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Abstract

Superior cognitive performance can be viewed from an intelligence perspective, emphasising general properties of the human information
processing system (such as mental speed and working memory), and from an expertise perspective, highlighting the indispensable role of elaborated
domain-specific knowledge and acquired skills. In exploring its neurophysiological basis, recent research has provided considerable evidence of
the neural efficiency hypothesis of intelligence, indicating lower and more focussed brain activation in brighter individuals. The present EEG study
investigates the impacts of intelligence and expertise on cognitive performance and the accompanying cortical activation patterns in the domain
of tournament chess. Forty-seven tournament chess players of varying intelligence and expertise level worked on tasks drawing on mental speed,
memory, and reasoning. Half of the tasks were representative for chess, while the other half was not. The cortical activation was quantified by
means of event-related desynchronisation (ERD) in the upper alpha band. Independent effects of expertise and intelligence emerged at both, the
performance and the neurophysiological level. Brighter participants performed better than less intelligent ones which was associated with more
efficient brain functioning (lower ERD) across all tasks. Additionally, a high expertise level was beneficial for good task performance but exerted
a topographically differentiated influence on the cortical activation patterns. The findings suggest that superior cognitive performance and the
underlying cortical activation are not only a function of knowledge and domain-specific competences but also of the general efficiency of the
information processing system.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Intelligence and neural efficiency

Individual differences in cognitive performance are usually
described and explained within the framework of human intelli-
gence. Measures of intelligence show a high predictive validity
for performance indicators in various areas of life, among them
years of education and vocational success (for an overview, see
[59]). Intelligence can be partly traced back to general charac-
teristics of the human information processing system, such as
mental speed and working memory (WM) capacity. Brighter
individuals are assumed to be capable of processing informa-
tion faster than less intelligent individuals, allowing them to
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manipulate more information within a given time period [72].
Moreover, several studies have demonstrated substantial cor-
relations between measures of WM capacity and intellectual
performance (e.g., [13,66]), suggesting that brighter individuals
have a larger mental workspace at hand to perform mental oper-
ations and are capable of allocating their attentional resources
more effectively than less intelligent individuals [23,60].

In the past two decades, neurophysiological studies have
considerably advanced the knowledge about potential biolog-
ical bases of individual intelligence differences [41]. Increas-
ing support could be gained for the so-called neural efficiency
hypothesis of human intelligence, postulating that a higher
intelligence level is associated with more efficient brain func-
tioning [48]. Based on numerous findings of negative corre-
lations between participants’ intelligence and the amount of
brain activation during cognitive performance it was postu-
lated that intelligence is not a function of how hard, but rather
how efficiently the brain works, indicated by a more focussed
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use of specific task-relevant areas [47,49]. Evidence in favour
of the neural efficiency hypothesis comes from studies apply-
ing different research approaches to the human brain: positron
emission tomography (PET [44]), single photon emission com-
puted tomography (SPECT [8]), functional magnetic resonance
imaging (fMRI [86,88,89]), slow potential topography [67,103],
analyses of EEG alpha power [53–55,104], or event-related
desynchronisation [21,39,56,74–77].

The quantification of event-related desynchronisation (ERD,
originally described by [82]) has proven a particularly useful and
appropriate method to measure the level and topographical dis-
tribution of cortical activation during cognitive task performance
(e.g., implicit and explicit learning [107]; working memory
[98,100]; reasoning [73]; visual information processing [84]). It
is based on the fact that the amount of alpha background power
decreases during cognitive activity as compared to a resting state
(for detailed descriptions, see [83]). The functional significance
of this event-related measure of oscillatory brain activity can be
seen in close relation to the underlying neural networks. Alpha
band ERD is assumed to reflect an increased excitability level
of neurons in the involved cortical areas, which may be related,
for instance, to an enhanced information transfer in thalamo-
cortical circuits [78]. Recently, Klimesch et al. [65] have even
demonstrated that the relationship between ERD and cognitive
performance is not correlative but causal in nature.

A central finding in this context is a differential reactivity
of lower and upper alpha frequency bands to specific cogni-
tive demands (cf. [63]). Desynchronisation in the lower alpha
band (e.g., 7–10 Hz) has been observed to emerge topographi-
cally widespread in response to almost any type of task and is,
therefore, presumed to reflect basic arousal or alertness (see also
[31]). ERD in the upper alpha band (e.g., 10–12 Hz), in contrast,
usually emerges over topographically restricted (task-relevant)
areas and is regarded to reflect specific (e.g., sensory–semantic)
task requirements [83]. Moreover, studies within the neural effi-
ciency framework have revealed that it is almost exclusively the
faster (upper alpha) frequency range that sensitively reacts to
individual differences in intelligence and other abilities (e.g.,
[21,39]).

Although numerous studies have found a lower and/or more
focussed upper alpha ERD in brighter individuals during the
performance of a variety of cognitive demands (ranging from
elementary cognitive to reasoning tasks and covering verbal,
numerical as well as figural material; cf. [39]), the generality
of the neural efficiency effect has been qualified. A moderating
variable seems to be the degree to which the tasks draw on con-
tents stored in long-term memory [20,39,57,64]. For instance,
administering a task which required extensive access to semantic
memory, Klimesch et al. [64] found that good memory perform-
ers displayed a higher ERD in the upper alpha band, while the
opposite pattern was observed when presenting tasks which drew
less on long-term memory [39]. A second moderating variable
seems to be the external criterion to which cortical activation
patterns are related. Some studies from our laboratory reported
higher correlations of upper alpha ERD with tests of fluid (ver-
sus crystallised) intelligence [73,39]. Moreover, it appears that
a negative intelligence–activation relationship only emerges if

the type of intelligence measured is directly related to the cogni-
tive demands under investigation. In the study of Neubauer et al.
[76], for instance, the neural efficiency phenomenon emerged for
males only in the figural and for females only in the verbal condi-
tion. The strength of the association, however, was additionally
moderated by the intelligence component: while in the females
the negative relationship was observed exclusively for the ver-
bal IQ, in the males it emerged solely for the figural IQ—in
both cases, for those intelligence components that matched the
cognitive tasks given in the EEG session.

1.2. Expertise and neural efficiency

The impact of intelligence on individual performance differ-
ences has sometimes been challenged by findings from expertise
research (e.g., [7,70]). Studies investigating expert performers in
manifold domains (for an overview, see [28]) have contributed to
the notion that superior domain-specific performance is largely
independent of the experts’ general intelligence level. Instead,
they emphasise the indispensable (and assumedly also sufficient)
role of a large and elaborate knowledge base which is considered
to be the result of more than a decade’s experience and intense
deliberate practice in the respective domain [29].

A central characteristic of experts is that they usually dis-
play superior performance only if confronted with representative
tasks from their expertise domain, whereas they perform no
better than non-experts (novices or laypersons)1 in domain-
unspecific or non-representative demands [27]. This was mainly
demonstrated by using a memory paradigm pioneered by De
Groot [17] and popularised by Chase and Simon [9], who
exposed three chess players (a chess master, an intermediate
player, and a beginner) to chess positions for the brief time
period of 5 s. A part of the positions were meaningful game
positions (i.e., middle game positions from actual tournament
games), a part of them were meaningless random positions (i.e.,
middle game positions in which the pieces were randomly scat-
tered across the board). The participants’ task was to memorise
the briefly presented position and to reconstruct it afterwards
on a blank board. As expected, the master player placed the
majority of pieces correctly after only one exposure to the posi-
tion (on average about 16 out of 25 pieces on the board), while
the intermediate player and the beginner could only reconstruct
the locations of 8 and 4 pieces, respectively. However, when the
players were presented the random positions, absolutely no rela-
tion was observable between memory performance and playing
strength; only about three pieces were reproduced correctly by
the three players (for replications, see, e.g., [37,93]). This result
is usually explained in the framework of the chunking theory
of expertise [36]: experts would have acquired a large database
of chunks which allows them to recognise familiar patterns of
pieces on a chess board and to store them parsimoniously as

1 In contrast to laypersons who are defined as persons without any domain-
specific knowledge, novices differ from experts mainly in their experience or
practice. In the domain of chess, for example, novices are persons who know
how to play the game and who occasionally but not regularly play chess, whereas
laypersons do not even possess the core knowledge of the rules.
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chunks in short-term memory (STM [38]). The superior playing
strength of expert players is also explained with pattern recogni-
tion: if a player is confronted with a chess position, the respective
chunks in long-term memory are automatically activated and
guide the search in their knowledge base along profitable lines
[15].

That experts exhibit superior memory performance only for
meaningful material from their domain has not only been found
in chess players but also in experts from several other domains,
ranging from GO to football (for an overview, see [27]). This
finding seems to rule out explanations that refer to general prop-
erties of the information processing system. If experts processed
information generally faster or if they had a larger capacity of
short-term or working memory, this should also be apparent
for non-representative or domain-unrelated material. Direct sup-
port for the importance of domain-specific knowledge comes
from studies which extended the traditional expert–novice
comparison by the factor (lower versus higher) intelligence
[95,94,99,106]. By analysing domain-specific memory perfor-
mance, it was observed that individuals who score low on
intelligence but high on domain-specific knowledge (e.g., in
baseball or football) perform at least as well as participants
with high intelligence and low knowledge. Moreover, domain
knowledge was repeatedly found to outweigh intelligence or
domain-general resources in its impact on domain-specific per-
formance. Hambrick and Engle [50], for instance, investigated
the interplay between domain knowledge and WM capacity
on the memory performance for baseball radio broadcasts and
observed that baseball knowledge accounted for almost 55%
of the performance variance, while WM capacity revealed an
independent but considerably smaller impact (accounting for
less than 10% of the variance; for replication and extension, see
[51]).

A recent study from our research group suggests that intel-
ligence may not only lose its impact at the performance but
also at the neurophysiological level when expertise comes into
play [40]. We measured the ERD of 31 professional taxi drivers
of varying non-verbal intelligence while they were performing
two types of tasks. In the so-called expertise task, participants
were presented potential taxi routes of their city which had to be
memorised. Afterwards, several street names were displayed,
and the taxi drivers had to decide whether or not the street
crosses the previously memorised route. Unlike the expertise
task, which directly referred to the taxi drivers’ knowledge, the
second experimental task was devised to be independent of their
expertise but to engage their general mental ability. In this task
(called intelligence task), they again had to memorise a route,
but now on a fictional, abstract city map. In line with the neural
efficiency hypothesis we observed that the total cortical acti-
vation of the brighter individuals was lower than that of their
less intelligent counterparts, but only in the intelligence task.
In the expertise task, though, no intelligence-related effect was
observed. Although the results in the expertise task suggest that
the professional taxi drivers may have acquired neural efficiency
as a result of long-term practice and experience, this question
was not addressed in this investigation as no comparison between
more and less proficient taxi drivers was performed.

Neurophysiological examinations of experts and novices dur-
ing cognitive performance, however, have revealed activation
patterns contradicting the neural efficiency hypothesis: in most
cases, experts either displayed a higher activation in task-related
brain areas and/or recruited additional areas that were involved
in domain-specific strategies [34,52,69,80,101]. As an example,
Maguire et al. [69] compared the brain activation of 10 world-
class mnemonic experts with 10 matched controls by means of
fMRI. During memorising (visually presented) numbers, faces,
and other figures, the experts additionally activated brain areas
that are implicated in spatial memory and navigation, such as
medial parietal cortex, right posterior hippocampus, and right
cerebellum. In contrast, there were no regions with stronger
activation in controls. In a subsequent debriefing of the sub-
jects, 9 of 10 experts reported to apply the mnemonic “method
of loci” in which items are visualised and encoded in salient
places along a route acting as retrieval cue (cf. [25]). Hence, the
brain regions additionally recruited by the experts most likely
reflect their more effective mnemonic strategy.

1.3. Aims of the present study

To sum up, numerous studies have drawn the relatively con-
sistent picture that superior performance in experts is determined
by an elaborate knowledge base, whereas intelligence is of no or
only minor relevance. However, as yet, there has been a strong
focus on memory tasks in domains that may be considered not
to require complex cognitive processes associated with intelli-
gence. Therefore, the goal of the present study is to investigate
the interaction between intelligence and an elaborate knowledge
base more thoroughly in the cognitively demanding domain of
chess expertise. This domain not only provides well-established
experimental paradigms but thanks to the ELO system also an
objective and precise indicator for the assessment of the individ-
uals’ level of expert knowledge [22,87]. To cover a broad range
of cognitive demands, three types of tasks with chess material are
employed, drawing on central components of information pro-
cessing (mental speed, memory, and reasoning). Moreover, each
task is administered in a representative and non-representative
version for the domain of chess to examine under what con-
ditions expertise loses its impact and intelligence comes into
play.

The major focus of the present study is the registration of
cortical activation while working on the experimental tasks.
On doing so, we intend to clarify two aspects related to neu-
ral efficiency. The first concerns the claim according to which
brighter individuals generally show more focussed and there-
fore lower cortical activation. In the aforementioned study with
taxi drivers, Grabner et al. [40] demonstrated that the negative
intelligence–cortical activation relation diminishes if experts’
domain knowledge is involved. Whether this may also be the
case in the cognitively more demanding domain of chess will
be investigated. The second aspect refers to the impact of intel-
ligence as compared to that of expert knowledge on cortical
activation patterns. While considerable evidence exists for a neg-
ative relationship between intelligence and cortical activation,
neurophysiological studies of expert performers have revealed
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that their activation is often higher and/or more widespread than
that of novices. Hence, it is examined in which task demands
and conditions the cortical activation patterns are a function of
intelligence and expertise, and how the activation patterns are
related to them. Additionally, given the differential impact of
distinguishable intelligence components on cortical activation,
the relevance of verbal, numerical, and figural intelligence is
evaluated.

In accordance with our previous studies in the neural effi-
ciency framework, the amount of cortical activation during task
performance is quantified by means of the ERD in the upper
alpha band. This measure was chosen because it not only dis-
plays high sensitivity to individual differences in ability and
performance measures but also to different cognitive demands,
including those administered in the present investigation.

2. Materials and methods

2.1. Participants

Out of an original pool of 90 Austrian tournament chess players recruited
at regional chess clubs, a sample of 55 male players participated in the present
study. All participants were right-handed, had normal or corrected-to-normal
vision, and did not indicate any medical or psychological disorders. The data
of eight participants had to be excluded from further analyses due to massive
EEG artefacts (particularly muscle artefacts) during at least one experimental
task. The remaining sample consisted of 47 male tournament chess players
between 18 and 65 years (M = 37.45, S.D. = 13.16). Their playing strength
was assessed by means of the national ELO ranking, which ranged between
1325 and 2338 ELO (M = 1893, S.D. = 227).2 The sample also covered a broad
range of intelligence (I-S-T 2000 R general IQ from 80 to 144; M = 117.62,
S.D. = 13.97) and educational background (from basic education to university
degree). The participants’ intelligence structure displayed a slight advantage
for numerical IQ (M = 119.39, S.D. = 13.87) as compared to verbal (M = 111.69,
S.D. = 12.09) and figural IQ (M = 110.08, S.D. = 15.98). Participants were paid
for their participation in the EEG sessions, and all gave written informed
consent.

2.2. Psychometric tests

Participants were screened with regard to their cognitive abilities and vari-
ous chess-related variables (such as developmental milestones, attitudes, and
practice activities). The German version of the NEO-Five-Factor-Inventory
(NEO-FFI [5]), the state anxiety test (STAI [68]), and an unpublished ques-
tionnaire on participants’ mood (cf. [30]) were administered to be considered
as control variables for the EEG data (e.g., [16]). Cognitive abilities were
assessed by the well-established German intelligence structure test 2000 revised
(Intelligenz-Struktur-Test 2000 R, I-S-T 2000 R [2]). This test draws on (a) ver-
bal intelligence, (b) numerical intelligence, (c) figural intelligence, and, at a
more general level as a total score consisting of the three content factors, on (d)
reasoning or general intelligence.

2 ELO rankings typically range from 1200 (for a beginner in tournament chess)
to the world champion’s ranking of about 2800. Every time a player participates
in an official tournament and wins against a stronger opponent, his or her ELO
ranking slightly increases by a certain number of points (calculated as a differ-
ence function between the players’ actual game results and the expected game
results based on the player’s own ELO ranking and those of his or her oppo-
nents); in the case of a defeat, the player’s ELO ranking decreases. Since the
testing of the participants covered a time period of over 1 year and the national
ELO ranking list is updated every 6 months (in January and July), the ELO
rankings were aggregated over the respective time periods in the present sample
(i.e. from July 2003 to July 2004).

2.3. Experimental tasks

The experimental tasks draw on speed of information processing, memory,
and reasoning as cognitive processes. All tasks were realised with chess figures
as stimulus material. For each cognitive process the demands of one task version
were representative for the domain of chess (i.e., participants could draw on their
expert knowledge of chess), while in the other task version they were not. In all
tasks, the number of correctly solved items as well as the reaction times were
assessed.

2.3.1. Speed task (ST)
This task is similar to the enumeration task by Saariluoma [90–92]. Partici-

pants had to count the number of minor pieces (i.e., bishops and knights) of chess
positions presented on a screen as fast as possible (see Fig. 1a). When finished,
participants pressed a response button, and after the stimulus had disappeared
from the screen, they had to enter the correct answer (number of minor pieces on
the board) into an input box. In the representative condition the test items (chess
positions) were middle game positions while in the non-representative condi-
tion they were random positions. Similar to previous studies, all game positions
were selected from an international database of tournament chess games [11] in
which white was to move. The positions comprised between 19 and 28 pieces,
the number of minor pieces was varied between 4 and 8. In the non-representative
condition, positions were presented that were entirely randomised by the com-
puter (cf. [102]). This means that not only the location of pieces on the board was
random but also the selection of pieces out of the complete set (32 pieces). Ran-
dom positions were selected in a way that the total number of pieces (19–28),
the number of target pieces (4–8), and the black–white distribution of target
pieces largely match the game positions. Since randomising might accidentally
also produce meaningful middle game positions, all positions were additionally
inspected by an advanced tournament player. In total, 10 practice trials and 60
test trials (30 game and 30 random positions) were presented, in which game
and random positions were presented in a mixed pseudo-randomised order.

2.3.2. Memory task (MT)
A modified version of the classical board reconstruction task [9,10] was

administered. Participants were presented a chess position for 10 s, and after a
blank-screen period of 2 s, the same chess position was presented again but the
location of one piece had changed (see Fig. 1a). By button press, they had to
indicate out of four given choices which piece had been moved. In total, 6 practice
trials and 50 test trials (25 game and 25 random positions) were presented in
pseudo-randomised order. The selection of game positions was similar to the
procedure in the ST. The pieces that had changed their location were selected
in order to achieve an equal distribution of the different pieces (king, queen,
bishop, knight, rook, and pawn) and a larger number of trials in which the
location of the pawn had changed. It has to be noted that the location changes of
the pieces in the game positions were constructed in such a way that they do not
necessarily reflect a plausible next move; participants were also instructed about
that. Random positions were again generated by the computer and inspected by
the same tournament player as in the ST. The selection of targets for the game
positions was done in a comparable way.

2.3.3. Reasoning tasks: mate-in-one task (RMT) and exchange task (RET)
The third type of task should draw on more complex reasoning processes.

Undoubtedly, one cannot imagine a more representative reasoning demand than
asking participants to find out the next best move for a given position. To ensure
that the next best move can be determined objectively, only mate-in-one positions
were administered. In total 30 test trials and additional 5 practice trials of varying
difficulty level were created by a local chess grandmaster and presented to the
participants. After the position appeared on the screen, the participants were
required to find out as fast as possible the only move that checkmates black. By
pressing a response button, the chess position disappeared on the screen. The
participants then had to vocalise the correct move, which was recorded by the
experimenter.

In the non-representative reasoning task also chess material should be used,
but the reasoning process triggered off should be different from chess playing.
Therefore, a modified version of the exchange task from Schweizer [96] was
devised (reasoning exchange task, RET), where participants were presented with



426
R

.H
.G

rabner
etal./B

rain
R

esearch
B

ulletin
69

(2006)
422–439

Fig. 1. (a) Example items of the experimental task. Speed task (ST), memory task (MT), and reasoning: mate-in-one task (RMT), reasoning: exchange task (RET). The correct solutions are—ST (number of minor
pieces): game position (7), random position (6); MT (piece that changed location): pawn; RMT (move that checkmates black): Sc4-b6; RET (number of necessary pairwise exchanges): 3. (b) Trial sequences in the
experimental tasks. R: reference interval. A: activation interval (enc, MT encoding phase; rec, MT recognition phase). RS: response (button press). C: confirmation of answer (button press).
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two lists of six chess pieces on the board (see Fig. 1a). Both lists included the
same pieces but differ regarding their positions. The participants were instructed
to exchange the positions of neighbouring pieces of one list mentally until iden-
tical sequences of pieces are achieved, to count the number of necessary pairwise
exchanges, and to indicate the correct answer after button press. This task offers
the great advantage that different degrees of complexity can be constructed by
varying the number of necessary exchanges [97]. In total, 35 test and 5 practice
items of varying complexity level (from 1 to 4 necessary exchanges) were pre-
sented. Moreover, 11 test items comprised only white pieces, 11 only black, and
13 items 3 white and 3 black pieces; in all test items, all 6 pieces (king, queen,
bishop, knight, rook, and pawn) were used.

In contrast to the other experimental tasks, in which game and random posi-
tions were presented in a pseudo-randomised order, the two reasoning tasks were
presented separately.

2.4. Procedure

The EEG recording started with two 3-min EEG sequences under resting con-
ditions, the first with eyes closed and the second with eyes open. Subsequently,
the participant started to work on the first experimental task, the ST. The presen-
tation order of the remaining experimental tasks was counter-balanced across all
participants (the easiest and shortest lasting ST was presented first to prime the
participants to give their answers as fast as possible in all tasks). After each task,
short breaks of a few minutes were allowed. Following the last experimental
task, another two 3-min EEG sequences (first with eyes open and second with
eyes closed) were recorded.

2.5. Apparatus/EEG recording

For the presentation of the experimental tasks, a PC (g.STIMunit, g.tec,
Austria) with external response consoles was used. In the ST and RET the
response console consisted of a numerical keyboard (among others consisting
of number buttons, a backspace, and an enter key) which allowed the input of
the number of minor pieces and the number of exchanges, respectively. A board
with six buttons (2 × 2 horizontally and vertically arranged plus two buttons at
the bottom) was provided in the MT and RMT, by which the participants could
indicate their response (pressing the response keys at the bottom), and choose
from the four (also 2 × 2 arranged) answer options in the MT (see Fig. 1a).

The EEG was measured by means of gold electrodes (9 mm diameter) located
in an electrode cap in the following 33 positions (according to the international
10–20 system): FP1, FP2, AF3, AF4, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6, C3,
CZ, C4, CP5, CP1, CP2, CP6, T3, T4, T5, T6, P3, PZ, P4, PO5, PO3, PO4, PO6,
O1, and O2. The reference electrode was placed on the nose, the ground elec-
trode on the forehead. To register eye movements, an electrooculogram (EOG)
was recorded bipolarly between two gold electrodes diagonally placed above
and below the inner, respectively, the outer canthus of the right eye. Electrode
impedances were kept below 5 k� for the EEG and below 10 k� for the EOG.
EEG and EOG were recorded by means of a DELTAMED amplifier (ISO 1064
CE) and NEUROFILE NT recording software (IT-MED, Germany) at a band-
width of 0.01–100 Hz and a sampling rate of 256 Hz.

2.6. EEG data analyses

Data were analysed with g.BSanalyze software (g.tec, Austria). All data
were digitally filtered with a 35 Hz low pass Fast-Fourier-Transformation (FFT)
filter; moreover, to correct electrode and amplifier drifts from the raw data, a
moving exponential window (256 samples with an overlap of 255 samples) was
calculated and subtracted.

2.6.1. Resting EEG data: quantification of IAF
The resting EEG data (eyes closed and eyes open) were analysed to deter-

mine the individual alpha frequency (IAF) as an anchor point for the definition of
the upper alpha band (for a review, see [63]). The IAF can be defined either as the
frequency with the highest amplitude (mean frequency) or as the centre of gravity
(gravity frequency) within the alpha frequency range (approximately between 7
and 13 Hz). As a recent study by Neuper et al. [79] has demonstrated that the grav-
ity frequency displays a considerably higher level of reliability and long-term

stability than the mean frequency, in the present study the IAF was determined by
means of the gravity frequency, which reflects the weighted sum of spectral esti-
mates within the alpha frequency range. To obtain a high frequency resolution,
the IAF was estimated by computing FFT on 90% overlapped 10-s Hanning win-
dows, separately for each resting EEG condition. After averaging over all trials,
the centre of gravity in the range between 7 and 13 Hz was calculated for each
electrode position. For defining the upper alpha frequency range, the IAFs were
first aggregated over all electrode positions and then over both resting conditions
with eyes open, yielding a mean IAF of 9.59 (S.D. = 0.36; range: 8.93–10.31 Hz).
The upper alpha frequency band is defined as: IAF to (IAF + 2 Hz).

2.6.2. Task EEG data: quantification of ERD
As depicted in Fig. 1b, each EEG trial started with the presentation of a

fixation cross for 3000 ms, followed by an auditory warning stimulus. For
all experimental tasks, the time period between 500 and 2500 ms served as
reference interval for the ERD calculation. The respective activation intervals
in the ST, RMT, and RET covered the entire time period from stimulus
onset (after 4000 ms) to the response (pressing the response button). In the
MT, two activation intervals were analysed: the time period from 4000 to
14,000 ms (encoding phase, see task description above) and from 16,000 ms
to the response (recognition phase, choosing an answer option). Because of the
difficulty of interpreting incorrectly solved test trials (which might be traced
to a lack of competency or to a lack of motivation or both), only correctly
solved trials were included in the ERD analyses. In all remaining trials, the
reference intervals (during the fixation cross) and the activation intervals were
checked individually for artefacts (eye movements, eye blinks, muscle artefacts,
etc.) by visual inspection. Time periods containing artefacts were completely
eliminated from the ERD analyses. The power of background activity in the
upper alpha band was computed for both time intervals and each trial. Then,
the band power in the reference and activation intervals was averaged over all
(valid) trials. Only participants were included which met the criterion of at least
six valid trials (i.e., correctly solved and at least 500 ms artefact free recording
time) in each task version and task, respectively.3 The percentage decrease (or
increase) in power (�V2) from the (aggregated) reference interval (R) to the
(aggregated) activation interval (A) was computed according to the following
formula: %ERD/ERS = [(R − A)/R] × 100. This procedure is comparable with
the analyses of “task-related” band power, as described by Pfurtscheller [81].
Positive %ERD values indicate desynchronisation (decreases of alpha power,
indicative of cortical activation), negative %ERD values reflect synchronisation
(ERS; increases of alpha, indicative of cortical deactivation).

Based on visual inspection of the topographical distribution of ERD data for
different electrode locations, for statistical analyses, the ERD data were aggre-
gated over different electrode locations, distinguishing the hemispheres as well
as anterior from posterior areas, as following: anteriofrontal left (FP1 and AF3),
frontal left (F7 and F3), frontocentral left (FC5 and FC1), centrotemporal left
(C3 and T3), centroparietal left (CP5 and CP1), parietotemporal left (P3 and T5),
and parietooccipital left (PO5, PO3, and O1), likewise for the right hemisphere
using the corresponding homologous electrodes. The midline electrodes (FZ,
PZ, and CZ) were not included in the analyses, as also hemispheric differences
were to be investigated.

2.7. Statistical analyses

In all analyses, the different task demands (speed, memory, and reasoning)
and versions (representative versus non-representative) are considered simulta-
neously in one repeated measures design. Thereby, not only differences between
cognitive demands with respect to expertise and intelligence influences can
be assessed, but also the number of analyses and, thus, the probability of
Type-I errors is reduced. Since general intelligence and expertise (ELO rank-
ing) were not significantly correlated in the present sample (r = .22, p = .14),
in a first step, an ANOVA for repeated measures with general IQ and ELO

3 The average number of artefact-free trials and the average length of analysed
time epochs were considerably larger than this minimum requirement—ST: 29
game (3.04 s) and 28 random trials (3.72 s); MT: 19 game (encoding: 9.72 s
and recognition: 5.60 s) and 16 random trials (encoding: 9.74 s and recognition:
6.43 s); RMT: 27 trials (11.40 s); RET: 32 trials (7.93 s).
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Table 1
Descriptive statistics (including estimates of reliability and validity) of the experimental tasks

Minimum Maximum M S.D. Rela Val.ELO Val.g

Solution rates (%)
ST: game positionsb 83.33 100.00 97.16 4.11 .50 .22 .27
ST: random positionsb 73.33 100.00 94.54 5.92 .54 .15 .24
MT: game positions 36.00 96.00 78.64 14.26 .75 .49** .54**

MT: random positions 24.00 92.00 63.66 16.88 .72 .25 .53**

RMT 70.00 100.00 93.55 6.75 .63 .60** .46**

RETb 57.14 100.00 92.04 9.77 .80 .07 .46**

Median response latencies (s)
ST: game positions 1.95 7.79 3.35 1.26 .99 −.49** −.36*

ST: random positions 2.19 8.09 4.01 1.44 .98 −.43** −.30*

MT: game positions 2.22 16.52 6.09 3.02 .90 −.47** −.39**

MT: random positions 2.74 19.46 6.95 3.09 .89 −.33* −.10
RMT 3.85 42.95 12.34 6.77 .92 −.70** −.42**

RET 4.07 22.91 8.56 3.78 .96 −.27 −.52**

Note: The median response latencies were computed only for correctly solved items (similar to the following ERD analyses). Speed task (ST), memory task (MT),
reasoning: mate-in-one task (RMT), and reasoning: exchange task (RET). Val.ELO: criterion validity for (correlation with) ELO ranking; Val.g: criterion validity for
(correlation with) general intelligence (I-S-T 2000 R general IQ).

a Reliability coefficients reflect Cronbach alpha coefficients of internal consistency for the item scores (correct vs. incorrect) and the response latencies, respectively.
b These variables are not normally distributed; non-parametric correlations with ELO ranking (criterion validity), however, yield largely comparable coefficients.
* p < .05.

** p < .01.

as between-subjects variables (both median-split) is computed. This analysis
allows the detection of potential interactions between the ability indicators (IQ
and ELO). The median-split of the sample into two groups of general intel-
ligence and expertise results in the following distributions of IQ and ELO:
lower IQ group (n = 23; general IQ: 80–118, M = 105.86, S.D. = 9.41), higher
IQ group (n = 24; general IQ: 119–144, M = 128.88, S.D. = 5.93); lower ELO
group (n = 24; ELO: 1325–1942, M = 1717, S.D. = 164.32), higher ELO group
(n = 23; ELO: 1947–2338, M = 2076, S.D. = 105). Prior to the performance and
ERD analyses, the groups of higher versus lower abilities (intelligence and exper-
tise, respectively) were investigated regarding group differences in variables that
could potentially confound the effects on performance and/or cortical activation
patterns, i.e., participants’ personality (e.g., [32]), anxiety and mood (e.g., [16]).
A MANOVA with the above-mentioned group factors as between-subjects vari-
ables and the scores of the NEO-FFI, STAI, and mood questionnaire as dependent
variables did neither reveal significant main effects nor an interaction.

In a second step, it shall be examined which intellectual ability components
are (besides ELO) particularly relevant for performance and for cortical acti-
vation patterns. For this purpose, an ANCOVA with the distinct intelligence
components (verbal, numerical, and figural intelligence) and ELO ranking as
covariates are performed. Thereby, the independent contributions of each con-
tent factor can be evaluated. This procedure is guided by the already outlined
findings of a high specificity of cortical activation patterns to distinguishable
indicators of intellectual ability (cf. [76]).4

In all analyses, degrees of freedom were corrected for violations of the
sphericity assumption by means of the Greenhouse Geisser procedure; the prob-
ability of a Type-I error was maintained at .05.

3. Results

3.1. Task performance

Table 1 provides an overview of the participants’ perfor-
mance in the experimental tasks as well as the tasks’ internal

4 Additional analyses were conducted with age partialled out to uncover its
potential moderating role on the expertise and intelligence effects. Since these
analyses, however, did not change the overall pattern of results, they are not
reported here.

consistency and criterion validity with regard to expertise (ELO
ranking) and general intelligence. Given that the solution rates in
the ST and reasoning tasks are relatively high (on average above
90%), the low reliability coefficients can largely be attributed to
a ceiling effect in these tasks.

The bivariate correlations of task performance with ELO
ranking already point to a successful task construction. High
coefficients emerged for the representative task versions, in
particular for the MT (r of .49 and −.47 for the solution
rate and response latency, respectively), and, even more pro-
nounced, for the RMT (.60 and −.70, respectively), while the
non-representative task demands apparently resulted in smaller
coefficients—apart from the ST, in which both conditions
correlate with ELO at an almost equal level. The correlations
between task performance and general intelligence draw a
differing picture. In contrast to playing strength, general
intelligence displays high and significant associations for the
task performance in the non-representative demands (except for
the response latency in the MT random condition). Expectedly,
also the task performance in the RET shows a stronger (and
significant) relation to IQ as compared to the ELO ranking. The
most obvious difference to the ELO validity, however, lies in
the fact that general intelligence appears to be associated with
performance in all tasks, almost independently of whether the
task demand is representative or not.

In the following, the impact and interplay of intelligence
and expertise is investigated more thoroughly. As the assessed
response latencies appear to be more reliable performance mea-
sures than the solution rates in all tasks, these are examined first
and reported more elaborately.

3.1.1. Response latencies
As described in Section 2.7, first, a four-way multiple

measures ANOVA with TASK DEMAND (speed, memory,
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Table 2
Effects of the ANOVA for median response latencies in the experimental tasks

d.f. F η2

Between-subjects
ELO 1, 43 10.29** .19
IQ-GROUP 1, 43 10.36** .19

Within-subjects
TASK DEMAND 1.73, 74.22 134.17** .76
TASK DEMAND × ELO 1.73, 74.22 8.23** .16
TASK DEMAND × IQ-GROUP 1.73, 74.22 10.08** .19
STRUCTURE 1, 43 7.55** .15
STRUCTURE × ELO 1, 43 12.56** .23
TASK DEMAND × STRUCTURE 1.22, 52.36 28.26** .40
TASK DEMAND × STRUCTURE × ELO 1.22, 52.36 6.26* .13

Note: For the sake of clarity, only significant effects of the between- and within-
subjects variables are presented.

* p < .05.
** p < .01.

and reasoning) and STRUCTURE (representative versus non-
representative) as within-subjects variables, and ELO (lower
versus higher playing strength) and IQ-GROUP (lower versus
higher general intelligence) as between-subjects variables was
computed. A summary of all significant effects is presented in
Table 2.

Both between-subjects factors, ELO and IQ-GROUP, had sig-
nificant and equally strong, large-sized effects on the median
response latencies. As expected, stronger players responded
significantly faster than weaker players (5.84 s versus 7.91 s),
likewise is observable for general intelligence (5.84 s versus

7.91 s [sic!]). The response latencies also differed significantly
between the different task demands (3.68 s versus 6.51 s ver-
sus 10.44 s, for ST, MT, and reasoning tasks, respectively)
and between the representative and non-representative variants
(7.24 s versus 6.51 s). The latter effect emerges because of the
different reasoning tasks, in which the usually observable effect
of smaller response latencies in game positions (representative
demands) is inverted (12.34 s versus 8.56 s for RMT versus RET;
as compared to ST: 3.35 s versus 4.01 s and MT: 6.08 s ver-
sus 6.94 s for game versus random positions, respectively); this
effect becomes salient in the TASK DEMAND × STRUCTURE
interaction. The interactions between TASK DEMAND and the
between-subjects variables are presented in Fig. 2a, suggest-
ing increasing group differences in response latencies across
the ST, MT, and reasoning tasks. Here again, effects of ELO
and IQ-GROUP are largely parallel and practically of equal
size. The STRUCTURE × ELO interaction reveals larger dif-
ferences between stronger versus weaker players in the rep-
resentative than in the non-representative task demands; this
effect, however, is additionally moderated by TASK DEMAND.
As depicted in Fig. 2b, interactions between STRUCTURE
and ELO are only observable in the MT and reasoning tasks,
while in the simple enumeration task (ST), no interaction can be
observed.

Finally, to evaluate whether a lower intelligence could be
compensated for by a high level of expertise in task performance,
the main effects of ELO and IQ-GROUP are depicted within
one diagram. As revealed in Fig. 2c, across all tasks, brighter
but weaker players perform at a similar level as less intelligent
but stronger players.

Fig. 2. Response latencies. (a) Interactions of ELO and IQ-GROUP with TASK DEMAND. (b) Interactions between TASK DEMAND, STRUCTURE, and ELO.
(c) Main effects of ELO and IQ-GROUP. Speed task (ST), memory task (MT), reasoning: mate-in-one task (RMT), and reasoning: exchange task (RET). Error bars
indicate ±1S.E. of the mean.
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For examining the absolute and relative importance of
the intelligence components independent of playing strength,
a repeated measurement ANCOVA with TASK DEMAND
(speed, memory, and reasoning) and STRUCTURE (representa-
tive versus non-representative) as within-subjects variables, and
ELO ranking plus verbal, numerical, and figural intelligence
as covariates was computed. Besides the ELO effects outlined
above, a significant main effect of figural intelligence, F(1,
42) = 6.51, p < .05, η2 = .13, and a significant interaction between
TASK DEMAND and figural intelligence was observed, F(1.71,
71.99) = 4.50, p < .05, η2 = .10. Additionally, the three-way
interaction TASK DEMAND × STRUCTURE × numerical
intelligence reached significance, F(1.35, 56.59) = 6.60, p < .01,
η2 = .14. In all tasks, participants with higher figural intelligence
displayed lower response latencies than those with lower figural
intelligence, and this effect slightly increases across the differ-
ent task demands, resembling the effect of general intelligence.
The three-way interaction with numerical intelligence derives
from a larger group difference in the RET as compared to the
other tasks and conditions.

3.1.2. Solution rates
The solution rates are analysed by means of the same

statistical approach as was pursued for the response latencies.
However, because of the observed ceiling effects and the lack
of normality in some of the variables, these results should be
interpreted with care.

The significant effects of the four-way multiple measures
ANOVA with TASK DEMAND and STRUCTURE as within-
subjects variables, and ELO as well as IQ-GROUP as between-
subjects variables are presented in Table 3. The solution rates
differed significantly between the different task demands
(95.87% versus 71.08% versus 92.80%, for the ST, MT, and
reasoning tasks, respectively) and between the two task variants
(89.82% versus 83.34%) suggesting a higher solution rate in
the representative than in the non-representative condition. As
the interaction between TASK DEMAND and STRUCTURE
reveals, the latter difference between the two task conditions
is especially pronounced in the MT (78.67% versus 63.49%),
whereas in the ST and reasoning tasks the representative and

Table 3
Effects of the ANOVA for solution rates (%) in the experimental tasks

d.f. F η2

Between-subjects
ELO 1, 43 20.76** .33
IQ-GROUP 1, 43 61.29** .59

Within subjects
TASK DEMAND 1.62, 69.70 226.07** .84
TASK DEMAND × ELO 1.62, 69.70 4.17* .09
TASK DEMAND × IQ-GROUP 1.62, 69.70 25.04** .37
STRUCTURE 1, 43 48.70** .53
STRUCTURE × ELO × IQ-GROUP 1, 43 6.17* .13
TASK DEMAND × STRUCTURE 1.64, 70.57 24.09** .36

Note: For the sake of clarity, only significant effects of the between- and within-
subjects variables are presented.

* p < .05.
** p < .01.

non-representative condition led to high solution rates (97.18%
versus 94.55% in the ST and 93.61% versus 91.98% in the
reasoning tasks). Likewise, the interaction between TASK
DEMAND and the between-subjects variables indicates larger
group differences in the MT (75.75% versus 66.42% for
ELO higher versus lower, and 80.67% versus 61.50 % for IQ
higher versus lower) as compared to the ST (97.07% versus
94.65% and 97.15% versus 94.58%, for ELO and IQ-GROUP,
respectively) and the reasoning tasks (94.66% versus 90.93%
and 95.23% versus 90.36%).

On average, brighter individuals outperformed less intelli-
gent ones (91.02% versus 82.15%), and stronger players their
less-skilled counterparts (89.16% versus 84.00%). Contrary to
the response latencies, however, the effect of IQ-GROUP is con-
siderably larger than the ELO effect, which seems rather due to
the tasks with non-representative demands (see Fig. 3). Most
interesting appears the three-way interaction between STRUC-
TURE and both between-subjects variables which is depicted
in Fig. 3. Experts perform at a high level in the representa-
tive task demands, almost independent of intelligence, while
intelligence exerts a strong impact on the performance in the
group of lower playing strength. Stated differently, a high degree
of expertise (or ELO) can not only compensate for a low

Fig. 3. Solution rates. Interaction between ELO, IQ-GROUP, and STRUCTURE. Error bars indicate ±1S.E. of the mean.
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Table 4
Effects of the ANOVA for upper alpha %ERD in the experimental tasks

d.f. F η2

TASK DEMAND 2.54, 109.12 9.64** .18
STRUCTURE 1, 43 5.99** .12
AREA 1.79, 76.79 17.63** .29
TASK DEMAND × AREA 3.71, 159.56 3.77** .08
TASK DEMAND × STRUCTURE ×

HEMISPHERE
2.09, 89.74 4.53* .10

Note: For the sake of clarity, only significant effects are presented.
* p < .05.

** p < .01.

intelligence—intelligence entirely loses its impact in the group
of experts. In the non-representative task demands, in contrast,
intelligence and expertise display independent effects, with the
effects of intelligence being much more prominent than effects
of ELO.

The ANCOVA with the verbal, numerical, and figural intel-
ligence components (plus ELO ranking) revealed a signifi-
cant main effect of numerical intelligence, F(1, 42) = 9.52,
p < .01, η2 = .19, and figural intelligence, F(1, 42) = 5.48,
p < .05, η2 = .12, as well as interactions of them with the
experimental tasks, TASK DEMAND × numerical IQ, F(1.41,
59.31) = 3.64, p < .05, η2 = .08; TASK DEMAND × figural IQ:
F(1.41, 59.31) = 6.52, p < .01, η2 = .13. Brighter individuals dis-
played higher solution rates than less intelligence ones, again
particularly in the MT while the differences in the other task
demands are marginal.

3.2. ERD

Similar to the task performance analyses, in a first step, the
effects of general intelligence and ELO were investigated. As
the MT comprised two activation intervals (encoding and recog-
nition phases), the factor TASK DEMAND now includes four
levels: speed, memory encoding, memory recognition, and rea-
soning.

An ANOVA for repeated measurements with TASK
DEMAND (four levels as described above), STRUCTURE
(representative versus non-representative), HEMISPHERE
(left versus right), and AREA (anteriofrontal, AF; frontal,
F; frontocentral, FC; centrotemporal, CT; centroparietal, CP;
parietotemporal, PT; parietooccipital, PO) as within-subjects
factors, and ELO (lower versus higher) as well as IQ-GROUP
(lower versus higher) as between-subjects factors was computed
for the %ERD in the upper alpha band. A summary of all
significant effects is presented in Table 4.

The main effects of TASK DEMAND and STRUCTURE (see
Fig. 4a) revealed that: (a) the ST was associated with a lower
level of cortical activation (or %ERD, respectively) as compared
to memory and reasoning demands (10.61, 21.45, 22.82, and
20.57%ERD for the four task demands) and (b) the represen-
tative task versions required lower cortical activation than the
non-representative demands (16.83%ERD versus 20.89%ERD).
The third main effect, AREA, shows the expected anterior to pos-
terior increase in upper alpha %ERD, with the highest level over

Fig. 4. %ERD. (a) Main effects of TASK DEMAND and STRUCTURE. (b)
Interaction between TASK DEMAND and AREA. Error bars indicate ±1S.E.
of the mean.

parietotemporal positions and the lowest amount of desynchro-
nisation over anteriofrontal positions (see Fig. 4b). The effect of
AREA, moreover, interacts with TASK DEMAND (see Fig. 4b).
The interaction obviously emerges because of the smaller dif-
ferences between ST and the other tasks over anteriofrontal
cortices. The interaction between TASK DEMAND, STRUC-
TURE, and HEMISPHERE solely reflects very small activation
asymmetries (in the range of a few %ERD points) in favour of
the right hemisphere only in the ST random and MT encoding
game and MT retrieval game conditions, whereas in the other
tasks and conditions no hemispheric differences are apparent.

In a next step, similar to the performance data, the impor-
tance of distinct intelligence components for the alpha band
ERD is evaluated. Therefore, an ANCOVA for repeated mea-
sures with TASK DEMAND, STRUCTURE, HEMISPHERE,
and AREA as within-subjects variables, and ELO ranking as
well as verbal, numerical, and figural intelligence as covari-
ates was computed. STRUCTURE and AREA interacted with
both, verbal IQ, F(2.74, 115.02) = 3.27, p < .05, η2 = .07, and
figural IQ, F(2.74, 115.02) = 3.28, p < .05, η2 = .07; moreover,
a HEMIPHERE × AREA × figural IQ interaction emerged,
F(3.12, 130.91) = 3.02, p < .05, η2 = .07. No other effects of
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intelligence components or ELO ranking reached statistical sig-
nificance.

To begin with the effects of figural IQ (see Fig. 5a), at a gross
level, the brighter individuals display a lower activation than the

less intelligent counterparts. Looking at the non-representative
task versions, this apparently holds true for all topographi-
cal areas, while in the representative demands, the differences
are most pronounced and apparent only over anterior cortices.

Fig. 5. %ERD. (a) Interactions of AREA and figural intelligence with STRUCTURE (first row) and HEMISPHERE (second row). (b) Interaction between STRUC-
TURE, AREA, and verbal intelligence. The values of the covariate effects were estimated by means of subsequent ANCOVAs with the respective intelligence
component being median-split and included as between-subjects factor. Error bars indicate ±1S.E. of the mean.
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The interaction with HEMISPHERE again reveals a lower acti-
vation in (figurally) brighter individuals. The topographically
more consistent activation differences can be observed in the
right hemisphere, whereas in the left one, a similar pattern
arises as was found for the representative task versions, i.e.,
intelligence-related differences primarily over anterior cortical
areas.

A surprisingly different result emerges for the interaction of
verbal intelligence with STRUCTURE and AREA (see Fig. 5b).
In general, verbally more intelligent participants display a higher
level of cortical activation, which is more strongly apparent over
posterior cortices and in the representative as compared to the
non-representative demands.

In light of the strong expertise effects on the performance
level, the observation that ELO did not impact on the amount
of ERD appears surprising. At first glance, this suggests that
stronger players do not differ from their weaker counterparts in
the amount and topography of cortical activation during task per-
formance. However, there might be an alternative explanation
for this negative result referring to the peculiarities of the ELO
system, which shall be discussed and empirically evaluated in
the following. The individual’s ELO ranking can be regarded
as a reliable and valid statistical measure of playing strength
and therefore the level of expertise. Every time a player wins
(or draws) against a stronger opponent, his or her ELO ranking
increases by a certain number of points; every time a player loses
a game, his or her ELO ranking decreases. A central assumption
in this ranking system is that chess playing strength increases
only slowly over time, which is reflected in only small rank-
ing changes following each tournament period [22]. Only those
players who play chess consistently well over a rather long time
period will eventually attain a high ELO ranking level. In spite
of its prominence and wide application, the ELO system has
been criticised with regard to some theoretical (mathematical)
and practical considerations. An example for a practical prob-
lem is that some chess players try to protect their own (high)
ranking (cf. [19]), for instance, by selectively participating in
fewer games, by carefully choosing opponents, or by abandon-
ing tournaments after losses in a couple of games. In this case,
the official ELO ranking of a player may overestimate his or
her playing strength, as not enough rated games were played.
An even more important restriction from a psychometric per-
spective is that the ELO ranking represents an indicator of the
accumulated playing strength rather than of the players’ current
(chess) performance level. Even though the ELO system was
devised to adapt to the present performance level on the basis
of the tournament results, this adaptation seems to occur too
languidly. As a consequence, one might assume that a measure
of how well a player is currently trained might be more likely
associated with the currently displayed activation patterns than
a measure of accumulated playing strength over numerous tour-
nament games. Among all assessed expertise-related variables,
the current tournament success seems to be the most promising
candidate for such a measure. Consequently, participants with
higher and lower tournament success are compared in their cor-
tical activation patterns, pursuing a similar approach as in the
IQ and ELO analyses.

Table 5
Correlations of task performance with ELO rankings and average result of tour-
nament games

r×TS r×ELO

Solution rates (%)
ST: game positionsa −.03 .22
ST: random positionsa −.02 .15
MT: game positions .37* .49**

MT: random positions .36* .25
RMT .42** .60**

RETa .01 .07

Median response latencies (s)
ST: game positions −.63** −.49**

ST: random positions −.55** −.43**

MT: game positions −.37** −.47**

MT: random positions −.35* −.33*

RMT −.58** −.70**

RET −.31* −.27

Note: r×TS, correlations with average result of tournament games (tournament
success); r×ELO, correlations with ELO ranking.

a These variables are not normally distributed; non-parametric correlations
yield largely comparable coefficients. Speed task (ST), memory task (MT), rea-
soning: mate-in-one task (RMT), and reasoning: exchange task (RET).

* p < .05.
** p < .01.

3.3. ERD follow-up analyses

The average result of tournament activity (%)5 ranged from
17 to 75% (M = 52.02, S.D. = 12.09) and is only moderately cor-
related with the ELO ranking (r = .33, p < .05). Nevertheless, as
given in Table 5, this expertise measure is, in general, compa-
rably important for the performance in the experimental tasks
(it should be noted, however, that the correlation with the RMT
performance is slightly lower than that for ELO). For the ERD
analyses, the sample was median-split into a group of lower
and higher tournament successes (TS). The average result of
tournament games (%) ranged from 17 to 50% in the lower
TS group (M = 42.28, S.D. = 8.11), and from 50 to 75% in the
higher TS group (M = 61.36, S.D. = 6.58). A MANOVA with
participants’ personality, state anxiety, and mood revealed no
significant group difference.

Similar to the procedure applied for the ELO rank-
ing, an ANOVA with TASK DEMAND (speed, memory
encoding, memory retrieval, and reasoning), STRUCTURE
(representative versus non-representative), HEMISPHERE (left
versus right), and AREA (anteriofrontal to parietooccipital)
as within-subjects variables, and IQ-GROUP as well as TS
(tournament success: lower versus higher) as between-subjects
variables was computed. Besides the already described effects
of TASK DEMAND, STRUCTURE, AREA, TASK
DEMAND × AREA, and TASK DEMAND × STRUCTURE
× HEMISPHERE, two interactions of interest emerged: an

5 The result of each tournament game is usually indicated as following: 1
(won game), 0.5 (draw), and 0 (defeat). For the present analyses, the percentage
result of tournament games (relative to the number of games played) in the time
period covered by the test sessions was computed (similar to the averaged ELO
rankings).
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Fig. 6. %ERD. Interaction between TASK DEMAND, AREA, and tournament success (TS). Error bars indicate ±1S.E. of the mean.

interaction between AREA and TS, F(1.85, 79.47) = 3.33,
p < .05, η2 = .07, and a three-way interaction between TASK
DEMAND, AREA, and TS, F(3.74, 160.92) = 3.30, p < .05,
η2 = .07. Since the first interaction is moderated by different
task demands, only the latter is illustrated (see Fig. 6). The
interaction between AREA and TS only reflects a smaller
%ERD for the TS higher group over AF, and higher %ERDs
over all other positions. The overall pattern of the three-way
interaction looks very similar for the ST and the reasoning
tasks. Over anterior cortices, the participants with the higher TS
display less activation than those with lower TS. This difference,
however, reverses over posterior cortical regions; here, the
more successful players show a higher amount of activation.
Looking at the topographical activation differentiation of the
two groups, a clearly more focussed activation in the group of
higher TS uncovers, while the activation is more or less equally
distributed over the cortical areas in the lower TS group. In the
MT, however, a completely different result can be observed:
the higher TS group displays a higher level of activation over
virtually all cortical areas. This holds comparably true for
the encoding as well as the recognition phase. It should be
emphasised that these effects are independent of the figural IQ
effects, as an additionally computed ANCOVA revealed.

4. Discussion

4.1. Task performance: intelligence and expertise put to test

This study has revealed that intelligence and expertise impact
on the performance on tasks representative for the domain of
chess as well as on tasks not representative for chess inde-
pendently of each other. As expected, the closer the cognitive
demands match the essence of the participants’ expertise, the
larger is the experts’ performance advantage. The small but sig-
nificant effect of expertise on non-representative tasks may be
traced back to the high familiarity of the players with chess
material, which allows them to discriminate the crucial visual
features of the target pieces very quickly [92]. The most striking
finding concerning the performance data is that the expertise
effects are accompanied by an effect of general intelligence.
Brighter individuals outperformed less intelligent ones irre-
spective of whether the cognitive demand corresponded to the
experts’ domain or not. Moreover, both effects were additive in
that a lower intelligence could obviously be compensated for by
a high expertise level.

A noteworthy difference to previous studies investigating
intelligence and expertise effects on domain-related perfor-
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mance concerns the strength of the effects. Frequently, domain-
general abilities could – if at all – only marginally contribute
to a high performance level (e.g., accounting for only less than
10% as compared to over 50% by domain knowledge in [50]).
In the present investigation, both, general IQ and ELO, played a
decisive role not only in the reasoning task but also in the classi-
cal MT. In the response latencies the main effects were of equal
size; in the solution rates, intelligence even surpassed expertise
in effect size. A plausible explanation for this finding might lie
in the cognitive demands of the employed experimental tasks.
In the ST, participants simply had to count the number of minor
pieces on the board as fast as possible. The speed with which
this is accomplished is a function of the players’ strength and, in
the stronger players, most probably points to a highly efficient
perceptual system for domain-specific material acquired during
long-term experience [91]. Moreover, the performance in this
task might also be influenced by the participants’ general speed
of information processing as a central basis of human intelli-
gence [18]. In addition, this task presumably engages central
executive (attentional) processes, as it requires the participants
to selectively attend to specific visual features (the minor pieces),
and, concurrently to inhibit task-irrelevant information (e.g., the
other pieces on the board [14]). A similar picture emerges for the
MT performance which may likewise be affected by both, the
elaborate knowledge base of the stronger players (e.g., allowing
better performance as more chunks are recognised and stored in
STM [24]) and individual differences in their general capacity
to store information (in STM and/or WM [1,61]). Eventually,
planning ahead (reasoning) and keeping in mind the results of
intermediate steps (in WM) could not only be required in the
domain-unrelated RET but also in the process of determining
the correct move that leads to a checkmate.

A closer look at the three intelligence components revealed
that only figural and numerical intelligence turned out as signif-
icant predictors for the performance level. Doll and Mayr [19]
who found a significant correlation between numerical intelli-
gence and chess performance assumed a higher familiarity with
numerical material in expert chess players since the chess board
is partly notated numerically and moves could be represented
by addition and subtraction processes. In the response latencies,
though, only the effect of figural IQ resembled that of general
intelligence in main effect and interactions. Interestingly, the
tentative explanation for the intelligence effects offered above
gains additional plausibility by this finding. The importance of
figural intelligence most likely does not only originate from the
fact that figural stimulus material was presented (pieces on a
chess board) but might also point to an involvement of the visuo-
spatial component of WM [4]. Thus, the reason for the additional
and strong influence of general intelligence besides ELO might
be that domain-general features of the human information pro-
cessing system were touched as well.

4.2. Neural efficiency: a matter of intelligence and
expertise?

The major purpose of our study was to investigate the
impact of expertise and intelligence at the neurophysiological

level. The first question concerned whether intelligence remains
(negatively) associated with cortical activation even in domain-
representative expert performance. It turned out that no effect
of general intelligence but only an effect of figural intelligence
on the amount of cortical activation reached significance. In line
with the neural efficiency hypothesis, participants with higher
figural intelligence, at a gross level, displayed a lower amount of
cortical activation than the figurally less intelligent participants.
Hence, in contrast to the results by Grabner et al. [40], (figural)
intelligence did not lose its impact on neural efficiency if exper-
tise is involved. In both hemispheres and task versions, this effect
was especially pronounced over the (anterio-) frontal cortices,
thus suggesting that this cortical area might be particularly sen-
sitive to individual intelligence differences. This finding nicely
conforms to previous studies in the framework of the neural effi-
ciency hypothesis, showing that the largest activation differences
between lower and higher intelligence participants emerged over
the frontal cortices [39,54,77,75].

There is wide consensus that the (pre-) frontal cortices sup-
port those cognitive processes that are crucial for numerous
higher order cognitive functions [33], most notably for fluid
intelligence [42]. Concretely, several executive processes, such
as selective attention, inhibition, or the mental manipulation of
information, which are regarded to be of utmost importance
for intellectual functions, are frequently assigned to these cor-
tical areas [12]. If (figurally) brighter individuals then display
a notably lower activation in this region, it may consequently
be assumed that the less intelligent individuals have relied
more strongly on the functions of the prefrontal cortex, that
the brighter individuals possess more efficient (and less energy-
consuming) neural networks in this region, or that even both
applies. Although, based on the present data, no final decision
for one of these accounts can be made, the observation that the
brighter individuals do not display a higher activation in any
other cortical area points to a neurally more efficient brain func-
tioning in them. This assumption gains additional support from:
(a) findings of individual differences in intelligence being partic-
ularly reflected in the activation over those cortical areas which
are highly relevant for task performance (e.g., [39,76,77]) and
(b) recent MRI studies, revealing more frontal grey matter in
brighter individuals which might result in less energy use dur-
ing task performance [45].

Definitely more puzzling are the findings concerning the
verbal intelligence component. In contrast to figural intelli-
gence, here, a positive association between verbal IQ and corti-
cal activation was observed, suggesting that (verbally) brighter
individuals display less neural efficiency during task perfor-
mance. This finding was observed to be specially pronounced
over posterior cortices and in the representative task versions.
Even though no cogent explanation for this result can presently
be offered since verbal intelligence was in no way related to
task performance, it corresponds to the findings of Neubauer
et al. [76] who found evidence in favour of neural efficiency
only if the analysed intelligence component matched the task
demand: in the verbal paradigm, verbal IQ was negatively but
visuo-spatial IQ positively (though non-significantly) related to
ERD in females. Likewise, in the figural task version, negative



436 R.H. Grabner et al. / Brain Research Bulletin 69 (2006) 422–439

ERD–intelligence associations emerged solely for visuo-spatial
IQ in males, whereas non-significant (partially negative and par-
tially positive) correlations were found with verbal IQ. These
findings were tentatively interpreted as reflections of sex differ-
ences in brain structure, facilitating spatial processing in males
and verbal processing in females. In light of a recent MRI study
by Haier et al. [46] who demonstrated sex differences in the
relation between structural brain variation and intelligence, this
explanation might also account for the present result.

The second question to be addressed was whether neural effi-
ciency might not only be a function of intelligence but also
of expertise. Significant effects of chess expertise on the ERD
data, however, only emerged if the current tournament success,
instead of the ELO ranking, was considered as expertise mea-
sure, which may generally point to a stronger link between
neurophysiological measures and the current performance level.
Contrary to intelligence, the expertise effect was moderated by
the task demand and fundamentally differed between the mem-
ory tasks and the two other types of experimental tasks.

In the ST and reasoning tasks, the (pre-) frontal cortex again
revealed cortical activation patterns in line with the neural effi-
ciency approach in that more skilled players showed a lower
activation than their less skilled counterparts. Interestingly, over
the posterior (parietal) cortex this effect reversed. Looking at
the topographical activation differentiation of the two groups
uncovers a clearly more focussed activation in the group of
higher TS, while the activation is more or less equally dis-
tributed over the cortical areas in the lower TS group. Therefore,
in contrast to the figural IQ effect, it is not a generally lower
activation but rather a more focussed activation that points to a
higher neural efficiency in the more skilled players This finding
of an anterior–posterior activation asymmetry in the higher TS
players appears especially noteworthy, since it is in line with
several previous investigations revealing that with increasing
training or practice the activation focus shifts from anterior
(“scaffolding”) to more posterior (task-related) regions (e.g.,
[43,85]), which is usually interpreted in terms of automatisa-
tion (cf. also [62]). Practice or training leads to the development
of more efficient task strategies which less strongly demand the
general (executive) functions of the frontal lobe (e.g., [35]). In
general, this explanation likewise seems to be applicable to the
present results. Considering that the parietal cortex has not only
been found to be essential in figural and visuo-spatial process-
ing (e.g., [6]) but also to be critically involved in chess playing
(e.g., [3]), the activation focus over the parietal cortices in the
more skilled players might indeed reflect the availability and
usage of more efficient strategies for good task performance.
Contrarily, the widespread and undifferentiated activation in
the less skilled players may indicate the lack of such strate-
gies, eventually resulting in a lower performance level (see also
[58]). Although using a different neurophysiological approach,
the findings by Volke et al. [105] corroborate this assumption.
The authors analysed evoked EEG coherence in 22 chess players
(from beginners to league players) while solving different chess
tasks and found that the essential brain areas involved in task pro-
cessing are shifted from an anterior to a posterior position in the
experts.

While the ERD results of the ST and reasoning tasks may
point to a potential generalisability of the neural efficiency
approach even to expertise as a domain-specific ability concept,
the results in the MT seem to add to the inconsistent evidence of
neural efficiency whenever memory tasks are administered. In
line with previous neurophysiological expert studies, during the
encoding and recognition phases more skilled players exhibited
a higher cortical activation than less skilled players, practically
over all cortical areas. In the last few years, some explana-
tions have been discussed why neural efficiency is inconsistently
observable in memory demands (see also [39]). Among the most
plausible ones seem to be those that take the role of seman-
tic memory in task performance into account. Doppelmayr et
al. [20] proposed to replace the neural efficiency hypothesis
with an inhibition hypothesis. They referred to the observa-
tion that the (upper) alpha band ERD is particularly responsive
to verbal–semantic processing and argued that the inconsistent
findings of neural efficiency in this frequency band are due
to a differential involvement of such processing demands in
task performance. If verbal–semantic processing were involved,
then the brighter individuals would display a higher ERD; if
verbal–semantic processing is of no relevance, the negative
intelligence–activation association would emerge and reflect
that brighter individuals more “efficiently” inhibit their (task-
irrelevant) alpha band ERD. They substantiated their hypothesis
in an EEG study of verbal analogy test performance by demon-
strating that the verbal semantic task induced a larger ERD in
the brighter as compared to the less intelligent individuals.

Although Doppelmayr et al.’s [20] inhibition hypothesis
appears to be too strictly formulated in view of the sensitiv-
ity of upper alpha ERD to a wide variety of cognitive processes
(e.g., [65,98]), a strong recruitment of prior knowledge may
indeed attenuate or reverse the activation–intelligence relation-
ship. In a recent study, Jausovec and Jausovec [57] required
participants to learn associations between colours and locations
in a grid. Their finding of a higher (upper alpha) ERD in the high
IQ individuals was interpreted to reflect differential encoding
strategies. Following the theoretical framework of the long-term
WM theory by Ericsson and Kintsch [26], they argued that the
brighter participants more strongly (and deliberately) involved
their prior knowledge in the encoding of the colour–location
associations, whereas the less intelligent individuals primarily
employed (less-effective) episodic memory strategies. Conse-
quently, the authors speculated that “it is not the focused, but
rather the more widespread brain activity that would be related
to good memory performance” and that “greater event-related
desynchronisation in the upper alpha band displayed by high-
intelligent individuals could well point to a more ‘efficient’ task
approach” (p. 609).

To sum up, the neurophysiological results have demonstrated
that brighter individuals display a more efficient brain function-
ing than less intelligent ones. Areas of the (pre-) frontal cortex
turned out to be particularly sensitive to individual differences
in intelligence, which again highlights that these brain regions
are not only critical for essentially all higher order cognitive
functions [60] but might also be functioning more efficiently in
brighter individuals [39,45]. What is new in the present investi-
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gation, however, is that both, intelligence and expertise, impact
independently of each other on neural efficiency. In contrast to
the impact of intelligence on the cortical activation patterns,
the expertise effect was moderated by the task type but not
by the representativeness of the task demands. In the ST and
reasoning tasks, the findings are in line with the prediction of
the neural efficiency hypothesis in that a higher ability is asso-
ciated with a topographically higher activation differentiation.
Although the total ERD was comparable for both groups, the
more skilled players (as compared to the less skilled ones) dis-
played a higher activation over the parietal cortices and a lower
activation over the frontal cortices. In light of previous findings
from practice or training studies, it appears that this focussed
activation in stronger players results from the availability of an
efficient domain specific knowledge base acquired during long-
term engagement into the domain of chess. A contrary picture
emerged in the MT, in which the ERD of the more skilled players
was generally higher than that of the less skilled ones. Whether
this activation pattern indeed reflects the usage of a larger knowl-
edge base, of more deliberate strategies, or of both, and whether
it also can be regarded as an indicator of a more efficient brain
functioning, though, remains elusive.
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[99] E. Stern, Die Bewältigung neuer Anforderungen: Eine allgemeine
oder eine inhaltsspezifische Intelligenzleistung?, in: D. Bartussek, M.
Amelang (Hrsg.), Fortschritte der Differentiellen Psychologie und Psy-
chologischen Diagnostik, Hogrefe, Göttingen, S. 333–344.

[100] A. Stipacek, R.H. Grabner, C. Neuper, A. Fink, A.C. Neubauer, Sensi-
tivity of human EEG alpha band desynchronization to different working
memory components and increasing levels of memory load, Neurosci.
Lett. 353 (2003) 193–196.

[101] S. Tanaka, C. Michimata, T. Kaminaga, M. Honda, N. Sadato, Superior
digit memory of abacus experts: an event-related functional MRI study,
Neuroreport 13 (2002) 2187–2191.

[102] K.J. Vicente, J.H. Wang, An ecological theory of expertise effects in
memory recall, Psychol. Rev. 105 (1998) 33–57.

[103] O. Vitouch, H. Bauer, G. Gittler, M. Leodolter, U. Leodolter, Cor-
tical activity of good and poor spatial test performers during spatial
and verbal processing studied with slow potential topography, Int. J.
Psychophysiol. 27 (1997) 183–199.

[104] F. Vogt, W. Klimesch, M. Doppelmayr, High-frequency components in
the alpha band and memory performance, J. Clin. Neurophysiol. 15
(1998) 167–172.

[105] H.-J. Volke, P. Dettmar, P. Richter, M. Rudolf, U. Buhss, On-coupling
and off-coupling of neocortical areas in chess experts and novices as
revealed by evoked EEG coherence measures and factor-based topo-
logical analysis—a pilot study, J. Psychophysiol. 16 (2002) 23–36.

[106] C.H. Walker, Relative importance of domain knowledge and overall
aptitude on acquisition of domain-related information, Cogn. Instr. 4
(1987) 25–42.

[107] P. Zhuang, C. Toro, J. Grafman, P. Manganotti, L. Leocani, M. Hallett,
Event-related desynchronization (ERD) in the alpha frequency during
development of implicit and explicit learning, Electroencephalogr. Clin.
Neurophysiol. 102 (1997) 374–381.


	Superior performance and neural efficiency: The impact of intelligence and expertise
	Introduction
	Intelligence and neural efficiency
	Expertise and neural efficiency
	Aims of the present study

	Materials and methods
	Participants
	Psychometric tests
	Experimental tasks
	Speed task (ST)
	Memory task (MT)
	Reasoning tasks: mate-in-one task (RMT) and exchange task (RET)

	Procedure
	Apparatus/EEG recording
	EEG data analyses
	Resting EEG data: quantification of IAF
	Task EEG data: quantification of ERD

	Statistical analyses

	Results
	Task performance
	Response latencies
	Solution rates

	ERD
	ERD follow-up analyses

	Discussion
	Task performance: intelligence and expertise put to test
	Neural efficiency: a matter of intelligence and expertise?

	Acknowledgements
	References


