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A genome-wide association study (GWAS) takes a large 
sample of individuals—sometimes numbering in the 
millions—and tests, one by one, whether each of sev-
eral varying sites across the human genome—often 
numbering in the millions—is correlated with a trait of 
interest. Since modern genotyping technology made 
the GWAS design feasible and enabled its application 
to the traits of bipolar disorder (Wellcome Trust Case 
Control Consortium, 2007) and schizophrenia (Interna-
tional Schizophrenia Consortium, 2009) more than 15 
years ago, it has provided a valuable complement to 
the study of resemblance between twins and other rela-
tives that was for so long the mainstay of behavioral 
genetics.

This article reviews what the GWAS design has 
uncovered about the trait of intelligence (Table 1). We 
do not dwell on GWAS findings, such as the extremely 
large number of associated sites and their tiny effects 
(Chabris et  al., 2015), that apply to most traits. Our 
focus is on intelligence in particular. Deary (2000) 
reviewed the research up until that point seeking reduc-
tionistic explanations of individual differences in terms 
of genetics and biology, and the scope of this article is 
similarly limited.

Genetic Differences Cause Substantial 
Variation in Intelligence at Least 
Partially Through Neural Mechanisms

A brief search of Google Scholar will affirm that a 
GWAS article (e.g., Savage et  al., 2018; Trubetskoy 
et al., 2022) can take only a few years to garner as many 
citations as a venerable classic of the twin literature 
(e.g., Bouchard et al., 1990; Gottesman & Shields, 1967). 
Although some of this disparity is surely the result of 
a prejudice regarding “molecular” genetics as more “sci-
entific” than kin-based methods, the confidence placed 
in GWAS results is not all misplaced. This is because 
there is a specialized study design in GWASs that per-
mits much stronger causal claims than are possible in 
most nonexperimental research.

Each of us carries two copies of every base pair in 
the human genome, one inherited from each parent. 
When we become parents in our own turn, which of 
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the two do we pass on? Mendel discovered not only 
the paired arrangement of the hereditary units carried 
by an individual but also that whether it is one or the 
other member of a given pair transmitted to the indi-
vidual’s offspring is as much of a random 50-50 affair 
as a good flip of a coin. This means that any genetic 
differences between parent and offspring (and hence 
any genetic differences between different offspring of 
the same parents) are as random as the distinction 
between treatment and control units in a carefully con-
trolled experiment.

Therefore, as students who have taken a course on 
research methods might anticipate, whenever we see 
differences in assayed genotypes within families reliably 
accompany differences in height, body mass index, cho-
lesterol level, IQ score (Table 1), or whatever it may be, 
we can be confident that the genetic differences do 
indeed cause the differences in the trait being studied.

Readers should pause to reflect on this marvelous 
feature of Mendelian inheritance. Social scientists 
swarm onto the scene whenever providentially random 
distributions of lottery wealth, medical insurance, or 
school vouchers permit inferentially powerful studies 
of various outcomes, even when there is an even better 
example of a natural randomized experiment occurring 
every time that a human life is conceived. Fisher (1952) 
himself discussed the connections between genetics 
and experimental design, two fields to which he con-
tributed immensely.

Family units are more practically difficult to sample, 
but much has already been done, and more should 
certainly be done in the future. Right now we can say 
the following. For each of the three individuals in a trio 
consisting of two parents and their offspring, a predic-
tor of IQ (“polygenic score”) can be constructed from 
a combination of GWAS results and the individual’s 
genotyping data. If the offspring score is used to predict 
IQ, the parental scores can be used as control variables. 
This control confines the analysis of the offspring score 
to its random deviation from the scores of the parents. 

Without this control, the apparent effect of the poly-
genic score on IQ might be biased by confounders—
just as the apparent positive effect of alcohol on health 
is biased by differences between light drinkers and 
teetotalers whose effect is mistakenly attributed to alco-
hol. For accessible accounts of the confounding differ-
ences between bearers of distinct genotypes that might 
be affecting traits examined in GWASs, readers can turn 
to Davies et al. (2024).

One study exploiting within-family variation in the 
polygenic score found that the random deviation of the 
offspring score from the scores of the parents has an 
effect on actual IQ about 80% as large as the potentially 
biased naive effect that does not use the parental scores 
as controls (Okbay et al., 2022). The greater part of the 
polygenic score’s predictive power, then, reflects the 
causal effect of genetic variation.

A GWAS-based predictor of this kind aggregating 
several sites in the genome may tend to weight the most 
statistically significant sites more heavily. It is also pos-
sible to examine within-family variation one site in the 
genome at a time (Tan et al., 2024). This approach has 
found that sites with relatively large effects on IQ tend 
to have biases in the opposite direction, leading to the 
true effects being on average larger than the naive 
effects estimated in samples of unrelated individuals 
(Tan et al., 2024; Young et al., 2022). Tan et al. (2024) 
even found that the net impact of all biases comes out 
to a surprising closeness between family-based and 
population estimates of how much IQ variability is 
attributable to the genetic variants studied in GWASs (a 
subset of the genetic variants contributing to the resem-
blance between twins). Although these results point to 
the sore need for more family-based studies and popu-
lation studies of representative samples, they already 
suggest that the existing statistics from GWASs of IQ 
can be cautiously relied on for downstream 
inferences.

Earlier authors have addressed the criticism, originat-
ing at least as far back as Jencks et al. (1972), that a 

Table 1.  Terminology in the Study of Human Intelligence

Intelligence Ability to acquire and apply knowledge (Oxford University Press, 2010)
g Psychometric common factor measured by standardized ability and achievement tests; 

the same as “intelligence” to the extent that the tests have construct validity (Cronbach 
& Meehl, 1955; McDonald, 1999), although no item-based standardized test can fully 
measure up to the concept; embedding test scores within a causal model, of the kind 
sketched in this article (see Fig. 1), is a kind of construct validation

IQ Composite of the scores obtained on the various tests within a battery measuring g; 
the same as g to the extent that the battery of tests is reliable; whether the different 
types of test are positively correlated is a component of reliability, but this article 
addresses the further question of whether the correlations making for measurement 
of a common attribute are explained by the tests being affected by common causes
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genetic effect on IQ is consistent with the causal path 
going through a mediator such as physical attractive-
ness (e.g., Sesardić, 2005). The idea behind this criti-
cism is that there may be genetic effects on some 
superficial trait that go on to affect how one is treated 
by others that go on to affect learning, self-esteem, and 
ultimately performance on an IQ test. What GWAS data 
add to this discussion are clues to the biological mecha-
nisms through which the most strongly associated sites 
affect IQ. Much is known about the functions of the 
genomic regions encompassing any given site, and the 
overrepresentation of top sites in regions of a given 
type can render certain hypotheses about mediation 
less plausible. GWASs of IQ have shown that the top 
sites tend to act through biological processes such as 
“regulation of nervous system development, central 
nervous system neuron differentiation, and regulation 
of synapse structure or activity” (Savage et  al., 2018,  
p. 913). These results are not what one would expect 
if attributes such as physical appearance were powerful 
mediators of genetic effects.

In the next section we turn to a more specific bio-
logical attribute that GWAS data have implicated as a 
mediating cause of intelligence.

The Association Between Brain Volume 
and Intelligence Is Probably Causal

Psychologists studying individual differences have long 
sought to establish correlations between opposite sides 
of the Cartesian gap between the physical and the men-
tal (Paterson, 1930). Their efforts have led to modest 
success. For example, it is now known that the correla-
tion between brain volume and IQ is about .25 
(Pietschnig et al., 2022). Because correlations can range 
in absolute value from 0 to 1, this particular correlation 
may seem small. But we know of no anthropometric 
attribute as highly correlated with IQ as brain size, and 
conversely we know of no psychological trait as highly 
correlated with brain size as IQ. But, again, let us take 
ourselves back to research methods: Does correlation 
here imply causation? Is brain size a cause of IQ, or are 
they correlated because confounders affect both?

Here is an issue for which traditional methods based 
on twins and other kinships can complement newer 
GWAS techniques to produce a fairly definitive resolu-
tion. Many of the latter techniques can be thrown off 
by a form of confounding called “cross-assortative mat-
ing,” the tendency of individuals with a certain attribute 
to prefer mates with a certain other attribute (Border 
et al., 2022; Jensen & Sinha, 1993). An example is the 
tendency of individuals with higher IQs to prefer mates 
who are taller. After some generations of such cross-
assortative mating, a genome carrying IQ-increasing 

genes will also tend to carry height-increasing genes at 
distinct sites (Keller et al., 2013; Tan et al., 2024). How 
can we be sure that cross-assortative mating is not like-
wise the explanation of the correlation between brain 
size and IQ? This possibility can be ruled out by the 
replication of the correlation within twin or sibling pairs: 
Does the sibling with the larger brain also tend to have 
the higher IQ? Whereas under cross-assortative mating 
a given parent may tend to carry genes increasing both 
traits, the randomness of Mendelian assortment means 
that there will be no tendency for an offspring inheriting 
the gene increasing brain size at a site in the genome 
at which the parent carries both the increasing and 
decreasing genes to also inherit the gene increasing IQ 
at a distant site that is similarly heterozygous. Lee et al. 
(2019) did in fact find highly significant within-family 
correlations between IQ and two measures of brain size 
(MRI-measured volume, external head circumference), 
putting to rest the idea that cross-assortative mating 
between the intelligent and the large-brained accounts 
for this correlation in the wider population.

A trait-level correlation within twin and sibling pairs 
might still be the result of reverse causation or con-
founders that vary within families. We can use data from 
GWASs of both traits to eliminate these alternatives as 
well, using a method that can be explained intuitively 
as follows (Lee et al., 2019; O’Connor & Price, 2018; 
Pickrell et al., 2016).

Suppose that we believe some site in the human 
genome to be a cause of brain size. Then the site must 
go on to show a concordant effect—that is, an effect 
of the same sign such that the gene at the site associ-
ated with more of one trait is also associated with more 
of the other—on any trait that is affected by brain size, 
such as g (“general intelligence”; Table 1). This is 
because of the chain genetic site → brain size → g  
(Fig. 1). In contrast, any variable ascribed to be a cause 
of g need not show a concordant effect on brain size; 
there may be genetic effects on g acting through bio-
logical mechanisms other than brain size (e.g., fine-
tuning of synaptic plasticity).

Figure 2 displays the results from a study by Jansen 
et al. (2020) testing these predictions of a brain size → g 
causal link. Each data point represents the effects of a 
genetic site on brain volume and IQ. Figure 2a displays 
a perfect concordance of genetic effects: Of the 24 top 
signals from this GWAS of brain volume, all 24 showed 
effects on IQ in the same direction. Figure 2b displays a 
much weaker concordance: Of the 243 top signals from 
this GWAS of IQ, only 151 (62%) showed effects on brain 
volume in the same direction. The latter concordance was 
greater than expected by chance but consistent with the 
expectation that far from all variants affecting intelligence 
do so through brain volume.
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As impressive as these results may seem, they must 
be interpreted judiciously. Other studies have indicated 
that the pattern in Figure 2a weakens with the addition 
of genetic sites ascertained from larger GWASs of brain 
size (Grasby et al., 2020; Nawaz et al., 2022). The best 
interpretation may be that coarse measures of size such 
as the volume of the whole brain or the surface area 
of the cortex are good proxies for some other attri-
bute—possibly the number of neurons in certain critical 
regions—that is the true causal variable.

The g Factor Is Not a Statistical Artifact

Factor analysis is taught in courses more advanced 
than introductory research methods, but its basics can 
be simply explained. Assuming that the correlation 

between two indicators (i.e., items or subtests) reflects 
their measurement of a common attribute (Fig. 1), 
factor analysis converts the correlations between all 
pairs of observed indicators into quantitative estimates 
of each indicator’s sensitivity as a measure of the com-
mon attribute. It is also possible to estimate each 
examinee’s level of the attribute. Although an essential 
method in psychometrics and the study of individual 
differences, factor analysis has given rise to contro-
versy for nearly 100 years, essentially because the 
attributes (“factors”) invoked to account for the cor-
relations—such as the g factor when the correlations 
are between types of IQ tests (Table 1)—are unob-
served and thus tend to engender disputes over 
whether they really exist (e.g., Kovacs & Conway, 
2019; Mulaik, 2005).

g
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Fig. 1.  Causal links between genetic variation, brain size, and intelligence. Genome-wide association studies have mus-
tered preliminary evidence for the causal chains depicted here, in which genetic variation affects brain size, which goes 
on to affect g (“general intelligence”), which acts as a common factor.
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Fig. 2.  Nature of the causal relationship between brain volume and IQ inferred from the asymmetry of results from GWASs. 
The 24 genetic sites reaching genome-wide significance in a GWAS of (a) brain volume all showed concordant effects on IQ 
(Jansen et al., 2020). Only 62% of the 243 genetic sites reaching genome-wide significance in a GWAS of (b) IQ showed concor-
dant effects on brain volume (Savage et al., 2018). GWAS = genome-wide association study. Adapted from Jansen et al. (2020).
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A powerful strategy to test the hypothesis that there 
might indeed be biological causes affecting all indica-
tors of a common factor—causes that in this respect 
formally resemble the constructs posited by factor anal-
ysis—is rather similar to the one used to support brain 
size being a cause of IQ. One cannot directly examine 
whether a site in the genome ascertained for a signifi-
cant effect on g goes on to affect a cognitive test (Fig. 
2) because g cannot be directly observed. But factor 
analysis depends on there being multiple indicators of 
a putative latent trait, and one can examine whether a 
genetic site with an effect on one subtest has effects 
on other subtests consistent with their joint dependence 
on g, the latent trait that they are all supposed to mea-
sure (Grotzinger et al., 2019). This was more or less the 
strategy adopted by de la Fuente et al. (2021), and they 
did indeed find 27 sites in the genome with concordant 
effects on all of the cognitive subtests in their study—
exactly as expected from each of these subtests being 
an endpoint of the chain depicted in Figure 1. Some of 
these sites were statistically significant only in the mul-
tivariate approach considering all subtests jointly.

This demonstration is perhaps not definitive because 
of the nonrepresentative character of biobank volun-
teers (Meredith, 1993). At the very least, however, it 
shows again the potential power of GWASs in behav-
ioral research. Credibly identifying several independent 
causes of a given trait can illuminate many additional 
links in the chain of explanation (Fig. 1), including 
some of particular and long-standing concern to the 
practitioners of scientific psychology.
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