figure 5E).

Metformin treatment markedly rescued gene repression in all

four clusters (U, D, UD, and DU) and cell types, consistent with

the rescue in biological age (Figures S7D and S7E). In O-Met

monkeys, analysis of aging DEGs in cluster U that consistently

increased with aging were rescued by 30.1%, whereas those

in cluster D that consistently decreased with aging were rescued

by 28.0%, respectively (Figure S7F). Gene Ontology (GO-term)

analysis indicated that genes pivotal for neuronal function,

such as dendrite morphogenesis/extension and synapse as-

sembly, were down-regulated during aging in ExN, InN, OL,

OPC, microglia, and astrocyte but were restored by metformin

treatment (Figure 5F). By contrast, pathways that were up-regu-

lated during aging, including activation of the immune response,

complement activation, and regulation of the TGF-b receptor

signaling pathway, were reset to lower levels by metformin treat-

ment (Figure 5F). We also investigated whether metformin has

potential side effects by exacerbating the expression changes

of aging DEGs, and found that the number of pro-aging DEGs

in all cell types captured by snRNA-seq is very limited, suggest-

ing that metformin’s pro-aging impact at this dosage is likely

manageable (Figures S7G and S7H). Experimentally, we verified

that markers associated with brain aging and the progression of

neurodegenerative diseases were restored by metformin treat-

ment to levels similar to those observed in young monkeys.

This includes a reduction in SA-b-gal-positive cells, p-Tau

(T181) accumulation, and a decrease in pro-inflammatory factors

like MMP9 (Figure 5G). Additionally, we observed that the

reduced myelin sheath thickness, a characteristic of aged mon-

keys, was rebuilt to a younger state following metformin treat-

ment (Figure 5G).

Next, the Augur score assessment highlighted that ExN under-

went the most pronounced metformin-induced geroprotective

effects (Figure 6A). Given the critical role of ExN in cognitive func-

tion, we conducted an in-depth analysis of frontal lobe ExNs

(Figures 6A–6C). Gene set enrichment analysis (GSEA) indicated

that pathways typically down-regulated with aging, such as syn-
Figure 4. Multi-omics analysis of biological aging in metformin-treated

(A) Schematic overview of multi-tiered biological age assessment in monkeys ad

(B) Dot plot depicting predicted biological age (proteinAge) derived from plasm

metformin (right).

(C) Lollipop chart displaying the monkey multi-tissue biological age (DNAmAge)

nificant (p < 0.05) metformin-induced rescue of tissue’s DNAmAge, ranked by D

picting the rescue of monkey’s DNAmAge by metformin treatment (bottom).

(D) Lollipop chart illustrating themonkeymulti-tissue biological age (transcriptAge)

metformin-induced tissue rescues (ranked byDAgeDiff) in transcriptAge, based on

of monkey’s transcriptAge following metformin treatment (bottom).

The rescued tissues in (C) and (D) were placed above the horizontal line, and the d

dashed line in (B)–(D) signifies no difference between the predicted biological a

distance from the dot to the line indicating the individual’s aging pace. Wilcoxon

See also Figure S4 and Table S3.
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aptic membrane adhesion, dendrite morphogenesis, and neuro-

genesis, were restored by metformin treatment (Figure 6B).

Additionally, genes associated with neuronal protection, which

were typically suppressed with aging, were up-regulated by

metformin. Conversely, genes linked to neuronal aging and

apoptosis were down-regulated by the metformin (Figure 6C).

These results were further supported by a series of histological

assays, which provided compelling evidence of neuroprotection

of metformin. Specifically, metformin treatment reduced the pro-

portion of SPiDER-b-gal-positive neurons, and mitigated the

loss of nuclear envelope integrity (Figures 6D and 6E). Addition-

ally, the drug alleviated abnormal protein accumulation within

neurons, as indicated by a reduction in cytosolic aggresome

and amyloid-b (Ab) accumulation (Figure 6F). Metformin also

enhanced neuronal regeneration and synaptic connectivity, as

evidenced by dendrite elongation, a critical aspect of neuronal

structural plasticity and functional capability (Figure 6G). Further-

more, in the hippocampus, a brain region particularly vulnerable

to aging, we detected a reduced accumulation ofmicroglia, a cell

type implicated in numerous neurodegenerative diseases and

aging, and restoration of neuronal nuclear envelope integrity

(Figure 6H). Additionally, metformin increased neural precursor

activity in the hippocampal region (Figure 6H). These results

collectively suggest that metformin, by countering age-related

cellular alterations, provides comprehensive neuroprotection

against the detrimental effects of aging.

Metformin autonomously mitigates neuronal
senescence in an Nrf2-dependent manner
Subsequently, we utilized our established in vitro model using

human embryonic stem cell (hESC)-derived neurons to assess

the potential geroprotective effects of metformin (Figures S8A–

S8C).58,59 Treatment with low-dose metformin (5 mM) over

15 days alleviated indicators of neuronal senescence, including

decreased SA-b-gal activity, lessened aggresome and Ab accu-

mulation, lowered IL-6 expression, and restored lamin B2 levels

(Figures 7A–7C and S8D–S8F). These findings suggest that met-

formin could decelerate human neuronal aging through a cell-

autonomous mechanism.

Upon evaluating the protein levels of potential downstream ef-

fectors of metformin, we observed that metformin treatment

restored the active form of nuclear factor erythroid-derived

2-like 2 (phosphorylated Nrf2), a pivotal regulator of cellular anti-

oxidant response that typically decreased during prolonged
monkeys

ministered metformin.

a proteomics (left). Boxplot illustrating the rescue of monkey’s proteinAge by

by metformin, based on DNA methylation data (top). Dot plot illustrating sig-

AgeDiff, based on tissue DNA methylation data (middle section). Boxplot de-

bymetformin, based on bulk RNA-seq data (top). Dot plot highlighting the top 5

tissue bulk RNA-seq data (middle section). Boxplot representing the reduction

ots representing the tissue are colored according to the colors in Figure 2A. The

ge and the expected value for the monkey’s actual age (DAge = 0), with the

rank-sum test p values in (B)–(D) are indicated.
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neuronal culture (Figures S8G and S8H). Metformin treatment re-

sulted in increased nuclear phosphorylatedNrf2, accompanied by

the up-regulation of Nrf2 target genes like HO-1, NQO-1, SOD3,

GPX2, and GPX1, which were generally suppressed and typically

down-regulated during human neuron (hNeuron) senescence

(Figures 7D, 7E, S8I, and S8J). Consistently, metformin treatment

decreased the expression of 4-HNE, a lipid peroxide product, and

ROS levels, indicating lower oxidative stress levels in O-Met tis-

sues compared with those in O-Ctrl groups (Figures 7F and

S8K). Furthermore, a subset of metformin-induced gene expres-

sion changes in hNeurons was partially mirrored in vivo (Fig-

ure S8L). We observed no significant changes in mitochondrial

gene expression or mtDNA content in senescent hNeurons after

metformin treatment (Figures S8M–S8P). These results suggest

that elevated Nrf2 activity may mediate the geroprotective effect

of metformin in primate neurons.

To validate our hypothesis, we manipulated Nrf2 activity in

hNeurons using two approaches. Firstly, we knocked down

Nrf2 using small interfering RNAs (siRNAs) (Figures 7G, S9A,

and S9B), leading to diminished nuclear levels of active Nrf2

and its target genes, even in the presence of metformin

(Figures 7H, 7J, S9C, and S9D). Nrf2 repression accelerated

neuronal senescence, which could not be slowed down by met-

formin treatment (Figures 7I and 7J). These observations indicate

that metformin’s neuroprotective effects are, at least in part,

contingent uponNrf2 activity. Secondly, we generated hNeurons

featuring an engineered E82G Nrf2 variant that enhances Nrf2

activation by obstructing KEAP1 binding (Figures 7K, S9E, and

S9F).60,61 This genetic enhancement strategy potently activated

the Nrf2 pathway, evident in heightened nuclear Nrf2 phosphor-

ylation, elevated target gene expression, and lowered oxidative

markers like 4-HNE and ROS in Nrf2 E82G neurons, contrasting

with the wildtype (Figures 7L, 7N, and S9G–S9I). Consequently,

cellular senescent phenotypes observed in the prolonged culture

of hNeurons were rescued (Figures 7M and 7N). Furthermore,

the geroprotective impact fromNrf2’s constitutive activation sur-
Figure 5. Metformin mitigates liver and frontal lobe aging in monkeys

(A) UMAP plot illustrating the distribution of distinct liver cell types in monkeys (

(bottom).

(B) Radial bar chart displaying the rescue of multiple monkey liver cell types’ biolo

data. Dot plot depicting sn-transcriptAge from liver snRNA-seq. Box plot illust

(Wilcoxon rank-sum test p values < 0.05) rescue cell types were plotted. The do

(C) UMAP plot showing distribution of different cell types in the brain (FL) (left). U

(D) Dot plot illustrates the integrated predicted biological age (sn-transcriptAge

monkeys’ integrated biological age in the frontal lobe by metformin treatment. E

(E) Radial bar chart depicts the rescue of monkey frontal lobe multi-cell type biol

(left). Dot plot (right top) shows sn-transcriptAge derived from frontal lobe snRNA-

by metformin treatment. Significant rescue cell types, as determined by Wilcoxo

integrated sn-transcriptAge from frontal lobe snRNA-seq data (left). The boxplot d

metformin treatment. Each dot represents a metacell from the test set or O-Met

(F) Networks illustrate the representative GO terms significantly enriched in both

through functional enrichment analysis.

(G) Assessments of brain aging in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys inc

electronmicroscopy analysis for meanmyelin sheath thickness in the frontal lobe (

(T181) andMMP9 in brain (FL), 20 mm. Scale bars of electronmicroscopy analysis

O-Met, n = 6 monkeys. The quantified data are shown as means ± SEMs, one-w

The dashed line in (B), (D), and (E) indicates no difference between the predicte

(DAge = 0), with the gap between the dot and line representing the individual’s a

See also Figures S5, S6, and S7 and Table S4.
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passed that of metformin alone, and metformin did not enhance

these effects when used in conjunction with the Nrf2 E82G mu-

tation (Figures 7M and 7N). These findings align with the levels of

nuclear-localized phosphorylated Nrf2, suggesting that Nrf2

pathway activation is a key mechanism in metformin’s role in de-

laying human neuronal aging. Consistent with our in vitro find-

ings, Nrf2 pathway activation was also detected across multiple

tissues in metformin-treated monkeys, including frontal lobe

neurons (Figures 7O, 7P, and S9J). In summary, metformin de-

celerates neuronal aging and, by extension, brain aging, largely

via Nrf2 pathway activation.

DISCUSSION

Over 3 years, we evaluatedmetformin’s systemic geroprotective

effects in healthy monkeys, taking advantage of their physiology

and organ structure akin to humans, as well as their disease and

medication responses.58,62–65 Our results indicate metformin’s

capacity to ameliorate aging across the primate body, withmulti-

dimensional aging clocks showing a rejuvenation trend post-

treatment. Given aging’s complexity,66–69 a thorough appraisal

of geroprotective interventions is essential.32,70,71 Our study re-

veals metformin’s tissue- and cell-specific geroprotective ac-

tions, notably enhancing cognitive performance in primates.

Supported by evidence of metformin crossing the blood-brain

barrier even at 5 mMconcentrations,72–77 providing neuroprotec-

tion, these findings suggest metformin’s potential in slowing

brain aging and possibly treating neurodegenerative and other

chronic conditions.78–80

Beyond its diabetesmanagement role,38,81 our study indicates

metformin has a minimal effect on blood sugar in healthy elderly

monkeys (Table S1). We demonstrate that metformin deceler-

ates neuronal senescence and brain aging, primarily via cell-

autonomous pathways with Nrf2’s intrinsic antioxidant mecha-

nisms playing a critical role. Distinguishing from metformin’s

established protective mechanisms through AMP-activated
top). Additional UMAP plots depict the cell type distribution across 4 groups

gical age (sn-transcriptAge) by metformin, as determined from liver snRNA-seq

rating the rescue of monkey sn-transcriptAge by metformin. Only significant

t symbolizes a metacell in the test set or O-Met group.

MAP plots showing distribution of different cell types in 4 groups (right).

) from frontal lobe snRNA-seq data (left). The boxplot displays the rescue of

ach dot represents a metacell from the test set or O-Met group.

ogical age (sn-transcriptAge) by metformin, based on frontal lobe snRNA-seq

seq. Boxplot (right bottom) illustrates the rescue of monkeys’ sn-transcriptAge

n rank-sum test with p < 0.05, are exclusively plotted. Dot plot illustrates the

isplays the rescue of monkeys’ integrated biological age in the frontal lobe by

group.

up- and down-regulated rescued DEGs across various cell types, as identified

lude SA-b-gal staining, immunofluorescence for p-Tau (T181) and MMP9, and

FL). Scale bars of SA-b-gal staining and immunofluorescence analysis of p-Tau

of meanmyelin sheath thickness, 1 mm. Y-Ctrl, n = 6;M-Ctrl, n = 3; O-Ctrl, n = 5;

ay ANOVA with Tukey’s multiple comparisons test p values are indicated.

d biological age and the expected measurement for the monkey’s actual age

ging rate.
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protein kinase (AMPK) activation and mitochondrial electron

transport inhibition,77,82–86 our findings underscore the Nrf2 anti-

oxidant pathway as a promising target for geroprotection.22,87–90

Significantly, the metformin dosage in our primate study

falls within the standard therapeutic range,12,14,91–94 enhancing

the applicability of our findings to human therapeutics. The

observed reversal of aging biomarkers in primates indicates

the feasibility of targeting core aging mechanisms in organs, of-

fering a strategy to improve chronic conditions and prevent age-

related diseases. Our research identifies the optimal dosage and

timing for metformin administration in primates, elucidating or-

gan-specific sensitivity and providing pharmacodynamic in-

sights. Additionally, we introduce predictive biomarkers for inter-

vention efficacy assessment, including plasma and tissue clocks

from accessible clinical biopsies.31,95 These innovative bio-

markers establish a clinical standard for evaluating geroprotec-

tive interventions,31,96,97 offering a structured approach to

assess the effects of pharmaceuticals on aging and to develop

strategies for combating age-related chronic diseases.

Limitations of the study
Our study reveals the multifaceted influence of metformin on

decelerating primate aging, with a current emphasis on male

subjects. We have noted that metformin potentially slows aging

at molecular and tissue levels in males, but conclusive evidence

of functional rejuvenation is sparse, and a full understanding of

its side effects in humans remains elusive. The study also

omitted assessments of monkey mortality and the long-term ef-

fects following metformin cessation. Recognizing the complex

interactions of geroprotective agents with multiple targets is

key, indicating that research into pathways beyond Nrf2 holds

promise. While the comprehensive impact and mechanisms of

metformin in primates are yet to be fully charted, our findings

indicate significant delays in the aging process. This insight is

a critical step forward, guiding the advancement of clinical stra-

tegies tomitigate aging impacts and its associated health issues.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Guang-Hui Liu (ghliu@

ioz.ac.cn).
Figure 6. Metformin demonstrates neuroprotective properties in the fr

(A) Dot plot showing cell type prioritization in snRNA-seq by Augur.

(B) Dot plot showing the age-dependent DEG. The order was ranked by log2(fold c

regulated, rescue down-regulated, and non-rescued genes, respectively. A bar p

treatment in excitatory neurons of the monkey frontal lobe.

(C) Ridge plots showing representative gene set score in four groups. The black

indicated.

(D) SPiDER-b-gal staining evaluation brain (FL) with immunofluorescence examina

(E) Immunofluorescence evaluation of Lamin B2 and NeuN in brain (FL) in Y-Ctrl,

(F) Aggresome assessment (top) and immunofluorescence examination of Ab (4

Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 20 mm.

(G) Golgi staining analysis of the frontal lobe (FL) in Y-Ctrl, M-Ctrl, O-Ctrl, and O-

(H) Immunofluorescent analysis of IBA-1, DCX, and LAP2 in brain (hippocampus

The quantified data in (D)–(H) are shown asmeans ± SEMs, one-way ANOVAwith

indicated, Mann-Whitney test p values of DCX in (H) are indicated. Y-Ctrl, n = 5–

See also Figure S7 and Table S4.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d Bulk RNA-seq data of cynomolgus monkey tissues have been depos-

ited at the Genome Sequence Archive (GSA) in the National Genomics

Data Center, Beijing Institute of Genomics (China National Center for

Bioinformation) of the Chinese Academy of Sciences. Raw data for pre-

viously published bulk RNA-seq for the gingiva can be accessed at

CRA014943. snRNA-seq data of cynomolgus monkey tissues have

been deposited at the GSA. Bulk RNA-seq data of hNeuron have

been deposited at the GSA-Human. DNA methylation and metabolo-

mics data of cynomolgus monkey tissues have been deposited at the

Open Archive for Miscellaneous Data (OMIX) in the National Genomics

Data Center, Beijing Institute of Genomics (China National Center for

Bioinformation) of the Chinese Academy of Sciences. The DIA plasma

proteomics data generated in this study have been deposited in the

iProX database consortium. Accession numbers are listed in the key re-

sources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Experimental models: Organisms/Strains
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Resource, Beijing, China
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Oligonucleotides

Primers for real-time quantitative PCR, see
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This paper N/A

siRNAs for RNAi, see Table S5 This paper N/A
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ImageJ (version 1.8.0) Schneider et al.98 https://imagej.net/Welcome
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imagelab-software?ID=KRE6P5E8Z
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software/phenochart-whole-slide-viewer/
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conversionsoftware.html

Cell Ranger (version 6.1.2) 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/6.

1/what-is-cell-ranger

CellBender (version 0.2.0) Fleming et al.99 https://github.com/broadinstitute/

CellBender

DoubletFinder (version 2.0.3) McGinnis et al.100 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Seurat (version 4.1.1) Hao et al.101 https://satijalab.org/seurat/index.html

muscat (version 1.12.0) Crowell et al.102 https://bioconductor.org/packages/

release/bioc/html/muscat.html

RcisTarget (version 1.6.0) Herrmann et al.103 https://github.com/aertslab/RcisTarget

Cytoscape (version 3.10.0) Shannon et al.104 https://cytoscape.org/

ggpubr (version 0.6.0) N/A https://github.com/kassambara/ggpubr

Metascape (version 3.5) Zhou et al.105 http://metascape.org

ggplot2 (version: 3.4.2) Wickham et al.106 https://ggplot2.tidyverse.org/

pheatmap (version: 1.0.12) N/A https://cran.r-project.org/web/packages/

pheatmap/index.html

glmnet (version: 4.1.7) Friedman et al.107 https://glmnet.stanford.edu/articles/

glmnet.html

Augur (version 3.1.0) Skinnider et al.108 https://github.com/neurorestore/Augur

hdWGCNA (version 0.2.19) Morabito et al.109 https://smorabit.github.io/hdWGCNA/

Clusterprofiler (version 3.1.0) Yu et al.110 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Trim Galore (version 0.6.7) N/A https://github.com/FelixKrueger/

TrimGalore

STAR (version 2.7.1a) Dobin et al.111 https://github.com/alexdobin/STAR

StringTie (version 2.1.7) Pertea et al.112 https://github.com/gpertea/stringtie

Mfuzz (version 2.58.0) Futschik et al.113 https://bioconductor.org/packages/

release/bioc/html/Mfuzz.html

GSVA (version 1.46.0) Hanzelmann et al.114 https://bioconductor.org/packages/devel/

bioc/vignettes/GSVA/inst/doc/GSVA.html

limma (version 3.54.1) Ritchie et al.115 https://bioconductor.org/packages/

release/bioc/html/limma.html

DEP (version 1.20.0) Zhang et al.116 https://www.bioconductor.org/packages/

release/bioc/html/DEP.html

SeSaMe (version 3.18) Zhou et al.117 https://bioconductor.org/packages/

release/bioc/html/sesame.html

FreeSurfer v6.0.0 Fischl et al.118 https://surfer.nmr.mgh.harvard.edu/

AFNI Cox et al.119 https://doi.org/10.1006/cbmr.1996.0014
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement
All experimental processes in this study comply with the Animal Care and Use Institutional Committee of the Institute of Zoology (IOZ-

IACUC-2021-187), Animal Care and Use Institutional Committee of the Institute of Biophysics (IBP-NHP-004(21)), Research Ethics

Committee of Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation) (2022A009),

Chinese Academy of Sciences and Committee of Xieerxin Biology Resource (XEX20211203).

Experimental cynomolgus monkey
In this study, all male cynomolgusmonkeys originated from Southeast Asia. Prior to long-termmetformin treatment, monkeys had no

clinical or experimental background, which could impact physiological aging or heighten sensitivity to diseases. The monkeys were

kept in a clean breeding room with 25�C temperature and a 12-12 hours (h) light-dark cycle at Beijing Institute of Xieerxin Biology

Resource, a Laboratory Animal Care accredited facility, fully compliant with all applicable local regulations pertaining to animal ex-

periments. Monkeyswere fed threemeals and had free access towater. Alongwith breakfast, theO-Met groupwas treated every day

with 20mg/kgmetformin administered through drinking water over the duration of the study (40months). The Y-Ctrl group consists of

individuals aged 3-5 years, the M-Ctrl group consists of individuals aged 10-12 years, and the O-Ctrl and O-Met groups consist of

individuals aged 16-19 years at the endpoint. The typical lifespan for cynomolgus monkeys spans 25 to 30 years, with the record

longevity reaching up to 39 years.122–126

METHOD DETAILS

Routine physical examination
Every three months, O-Ctrl and O-Met group monkeys received a routine physical examination, including assessment of body

weight, body length, glucose tolerance, and routine blood and urine tests, analyzed by Bejing North Institute of Biotechnology

Co.,Ltd. (China) every 3 months. At the endpoint, routine blood tests, blood hormone tests and blood biochemistry tests were

also analyzed by Bejing North Institute of Biotechnology Co.,Ltd. (China).

Structural MRI
Structural MRI scanning was conducted at the Beijing MRI Center for Brain Research (BMCBR). The anesthesia and MRI proced-

ures followed the guidelines outlined in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals and

were approved by the Institutional Animal Care and Use Committee of the Institute of Biophysics, Chinese Academy of Sciences

(CAS). Prior to MRI scanning, the animals were premedicated with atropine (0.05 mg/kg, intramuscular) followed by ketamine

(10 mg/kg, intramuscular). Anesthesia was maintained throughout the MRI session with continuous intravenous propofol at

10 mg/kg/h. The levels of EtCO2 and respiratory rate were monitored utilizing a magnetic-resonance compatible monitoring sys-

tem to ensure optimal anesthesia. To prevent hypothermia, we carefully covered animals with a blanket during the scanning pro-

cedure. Imaging data were acquired utilizing a 3T Siemens Prisma MRI scanner with a custom-designed surface coil array (four

elements). High-resolution T1-weighted and T2-weighted whole-brain anatomical images were obtained for each monkey. T1-

weighted images were acquired using a magnetization-prepared rapid gradient echo (MPRAGE) sequence (voxel size =

0.5 mm isotropic, TE = 2.84 ms, TR = 2200 ms, flip angle: 8�), while T2-weighted images were acquired using a SPACE sequence

(voxel size = 1.0 mm isotropic, TE = 392 ms, TR = 3200 ms, flip angle: 120�). The structural MRI analysis in this study involved 6

young monkeys in the Y-Ctrl group, 3 mature monkeys in the M-Ctrl group, 8 old monkeys in the O-Ctrl group, and 6 old monkeys

in the O-Met group. Cortical thickness measurements were conducted independently for both the left and right hemispheres of

each subject’s brain.

Extraction of structural data
The structural data were processed utilizing Analysis of Functional NeuroImages software (AFNI), FMRIB Software Library (FSL),

FreeSurfer, and Advanced Normalization Tools (ANTs).118–120,127 First, the T1 image of each animal was nonlinearly registered to
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the NIMHMacaque Template (NMT, version 2.0).42 This registration process generated a brain mask by inversely applying the regis-

tration results to a skull-free version of the template. The obtained brainmask was then used as the initial skull strippingmask for both

the T1 and T2 images, which had been co-registered to the T1 image using a rigid-body transformation. A bias correction procedure

was applied to result in a high-contrast T1 image by combining the T1 and T2 images. Next, we processed the T1 images using a

customized pipeline based primarily on FreeSurfer118 to generate white-matter and gray-matter surfaces. To ensure accuracy,

two experts manually examined and edited the skull stripping and white-matter masks slice-by-slice along axial and coronal planes.

The revised versions were then used to generate the final white-matter and gray-matter surfaces. Subsequently, the brain surfaces

were segmented into four lobes (frontal, parietal, temporal, and occipital) and 88 regions per hemisphere, following the Cortical Hi-

erarchy Atlas of the Rhesus Macaque 1 (CHARM1) and CHARM5 atlas. The cortical thickness of each lobe and region was extracted

using FreeSurfer.

Group analyses
No significant hemispheric asymmetries were observed in either the aging or metformin experiments. Therefore, for the group ana-

lyses, the results from the right and left hemispheres were collapsed.

To examine the changes in cortical lobes or regions during aging, we employed a general linear mixedmodel (GLMM) in the control

groups (i.e., young control group and old-age control group), with Age as the fixed factor and Hemisphere as the random factor. The

significance level for the aging effect was set at P < 0.05 [false discovery rate (FDR) corrected for multiple comparisons] at the lobe

and region levels.

To evaluate the effects of metformin on aging, we conducted GLMMs on each lobe and region to compare the structural data

between the old-age control group and the metformin group, with Hemisphere as the random factor. The significance level for the

metformin effect was set at P < 0.05 (FDR corrected for multiple comparisons) at the lobe and region levels.

Notably, all cortical thickness data were corrected with the intracranial volume of the corresponding hemisphere.128 Furthermore,

when the data distribution did not meet the normality assumption as determined by the Shapiro-Wilk test, we employed the Mann-

Whitney test as an alternative to the GLMM.

Cognitive testing
To carry out cognitive testing, we used amodified version of theWisconsin General Test Apparatus (WGTA) to assess the basicmem-

ory, learning, and cognitive flexibility in aged monkeys.40,137,138 To minimize any potential difficulties associated with monkeys when

leaving their home cage, wemodified the equipment and placed it directly in front of the monkey cage. The cognitive experiment was

divided into four stages: Adaptation, Delay, Discrimination, and Reversal.

Adaptation
During the initial phase, the baffle in front of the experimenter was closed to prevent the animal from observing the experimenter’s

actions, while the baffle in front of the monkey remained open. In the first step, food was placed in front of the well, and the monkey

needed to successfully obtain the food five consecutive times to progress to the next step. Subsequently, food was placed inside the

well, and again, themonkey had to successfully retrieve the food five times in a row. The third step involved placing the food in thewell

and introducing a block behind it. If the monkey successfully obtained the food five times consecutively, it advanced to the next step.

In the fourth step, the food was placed in the well, and the block covered half of the well. Success in obtaining the food five times in a

row allowed the monkey to proceed. Finally, in the fifth step, the food was placed inside the well, and the block completely covered

the well. It was considered a successful adaptation if the monkey successfully displaced the block to obtain the food. A session con-

sisted of 25 consecutive trials, with more than 20 successful tests indicating that the monkey had completed the adaptation stage.

Delay
The baffle in front of the monkey was opened, while the presentation board remained out of reach. The experimenter placed food in

one of twowells and covered it with a block. Another block with the same shape and color was placed on the well without food, on the

opposite side of the presentation board. The baffle was then closed, and the timer was initiated. The baffle was opened when the

predetermined time elapsed (i.e., 1s, 3s, 5s). To access the food, the monkey had to displace the block covering the well with

food and retrieve the food within 60 seconds. If the monkey failed to respond within the designated time frame, the trial was termi-

nated by lowering the baffle in front of the monkey. In each delay period, animals were tested for three sessions, each comprising 25

trials.

Discrimination
Two blocks with identical shapes but different colors (color A and color B) were employed, with color A designated as the correct

choice and color B as the incorrect choice. The assignment of colors was balanced across the animals. Food was placed in one

of the wells, covered with the block of color A, while the empty well on the opposite side was covered with the block of color B.

The baffle was opened, requiring the monkey to displace the block of color A and successfully retrieve the food within 60 seconds

to achieve success. Animals were tested for six sessions, each consisting of 25 trials.

Reversal
This stage mirrored the Discrimination step but reversed the correct and incorrect choices. That is, color B was designated as the

correct choice, while color A became incorrect. To access the food, the monkey had to displace the block of color B within 60 sec-

onds to retrieve the food successfully. Similar to the Discrimination stage, animals were tested for six sessions, each comprising 25

trials.
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In the cognitive testing phase, 5 monkeys from the O-Ctrl group and 6 from the O-Met group participated. For each participant,

accuracy was assessed across sessions in the Delay, Discrimination, and Reversal stages, with 9, 6, and 6 sessions, respectively.

To discern performance variances between the O-Met and O-Ctrl groups, a series of ANOVAs were applied, when the data met the

normality assumption, as verified by the Shapiro-Wilk test. If the assumption was not met, we employed the Mann-Whitney test

instead.

Micro-CT analysis
As previously described, the monkey maxilla and mandible were subjected to scanning using a Micro-CT Scanner (PE Quantum FX,

USA).65 Subsequently, the acquired images were transformed into a three-dimensional format. The evaluation of the distance be-

tween the cementoenamel junction and alveolar bone crest (CEJ-ABC distance) was constructed employing a previously docu-

mented approach with minor adjustments. In brief, the CEJ-ABC distances of the premolars and molars within both the maxilla

and mandible of each primate subject were measured and then averaged.

Tissue dissociation
Following a 40-month metformin treatment, the monkeys were anesthetized, and subsequently, a saline solution was perfused sys-

temically through the heart. A total of 79 tissues from 11 systems were sampled (details in Table S1). Tissues were stored with 4%

paraformaldehyde, embedded in OCT and cryopreserved in liquid nitrogen.

RNA-seq Library construction and sequencing
Total RNA from 79 tissues/organs in 11 systems was extracted with TRIzol reagent, after which the library was constructed as pre-

viously described.7 Then, high-throughput sequencing was carried out for each sample on MGI DNBSEQ-T7 platform with PE150

(Novogene Bioinformatics Technology Co. Ltd.). The bulk RNA-seq sample sizes for each tissue are listed in Table S2.

Protein extraction and trypsin digestion
The blood plasma proteome from each monkey was analyzed with Data Independent Acquisition (DIA) based proteomics. Firstly,

100 mL of blood plasma from each monkey was mixed with 100 mg of nanomagnetic beads for high-abundance protein depletion.129

After mixing with lysis buffer (8 M urea, 1% protease inhibitor cocktail), the protein concentration of the samples was determined

using a BCA protein assay kit. 10 mM DTT was added to the protein extract, followed by incubation at 56�C for 1 hour. After cooling

to room temperature, 55 mM IAA was added, and the mixture was incubated in the dark at room temperature for 45 minutes. Based

on the protein concentration measurements, an appropriate amount of protein from each sample was enzymatically digested using

the FASP (filter-aided sample preparation) method.130 The next day, samples were centrifuged at 130003 g for 10 minutes at room

temperature, and the liquid in the collection tube was transferred to a new centrifuge tube and vacuum-dried. Finally, the samples

were desalted using a C18 desalting column.

Mass spectrometry analysis of plasma proteins
The chromatographic mobile phase consisted of 0.1% FA as phase A and 80% ACN with 0.1% FA as phase B. The dried peptide

segments were fully dissolved in phase A (0.1% FA) and centrifuged at 17000 3 g for 15 minutes. The supernatant was transferred

to a built-in tube and placed in an automatic sample injector. Using an EASY-nLC 1200 liquid chromatography system (Thermo Fisher

Scientific, USA), the peptides were loaded onto a C18 trap column at a flow rate of 3 mL/min and then eluted to a C18 analytical col-

umn (150 mm inner diameter) at a flow rate of 600 nl/min. The chromatographic elution conditions were as follows: 0min-45min, linear

increase of phase B (ACNwith 0.1%FA) from 7% to 32%; 45min-50min, linear increase of phase B from 32% to 42%; 50min-55min,

linear increase of phase B from 42% to 95%, maintained until 60 min. The Thermo Scientific Q Exactive HF mass spectrometer was

used with a Nanospray Flex ion source, set at an ion spray voltage of 2.3 kV and an ion transfer tube temperature of 320�C. The
plasma proteomics sample sizes for each tissue are listed in Table S2.

Mass spectrometry analysis of plasma metabolites
The plasma samples were extracted using a methanol solution at a 1:4 ratio, followed by shaking for 3 minutes and centrifugation at

4000 3 g for 10 minutes at 20�C to precipitate the mixtures. Four aliquots of 100 mL supernatant were then transferred to sample

plates and dried using blowing nitrogen. Subsequently, they were re-dissolved in reconstitution solutions for injection into UPLC-

MS/MS systems. The UPLC-MS/MS analysis was performed using the ACQUITY 2D UPLC system from Waters paired with the Q

Exactive (QE) hybrid Quadrupole-Orbitrap mass spectrometer. The QE operated in positive ESI mode, and the UPLC column was

C18 reverse-phase (UPLC BEH C18, 2.1x100 mm, 1.7 mm; Waters). The mobile phases used for gradient elution were water

(A) and methanol (B), which contained 0.05% PFPA and 0.1% FA. The plasma metabolomics sample sizes for each tissue are listed

in Table S2.

DNA preparation
Based on the manufacturer’s guidance of TIANamp Genomic DNA Kit, DNA extraction of monkey tissues was performed. After the

tissue was broken in physiological saline, the supernatant was removed by centrifugation, and then 200 mL GA buffer was added.
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20 mL of proteinase K was added to the tissue disruption mixture and incubated at 56 �C for 2 h. 200 mL GB was then added to the

mixture and incubated at 70 �C for 10 min. The mixture was then mixed with 200 mL absolute ethanol, and the resulting solution

passed through an adsorption column and washed with GD and PW buffer. The adsorption column was dried, and then the DNA

was eluted using EB buffer. The concentration of DNA was measured and stored at -20 �C.

Microarray experiment of DNA methylation
DNA methylation data were generated using the custom Illumina chip, ’HorvathMammalMethylChip40’. This array focuses only on

36k CpGs that are highly conserved across mammals.131,132 We utilized 34,838 CpGs that were conserved based on the Macaca

fascicularis genome (version 5.0.100). Beta values were defined for each probe by SeSaMe.117 The DNA methylation sample sizes

for 7 tissues are listed in Table S2.

Nuclei sorting and snRNA-seq on the 10x genomics chromium platform
As previously described, the nuclei of liver (LL) and brain (FL) were isolated from 3monkeys in each group randomly.62,64 Fresh frozen

tissues (liver (LL) and brain (FL)) were ground in liquid nitrogen. Then, the homogenization buffer was homogenized with the tissues

using a freezing tissue grinding system (TissueLyser-24, Jingxin Industrial Development, China). The homogenization buffer included

10mMTris-HCl buffer, 250mM sucrose, 25mMMgCl2, 25mMKCl, 1mMDTT, 13 protease inhibitor, 0.4 U/mL Superasin, 0.4 U/mL

RNaseIn, 1 mMPI, 0.1% Triton X-100 (v/v), and 10 ng/mLHoechst 33342. Next, the homogenate is filtered through a 40 mmfilter. The

nuclei were centrifuged at 500 3 g for 8 min and then suspended in PBS containing 0.3% BSA, 0.4 U/mL Superasin and 0.4 U/mL

RNaseIn. Hoechst 33342 and PI-positive nuclei were sorted using FACS (BD Influx) and enumerated utilizing a dual fluorescence cell

counter (Luna-FLTM, Logos Biosystems). Based on the 10x Genomics Single-Cell 3’ system, the nuclei were subjected to single-nu-

cleus capture. Around 7,000 nuclei per sample were obtained using the standardized 10x capture and library preparation procedure

(10x Genomics) and subjected to sequencing using PE150 on the NovaSeq 6000 Sequencing System (Illumina, 20012866).

SA-b-gal staining
Frozen tissue sections were thawed to room temperature, air-dried, and subsequently washed with PBS. Samples were then treated

with a fixed solution (2% formaldehyde and 0.2% glutaraldehyde in PBS) for 15minutes (min) and then subjected to incubation with a

SA-b-gal staining solution (including 5mMpotassium ferricyanide, 5 mMpotassium ferrocyanide, 1mg/mL X-gal, 150mMNaCl, and

2 mM MgCl2) at 37
�C for a duration of 12 h. Finally, 50% glycerol was used for slide mounting. Similarly, cultured cells underwent

fixation with a solution containing 2% formaldehyde and 0.2% glutaraldehyde for 15 min, followed by incubation with a SA-b-gal

staining solution (including 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 1 mg/mL X-gal, 150 mM NaCl, and

2 mMMgCl2) at 37
�C for 12 h. Subsequent imaging was captured using a Nikon microscope, and quantification was carried out uti-

lizing ImageJ.

Hematoxylin and eosin (HE) staining
Paraffin-embedded tissue specimens were sectioned into slices measuring 5 mm thick slices employing a rotary microtome. Subse-

quently, these sections underwent deparaffinization in xylene and rehydration through a sequential series of alcohol solutions (100%,

100%, 95%, 80%, 70%). They were then immersed in hematoxylin solution for 5 min, followed by washing three times to eliminate

excess hematoxylin, and subjected to differentiation with 1% acid alcohol for 2 seconds (s), followed by thorough washing three

times. Lastly, eosin was applied for counterstaining, and the sectionswere dehydrated through an ethanol and xylene gradient before

being mounted using neutral gum. Subsequent imaging was captured using a Nikon microscope, and quantification was carried out

utilizing ImageJ.

Masson’s trichrome staining
Based on the manufacturer’s guidance, Masson’s trichrome staining was executed. Following tissue embedding in paraffin,

samples were sectioned into slices measuring 5 mm in thickness. These sections underwent deparaffinization using xylene

and were gradually rehydrated through successive alcohol solutions of 100%, 100%, 95%, 80% and 75%, followed by washing

three times. Subsequently, the sections were immersed in potassium bichromate solution at 60 �C for 1 h. Following a

10-minute rinse in running tap water, the sections underwent sequential staining with iron hematoxylin solution for a duration

of 5 min. Next, the sections were immersed in Ponceau-acid fuchsin working solution for a duration of 10 min. Following

this, sections underwent differentiation in phosphomolybdic-phosphotungstic acid solution for a duration of 10 min, followed

by staining in aniline blue solution for a duration of 5 min. After washing three times, differentiation was carried out in a 1%

acetic acid solution for 2 minutes. Following dehydration in 50%, 75%, 85%, 95% and 100% alcohol, and clearance with

xylene, the sections were covered using a cover glass and mounted using neutral gum. Image acquisition was performed using

PerkinElmer Vectra Polaris.

Aggresome staining
After deparaffinization and antigen retrieval, paraffin sections are stained for aggresome based on the manufacturer’s guidelines for

the proteostat protein aggregation assay kit, and then destained with 1% acetic acid for 20 minutes. After staining the cell nucleus
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with Hoechst 33342, the sections are mounted. The cells are stained similarly to paraffin sections, but without deparaffinization and

antigen retrieval. Subsequently, images were captured utilizing a Zeiss LSM 980 confocal system.

ROS analysis
The fresh cells are incubated with the CM-H2DCFDA and Hoechst 33342 at room temperature for 30 min. After washing three times,

the image was captured using an OLYMPUS CKX53 cell culture microscope.

Immunohistochemistry staining
Following paraffin embedding, the tissue was cut into 5 mm thick sections using a microtome, followed by deparaffinization with

xylene and subsequent hydration through a gradient of alcohol concentrations including 100%, 100%, 95%, 85%, 75% alcohol,

and concluding with running tap water. Antigen retrieval was conducted by exposing the sections to microwave irradiation in

10 mM sodium citrate buffer (pH = 6.0) for a duration of 20 min. Following cooling to room temperature, the sections underwent triple

rinsing with PBS. Permeabilization was achieved by treating the sections with 0.4% Triton X-100 for 30 min, subsequent to blocking

of endogenous peroxidase activity with 3% H2O2 for 10 min. Subsequently, the sections were blocked with 5% donkey serum

(diluted in PBS) for 1 h at room temperature, followed by being incubated with primary antibodies at 4�Covernight. Then, the sections

were subjected to a 20-minute incubation with an enhancement solution, followed by exposure to secondary antibodies at room tem-

perature for 1 h. Then, colorimetric detection was carried out using a DAB Kit, followed by staining with hematoxylin. Next, the sec-

tions were treated with 1% hydrochloric acid (in 70% alcohol) for differentiation. Hematoxylin staining was reversed to blue by im-

mersion in 1%ammonia water for 15 s. Ultimately, the sectionswere dehydrated using a gradient of alcohol concentrations, including

50%, 75%, 85%, 95%, 100% alcohol, and xylene, prior to being mounted with neutral gum. Image acquisition was performed using

PerkinElmer Vectra Polaris.

Transmission electron microscopy (TEM) analysis of myelin thickness
The frontal lobe was carefully isolated and treated with 2.5% (v/v) glutaraldehyde (in 0.1 M phosphate buffer), after undergoing four

washes with phosphate buffer. Subsequently, the tissues were subjected to post-fixation in 1% (w/v) osmium tetroxide in phosphate

buffer for 2 h at 4 �C, followed by dehydration through a graduated series of ethanol concentrations (30%, 50%, 70%, 80%, 90%,

100%, 100%, 7 min each) until reaching pure acetone twice of 10 min. Following this, the samples were infiltrated with graded mix-

tures (3:1, 1:1, 1:3) of acetone and SPI-PON812 resin (10 g DDSA, 16.2 g SPI-PON812, and 8.9 g NMA), and subsequently transferred

to pure resin. Ultimately, the tissues were embedded in pure resin containing 1.5% BDMA, polymerized for 12 h at 45�C followed by

48 h at 60�C. Ultra-thin sections measuring 70 nm in thickness were obtained using a microtome (Leica EM UC6) and subjected to

double-staining using uranyl acetate and lead citrate. Subsequently, images were captured using a transmission electron micro-

scope (FEI Tecnai Spirit120kV). Myelin thickness in the frontal lobe was quantified utilizing ImageJ software.

Golgi staining
Based on the manufacturer’s guidance of FD Rapid GolgiStain Kit, Golgi staining of the monkey’s frontal lobe was performed. The

monkey frontal lobe was soaked in solutions A and B at room temperature for a duration of 2 weeks, then immersed in solution C for a

duration of 72 hours at 4�C. Slices of FL were obtained with a Leica CM3050 S Cryostat at 150 mm. Subsequently, images of frontal

lobe sections were captured using a ZEISS LSM 980 confocal microscope.

Oil red O staining
10 mm thick frozen tissue sections underwent a 15-minute air-drying process, followed by washing three times. Subsequently, the

sections were subjected to fixation using 4% PFA for 10 min, and underwent an additional three times of PBS washes. Following

1 s exposure to 60% isopropanol, the sections were stained with 60% Oil Red O for 15 min, followed by another series of PBS

washes. Hematoxylin staining was then performed for 5 min, subsequent to sequential immersion in 1% hydrochloric acid (in

70%alcohol), and 1% ammonia water, respectively. Finally, the sections were sealed utilizing 50% glycerol.

Immunofluorescence staining
For tissue immunofluorescence staining, following embedding in paraffin, tissue sections were sliced at 5 mm,which underwent iden-

tical procedures as those utilized for immunohistochemistry staining, encompassing deparaffinization and antigen retrieval. Subse-

quently, the sections were treated with 0.4%Triton X-100 (diluted in PBS) for 30min. In the case of cell immunofluorescence staining,

cells were treated with 4% PFA for 10 min and treated with 0.4% Triton X-100 (diluted in PBS) for 15 min. After PBS washes, tissue

sections or cells were incubated with blocking buffer (5% donkey serum in PBS) for 1 hour at room temperature and incubated with

primary antibodies at 4 �C overnight. On a subsequent day, the sections were exposed to secondary antibodies and nuclear dye for 1

hour at ambient temperature. Ultimately, images were acquired employing the Zeiss LSM 980 confocal system.

Human embryonic stem cell (hESC) culture
We cultured WT and Nrf2 E82G hESCs following established methodologies.58 The hESCs were sourced from the WiCell Research

Institute and cultured onmouse embryonic fibroblast feeder cells using a specialized medium formulated for human embryonic stem
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cells. This medium consisted of 20% Knockout Serum Replacement (Invitrogen), 80% DMEM/F12 (Invitrogen), 10 ng/mL human

basic fibroblast growth factor (bFGF, Joint Protein Central), 55 mM b-mercaptoethanol (Invitrogen), 1% non-essential amino acids

(NEAA) (Invitrogen), 1%penicillin/streptomycin (PS, Invitrogen), 1%GlutaMAX (Invitrogen), and 0.01%plasmocin (Invitrogen). Impor-

tantly, all cells were subjected to thorough testing to confirm the absence of mycoplasma contamination.

Human neuron (hNeuron) differentiation
Directed differentiation of WT and Nrf2 E82G human neural stem cells (hNSCs) from WT and Nrf2 E82G hESCs was conducted

following established protocols.58 Initially, hESCs were cultured on mouse embryonic fibroblast feeder cells, and upon reaching a

confluence of 20-40%, the ESCs were treated with NID-1 medium. This medium formulation comprised 50% neurobasal medium,

50% advanced DMEM/F12, 13 B27 supplement, 13 N2 supplement, 2 mM GlutaMAX, 10 ng/mL hLIF, 2 mM dorsomorphin, 3 mM

SB431542, 4 mM CHIR99021, and 0.1 mM compound E. Following a 2-day incubation period, the NID-1 medium was changed by

the NID-2 medium (which is similar to NID-1 but lacks dorsomorphin), and the cells were allowed to proliferate further for another

5 days. Subsequently, the cell cultures were dissociated into single cells using Accutase, transferred onto matrigel-coated plates,

and cultured with Neural Progenitor Cell Maintenance Medium. This maintenance medium consisted of 50% advanced DMEM/

F12, 50% Neurobasal medium, 2 mM GlutaMAX, 2 mM SB431542, 10 ng/mL hLIF, 3 mM CHIR99021, 13 N2 supplement and 13

B27 supplement.

WT and Nrf2 E82G hNSCswere seeded ontomatrigel-coated plates at a seeding density of 33 10̂4 cells per well for 24-well plates

and 1 3 10̂5 cells per well for 6-well plates and allowed to culture for 3 days. Cells were then exposed to a specialized neuronal dif-

ferentiation medium composed of advanced DMEM/F12, 10 ng/mL GDNF, and 10 ng/mL BDNF, 200 mM ascorbic acid (Sigma),

400 mM dbcAMP, 13 B27 supplement and 13 N2 supplement. Laminin was introduced into the specialized neuronal differentiation

medium 3 days post-neuronal induction to facilitate and stabilize the neuronal differentiation process. The cells were cultured in this

neuronal differentiationmedium for aminimum of 14 days before being employed for subsequent experiments. For prolonged culture

periods, fresh medium was replaced every 3 days to sustain optimal cell conditions until the designated time of sample collection.

Knockdown of Nrf2 utilizing small interfering RNA (siRNA)
The inhibition of Nrf2 expression via siRNA in hNeurons was executed using established methodologies as outlined previously.133

The siRNAs were synthesized by Ribobio (China). Transfections of RNA oligonucleotides were accomplished using lipofectamine�
3000 Reagent, adhering to the manufacturer’s guidelines. Cells were collected for analysis 48-72 hours after transfection. Detailed

sequence information can be found in Table S5.

Metformin treatment of hNeurons
At prolonged culture periods, WT and Nrf2 E82G hNeurons were cultured long-term for 18 days before exposure to metformin at a

concentration of 5 mM (in neuronal differentiation medium). As for si-NC and si-Nrf2 hNeurons, metformin treatment was performed

from day 12. Fresh medium was replaced every 3 days to sustain optimal cell conditions until the designated time of sample

collection.

Western blot analysis
Based on the previousmethod, western blot analysis was performed.134 Initially, cell lysis was performed using RIPA lysis buffer (con-

taining protease inhibitors, phosphatase inhibitors and PMSF). The total protein concentration was then determined utilizing the BCA

assay according to the manufacturer’s guidelines. 53 SDS loading buffer was added to the lysis mixture and the sample was incu-

bated at 105�C for 10 min. The protein lysates underwent separation via SDS-PAGE. Next, proteins were transferred to PVDF (poly-

vinylidene fluoride) membranes and subsequently blocked using 5% BSA in 13 TBST solution. Overnight incubation with primary

antibodies at 4 �C ensued. The PVDF membranes were immersed in HRP-conjugated secondary antibodies at room temperature

for 1 h. Finally, it was exposed by the ChemiDoc XRS system.

RNA extraction
For RNA extraction, cell pellets were first resuspended in TRIzol Reagent within centrifuge tubes, subsequent to the addition of

200 mL of chloroform. The resulting mixture underwent gentle agitation and was placed at ambient temperature for 15 minutes.

Following this, centrifugation was performed at 12,000 3 g at 4 �C for 15 min to separate the components. Subsequently, 400 mL

of the upper liquid phase was cautiously transferred to a new centrifuge tube and combined with an equal volume of isopropanol

at room temperature for 10 min. The mixture was then subjected to centrifugation once more at 12,000 3 g at 4 �C for 10 min.

Upon removal of the supernatant, 1 mL of pre-cooled 75% ethanol was added to the sediment for purification, followed by centri-

fugation at 8,000 3 g at 4 �C for 5 min. After the supernatant was carefully removed, the residual ethanol was allowed to evaporate.

Finally, the RNA was dissolved in 20 mL of DEPC water, after which the RNA concentration was quantified.

Real-time quantitative PCR
1 mg total RNA was incubated at 42 �C for 2 min with 53 gDNA wiper Mix. Then, the total RNA was mixed with 43 HiScript IV qRT

SuperMix and incubated at 37 �C for 15 min before incubated at 85 �C for 5 s to synthetic cDNA. The real-time quantitative PCR
Cell 187, 1–21.e1–e13, October 31, 2024 e10
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assays were performed utilizing the THUNDERBIRD SYBR qPCR mix on a Real-Time PCR instrument. Normalization of all data was

conducted relative to the internal control, and analysis was carried out using the 2-DDCq approach. Primer pairs utilized in this inves-

tigation are listed in Table S5.

Bulk RNA-seq data processing
To trim the adaptor and remove low-quality reads, raw reads were processed by Trim Galore software (version 0.6.7). Cleaned reads

of 79 monkey tissues/organs were aligned to the Macaca fascicularis reference genome (5.0, ensemble 91) using STAR (version

2.7.1a)111 with strand-specific parameters. The Fragments Per Kilobase per Million (FPKM) mapped reads were calculated by

StringTie (version 2.1.7).112 To obtain age-dependent genes in four representative clusters, R package Mfuzz (version 2.58.0)135

was employed to perform fuzzy c-means clustering based on log2-transformed FPKM, and highly overlapping clusters were merged.

The details of the age-dependent genes are listed in Table S2.

Gene set variation analysis (GSVA)
Based on log2-transformed FPKM of age-dependent genes in each cluster, GSVA score was calculated by R package GSVA (version

1.46.0).114 Gene sets were obtained from Molecular Signatures Database (MSigDB).

The rescue score for each tissue was calculated as follows:

Rescue score = �GSVA scoreO�Met �GSVA scoreO�Ctrl

GSVA scoreO�Ctrl �GSVA scoreY�Ctrl

Differentially expressed pathways were identified using R package limma (version 3.54.1) with default parameters.115 The path-

ways with P < 0.05 were considered significant. Rescue pathways were identified as a subset of pathways significantly up-regu-

lated/down-regulated in cluster U/D that were changed in the opposite direction upon metformin treatment.

Data-independent acquisition (DIA) quantitative proteomics
Peptide identification was performed by searching against the UniProt Macaca fascicularis database by Spectronaut. P-value was

calculated using the kernel density estimator, and Q-value cutoff at precursor and protein levels was set to 0.01. Protein abundance

was quantified by the peak area of production, with at least three productions selected for average intensity quantification. The pro-

tein abundances were imputed by k-nearest neighbor algorithm, log2-transformed and normalized using vst function by R package

DEP (version 1.20.0).116 To identify age-dependent proteins in four representative clusters, R package Mfuzz (version 2.58.0) was

employed to perform fuzzy c-means clustering on normalized protein abundance, and highly overlapping clusters were merged.

Differentially expressed proteins (DEPs) were identified using R package limma (version 3.54.1)115 with parameters (P-value < 0.05

and |log2(fold change)| > 0.5). Rescued DEPs were identified as a subset of age-dependent DEPs in cluster U/D that were changed in

the opposite direction upon metformin treatment. The details of the rescued DEPs are listed in Table S2.

Metabolomic data analysis
For metabolomic data analysis, ion peaks were extracted using proprietary in-house IT hardware and software after pre-processing

of raw data and data quality control inspection. Metabolites were identified by searching an in-house library generated from running

reference standards commercially purchased or obtained from other sources. Identification of metabolites in samples requires strict

matching of three criteria between experimental data and library entry: narrow window retention index (RI), accurate mass with vari-

ation less than 10 ppm andMS/MS spectra with high forward and reverse searching scores. Metabolite quantification is achieved by

calculating area-under-the-curve, yielding the raw peak area for each metabolite. The normalized peak areas were then log2-trans-

formed to reduce data distribution skewness and be in an approximate normal distribution. Missing values in the peak area matrix

were imputed by using the minimal detection value of a metabolite among all samples. To identify age-dependent metabolites in four

representative clusters, R package Mfuzz (version 2.58.0)135 was employed to perform fuzzy c-means clustering on normalized

metabolite abundance, and highly overlapping clusters were merged. The details of the rescued DE metabolites are listed in

Table S2.

DNA methylation aging clock analysis
The processed beta value matrix was used for aging clock analysis as previously described.96 In brief, Pearson correlation values

were calculated for all methylated sites with chronological age including 3 groups (Y-Ctrl, M-Ctrl, O-Ctrl) first. Only aging-related

methylated sites (P-value < 0.05) were used for aging clock training. Utilizing the processed beta value matrix of these aging-

related methylated sites as input data, and the chronological ages of each monkey (including 3 groups (Y-Ctrl, M-Ctrl, O-Ctrl))

as the training label, we employed a penalized regression model (ElasticNet, containing L1 regularization and L2 regularization)

to construct DNA methylation aging clock, using the cv.glmnet function of the glmnet R package (version 4.1.7).107 Alpha values

were set from 0.01 to 0.99. Lambda values were determined using 10-fold cross-validation on the training set. To arrive at unbi-

ased estimates of the accuracy of the DNA methylation aging clock, we performed a cross-validation scheme, Leave One Out

Cross Validation (LOOCV).136 By leaving out a single sample from the penalized linear regression, we predicted age for that sample
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and iterated over all samples in all tissues. In this way, we considered model complexity and utilized the appropriate hyperpara-

meters, selecting the model with the lowest mean absolute error (MAE) as the final model. R and MAE were used to measure the

accuracy and compare it with the known aging clock model. Then, O-Met group was used as an input to predict DNAmAge.

DAgeDiff was used to assess the geroprotective effects of metformin treatment. The details of DNAmAge and DAgeDiff in all tis-

sues are listed in Table S3.

Multi-Model aging clock analysis
For bulk RNA-seq, aging-related genes were fitted by linear regression with chronological age by limma115 (adjusted P-value < 0.05)

with default parameters. Then, tissues with more than 10 aging-related genes were used for aging clock training. The expression

matrix of these aging-related genes as input data, and the chronological ages of each monkey (including 3 groups (Y-Ctrl, M-Ctrl,

O-Ctrl)) as the training label. The ElasticNet regression model was then trained with the training set (including 3 groups (Y-Ctrl,

M-Ctrl, O-Ctrl)), using the cv.glmnet function of the glmnet R package (version 4.1.7)107 to set the alpha values from 0.01 to 0.99.

Lambda values were determined using 10-fold cross-validation on the training set. Then, we employed a methodology akin to

DNAmAge to predict the transcriptAge of all samples. Additionally, we utilized the appropriate hyperparameters, selecting the model

with the lowest MAE (Mean Absolute Error) as the final model. R andMAEwere used tomeasure the accuracy and compare it with the

known aging clock model. Then, the O-Met group was used as an input to predict transcriptAge, which was used to assess the ger-

oprotective effects of metformin treatment. The details of DAge and DAgeDiff in all tissues are listed in Table S3.

For plasma proteomics andmetabolomics, aging-related proteins andmetabolites were fitted by linear regression with chronolog-

ical age by limma115 (P-value < 0.05) with default parameters between 3 groups (Y-Ctrl, M-Ctrl, O-Ctrl). Then, we employed a meth-

odology akin to DNAmAge to construct the final model respectively and predict the proteinAge and metabAge of all samples. R and

MAE were used to measure the accuracy and compare it with the known aging clock model. Then, the O-Met group was used as an

input to predict proteinAge and metabAge, which was used to assess the geroprotective effects in metformin treatment. The details

of DAge and DAgeDiff are listed in Table S3.

snRNA-seq data processing
The single-nuclei mRNA sequencing data were aligned to theMacaca fascicularis reference genome (5.0, ensemble 91) and counted

by Cell Ranger (version 6.1.2) to generate a raw count matrix. Then, in the raw count matrix, the possible background noise was

removed by CellBender (version 0.2.0)99 with default parameters.

Clustering and identification of cell types for each tissue
The decontaminated count matrixes were converted into Seurat (version 4.1.1)101 objects and processed in the order of the

following steps:

1. Cells with fewer than 200 detected genes,more than 2.5%mitochondrial gene ratio for the frontal lobe and cells with fewer than

200 detected genes, more than 5% mitochondrial gene ratio for the liver were excluded.

2. SCTransform was used for normalization, then each Seurat objects were performed PCA analysis to provide priori knowledge

for doublet detection by DoubletFinder (version 2.0.2).100

3. After filtering the doublets, all samples in each tissue were integrated across conducted using the standard Seurat procedure

and the batch effect was corrected by using the CCA (rpca).

4. 30 PCs were used to execute the dimensionality reduction and clustering by using ‘‘FindNeighbors’’ and ‘‘FindClusters’’.

UMAP were generated by ‘‘RunUMAP’’.

5. Marker genes for each cluster were performed using the Wilcoxon rank-sum test as statistical method in the ‘‘FindAllMarkers’’

function with the cutoff of log2(fold change) > 0.5, min.pct > 0.2 and adjusted P-values < 0.05. Cell types were assigned to each

cluster using canonical marker genes. The details of the top 50 marker genes for each cell type are listed in Table S4.
Differential expression analysis from snRNA-seq data
For liver snRNA-seq data, age-dependent DEGs were calculated using the ‘‘FindallMarkers’’ in Seurat with the Wilcoxon rank-sum

test in Y-Ctrl, M-Ctrl and O-Ctrl groups (|average_log2(fold change)| > 0.25, min.pct > 0.1 and adjusted P value < 0.05) in each cell

type. In addition, differentially expressed genes between O-treated and O-Ctrl groups (O-Met/O-Ctrl) were calculated using the

Seurat function ‘‘FindMarkers’’ with the Wilcoxon rank-sum test (|average_log2(fold change)| > 0.25, min.pct > 0.1 and adjusted P

value < 0.05), named as Met DEGs. The details of the age-dependent DEGs and Met DEGs for each cell type are listed in Table S4.

For frontal lobe snRNA-seq data, age-dependent DEGswere calculated using the ‘‘FindallMarkers’’ in Seurat with theWilcoxon rank-

sum test in Y-Ctrl, M-Ctrl and O-Ctrl groups (|average log2(fold change)| > 0.15, min.pct > 0.1 and adjusted P value < 0.05) in each cell

type. In addition, differentially expressed genes between O-treated and O-Ctrl groups (O-Met/O-Ctrl) were calculated using the Seurat

function ‘‘FindMarkers’’ with theWilcoxon rank-sum test (|average_ log2(fold change)| > 0.15,min.pct > 0.1 and adjustedP value < 0.05),

named as Met DEGs. The details of the age-dependent DEGs and Met DEGs for each cell type are listed in Table S4.
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snRNA-seq tissue-specific aging clock analysis
Owing to the sparsity of snRNA-seq data relative to bulk RNA-seq data, metacells were identified based on KNN by the function

‘‘MetacellsByGroups’’ from hdWGCNA package109 with default parameters. Only cell types containing more than 3 metacells in

each group were used for aging clock analysis. Then, the normalized metacell count matrix was split into 60% for training and

40% for testing. Each cell type normalized metacell count matrix was subsetted with their cell type-specific age-dependent

DEGs. ElasticNet was trained in the training set by LOO to gain the final model, which presented the lowest MAE in the test set. R

andMAEwere used tomeasure the accuracy and compare it with the known aging clockmodel. Further, metacells fromO-Met group

were used to assess the geroprotective effects of metformin treatment. The integrated sn-transcriptAge was trained as follows,

which included all metacells with age-dependent DEGs as input. The details of sn-transcriptAge and DAgeDiff in integrated and

all cell types are listed in Table S4.

Aging-related trajectory analysis
Raw snRNA-seq counts were aggregated at the sample level in each cell type and subsequently extracted age-dependent DEGs

were used to create an input matrix for Mfuzz135 analysis. Age-dependent DEGs were grouped into four clusters according to their

expression patterns, which is similar to the bulk RNA-seq analysis. The details of the aging-related trajectory DEGs for each cell type

are listed in Table S4.

Rescue differential expression analysis
Rescue down-regulated DEGs were identified as the overlap of down-regulated DEGs (O-Met/O-Ctrl) and Aging-related trajectory

cluster U. Rescue up-regulated DEGs were identified as the overlap of up-regulated DEGs (O-Met/O-Ctrl) and Aging-related trajec-

tory cluster D. The details of the rescued DEGs for each cell type are listed in Table S4.

Cell type prioritization analysis
Augur108 was used in 3 groups (Y-Ctrl, M-Ctrl, O-Ctrl) to prioritize aging-sensitive cell types. For metformin-sensitive cell types,

Augur108 was used in 2 groups (O-Ctrl, O-Met). Results were further visualized with the ggplot2106 or ggpubr R package.

Functional enrichment analysis
Over Representation Analysis (ORA) was analyzed by Clusterprofiler (version 3.1.0)110 and Metascape (http://metascape.org/gp/

index.html).102 Gene set enrichment analysis (GSEA) was analyzed by fgsea (version 1.26.0). Results were further visualized with

the ggplot2106 or ggpubr R package.

Gene set score analysis
Gene sets were collected fromMsigDB (https://www.gsea-msigdb.org/gsea/index.jsp). In addition, modified gene sets were gener-

ated by overlapping with aging-related trajectory genes (Cluster D and Cluster U) to isolate aging-related pathway alteration. Next,

perform ‘‘AddModuleScore’’ function in Seurat to calculate the gene set score. Genes in each gene set are listed in Table S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data for cognitive testing and structural MRI were processed using Matlab and SPSS software. The data for micro-CT patholog-

ical staining, real-time quantitative PCR and western blotting were processed using PRISM software (GraphPad 9 Software). The

data for bulk RNA-seq, snRNA-seq, proteomics, metabolomics and DNA methylation sequencing were using R packages, which

have equal variances. A P-value < 0.05 was considered statistically significant. P-values are presented in the indicated figures as

appropriate.
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Supplemental figures

Figure S1. MRI examination of the impact of aging and metformin on cortical thickness in the brain, related to Figure 1

(A) MRI assessment of cortical thickness at the lobe level in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys is presented. log2(fold change) in cortical thickness is

displayed on the mid-gray surface, compared to the O-Ctrl group. Data for cortical thickness are presented as the mean value across both hemispheres for each

(legend continued on next page)
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monkey. The boxes show the median (center line), the quartile range (25%–75%), and the whiskers (minimum and maximum), with GLMM analysis p values

annotated. See STAR Methods.

(B) MRI assessment of cortical thickness at the region level in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys is presented. log2(fold change) in cortical thickness of

regions showing the significant aging effect is displayed on the mid-gray surface, compared to the O-Ctrl group. Data for cortical thickness are presented as the

mean value across both hemispheres for each monkey. The boxes show the median (center line), the quartile range (25%–75%), and the whiskers (minimum and

maximum). Note that GLMM analysis p values for specific areas—9, 11, 13, 24a/b, 24a/b prime, perSMA, SMA, and STGr—are provided. Additionally, Mann-

Whitney test p values for area 10 are indicated. See STAR Methods.
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Figure S2. Transcriptomic profiling of multiple tissues during aging and in response to metformin intervention, related to Figure 2

(A) t-SNE plots showing different systems (left) or four groups (right) based on bulk RNA-seq data.

(B) Bar plot depicting the count of age-related genes across clusters within the 79 monkey tissues.

(C) Heatmap showing GSVA score of age-dependent genes in clusters U and D in different groups.
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Figure S3. Aging phenotype evaluation across multiple monkey tissues, related to Figure 3

(A) Immunofluorescence examination of 4-HNE in kidney (medulla) in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 20 mm.

(B) Immunofluorescence evaluation of H3K9me3 in liver (LL), kidney (cortex), muscle (QM), heart (LV) of Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars,

20 mm.

(C) Immunohistochemical and immunofluorescent assessment of ERVW-Env in lung (RILU), liver (LL), and brain (FL) in Y-Ctrl, M-Ctrl, O-Ctrl, andO-Metmonkeys.

The arrows indicate ERVW-Env-positive cells. Scale bars, 20 mm.

(D) Immunofluorescence analysis of MYH1, MYH2, and MYH7 in muscle (QM) of Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 100 mm.

(E) Immunofluorescence examination of MMP9 in liver (LL) and kidney (cortex) in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 20 mm.

The quantified data in (A)–(E) are shown as means ± SEMs, Mann-Whitney test p values of heart (LV) in (B), brain (FL) in (C) and kidney (cortex) in (E) are indicated,

one-way ANOVA with Tukey’s multiple comparisons test p values of (A), liver (LL), kidney (cortex) and muscle (QM) in (B), lung (RILU) and liver (LL) in (C) and (D),

kidney (cortex) in (E) are indicated. Y-Ctrl: n = 6, M-Ctrl: n = 3, O-Ctrl: n = 5, O-Met: n = 5–6 monkeys in (A)–(E).
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Figure S4. Plasma proteomics andmetabolomics changes during aging and followingmetformin intervention inmonkeys, related to Figure 4

(A) Clustering analysis of plasma proteomic data frommonkeys during aging process. The number of age-dependent proteins in each cluster is shown. Solid lines

and ribbons represent mean of standardized protein abundance across clusters ± SDs.

(B) Abundance changes in age-dependent plasma proteins from monkeys upon metformin treatment (top). Solid lines and ribbons represent mean of stan-

dardized protein abundance across clusters ± SDs. Box plot showing GSVA score of age-dependent proteins in different groups (bottom). Wilcoxon rank-sum

test p values are indicated.

(C) Venn plot showing the number and proportion of rescue age-dependent proteins from clusters U and D.

(legend continued on next page)
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(D) Abundance changes in age-dependent plasma metabolites from cynomolgus monkeys upon metformin treatment (top). Solid lines and ribbons represent

mean of standardized metabolite abundance across clusters ± SDs. Box plot showing GSVA score of age-dependent metabolites in different groups (bottom).

Wilcoxon rank-sum test p values are indicated.

(E) Dot plot showing predicted biological age (metabAge) based on plasma proteomics (left). Boxplot illustrating the rescue of monkeys’ biological age (meta-

bAge) by metformin treatment (right). The dashed line indicates no difference between the predicted biological age and the expected chronological age (DAge =

0), with the dot-to-line distance reflecting the individual’s aging pace. Wilcox rank-sum test p values are indicated.
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(legend on next page)
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Figure S5. Quality control assessment of monkey liver snRNA-seq data, related to Figure 5

(A) Barplot showing the mean reads per cell in different samples (left). Boxplot showing the detected gene number in different samples (middle). Boxplot showing

the detected UMI number in different samples (right).

(B) Dot plot showing the expression of marker genes used to annotate cell types.

(C) Heatmap showing the top 50 marker gene in different cell types. The enriched pathways, based on gene analysis, are depicted on the left.

(D) Clustering analysis of aging-dependent DEGs from liver during aging process (top). Barplot showing functional enrichment in 4 clusters (bottom). Solid lines

and ribbons represent mean of count removed sequencing depth across clusters ± SDs.

(E) Metformin-induced expression shifts in age-sensitive genes across 9 major monkey liver cell types. Solid lines and ribbons represent mean of count removed

sequencing depth across clusters ± SDs. Wilcoxon rank-sum test p values are indicated (not significant (ns), p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, ****

p < 0.0001).

(F) Venn diagrams illustrate the counts of aging, Met, and rescued differentially expressed genes (DEGs). The intersections show the quantities of down-regulated

(top) and up-regulated (bottom) rescued DEGs.

(G) snRNA-seq reveals the count and proportion of rescue and pro-aging DEGs across the 10 primary liver cell types.

(H) Networks depicting key Gene Ontology (GO) terms significantly enriched among rescued DEGs, as determined by functional enrichment analysis.
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Figure S6. Metformin counteracts liver aging and enhances hepatic metabolic performance in monkeys, related to Figure 5

(A) Dot plot displaying up-regulated and down-regulated rescued DEGs across various liver cell types, as revealed by snRNA-seq.

(B) Dot plot illustrating the prioritization of liver cell types from snRNA-seq data using Augur.

(C) Heatmap depicting the expression patterns of overlapping rescued DEGs, derived from both snRNA-seq and bulk RNA-seq data, across various liver cell

types. The color gradient from blue to red represents gene expression levels ranging from low to high in the O-Met/O-Ctrl comparison group.

(D) Metformin-induced expression shifts in age-sensitive genes within monkey hepatocytes. Solid lines and ribbons represent mean of count removed

sequencing depth across clusters ± SDs. Wilcoxon rank-sum test p values are indicated. Wilcoxon rank-sum test p values are indicated (not significant (ns),

p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

(E) Ridge plots illustrating the representative gene set scores across the four groups, with the black line indicating median expression. Wilcoxon rank-sum test p

values are indicated.

(F) Barplot illustrating representative GO terms significantly (p < 0.05) post-metformin treatment in hepatocytes, based on gene set enrichment analysis.

(G) Bar plot showing the proportion of APOE-positive cells in monkey hepatocytes from different groups.

(legend continued on next page)
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(H) Immunofluorescence analysis of APOE (top) and oil red O staining evaluation (bottom) of liver (LL) in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars,

20 mm.

(I) Immunofluorescence analysis of TNF-a in liver (LL) of Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. The arrows indicate TNF-a-positive cells. Scale bars, 20 mm.

(J) Masson’s trichrome staining evaluation of liver (LL) in Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys. Scale bars, 20 mm.

The quantified data in (H)–(J) are shown as means ± SEMs, one-way ANOVA with Tukey’s multiple comparisons test p values are indicated. Y-Ctrl: n = 6, M-Ctrl:

n = 3, O-Ctrl: n = 5, O-Met: n = 6 monkeys in (H)–(J).
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Figure S7. Quality control assessment of monkey frontal lobe snRNA-seq data, related to Figure 5

(A) Barplot showing the mean reads per cell in different samples (left). Boxplot showing the detected gene number in different samples (middle). Boxplot showing

the detected UMI number in different samples (right).

(B) Dot plot depicting expression levels of marker genes utilized for cell type annotation.

(C) Heatmap illustrating the top 50 marker genes across various cell types. Enriched pathways based on these genes are displayed on the left.

(D) Radar plot showing the number of aging-dependent DEG in different clusters.

(E) Expression variations of age-associated genes in eight monkey frontal lobe cell types, following metformin treatment. Solid lines and ribbons represent mean

of count removed sequencing depth across clusters ± SDs. Wilcoxon rank-sum test p values are indicated (not significant (ns), p > 0.05, * p < 0.05, ** p < 0.01, ***

p < 0.001, **** p < 0.0001).

(F) Venn diagrams display the counts of aging, Met, and rescued DEGs, with the intersections highlighting the quantities of down-regulated (left) and up-regulated

(right) rescued DEGs.

(G) snRNA-seq data indicates the count and proportion of rescue and pro-aging DEGs among the 8 predominant cell types in the frontal lobe.

(H) Barplot showing the rescued DEG number in different cell types.
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Figure S8. Assessment of senescent phenotypes in metformin-treated hNeurons under extended culture conditions, related to Figure 7

(A) Depiction of senescence in hNeurons induced by extended culture.

(B) SA-b-gal staining evaluation in hNeurons at day 7 and day 35 of culture.

(C) Immunofluorescence examination of Lamin B2 in MAP2-marked hNeurons on day 7 or day 35.

(D) Immunofluorescence analysis of Lamin B2 in MAP2-marked hNeurons on day 35 after treatment with Veh or Met.

(E) Aggresome staining assessment in MAP2-marked hNeurons on day 35 after treatment with Veh or Met. The arrows indicate aggresome-positive neurons.

(F) Transcript levels of LMNB1 and IL-6, markers of hNeuron senescence, on day 35 after treatment with Veh or Met.

(G) Western blot analysis of p-Nrf2 levels in hNeurons at days 7 and 35 of culture.

(H) Western blot analysis of p-mTOR and p-AMPK levels in hNeurons on day 35 post-treatment with Veh or Met.

(I) Transcript levels of Nrf2-target genes HO-1, NQO-1, SOD3, GPX2, and GPX1 in hNeurons during day 7 and day 35 culture.

(J) Transcript levels of Nrf2-target genes HO-1, NQO-1, SOD3, GPX2, and GPX1 in hNeurons on day 35 after treatment with Veh or Met.

(K) ROS staining evaluation in hNeurons on day 35 following treatment with Veh or Met.

(L) Violin plot depicting gene set scores post-metformin treatment in monkey frontal lobe excitatory neurons, with the black line indicating median expression.

Wilcoxon rank-sum test p values are indicated.

(M) Real-time quantitative PCR analysis of relative mitochondrial DNA content in hNeurons on day 35 after treatment with Veh or Met.

(N) Transcript levels of mitochondrial dynamics-related genes MFN2, OPA1, DNM1L, and MFF in hNeurons on day 35 after treatment with Veh or Met.

(O) Transcript levels of mitochondrial function-associated genes TFAM and PPPARGC1A in hNeurons on day 35 after treatment with Veh or Met.

(P) Western blot analysis of Tom20 protein levels in hNeurons on day 35 after treatment with Veh or Met.

The quantified data in (B)–(K) and (M)–(P) are shown as means ± SEMs, two-tailed Student’s t test p values are indicated in (B)–(K) and (M)–(P). n = 3 biological

samples per group in (B)–(K) and (M)–(P). Scale bars: 20 and 5 mm (zoomed-in images) in (B)–(E) and (K).
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Figure S9. Senescent phenotype assessment in metformin-treated si-Nrf2 and Nrf2 E82G hNeurons under extended culture, related to

Figure 7

(A) Nrf2 mRNA levels in hNeurons 2 days after secondary siRNA transfection targeting si-NC or si-Nrf2.

(B) Nrf2 protein levels determined by western blot in hNeurons 3 days following the secondary siRNA transfection for si-NC or si-Nrf2.

(C) Western blotting of p-Nrf2 levels in si-NC or si-Nrf2 hNeurons on day 21 after treatment with Veh or Met.

(D) Transcript levels of Nrf2-target genes HO-1, NQO-1, SOD3, GPX2, and GPX1 in si-NC or si-Nrf2 hNeurons on day 21 after treatment with Veh or Met.

(E) Sequencing outcomes of Nrf2 gene PCR products in WT and Nrf2 E82G hNeurons.

(F) Schematic showing the Nrf2 E82G mutation promotes nuclear entry and activation of antioxidant target genes.

(G) Transcript levels of Nrf2-target genes HO-1, NQO-1, SOD3, GPX2, and GPX1 in WT or Nrf2 E82G hNeurons on day 35 after treatment with Veh or Met.

(H) Immunofluorescence examination of 4-HNE in MAP2-marked WT or Nrf2 E82G hNeurons on day 35 after treatment with Veh or Met.

(I) ROS staining assessment of WT or Nrf2 E82G hNeurons on day 35 after treatment with Veh or Met.

(J) Immunofluorescence analysis of p-Nrf2 in muscle (QM) and kidney (cortex) of Y-Ctrl, M-Ctrl, O-Ctrl, and O-Met monkeys.

The quantified data in (A)–(D) and (G)–(J) are shown as means ± SEMs, two-tailed Student’s t test p values are indicated in (A) and (B), one-way ANOVA with

Tukey’s multiple comparisons test p values are indicated in (C) and (D) and (G)–(J). n = 3 biological samples per group in (A)–(D) and (G)–(I). Y-Ctrl: n = 6,M-Ctrl: n =

3, O-Ctrl: n = 5, O-Met: n = 5–6 monkeys in (J). Scale bars: 20 mm in (H)–(J).
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