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Hundreds of studies have shown that, in people, cognitive abilities overlap yielding anunderlying ‘g’ factor, which
explainsmuch of the variance.We assessed individual differences in cognitive abilities in 68 border collies to de-
termine the structure of intelligence in dogs. We administered four configurations of a detour test and repeated
trials of two choice tasks (point-following and quantity-discrimination).We used confirmatory factor analysis to
test alternative models explaining test performance. The best-fitting model was a hierarchical model with three
lower-order factors for the detour time, choice time, and choice score and a higher order factor; these accounted
jointly for 68% of the variance in task scores. The higher order factor alone accounted for 17% of the variance. Dogs
that quickly completed the detour tasks also tended to score highly on the choice tasks; this could be explainedby
a general intelligence factor. Learning about g in non human species is an essential component of developing a
complete theory of g; this is feasible because testing cognitive abilities in other species does not depend on eco-
logically relevant tests. Discovering the place of g among fitness-bearing traits in other species will constitute a
major advance in understanding the evolution of intelligence.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In humans cognitive abilities such as navigating through space, un-
derstanding written language and number skills correlate positively; a
person who is above average at one task is likely to be good at others
(Deary, Penke, & Johnson, 2010; Deary, 2013). Hundreds of empirical
phenotypic studies show that the structure of human abilities can be
represented as a hierarchy with observed manifest measures or tests
(such as verbal comprehension or arithmetic) at the bottom level, latent
group factors (such as spatial or verbal skills) at the second level and a
third factor at the apex (Carroll, 1993). This third factor, called g or
Spearman's g after its discoverer Charles Spearman (Spearman, 1927),
is a major focus of psychometric studies in the human behavioural sci-
ences (Jensen, 1998; Johnson, Bouchard, Krueger, McGue, &
Gottesman, 2004; Spinath, Ronald, Harlaar, Price, & Plomin, 2003).

Quantitative genetic methods developed in the 1970s and applied to
data fromadoption and twin studies have established the existence of ge-
netic g; that is, abilities are correlated at the genetic as well as the pheno-
typic level (Bouchard & McGue, 1981; Deary, Spinath, & Bates, 2006;
Loehlin, Horn, & Willerman, 1997; Pedersen, Plomin, Nesselroade, &
ics, CPNSS, Lakatos Building,
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McClearn, 1992). More recently, evidence frommolecular genetic studies
using DNA from large samples of unrelated people show that g is highly
polygenic (Davies et al., 2011). Research on g is motivated partly because
it is phenotypically associatedwithmany important life outcomes includ-
ing health (Batty, Deary, &Gottfredson, 2007; Luciano et al., 2010;Mõttus,
Luciano, Starr, & Deary, 2013; Schou, Østergaard, Rasmussen,
Rydahl-Hansen, & Phanareth, 2012), physical attractiveness (Langlois
et al., 2000; Zebrowitz, Hall, Murphy, & Rhodes, 2002), brain resilience
(Santarnecchi, Rossi, & Rossi, 2015), and life-expectancy (Batty et al.,
2009; Batty et al., 2007;Whalley & Deary, 2001). The phrase cognitive ep-
idemiology was coined to characterise research into the association be-
tween measured intelligence and traits such as health and life-
expectancy in people (Deary & Der, 2005). It would be useful to learn
whether the pattern of findings linking higher g with better health out-
comes (Gottfredson, 2004) is particular to people or common among an-
imals. Links between intelligence and health in non human animals
would be especially interesting to probe because other animals neither
smoke nor drink alcohol (habits that are lifestyle confounders in human
studies). But as the legendary recipe prescribes, ‘first catch your hare’; in
this case, evidence concerning the structure of cognitive abilities in
other species. This ‘hare’ is an essentialfirst step in probing a link between
intelligence and health in other species.

There is some evidence of g in non human animals (reviewed in
Chabris, 2007; Galsworthy, Arden, & Chabris, 2013; Matzel, Sauce, &
Wass, 2013). Yet evidence of the distribution, structure (phenotypic
and genetic correlations among cognitive abilities), and the conse-
quences of those differences in other species is exiguous: relatively
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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few studies on general intelligence have been conducted in non human
animals since 1920 (one review comprised 21 studies (Chabris, 2007),
another comprised 24 studies (Galsworthy et al., 2013)). In order to
test whether cognitive abilities are correlated or not, individual-level
data on task performance need to be collected, in a sample of reasonable
size. This has been done in mice (Galsworthy, Paya-Cano, Monleon, &
Plomin, 2002; Locurto, Fortin, & Sullivan, 2002; Matzel et al., 2003;
Wass et al., 2012), where a g factor was found, and in chimpanzees
(Banerjee et al., 2009; Herrmann & Call, 2012; Hopkins, Russell, &
Schaeffer, 2014) where a g factor was found in two out of three studies.

We tested the structure of measured cognitive abilities in dogs. Dogs
and dog breeds are good models for within- and between-species spec-
tra of cognitive abilities. The reasons are plural. Dogs are tractable; they
enjoy interactingwith people and can visit testing facilities, while living
in their own homes. Dogs are not subject to confounding arising from
lifestyles that may contribute to causal differences such as smoking, al-
cohol and drug use. Individual differences in dogs' cognitive abilities are
not causally confounded with variability in socio-economic status. It is
more feasible, cheaper and less intrusive to conduct repeated behav-
ioural testingwith dogs. Following phenotypic studies, dogswill be use-
ful in genetic studies; genes associated with complex traits are easier to
find in dogs than people because of their longer haplotype structure in
dogs (Lequarré et al., 2011; Ostrander, Giger, & Lindblad-Toh, 2006). A
consequence of their haplotype structure is that sample sizes needed
for genomic analyses are much smaller in dogs than people. Some be-
havioural adaptations are breed-specific (pointing, herding); these in-
volve both innate propensities and learning. Some traits are typical
across all breeds, such as a tendency to affiliatewith humans (see for re-
view Benksy, Sinn, & Gosling, 2013; Miklosi, 2007; Shipman, 2010).

Our underlying assumption was that cognitive abilities would vary
among dogs. This is implied by existing data in the animal behaviour lit-
erature but variance is rarely the focus of the work. For example, many
animal cognition studies are framed as ‘can species X do the Y task?’ yet
the results usually include animals that did, and did not, pass the test.
Behavioural variability is the rule not the exception; since variance sup-
plies evolution with its traction, it is a worthwhile object of study.

The present empirical study owes an intellectual debt to the work of
JohnPaul Scott and John L Fuller (Scott & Fuller, 1965).We examined in-
dividual differences on a set of cognitive tasks (four increasingly com-
plex versions of a detour task first designed in 1927 by the German
psychologist, Wolfang Kohler (1887–1967)(Frank & Frank, 1982; Scott
& Fuller, 1965), a quantity-discrimination task (Bonanni, Natoli,
Cafazzo, & Valsecchi, 2011; Macpherson & Roberts, 2013;
Prato-Previde, Marshall-Pescini, & Valsecchi, 2008; Ward & Smuts,
2006) and a point-following task (Elgier, Jakovcevic, Mustaca, &
Bentosela, 2012; Ittyerah & Gaunet, 2009; Kaminski & Nitzschner,
2013; Lakatos, Gácsi, Topál, & Miklósi, 2012; Miklosi, Soproni, Miklósi,
& Soproni, 2006). These tasks were administered to one breed of dog
(border collies) selected from similar rearing and living environments.
We administered six tasks (of which four were related) to the dogs
and, guided by the human psychometrics literature, tested the fit of
four basic models against the data.

2. Methods

2.1. Sample

We recruited 68 farm-living border collies fromWales. We chose a
single breed to avoid confounds arising from differential selection.
Scores from a basset hound tested against a whippet would be uninter-
pretable (Udell, Ewald, Dorey, & Wynne, 2014) This is because dogs
have been selected by people for different behaviours, and they are
the most polymorphic species on earth, varying greatly in leg length
and other traits relevant to task performance. We selected farm border
collies for several reasons. First, we wanted the dogs' backgrounds to be
similar (in contrast with pet or companion animals, because variation in
level of enrichment could contribute to cognitive differences). Although
border collies have been subject to artificial selection its focus has been
on behaviourmore than appearance; border collies remainmorpholog-
ically variable with a reported moderate inbreeding coefficient of
around 2.8% (Hoffman, Hamann, & Distl, 2002) but unknown empirical-
ly in our sample. Our sample comprised 68 dogs, (males 34, females 34)
ranging in age from 1 to 12 years. We chose Wales as our recruitment
centre because it is rural and enriched for border collies, having many
hill farms where dogs work stock.

The animals in our sample differ from companion animals in back-
ground and behaviour that may be relevant to the study. They are
kennelled outdoors and, although socialised to respond to their owner
in a farmyard setting, they are unaccustomed to games, indoor behav-
iour and food treats.

2.2. Testing facility

All testingwas conducted in a purpose-built barn (see supplementary
materials) with a concrete floor that was washed down after each dog's
session to eliminate orminimise scents. The same two colleagues admin-
istered all the testing. Testers wore plain clothing in all sessions to main-
tain consistency across dogs, and to reduce distraction in this breed,
which is sensitive to visual markers including dress. All equipment was
the same for each dog. All start points, and set-up points were marked
with tape on the floor. All timings were recorded with a stopwatch.

2.3. Behavioural tests

On entering the barn, each dog was released to wander freely for
threeminutes among toys and treats scattered on thefloor. This allowed
the dogs to relax and adjust to the experimental setting. Diagrams of the
set up for each test are given in the electronic supplementary materials.

Problem-solving testswere selected and adapted from the literature.
All were appetitive—each problem was motivated by a food treat. We
administered 4 versions of a detour test that was designed to measure
the underlying construct of insight, navigation, and spatial ability. In
each detour test a food treat is placed behind a see-through barrier in
4 configurations (short, long, V-shaped and maze-shaped). The test
was to gain the food from a start point. We recorded how much time
elapsed between the tester releasing the dog from the start point and
the dog reaching the food reward.

The next test, point-following, was designed to measure how well
each dog would make a behavioural inference from a visual cue (a
human pointing towards a beaker). The point-following task was ad-
ministered by a tester who stood equidistant between two inverted
beakers (one was baited) set on the floor. The tester looked straight
ahead, and pointed one arm towards an inverted beaker (the pointed
beaker was not baited). On release by the second tester, the dog could
choose one (or none) of two beakers to probe. Each dog was adminis-
tered 10 consecutive trials. The pointed side was pseudo-randomised.
We measured how many times the dog went to the pointed beaker as
well as how quickly the dog went to the beaker. The baited beaker
was not strongly olfactory (as far as we could tell), but served the
purpose of focusing the challenge on what seems to be an evolved pro-
pensity in dogs—to follow human spatial directive points (Riedel,
Schumann, Kaminski, Call, & Tomasello, 2008).

Next we tested individual differences in dogs' discrimination be-
tween two quantities by counting how many times each dog went to
the larger of two presented food treats. Plates were prepared: a circle
was drawn on each plate (diameters were: 2.5 cm, 3.5 cm, 4 cm, 6 cm,
and 8.5 cm). Wet dog food mixed with tuna was spread inside the
drawn circles. In each trial the dog's attention was directed to a tester
holding two plates with circles of different diameters of food. The plates
were shown to the dog, and then placed on the floor, in front of the tes-
ter.When the dogwas released (by the second tester), he (or she) could
go to a plate and eat. As soon as the dog went to a plate the other plate



Fig. 1. Confirmatory factor analysis of performance on cognitive tasks. Note: Narrower observed variables (squares) are influenced by latent variables (circles). Solid lines represent factor
loadings and dashed lines represent correlations among factors. Standardized factor loadings with 95% credible intervals in brackets are placed on the right of each factor loading. Error
variances are omitted for clarity. (a) Unstructured domain model posits three first-order factors and allows the correlations between latent factors to be estimated freely. (b) no-g
model thatfixes the correlations among latent factors to zero. (c) g-onlymodel specifies a single latent factor explaining the covariance among all observed variables. (d) non-hierarchical
gmodel specifies a single general factor in addition to the separate domain factors. (e) hierarchical gmodel posits a higher-order factor explaining the variance shared among thefirst order
domain factors.Modelfit specifiedbyBayesian Information Criterion (BIC),which gives a relativemeasure offit (lower indicates betterfit), and posterior predictivep-value,which gives an
absolute measure of fit (PPP ≼ 0.5 indicates good model fit, PPP b 0.05 indicates poor model fit).
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was removed. This was repeated with different pairings of circle diam-
eters for 8 trials. We measured the number of times each dog chose
the plate with the larger diameter, as well as the latency in seconds
from release to choice. We aimed to test individual differences in quan-
tity estimationwith this test. Further details concerning test administra-
tion, diagrams and scoring are given in the Supplementary Materials.

2.4. Analysis

We first estimated intra-individual correlations for task completion
times to evaluate how consistent a dog was in being either fast or slow.
Repeatability in performance is the basis for determining whether there
are between-dog differences in ability that could underlie a g-factor. We
calculated individual consistency in time to complete the navigation
tasks (that is, adjusting for average completion time for all dogs on each
barrier configuration). We calculated repeatability of time to complete
the point-following task and time to decide in the quantity discrimination
task. We estimated consistency and reliability using log completion/deci-
sion times in a linear mixed model with dog as a random effect. Age and
sex were fit as fixed effects in all analyses. We estimated repeatability as
the proportion of variance accounted for by differences between dogs,
or R=σα

2/(σα
2+σε

2) where σα
2 is the dog variance and σε

2 is the residual
variance (Nakagawa&Schielzeth, 2010; Sokal&Rohlf, 1995).We then es-
timated how repeatable the average of performance acrossmultiple trials
would be to determine whether mean trial performance would make a
more suitable for assessing individual differences in ability.We calculated
the consistency of the average navigation performance on four trials and
the repeatability of average performance on eight point-following trials
and 10 quantity discrimination trials. We estimated extrapolated repeat-
ability (McGraw&Wong, 1996) ofmeanperformance asRn0 ¼ σ2

α=ðσ2
α þ

1
no
σ2

ε Þ where n0. is the adjusted number of trials per dog (Gelman & Hill,
2007; Nakagawa & Schielzeth, 2010).

We used confirmatory factor analysis (CFA) to posit latent ability
factors that explained the inter-correlations among the observed
(manifest) variables. We log transformed and reversed times so that
the observed variables entered into the model represented task speed.
We fit five models (Fig. 1): a) an unstructured domain model that pos-
ited a latent factor for each type of task; b) a no-g model that
constrained the covariances among the latent variables to zero, which
specifies that performance within each task domain was correlated
but performance is specialised and does not generalize to other task do-
mains; c) one-factor, g-only model specifying that the shared variance
between all tasks could be explained by a single latent factor; d) a
bifactor, non-hierarchical-g model specifying task-specific factors and
a separate task-general factor; and e) a hierarchical-g structure with a
single higher-order factor explaining the correlations among the first-
order factors. From the hierarchical-gmodel, we calculated the variance
attributable to the general and the first-order factors (“omega”) and at-
tributable to the general factor alone (“omega hierarchical) (Brunner,
Nagy, & Wilhelm, 2012).

We fit the CFAmodels in Mplus (Muthén &Muthén, 2012) and used
a Bayesian estimator that is more sensitive to rejecting models with
poor fit when sample size is small, as ours was (B. Muthén &
Asparouhov, 2012). Instead of the traditional maximum likelihood fit
criteria (e.g., χ2 and RMSEA), this Bayesian estimator reports an abso-
lute measure of model fit, the posterior predictive p-value (PPP),
which we used to reject models if PPP b 0.05; and a relative measure
of fit, the Bayesian Information Criterion (BIC), which we used to com-
pare models that could not be rejected.
3. Results

3.1. Descriptive statistics

The dogs in our sample demonstrated inter-individual variability.
Table 1 shows the raw means, modes, standard deviations and ranges
of each test score. There were no significant mean test score differences
between the sexes.



Table 1
Descriptive statistics for task performance.

Task N Trials Mean Mode SD Range

Detour short 63 1 11.4 s 4.7 s 20.9 s 1.8–133.0 s
Detour long 64 1 20.7 s 6.4 s 21.8 s 2.3–113.0 s
Detour V 56 1 17.0 s 12.9 s 15.5 s 4.7–74.1 s
Detour maze 59 1 17.6 s 4.5 s 26.7 s 2.9–118.0 s
Point-following time 43 10 4.3 s 1.9 s 5.4 s 0.85–43.0 s
Point-following accuracy 65 11.7 12.0 3.7 2–20
Quantity time 57 8 2.4 s 1.5 s 3.3 s 0.85–38.4 s
Quantity accuracy 65 14.1 12.0 3.9 6–21
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3.2. Intra-individual variability

We first estimated how much within-dog variability there was on
task performance. The consistency of performance was low for naviga-
tion (R=0.26, 95% credible interval [CI] = 0.11, 0.42) and repeatability
was low for the point-following (R=0.35, CI= 0.22, 0.50) andmoder-
ate for quantity discrimination (R= 0.51, CI = 0.40, 0.63). Consistency
on mean navigation completion time was moderate (Rn0 = 0.58, CI =
0.35, 0.74). Repeatability of mean completion time on point-following
was high (Rn0 = 0.77, CI = 0.63, 0.87) and of average completion
time on quantity discrimination was also high (Rn0 = 0.88, CI = 0.83,
0.92).
3.3. Confirmatory factor analysis and correlations

Because each dog was presented once with each of the four naviga-
tion tasks (Short, long, V-shaped and Maze-shaped), we modelled
speed to complete each maze as a separate observed variable. Speed
on the point-following and quantity discrimination taskswere averaged
across trials because these were repeated assessments of the same task
configurations and because mean performance on these tasks showed
repeatability. We calculated accuracy on the point-following and quan-
tity discrimination tasks as the number of correct responses. The corre-
lations among time on the detour task, time on the point-following and
quantity discrimination tasks, and accuracy on the point-following and
quantity discrimination tasks are listed in Table S1.

We started with a CFA model, the unstructured domain model, that
posited three first-order factors for each cognitive ability domain
(i) speed on the navigation tasks, (ii) average speed on the choice
tasks (point-following and quantity discrimination), and (iii) accuracy
on the choice tasks. The first-order factors represent latent variables
that directly influence the narrower observed variables and also account
for measurement error in each domain while allowing correlations
among the latent variables to be freely estimated. Consequently, this
model specifies that similar variables (such as the four navigation
tasks) will be influenced by the same latent factor. Different kinds of
variables, such as choice speed or accuracy variables, will be influenced
by the different latent factors, and the variables in one set will correlate
with the those in other sets only to the extent that their latent factors in-
tercorrelate. In this model and in successive models the residual covari-
ances among the observed variables were fixed to zero. The
unstructured domain model had acceptable fit (Fig. 1a) and showed
that navigation and choice speed factors were positively, though weak-
ly, correlated with each other and both were strongly positively corre-
lated with choice accuracy (Fig. 1a). Thus dogs that were faster also
had more correct responses, which showed that there was not a
speed/accuracy tradeoff (Fig. 1a). We could reject a no-g model (Fig.
1b). Rejecting the no-gmodel is not proof of a general intelligence factor
but is suggestive of one.

The next models attempted to determine the nature of this g factor.
We rejected both a one-factor, g-only (Fig. 1c) and a bifactor, non-
hierarchical-g model (Fig. 1d) of general intelligence. Thus intelligence
was not described by a general factor directly influencing performance
on each task, as in the g-only model, or after removing task specific var-
iance as in the non-hierarchical-g model. Instead, like human intelli-
gence, cognitive ability in dogs could be described by a hierarchical-g
structure (Fig. 1e). Because our models only contained three first-
order factors, the unstructured domain model and the hierarchical g-
model were equivalent. We were thus not able to assess whether hier-
archical gmodel had a better fit than a correlated factor model. Howev-
er, the hierarchical model was still useful for calculating how much
variation in ability was captured by a g-factor. The g-factor and the
first-order factors together captured 68% of the variance in task perfor-
mance but only 17% of the variance in task performance could be attrib-
uted to the g-factor.

We also examined the relationship of agewith scores on the domain
factors and the hierarchical g-factor. Age was not related to average
speed on the detour tasks (r = 0.01, CI = −0.03 to −0.05, p = 0.78)
or average speed on the pointing and quantity tasks (r = 0.15,
CI=−0.13 to 0.46, p=0.39). However, older dogsweremore accurate
on the pointing and quantity tasks (r = 0.35, CI = 0.11 to 0.72, p =
0.004). Finally, age was not related to g (r = −0.10, CI = −0.55, 0.53,
p = 0.61).

4. Discussion

Our results indicate that even within one breed of dog, where the
sample was designed to have a relatively homogeneous background,
there is variability in test scores. The phenotypic structure of cognitive
abilities in dogs is similar to that found in people; a dog that is fast
and accurate at one task has a propensity to be fast and accurate at an-
other. It may seem obvious that once a detour task (finding the treat be-
hind a barrier) has been solved in one form, the solution to the other
forms will follow naturally, but dogs are not people. Experiments have
shown that dogs' problem-solving skills do not transfer readily from
one problem to a different form of the same problem as ours do
(Osthaus, Marlow, & Ducat, 2010). The g factor we report is consistent
with the prediction made by the many experts in the ‘dog world’
(trainers, veterinarians, members of dog societies, and farmers) who
were consulted in the early stages of this study. Those experts said
that in their experience some dogs were more likely to catch-on, learn
and solve problems more quickly than others. Our results show struc-
tural similarities between canine and human intelligence. Individual
tests have some test-specific variance, tests are influenced by a group-
level factor, and the group-level factor is influenced by a g factor. We
tested models without the g factor, without the group-level factors
and with uncorrelated group-level factors; models positing correlated
group-level factors (the unstructured model and the hierarchical g
model) fit the data. We emphasize the hierarchical g model because
the poor fit of the no-gmodel rules out uncorrelated first-order factors;
the hierarchical g allows us to examine how those correlations arise.

Although we cannot calculate empirically the impact of range-
restriction (of intelligence) on our results we surmise that our sample
of farmdogs is somewhat analogous to a humanuniversity student pop-
ulation because farm dogs at the low tail of the intelligence distribution
are more likely to be given away as companion animals. Range restric-
tion attenuates correlations (Alexander, Carson, Alliger, & Barrett,
1984; Wells & Fruchter, 1970) so we cautiously interpret the g factor
we found as being a low estimate of commonality. A plot showing the
possible impact on our results given various estimates of range restric-
tion is given in the Supplementary Information together with the
zero-order correlation matrix for all test scores.

Noisemay arise from variation in appetite for treats.We assume that
dogs vary in their appetitivemotivation—and that differential interest in
food treats may be confounded with test scores. Our finding that speed
and accuracy are positively correlated suggests that this has not been a
major concern, yet we expect that performance on a problem-solving
test is affected by more than just ‘smarts’. Affective traits such as moti-
vation, persistence, and so on likely influence performance on cognitive
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tasks, but if they contribute to covariance among tasks, it may be hard to
distinguish these aspects from g; there is no a priori reason why g
should not have an affective component. The crucial point is that our
study investigates the covariance, the structure, among test scores. In
humans where g has been most studied, g arises among mathematical
and vocabulary tests even though students often have different prefer-
ences and motivation to do these kinds of tasks. If g tapped motivation
heavily, we would expect to see covariance amongmeasures of motiva-
tion across different kinds of test; in humans we do not see this (Loken,
2004).

4.1. Limitations

Our sample size is reasonably large among animal studies where
individual-level data on cognitive scores are less often collected pro-
spectively on one species, but our data are limited. We cannot present
measures of test re-test reliability, nor is our sample size as large as in
a typical human study. A larger sample would give more power to
rule out alternative models and, by setting part of the data aside, allow
for exploratory analysis. For example, because we were interested in
testing for a trade-off between speed and accuracy, we posited a latent
variable that grouped choice speedmeasures together and another that
grouped choice accuracy together. An alternative approach would have
been to group the observed variables by task (point-following and
quantity determination) rather than by domain (choice speed and
choice accuracy). An exploratorymodelling step could be used to gener-
ate hypotheses about this sort of structure in the data before fitting con-
firmatory models to a separate set of data. The models we tested were
not a flawless fit with the data. While our data were inconsistent with
there being no shared ability across the tasks, the magnitude of overlap
in task performance was much smaller than that found in human data.
We would thus like to see further work on cognitive abilities in dogs
with larger samples and tests that capture a broader range of
problem-solving abilities. These tests, and this study, are not the ‘last
word’ in mental ability testing in dogs. We hope that the study of indi-
vidual differences in non human animals' intelligence has a bright fu-
ture involving more scholars, improved methods and larger samples.
We found that dogs did not always perform consistently between trials,
nor does the correlation matrix show pairwise significant associations
among all tasks. A strong g factor may have appeared in the one-factor
or bi-factor model. However, the mean performance across a larger
number of trials could serve as the basis for an intelligence battery
that would show high test–retest reliability. A larger variety of tests
would also allow us to test models that include a two or more higher
order factors that load on overlapping subsets of first-order domain fac-
tors, which is a reasonablemodel given that the estimation of the corre-
lation between two of the first order factors (navigation speed and
choice speed in model a) overlapped with zero. A final limitation of
our data is that because we assessed intelligence in only one breed,
we do not knowwhether the same structure of intelligence generalizes
to other breeds. This study is presented as evidence suggestive of g in
dogs, and as proof of the concept that individual-level data on canine
cognitive abilities are useful and collectible.

4.2. The nature of g

That g is a latent variable, the covariance among a set of tasks admin-
istered to a group of individuals, leads inescapably to g being a statistical
construct. This does not imply that g is fugitive, delicately poised on a
precarious Jenga of tests. Quite the reverse; it is probably the most ro-
bust construct in the whole of the human sciences, evidenced by hun-
dreds of studies (Carroll, 1993). But because g is a latent variable that
emerges from manifest measures (such as solving a detour test, or dis-
criminating between quantities in the dog study above), g resists
between-species comparisons unless the same tasks are administered
to each individual. By analogy, g is like a distillation ‘boiled off’ from
observed components or scores on specific tests. The distillate varies ac-
cording to the observed components, but research in the human litera-
ture shows that g factors correlate highly and positively with each other
(Johnson et al., 2004).

We suggest that g, the covariance amongmanifest abilities, emerges
because it taps lower-level biological traits such as neuronal density,
myelination, glucose transport in thebrain, that vary among individuals.
In this way g may integrate across all brain and central nervous system
functions that subserve our capacity to perceive, discriminate, and re-
spond to the problems posed by the environment. To the extent that
species inhabit similar cognitive niches and share greater phylogeny,
cognitive architecture and brain homologies, the ‘distillate’, g, will be
more closely comparable. Brains across vertebrate species, for example,
have evolved raw materials some of which are held in common across
species (such as the hippocampus among mammals) and some that
vary, such as the cortex and pallium that evolved differently between
mammals and birds.

There is evidence of convergent evolution across taxa in specific
functional abilities (such as quantity discrimination and navigation,
which is found in mammals, birds and cephalopods) but these may de-
pend on different biological mechanisms. Specific abilities, such as nav-
igation, emerge in turn from lower level processes (such as perception
and attention) as higher-level solutions to recurrent problems faced
by organisms. These problems may include finding food, shelter, and
mates, raising offspring, avoiding harm from predation, inclement
weather, gravity and toxins. The taxonomy of cognitive challenges pre-
sented by the environment varies among species. Genomes pick out
species-relevant problems: the salience of an owl differs between
mouse and man (dangerous predator versus wise muse). The set of
ancestrally-typical recurrent problems, faced by any individual, varies
by species (and sometimes by sex within a species when males and fe-
males have faced nuanced differences in the problems posed by their
environments); thus the component abilities from which g arises must
vary somewhat between species. Yet the structure of cognitive abilities
may be common across species. In order to find out, studies guided by
the extant psychometricwork onhumans are essential. If all animal spe-
cies with a complex nervous system show general intelligence, this
would tell us that variation in intelligence is a universal property of de-
veloping brains. If it is more common for cognitive abilities to be uncor-
related, and general intelligence is found only in rare cases, we would
learn under what conditions such a dense manifold of traits such as in-
telligence evolves.

If g arises from pleiotropy, we would expect to find that g is a wide-
spread phenomenon across taxa, because the causes are general evolu-
tionary genetic processes rather than particular to people. We would
also expect a weak, but detectable, phenotype-wide manifold in most
animal species. Since selection acts on behaviour, and behaviour is
shaped by species-typical ‘problems’, we would expect that the cogni-
tive architecture (thematrix of correlational relationships among cogni-
tive traits)would have partly overlapping commonalities across species,
aswell as some species specificity. The extent of commonality would be
determined by the extent towhich species and or populations share the
same problems. For example we would speculate that the capacity to
read others' minds is more highly correlated with bone density (pre-
sumably a fitness-bearing trait) in social species such as Pinyon jays
(Gymnorhinus cyanocephalus) than among the less social Clark's nut-
cracker (Nucifaraga columbiana) where reading conspecifics' minds
may confer a lesser benefit.

4.3. Measurement of animal intelligence

In discovering g, Spearman coined the phrase “the indifference of the
indicator”; he meant that g saturates any cognitive task, even the sim-
plest, such as reaction time tasks (Deary, Der, & Ford, 2001). This was
an important finding because it shows that one can learn about gwith-
out knowingwhat selection pressures shaped cognitive abilities, or how
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to parse intelligence in an evolutionarily-informed manner. The very in-
difference of the indicator makes it possible to test cognitive abilities in
other species without depending on ecologically relevant tasks (such as
finding and choosing a mate, avoiding predators, discriminating be-
tween nest sites). Tests used routinely on humans are reliable and
validwhile bearing no relation to the ecological reality of being a person
(such as making and retaining friends, finding a place to live, getting a
job). They have little connection with the myriad recurrent problems
faced by our ancestors and many tests are valid even when adminis-
tered to people who have little experience with their content or format
(Rushton, Čvorović, & Bons, 2007).

Learning about individual differences in animal intelligence is a first
step in understanding how cognitive abilities fit into the fitness land-
scape. It will provide crucial information on the relationship between
intelligence and health, ageing andmortality. Data from non human an-
imals are essential if we are to develop a complete understanding of in-
telligence, one of the most important traits in the entire animal
kingdom.
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