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A B S T R A C T

Finke, Scheiner, Giurfa, and Avarguès-Weber (2023) published correlational data on the performance of hon-
eybees (Apis mellifera) in three learning tasks (associative, reversal, and negative patterning, capturing the do-
mains of operant conditioning, executive-functioning-like ability, and inhibition plus configural processing,
respectively) evaluated under both visual and olfactory stimulus conditions. They speculate that general
cognitive ability (GCA) may be weakly causing all-positive correlations between performance in these different
learning modalities, but do not formally test this possibility. A factor-analytic model applied to Finke et al.
(2023) data revealed the presence of two perfectly congruent GCA factors (one for each stimulus condition). Both
exhibited all-positive loadings, with the visual factor accounting for 46.8% of the performance variance and the
olfactory factor accounting for 52.3%. Diagnostic statistics confirmed that in both stimulus conditions, the
correlation matrices were adequate for factor analysis. These findings support extant hypotheses that GCA in-
fluences covariation between cognitive measures in honeybees, and constitute the first formal potential
demonstration of GCA in an invertebrate. It is argued that GCA might be ubiquitous with respect to metazoans
possessing organized nervous systems, perhaps because it convergently evolved multiple times in independent
phylogenies, this being a key prediction of Christopher Chabris’ Law of General Intelligence. Indeed, GCA has now
been identified in insect, avian, mammal, and fish taxa. Some “primordial” aspects of GCA may even by basal to
metazoans, and experiments employing Caenorhabditis elegans are suggested that could potentially shed light on
such aspects. The findings are also strikingly inconsistent with evolutionary and comparative psychological
theories positing a “modules first” understanding of cognitive evolution, such as one recent proposal that smaller
brains cannot accommodate structures that give rise to GCA. Other theoretical implications of these findings are
discussed.

1. Introduction

General cognitive ability (GCA) factors have been found in a large
and growing number of animal (principally mammalian) taxa for several
decades (for relevant reviews, see Burkart, Schubiger, & van Schaik,
2017; Chabris, 2007; Galsworthy, Arden, & Chabris, 2014). Meta-
analyses of studies on mice (Mus musculus) and rats (Rattus norvegicus)
dating back to the beginning of the 20th century find evidence that GCA
factors account for 32.2% of the cognitive performance variance in the
former (K = 28 effect sizes) and 54.5% of the variance in the latter (K =

11 effect sizes) (Woodley of Menie et al., 2022). A recent re-analysis and
extension of meta-analytic data published by Poirier, Kozlovsky,
Morand-Ferron, and Careau (2020) on 12 taxa (four mammals, seven
avians, and one fish, the Trinidadian guppy; Poecilia reticulata) found
that a GCA factor accounted for 30% of the variance across these taxa
(Woodley of Menie et al., 2023). In the same study, a GCA factor among
four cognitive tasks exhibiting all-positive loadings, and accounting for
19% of the variance, was identified in cleaner fish (Labroides dimidiatus)
via re-analysis of data collected by Aellen, Burkart, and Bshary (2022).

Chabris (2007) has suggested that the apparent ubiquity of the GCA
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factor among individual-differences measures of cognition be termed
the Law of General Intelligence:

This law would state that measurements of cognitive ability tend to
correlate positively across individuals, with a corollary that the first
principal component or general factor extracted from any such cor-
relation matrix - assuming a diverse battery of mental tests and a
diverse sample of subjects - will account for a substantial fraction of
the variance. (p. 452).1

On the basis of this law, Chabris (2007) predicted that GCA should be
ubiquitously present across individual differences measures of cognition
in non-human and even invertebrate taxa (effectively any taxon pos-
sessing a structured nervous system), noting that:

Hints of evidence for general intelligence have also emerged in
recent studies of non-mammals, specifically insects. Honeybees were
divided into two groups according to their performance on a test of
latent inhibition (high or low inhibition); the offspring of these
groups showed a similar difference on latent inhibition, and high-
inhibition bees performed worse on a reversal learning task (Chan-
dra, Hosler, & Smith, 2000; but see Ferguson, Cobey, & Smith, 2001
for inconsistent findings). While this study observed a positive as-
sociation between just two tasks, it is intriguing that reversal
learning is a test of executive function, which is related to fluid in-
telligence in humans … The development of more diverse batteries of
tests, as has been done for mice, could facilitate studies of general
intelligence in suitable insect species, such as honeybees and fruit
flies, as well as other species in which individual differences have
been found at the single-neurone level, such as molluscs (Matzel &
Gandhi, 2000). (p. 459).
More recently, Finke et al. (2023) have conducted research on

honeybees involving individual differences in performance on three
distinct learning tasks (associative learning, reversal learning, and
negative patterning) across two sensory domains: visual and olfactory.
Two different samples of honeybees were used, one for each stimulus
condition. In this study, a color (visual learning condition) or odor (ol-
factory learning condition) association task was used to evaluate asso-
ciative learning (AL) efficiency, in which one stimulus was rewarded
(with sucrose solution) and the other punished (with quinone solution,
to which bees have amild aversion). Subsequently reversal learning (RL)
was evaluated by reversing the reward settings, and measuring the ef-
ficiency with which the bees could learn the new association pattern.
The third learning task employed a negative patterning (NP) protocol.
This task involved the use of three consecutive sets of trials, two of
which were rewarded whereas a compounded third condition was non-
rewarded. In this task, the bees had to learn to associate the reward with
either of the single reinforced stimulus conditions, but not when the
stimuli were presented jointly. Finke et al. (2023) note that NP problems
“can only be solved if the compound stimulus is treated as being
different from the sum of its components, which requires inhibiting
stimulus summation and implementing different forms of processing
such as configural processing” (p. 910). The three learning tasks capture
domains related to operant conditioning (in the case of AL), executive
functioning-like ability (in relation to RL, and as noted by Chabris, 2007),
and inhibition and configural processing (in the case of NP; Devaud,
Papouin, Carcaud, & Giurfa, 2015).

In interpreting the results of their correlational analysis, Finke et al.
(2023) discuss the possibility that GCA might be responsible for positive
correlations observed among these three tasks under both of the sensory
conditions, noting that “it might … be possible that a g-factor accounts
for a small proportion of inter-individual variability across the three

learning tasks tested” (p. 923). Very similar experimental designs
involving correlations among trios of learning measures have also yiel-
ded potential experimental evidence of GCA in other taxa. Prentice,
Thorton, andWilson (2022), for example, were able to identify a general
factor (which they identified with GCA) accounting for 57% of the
performance variance in an associative, reversal, and motoric learning
task in the Trinidadian guppy.

Despite their initial speculation concerning a possible small effect of
GCA, Finke et al. (2023) do not attempt to conduct a formal test for the
presence of this factor. Instead, they simply suggest that “[GCA is]
concealed by interindividual variability caused by other experimental or
intrinsic factors and low sample sizes” (p. 923). In other words, they
reject the idea that their samples would provide evidence of GCA if an
effort to detect it were made, insofar as they assume that they are too
small and that there are problematic confounders present. Nevertheless,
these suspicions might be unfounded, and so the possibility of GCA
factors in Finke et al.’s data should be statistically evaluated through the
use of appropriate factor-analytic methods (specifically Parallel Analysis
and Exploratory Factor Analysis), which is our aim in the current paper.
If the presence of GCA can be formally and robustly established using the
Finke et al. (2023) data, then major new evidence for the Law of General
Intelligence would be found, as its key prediction—the universality of
GCA in metazoans—would be supported through the first ever demon-
stration of this factor in an invertebrate.

2. Methods

2.1. Reanalyzing Finke et al.’s (2023) correlational data

The results of Finke et al.’s (2023) analyses of the pattern of
Spearman correlations among the three learning tasks, in each of the two
stimulus conditions (see their Table 1, p. 914, experiments 1 and 2),
were replicated using the raw individual-differences data that the au-
thors have shared publicly (available from doi: https://doi.org/10.
6084/m9.figshare.20473113.v.). Performance data are given in the
form of the percentage of correct choices made by subjects across trials,
learning modalities, and conditions, so performance with respect to each
learning task is scaled equivalently, such that higher values always
correspond to better subject performance. The Kaiser-Meyer-Olkin
(KMO) and Bartlett’s tests were conducted on the correlation matrices
using the KMO and Cortest.Bartlett function from the psych package
(Revelle, 2015) to determine whether these matrices exhibited adequate
statistical properties for use in latent variable models. As these
Spearman correlations were estimated using slightly different sample
sizes for each pair of abilities being correlated, to correctly specify
model degrees of freedom for the tests, we estimated the harmonic mean
sample size using the following equation:

nh = k
1
n1 +

1
n2 + …

1
nk

Where nh is the harmonic mean, k is the number of pair-wise corre-
lations, and n1, n2 … nk are the sample sizes used for each correlation. In
the case of the visual learning protocol experiment, the harmonic n is
28.74 (rounded to 29), and in the case of the olfactory learning protocol
experiment, the harmonic n is 20.63 (rounded to 21).

Once sample adequacy was established, these correlations were then
entered into Parallel Analyses (using the fa.parallel function in psych) to
assess the most likely number of latent dimensions (based on maximum
likelihood estimations involving 500 iterations) present in the case of
each stimulus condition. Exploratory (Principal Axis) Factor Analyses
(EFA) were also conducted using the correlation matrices with the fa
function in the psych package, to determine the loading of each manifest
variable (learning task) onto its latent variable in each stimulus condi-
tion. These analyses were conducted using R v4.0.1 (R Core Team,
2022).

1 Note that Spearman (1927, pp. 197–198) used the term indifference of the
indicator to refer to precisely the same tendency for any arbitrarily selected set
of cognitive ability measures to correlate among themselves giving rise to GCA.
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A final robustness test involved fitting 95% confidence intervals (CIs)
to the Eigenvalue associated with the first factor derived from the EFA.
This involved the use of Eigenvalues derived from the experimental data
associated with each stimulus condition and also simulated data. An
Eigenvalue can be said to be statistically significantly different from 1.00
(a commonly used criterion for determining whether or not to retain a
factor) if its lower 95% CI does not bisect 1.00. This analysis was carried
out using macro in SAS 9.4.

3. Results

3.1. Measurement models

In each stimulus condition (visual and olfactory), Parallel Analysis
indicated the presence of a single latent dimension. The results of the
EFA on this latent variable estimated for each stimulus condition, along
with other measurement model parameters, are reported in Table 1.

For the visual stimulus condition, The KMO Measure of Sampling
Adequacy (MSA) value was of mediocre magnitude (between 0.5 and
0.59; Field, 2013), but indicates sampling adequacy given that Bartlett’s
test of sphericity reached statistical significance (X 2

= 13.74, p =

.0033). The latent variable estimated via EFA loaded positively onto all
cognitive indicators with factor loadings ranging from 0.445 to 0.944.
This latent dimension explained 46.8% of the variance. For the olfactory
learning condition similar results were noted, with the MSA also being of
mediocre, but acceptable, magnitude, as Bartlett’s test of sphericity
reached statistical significance (X 2

= 12.69, p = .0054). The EFA also
yielded a single factor that loaded positively onto all three behavioral
indicators, with factor loadings ranging from 0.461 to 0.997. This factor
accounted for 52.3% of the variance.

95% CIs were fitted to the Eigenvalues associated with each latent
dimension in order to determine whether they were significantly >1.00.
Simulated data were used in order to generate a null-contrasting con-
dition (where Eigenvalues should exhibit values <1.00, with 95% CIs
that include upper-bound values >1.00 and lower-bound values <1.00).
The results of this analysis are presented in Table 2.

The Eigenvalues associated with the latent variables estimated using
the real data were in each case “significantly” >1.00, with lower-bound
95% CIs that do not cross the 1.00 threshold in either case.

Finally, Tucker’s coefficient of congruence (Lorenzo-Seva & Ten

Berge, 2006) was used to compare the visual and olfactory GCA factors.
It revealed that their structures were statistically identical (rc = 1.00),
indicating perfect congruence.

4. Discussion

Reanalysis of Finke et al.’s (2023) raw data and correlations offers
clear indications of GCA factors accounting for close to half of the sys-
tematic variance in each of the two stimulus conditions. These estimates
were generated from three learning tasks tapping aspects of operant
conditioning, executive-functioning-like ability, and inhibition plus configural
processing. The diagnostic tests indicated that, contrary to Finke et al.’s
misgivings, their samples and their associated correlation matrices were
adequate for use in formal factor analysis. Furthermore, perfect factorial
congruence was observed between the two GCA estimates. Given the
very substantial implications of these results (elaborated below), it must
be stressed that independent efforts to replicate them are crucial.

The identification of the GCA factors in these learning domains is
consistent with Chabris’ (2007) Law of General Intelligence, which
explicitly predicts a positive manifold among individual differences
measures of cognition in metazoans exhibiting structured nervous sys-
tems, including those that are very far removed phylogenetically from
humans, such as honeybees (and other insects). Notably, the GCA factor
in honeybees is highly comparable in magnitude to meta-analytic esti-
mates of GCA variance in studies of human intelligence. In one such
(particularly broad and well-executed) meta-analysis—in instances
where EFA presented initial indications of a general factor—GCA
accounted for 45.9% (vs. 46.8% and 52.3% in the case of the two hon-
eybee GCA factors) of the variance (Warne & Burningham, 2019).

The observation of similar magnitude GCA factors in humans and
honeybees suggests that social complexity may be one source of
convergent selection acting to integrate the components of cognition.
This may also provide a basis for so-called swarm intelligence in such
insects. In the biological sense, swarm intelligence encompasses the
ability for organisms to solve problems (e.g., efficient foraging) collec-
tively, via coordination among members of the swarm and interactions
between the swarm and its environment (Tan & Zheng, 2013). It might
be that the means and variances of GCA among honeybees impose
constraints upon the global efficiency of the swarms in which they
participate. As honeybee worker drones are sterile, their level of GCA
cannot condition their individual-level fitness. Any genetic contribu-
tions to these individual differences must originate from the diversity
present among spermatozoa from multiple males collected by queen
bees during nuptial flights (Schlüns, Moritz, Neumann, Kryger, & Koe-
niger, 2005). GCA can therefore only payoff fitness-wise at the colony
level through inclusive fitness dynamics. This situation differs from the
basic assumption of swarm intelligence models, which is that the agents
of a swarm can be treated as essentially equivalently “simple,” their
behavior being governed by basic sets of universal rules or biological
“algorithms,” which compound into intelligent behavior only at the
level of swarm dynamics (Tan & Zheng, 2013).

An intriguing parallel exists with so-called “collective intelligence”

in human populations: while it has been claimed that this emergent
swarm-like problem-solving capability is independent of the level of
GCA of the individuals comprising such collectives (Woolley, Chabris,
Pentland, Hashmi,&Malone, 2010), this finding has not replicated, with
a more recent study finding that 100% of the variance in latent “col-
lective” intelligence can be accounted for by individual-level GCA (Bates
& Gupta, 2017).

The theory that the mean and variance in GCA may contribute more
broadly to group-level outcomes involving competition between human
biocultural groups (such as competition between countries and even
empires; Woodley of Menie et al., 2017) would seem to complement
Bates and Gupta (2017) observation, and suggests an even broader
evolutionary analogy between humans and honeybees in terms of in-
clusive fitness processes among differentially “swarm intelligent”

Table 1
Measurement models estimating the factor structure of GCA in bees in two
samples (visual and olfactory).
Indicators Factor loadings sample 1

(Visual)
Factor loadings sample 2
(Olfactory)

AL 0.944 0.997
RL 0.562 0.601
NP 0.445 0.461
Measurement Model
Parameters

Sample 1 Sample 2

R2 0.468 0.523
MSA 0.59 0.52
Bartlett X2 13.74 12.69
Bartlett p-value <0.01 <0.01
Harmonic N 29 21

Table 2
Eigenvalues, and their corresponding 95% confidence intervals, estimated using
Horn’s Parallel Analyses for samples 1 (visual) and 2 (olfactory), using real and
simulated data.
Sample Data Featured Eigenvalues 95% LCI 95%UCI
1 (Visual) Real data 1.40 1.03 1.77

Simulated data 0.92 0.68 1.16
2 (Olfactory) Real data 1.54 1.06 2.02

Simulated data 0.99 0.68 1.30

M. Peñaherrera-Aguirre et al.
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competing honeybee colonies composed of genetically and phenotypi-
cally heterogeneous workers exhibiting different means and variances in
GCA.

Another complementary possibility is that as honeybees are a human
domesticate, artificial selection pressures may have served to amplify
the coherence of GCA in this taxon as a means of adapting it to the
contours of the human cognitive niche, including those aspects that
relate to social complexity, which may co-contribute along with other
behavioral factors that make them more amenable to management (see
Bognár et al., 2023 for similar arguments in relation to the potential
origin of the human-like structure of canine cognition under
domestication).

One additional hypothesis is that certain aspects of GCA might be in
some sense basal to metazoans, with GCA in neurologically less complex
animals such as insects (Knebel & Rigosi, 2021), whose brains are pri-
marily composed of neuronal cells (Raji & Potter, 2021), being more
reflective of factors that might affect basic global neurological quality
among individuals. When neuronal differentiation is low, global sensi-
tivity to the adverse effects of a given mutation or environmental insult
might reasonably be expected to be higher given their more systemic
effects in such conditions. For example, sensitivity to a virus that targets,
or the presence of a deleterious mutation in, one kind of nerve cell will
lead to more damage when an organism’s nervous system is dominated
by that one cell type, rather than a plurality of such cell types. Another
source of quality differences among the nervous systems of relatively
less complex organisms might be raw variability in neuronal count,
which would either directly constrain or enhance the amount of neural-
substrate available to an organism for the purposes of executing problem
solving irrespective of domain.

This situation might contrast with that of generally more recently
evolved and complex organisms exhibiting highly structured nervous
systems, and very specialized neuron types (such as the von Economo
neuron; Bruton, 2021). In such organisms, the GCA factor may be in part
reflective of both the basic neurological quality axis outlined immedi-
ately above and a novelty-adapted system, related to executive func-
tioning, which facilitates the coordination and combination of inputs
associated with lower-level dedicated cognitive systems for the purpose
of solving phylogenetically irregularly occurring problems (for similar
arguments on the latter source of GCA, see Geary, 2005). Rather than
GCA reflecting only the “primordial”/“quality” or “coordination-com-
bination” dimension, in highly neurologically complex species, it may
involve both GCA dimensions, which should be phenotypically
discriminable (Sarraf, Woodley of Menie, M.A, Peñaherrera-Aguirre, &
Figueredo, forthcoming, develop a more detailed theoretical and
empirical case for this theory). This is contrary to the standard evolu-
tionary psychology paradigm, in which simple and discrete modules
evolved first, with GCA merely reflecting the action of many such
modules that have been forced into functional coordination through
some process, such as the action of highly pleiotropic mutations (e.g.,
Houle, 2000; Miller, 2000), or selection favoring recruitment of multiple
“dedicated modules” to “improvise” solutions to certain “large band-
width” problem types (Cosmides & Tooby, 2002).

Theorizing of this type appears in the comparative psychology
literature, in which it has been recently claimed that the apparent
absence of a coherent GCA factor in one taxon (the cleaner fish) is evi-
dence that small brains cannot accommodate the coordinating struc-
tures necessary for the formation of GCA, and that specialized cognitive
modules must therefore instead compete among one another yielding
trade-off patterns (Aellen et al., 2022). The presence of a much stronger
GCA factor in honeybees (which have very small and much less complex
brains compared with fish) is strikingly inconsistent with models of this
kind. In the case of honeybees, we expect that both proposed sources of
GCA covariance are likely to be in effect, as the presence of specialized
structures such as mushroom bodies and a central complex in this taxon
(Plath et al., 2017), along with the ability to engage in RL, suggests the
presence of an executive functioning-like faculty (as argued by Chabris,

2007), and therefore some level of “coordinating” GCA.

4.1. Limitations

Although the three learning tasks captured a range of learning mo-
dalities, more tasks would be highly desirable in future experiments of
this kind to determine the extensiveness of the positive manifold in
honeybees. Such tasks might include tests designed to identify individ-
ual differences in spatial memory and navigation, which in honeybees
involve the encoding of spatially relevant information with reference to
a variety of cues, including landmarks and celestial bodies for the pur-
pose of optimizing foraging routes (Dyer, 1996). Larger sample sizes in
future studies would also increase the power with which GCA factors can
be identified. A final important limitation raised by a reviewer is that the
source of the covariance among the learning tasks may have an origin
that is independent of GCA. For example, a general influence of moti-
vation across tasks could potentially create a positive manifold (Finke
et al., 2023 did in fact select bees for inclusion in their experiments on
the basis of motivation to complete tasks). Lower-level motor abilities
may also generally co-influence performance across the three tasks.
Separating these alternate potential non-GCA sources of learning task
covariance would doubtless require a novel experimental study in which
the potential influence of these on GCA (if any) can be properly
evaluated.

5. Conclusions

Clearly, more insect taxa should be investigated experimentally with
a view to testing for the presence of GCA in the correlations among
different learning modalities. Chabris (2007) suggests that Drosophila
melanogaster may be one such organism in which the chances of
detecting GCA are high. Eusocial insects that are relatively well exper-
imentally characterized, such as ants, termites, and other members of
the Hymenopteran order (the order to which honeybees belong), would
also be good targets for expanding observations of GCA in insect taxa.

More broadly, a solid candidate taxon for exploring the possible
existence of a discrete “primordial” GCA is the nematode and model
organism Caenorhabditis elegans, which exhibits a minimally differenti-
ated nervous system (being composed of a longitudinal nerve cord and
ring, and both head and tail ganglia) and does not have a capacity for RL
(Becerra, Calixto, & Orio, 2023), but does possess a capacity for various
forms of more "primative" learning, such as AL (Amano & Maruyama,
2011). Microfluidics-based experimental platforms (e.g., Qin &
Wheeler, 2006) could be used for the identification of potentially
correlated individual differences in performance on different forms of
AL (e.g., appetitive vs. aversive) and spatial navigation tasks (e.g., being
able to efficiently navigate a basic maze, which may be dependent on
long-term AL). Such experiments should use genetically heterogeneous
(wild-type) strains of this taxon, in order to maximize genetic diversity
and therefore potential individual differences. Given the aforemen-
tioned, it is interesting to note that AL exhibited the strongest loading of
the three learning modalities examined in the honeybees (λ = 0.944 in
the visual condition, and 0.977 in the olfactory condition) a finding
suggesting that “primordial” GCA may be the dominant “flavor” of GCA
in this taxon.

The finding of a GCA factor among such simple organisms will
require scientists to fundamentally rethink the way in which nervous
systems give rise to general problem-solving ability, and would provide
exceptionally strong evidence for the Law of General Intelligence.
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